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Short range orientational order in ‘nematic liquid crystals
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Abstract. The different approximations that have been used in applying Bethe’s
cluster model to the nematic-isotropic phase transition are examired. 1 is shown
that the introduction of a higher order term in the mean field potential of an outer
molecule of the cluster improves the consistency of the theory considerably. In
particular, the importance of satisfying Chang's relation is emphasizec. Calcu-
lations are presented of the long and shortrange order parameteis, heat of transi-
tion and specific heat for different values of z, the number of nearest neighbours
around any given molecule, for both nonpolar and antiparailel near neightcur
correlations. Even the new mean field potential appears to be iradequate f(r z= 3,
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1. Imtroduction

In previous papers we demonstrated that the molecular statistical theory of the
nematic-isotropic transition is improved considerably when near neighbour orien-
tational correlations are taken into account (Madhusudana and Chandrasekhar
1973 a, b, ¢). The treatment was based on Bethe’s cluster model: each molecule
is supposed to be surrounded by z nearest neighbours (z>3), no two nearest
neighbours being nearest neighbours of each other. Let E(6,) be the energy
of interaction between the central molecule i and an outer molecule j, where v,
is the angle between / and j, and let ¥ (6, ) be the mean field potential energy of
an outer shell molecule j due to the surrounding medium. If we postulate that
the relative probability of a molecule pointing in any direction (6;, #,) should be
the same whether it is a central or an outer molecule, we obtain the following
consistency relation due ‘to Chang (1937):

FZ(0,,¢)=g(8) ] F51(60,80)f (84) d (cos 8,) dssq (1)
where the first subscript in 0,;; refers to the central molecule,

F0,8)=J[ f(6,)g(8,)d(cos b)) ds,

S (i) = exp [— E(6,)/kT]
and

g (6,) = exp [— V (8))/kT].
Krieger and James (1954) expressed this in a slightly different form: they argued
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that the relative probability of a pair of molecules occupying any given configu-
ration must be the same irrespective of which molecule is considered as the

central one, i.e.,
P (0, 0i; 0,8,) =14 0,945 0, 9,) (2)
where

P (0, b45 0 8)= f (6.,) g (6,) FZ1(6,, ¢)). 3)

Equations (1) and (2) should be satisfied for all pairs of orientations (6,, ¢,;
65, $;). We applied the Krieger-James (KJ) method taking

© E(8,) = — B* P,(cos 6,;) “4)
and _ ‘ ‘ _
V (8;) = — BP,(cos 6,) (%)

and showed that (T, — T*) is significantly reduced as compared with the Maier-
Saupe value. Here T, is the nematic-isotropic transition temperature and T*
the apparent second order transition point. However, as was rightly pointed out
by Ypma and Vertogen (1976 a, b), (4) and (5) do not satisfy (2) [or equivalently
(1)] exactly in the ordered phase. The maximum discrepancy is 2-3%, for z=8
near T,. In order to derive a mathematically consistent theory, these authors
made the weaker approximation that only the average orientation of the central
and an outer molecule need be identical. In other words,

5 [ [ Patcos0) F2 @0, 40 d cos 0) ds,

=%f...fpz (c05 6, g (0 f (6.) FZ1 (B0, $4) d (cos 6,) d,
X d(cos 8,)dé, (6)
where

D= [ [ FZ(b,,¢,)d (cos 6,) dp.. M

This relation is exactly analogous to the Bethe-Peierls-Weiss (BPW) approxi-
mation in ferromagnetism (see Smart 1966, Strieb et al 1963). The -calcu-
lations of Ypma and Vertogen for z between 3 and 12 indicated that (T, — 1%
as well as the heat of transition come closer to the experimental values for smaller
2. However, these authors also obtained the somewhat surprising result that
the specific heat change (ACy ) at 7T, decreases as z decreases, contrary to the
predictions of the original Bethe theory (see e.g., Fowler and Guggenheim 1939,
Miinster 1974). As we shall see presently, the YV results do not fulfil the thermo-
dynamic equilibrium condition for the cluster free energy exactly. For z=8
their solutions satisfy (1) to only 4-5%, (maximum error) near T,.. The discre-
- pancy increases at lower temperatures and becomes quite pronounced for lower
values of =z.

With a view to obtaining solutions that satisfy Chang’s relation (and hence
the thermodynamic equilibrium condition) as accurately as possible we have
refined the calculations by introducing a higher order term in the mean field
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potential V (8,) [see equation (9) below]. Though there are now two parameters
in V (6,) they can be derived in terms of B*, the two particle interaction constant,
so that as before all the properties of the system can be deduced in terms of
a single parameter. This leads to a significant improvement in the theory.
Before presenting these results we may mention in passing yet another method
employed in ferromagnetism. The average orientational order of a molecule is
calculated in two ways: (@) by assuming that the molecule is in the mean field of
all its z nearest neighbours and (b) by considering interactions between two
neighbouring molecules exactly and replacing the rest of the interactions of this
coupled pair by the effective mean field due to the z—1 neighbours on each of
them. It is then assumed that (a) and (b) should give identical results, i.e.,

f f P (cos 8) exp {W} d (cos 6,) di

f f exp ZBP2 (COS 0‘)}d (cos 6,) d,

(B* e-1B
f .. sz (cos 8,) exp {ﬁPz (cos 6,)) + (z kT)

X [Py (c05 6,) + Py (cos 0,)]} d (cos 6,) a, d (cos 6,) db,

[ [ o B pcosay + EDE

% [P, (cos 6,) + Py (cos 0,)]} d (cos 0,) di, d (cos 8,) d,. (8)

In ferromagnetism this method is known to be equivalent to the ‘ constant coupling
approximation’. Equations (8) and (6) yield practically identical results (see
table 1). We shall not therefore discuss this particular method any further in this

paper.

Table 1.
B*/kT {(P;(cos B))
Z - —
Eq. (8) Eq. (6) Eq.(8) Eq. (6)
8 0-6248 06248 0-426 0-424

4 1-452 1-452 0-420 0-413

2. The method

Let us first examine the nature of the error involved when the YV solutions
based on (4), (5) and (6) are substituted into Chang’s relation. The percentage -
error defined as 200 X (RHS—LHS)/(LHS + RHS) calculated from (1) is
plotted as a function of cos ¢, in figure 1. 1t is clear from the form of this curve
that the introduction of a P, (cos €) terin in eq. (5) may be expected to compensate
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Figure 1. Percentage error in satisfying Chang’s relation as a furction of cos 8 for
z= 8 at T, (a) when only B is taken into account and (b) when both B and Cars
taken into account in the mean field potential energy (9).

for the error. We therefore write
V(0;) = — BP, (cos 6,) — CP, (cos 6)). %)

We now impose the additional condition, similar to (6), that the average of
P, (cos ) should be the same for the central and outer shell molecules. This is an
extension of the YV method and yields solutions which near T, satisfy Chang’s
- relation (1) to better than 0-1%, for z = 8 (figure 1). The new potential improves
the results of the KJ method also to the same extent—indeed the parameters B and
C derived by the two methods are practically identical and Chang’s relation
is fulfilled in both cases to the same degree of accuracy. Hence all results dis-
cussed hereafter will refer only to those obtained using the extended YV approxi-
mation. )

The numerical calculations were made on an IBM-360 computer. The compu-
tational procedure was as follows: for a given value of B*/kT we assume a pair
of values of B/kT and C/kT to start with and iterate on the latter two numbers
till the two consistency relations for (P, (cos 8)) and (P, (cos 6)) are satisfied.
The integrations were performed using the Gaussian quadrature method in
double precision, with 32 quadrature points. The properties of the system are
finally expressible in terms of the single parameter B*, the two particle inter-
action constant. The short range order parameter is given by

P—4
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1
(Poos0)) =35 [ [ Pa(cos ) / (0) g (8) F= (6, $)

d (cos 6,) do, d (cos 0,) d,. (10)

Following Ypma and Vertogen, we evaluate the free energy of a cluster. The
internal energy of the cluster is :

U=z (E@u) +35 V(O

= — zB* (P, (cos 0,,)) — EB (P, (cos 9,)) — ; C( P, (cos 6,)) (11)

and its entropy is given by
TS =z(E(0,)) +2z(V(6)) +kTInD

= — zB* (P, (c0s 6,)) — zB (P, (cos 6,)) — zC (P, (cos 8,)) + kTInD
' (12)

and the free energy
F=U-—TS. (13)

As the expression for the specific heat Cy turns out to be rather long and involves
two different kinds of averages, it is given separately in the appendix.

Similar relations hold good for the isotropic phase (B = C = 0), which is
always a solution of the consistency relations. The properties of the isotrop'ic
phase, e.g., the electric and magnetic birefringence, etc., are given by the same
expressions as derived in an earlier paper (Madhusudana and Chandrasekhar
1973 ¢) since in this case (P,) < (P,) and therefore it is enough to retain only the
B-term in (9).

3. Results and Discussion

The calculations are presented in table 2 and figures 2-6 for z = 12, 8, 4 and 3.
We note the following points:

(@) (Te — T*)[T¢ decreases as z is decreased, but not as rapidly as reported
by Ypma and Vertogen. The present value is 0.030 as against their 0-011

Table 2.

. AH c AC T, — I*

Z BYKT B/kT C/B - Joules)  Joulés/ Joules/  %max —

mole mole K mole K T,

12 0-4002 1-7155 —0-01509 1195-5 7163 69- 88 0-070
0-6212 1-6009 —0-02304 1090-0  79-96 76:90  0-088% 0-062
4 1-436 1-2590 —0-04827 719-3  83-47 80-31  0-28%  0-040
2:254 1-0603 —0-06714  483-8  77-32 6585 . 0-4%  0-030

* 8pax is the maximum error in satisfying Chang’s relation at T,.
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Figure 6. Comparison of experimental values of (P,)/(P,)in the case of p-azoxyani-
sole as a function of reduced temperature 7/T, with theoretical values. Continuous
line, A, O and @ stand for experimental values and the dotted line, the mean field
result (from Kohli etal 1976). Dashed lines represent the theoretical values in
the Bethe approximation for z= 12, 8, 4 and 3 from top to bottom.

for z=3. (It may be mentioned however that z= 3 is an unphysical
situation in a real system).

(b) The absolute values and the temperature variation of (P,) for z= 3 and 4
are in good agreement with experimental data for common nematic
compounds like PAA, MBBA (Saupe and Maier 1961, Chandrasekhar
and Madhusudana 1969, Lee eral 1974). Recently, Kohli etal (1976)
have determined the temperature variation of the ratio (P))/(Py) for
PAA using neutron scattering. Again the agreement with the theoretical
variation is reasonably good for z =3 and 4 (figure 6).

(c) Taking C = 0 in (13) and imposing the equilibrium condition dF/3(P,) = 0
on the free energy of a cluster, we find that B oc (P,). However, the actual
numerical calculations of Ypma and Vertogen based on egs (4), (5) and
(6) do not lead to this result: the ratio B/(P,) steadily decreases as the
temperature is increased. [A similar problem exists in the case of the
BPW method in ferromagnetism (Strieb eral 1963)]. Another conse-
quence of this discrepancy becomes apparent when the transition point
T is located by the equal areas method from U vs. (1/T) diagram (see
Madhusudana and Chandrasekhar 1973). This method requires the
thermodynamic equilibrium to be satisfied at all temperatures. It is
found that T, obtained by this method is slightly different from the value
obtained by equating the excess cluster free energy (Fy — F,) to zero.

When the C-term is introduced in the mean field potential, the equi-
librium conditions dF/d(Py) = VF[X(PH=0 Ie.ad to expressions involving
both B and C and we no longer get a simplerelationlike B oc (P,). However,
in this case, T, obtained by the equal areas method agrees well with the
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value obtained from the condition Fy — F; = 0 (up to the 4th significant
figure for z = 8; we have not tested this for lower values of z as the calcula-
tions are very lengthy). Thus it would appear- that it is necessary for the
detailed angular distribution functions of the central and outer mole~
cules, and not merely their average orientations, to be identical for the
system to be in thermodynamic equilibrium. :

(d) An even more sensitive test of the validity of the calculations is provided
by the specific heat at constant volume (C,). Ypma and Vertogen found
that C, at all temperatures and AC, at T, decrease systematically ds
z decreases from oo (mean field theory) to 3, contrary to the predictions
of the original Bethe theory. Inthe presentcalculations, Cy, at T, as well as
A Cy increase from the mean field to z = 4 (figure 5), but drop to lower
values for z= 3. We believe that this reversal in the trend is because
Chang’s relation is relatively poorly satisfied (~ 0:4%,) for z =3 (see
table 3). At sufficiently low temperatures, Cy is lower for smaller z,
which again is in agreement with the Bethe theory.

4. Polar molecules: antiparallel correlations

In an earlier paper (Madhusudana and Chandrasekbar 1973 ¢) we proposed a
theory of antiparallel near neighbour correlations in nematics composed of strongly
polar molecules. Recent x-ray studies on the crystalline (Vani and Kalyani
1976), smectic (Lydon and Coakely 1975) and nematic (Leadbetter eral 1975)
states of several strongly polar compounds have provided direct evidence for this
kind of local ordering. An important consequence of such a correlation is that
the mean dielectric constant in the nematic phase, (e) = § (¢ - 2¢.), should be
less than the extrapolated isotropic value. This again is found to be the case
experimentally (Schadt 1972, Ratna and Shashidhar 1976).

We have now refined our e@{rlieL calcgl_zlt’ig.;l,s,in the _light of the results of
the previous sections. We re-write the near-neighbour interaction energy as

E(0,) = A*P, (cos b,;) — B* Py (cos 6,)) (14)

where the positive sign of 4* favours an antiparallel arrangement, and assume
the mean field potential ¥ (6;) to be given by (9) instead of (5) as in previous
calculations. As in the non-polar case, there is now a significant improvement.
The results are presented in table 3 and figures 7-11. The major points emphasized

Table 3.
' . AH ACy T,—T*
z  B*/kT BJKT C/B joules/  joules/ gy ———— OE[e*
mole mole K T,
Eq.(5) ( 8 05954 1-6818 .. 1279-4  72:50  2:93%  0-055 0-073
c—=0 1 4 1317 1-4005 - 1005-5 60:44  4-6%  0-028 0-190
o § 0-5924 1-6016 —0-02311 1137-02 84-97  0-088% 0-059 0-078
Eq { 4 13035 12774 —0-04927 '8i0-4 9153 0-299 0-038 0-156
c# 3 1-9750 1-0568 —0-06769 522:0 71-75  0-39% 0-028 0-191

* 3%/¢ is the relative jump in the mean dielectric constant at T,.
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in (a), (¢) and (d) of the previous section hold good in this case also. The order
parameters (P;) of several cyanobiphenyls, which are strongly polar materials, agree
well with the theoretical values for z =3 or 4 (Heger 1975, Karat and Madhu-
sudana 1976). However, the experimental (P,)-values of 4'-n-heptyl-4-cyaro
biphenyl are lower than the theoretical values even for z = 3.

These results bring out the necessity of fulfilling Chang’s consistency relation
in order to develop a satisfactory theory of near neighbour correlations in tte
Bethe approximation. An attempt is being made to generalize this model ard
will be discussed in a separate paper.

o551

9<P2 cose)) o
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Figure 7 Long range order parameter (P,) for polar molecvles with antiparallel
correlation (4*/B* = 0-5) as a function of the reduced temperature 7T, for difice
rent values of z,
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~ Appendix | |

" The speciﬁc heat Cy:

(M, - [B* S (Pa (005 0,)) — A*<> (P, (cos 0.,»]

= ng [sz {Z (P2 (COS 0“»2 — <P22 (COS gu»

—(z — 1) {Py (cos 8;;) Py (cos 8,,))'} /
A 2 (Py(c0s 0,)) (P, (605 8,)) — (P (c05 0,) P, (c05 0,)

—(z— 1) (P (cos b;) Py (cos B))'}

A*2
+ T2 {z (P, (cos 0))% — (P12 (cos 6,,))

— (2 = 1) (P (cos ;) Pj (cos 050’}

_,_kT(B Sf, { 2(Py (cos 6,)) (Py (cos 0,))

— (Pa(cos b;) Py (cos 6,))
- (2 - 1) (Pg (cos b;) Py (cos 6,))'}

—|— AT ) {z(P; (cos 0:)) (P4 (cos 0,))

— (P4 (cos 8;) P, (cos 8,)))
—(z—1) (Pz (cos 8;)) P, (cos 6))'}

— 27— 22) (= (P (cos ) (Py (cos 6,)

— (P, (C_OS 8,) P, (cos 6,))
— (z — 1) (Py (cos 8;;) P, (cos Hk»’}

*
(5 35 (24P (cos 0, (Py (cost)

— (P4 (cos 6,) Py (cos 0,,))
— (- 1P, (COS 0:;) Py (cos 6))'}

where ( ) indicates average values obtained by using the RHS of eq. (8) and
( Y indicates the following type of average:

(4) = 5 [ oo TASBy) S (0n) 80 g (6:)

F*=2 (6, $;) d (cos 6;) dp;
d (cos 8;) d¢; d (cos 6,) dp,
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(B DB and (%—— g—g) can be evaluated by differentiating the consistency

relatlon (8) and the analogous one involving P, (cos 8,). The specific heat in the
non-ploar case is obtained by putting A* equal to zero.

Note added in proof

We have recently received a preprint of a paper by Sheng and Wojtowicz, who ‘have used
the constant coupling approximation (8) with the more general form of the potential 9) and
have obtamed results very similar to those discussed here.
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