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Homogeneous instabilities in nematic liquid crystals
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Abstract. The effect of a magnetic field on the instability threshold in shear flow and
plane Poiseuille flow of nematics has been worked out for the case of unperturbed
director orientation normal to the plane of shear. The critical shear rate for the onset
of instability has been studied as a function of destabilising field. The dependence of
the time constant vy on shear and field for time dependent perturbations in shear flow
is found to be explained by two solutions which differ from one another to the extent
that wave vectors which are real for one solution are imaginary for the other; these
solutions exist for different ranges of shear and field but have one common point
where they yield the same v value making possible a continuous description of v. In
Poiseuille flow even for a destabilising field applied along the primary velocity the
occurrence of an instability associated with net secondary flow (flow transverse to the
primary velocity) is found to be more favourable than one having no secondary flow.
This trend is also observed for low destabilising fields applied along the velocity gradient
but for higher fields the occurrence of an instability without net secondary flow becomes
more favourable. Simultaneous application of a stabilising electric field does not
change the qualitative nature of the results.
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1. Introduction

A number of theoretical and experimental investigations have been recently reported
on the homogeneous instability in nematic flow. Pieranski and Guyon (1973)
experimentally found that when a slab of nematic is sheared with the director aligned
normal to the plane of shear (i) distortion in the director orientation occurs when the
shear exceeds a critical value which varies inversely as the sample thickness, (ii) a
stabilising magnetic field inhibits the onset of instability with the critical shear rate
varying as the square of the field strength for strong fields. These authors also gave
a theoretical treatment but did not consider time dependent perturbations nor pertur-
bations in the velocity field. Leslie (1976) and Manneville and Dubois-Violette
(1976) employed more general perturbations. Leslie (1976) showed that his exact
calculations reduce to those of Pieranski and Guyon (1973) under approximation.
Manneville and Dubois-Violette (1976) presented numerical calculations fora stabiliz-
Ing field and showed that for large enough fields a roll instability is more favourable
than the homogeneous one. '

Manneville and Dubois-Violette (1976b) worked out theoretically the onset of
homogeneous instability in plane Poiseuille flow for unperturbed director orientation
normal to the velocity and pressure gradients and showed that above a critical pressure
gradient an instability involving net secondary flow, i.e., flow transverse to the primary
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velocity can set in (as opposed to the case of shear flow where instability is not
associated with net secondary flow). They showed that the critical pressure gradient
increases with increasing stabilizing field and that an instability without net secondary
flow is not favoured. Some of these results were experimentally justified by Janossy
et al (1976).

In this paper numerical calculations on the effect of destabilizing magnetic fields
on the instability thresholds in shear flow and plane Poiseuille flow of nematics have
been presented. The critical shear rate for the onset of instability has been studied
as a function of destabilizing field. Some of the new results obtained are the follow-
ing: (i) The time constant » of time dependent perturbations in shear flow is found to
be explained by two solutions which differ from one another to the extent that wave
vectors which are real for one are imaginary for the other; these solutions exist for
different ranges of field and shear but have one common point where they correspond
to the same » value. (i) In plane Poiseuille flow the occurrence of an instability
associated with net secondary flow continues to be more favourable than one without
net secondary flow even in the presence of a destabilising field applied along the
primary flow. For low values of destabilising field applied along the velocity gradient
the same trend is observed. But for higher fields the occurrence of an instability
without net secondary flow becomes more favourable. Simultaneous application
of a stabilising electric field does not change the qualitative nature of the results.

2. Shear flow

The nematic is assumed to be confined between two plane parallel plates occupying
the planes z=0 and z=d. The director is assumed to be aligned along the x axis.
The plate z—=d moves with a constant velocity V" along the positive y direction. The
notations in this paper follow closely those of Kini (1976) where the Ericksen-Leslie
equations for nematics have been summarised. We seek solutions for the director
and velocity fields and pressure in the form

n, = cos 0(z, t) cos @ (z, 1), n,=cos §(z, t)sing (z, 1), n,=sin6(z, 1)
o, =u(zt), 9,=0(z 1), 2, =0
p=p1)
subject to the boundary conditions
00,t)=0d,t)=p0,t)=pd1)= u(©,0) =u(d,?t)
=9(0,1) =0;
o(d,t)=V. ¢))

A magnetic field H is applied. Inertial effects have been ignored for mathematical
simplicity. The Ericksen-Leslie equations assume the following form:

[M(8)+ N(B)C, Htts+ N(8)9,,S,C,+2K(6)C, 8—2L()S, &
=2q=21t,, )
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N(O)S, C,toe+ [M(8)+ N(0)S, 70,4+ 2K(0)S, 6+ 2L(O)C, §

=2b=12t, 3)
dF dG o
g 03:: Ty 027: Ty ’22 20
2EO+ 25 as P TN

+(A1+A; cos 20)(u,,C, +0,,S,)

+2x,(Hn)(H,C,—H,S,C,—H,S,S,)=0. )

2G(0)p,.,+2 Z"g 0,: P, t24,C,2 93 +A—A)S,C (%, S, —v,,C,)

+2x,(Hn) (H,C,C,—H,C,S,)=0 5
where
. 4 ao ap
S, =sin b, C, =cos p, § =, p,, ==L etc,
4 L4 P at P z az

M(6) = pat(us—p2)S,%  N(O) = @pyS,*+pat1)C,%

F(0) = ky,C 2+ kg3S 2, K(8) = p13C 2—p,S 2, L(6) = paS,C,,

G(0) = (kpsC,2+k33S,3C, %

a apd b are constants which can depend on time, X, is the diamagnetic susceptibility
anisotropy, ky;, ks, kyy the elastic constants, py, p, i3, B4, Ms» Mg the Viscosity co-

efficients, A, =p,—p, and Ag==ps—pts.
On assuming that u, § and ¢ are small and on linearising, eqs (2) and (3) reduce to

U, #4(#3“‘.“4‘*‘}"&)=2ai‘4_2i‘3[‘40c’_2b(i‘3+f‘e)? 6
by =2 ¥
Ha

On using egs (6) and (7), eqs (4) and (5) reduce, for different directions of the magnetic
field, to the following relations:

H=(H, 0, 0) (Stabilising field)
Pszz— g ?3“‘”’"28""’2?:0 (8)

,,,—ny0-+-my(p+8)—hy =0 ©)
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H=(0, H, 0). Destabilizing field
Py—Mp P+ 20+ 13p=0 (10)
0,;,—n15+m1(ga +8)=0 (¢5))
H=(0, 0, H). Destabilizing field
Poi—ty §--maf=0 (12)
0,,— myf-+my(p+8)+h,0=0 (13)
with Ay =XH%/ky, ha=XaH*[Ka, .

my =(A; +A)b /Ky (s -+ pat o), my=(Ag—A)b/itskss,

8=alb, ny=—MAlkss,

ny=—[ A — s\t A) (st e+ pe) ) 1

Since a and b are functions of time 3 is also a function of time. The Trest of this sec-
tion contains a discussion on the exact solution of the eqs (10) to (13) compatible
with (1). The differential equations governing 9 and p are solved first. Using eq.
(7) and the relation ‘

fdu dz=0 | (149
0 22

one obtains the compatibility condition connecting & and H for stationary perturba-
tions or b, H and the time constant v for time dependent perturbations.

The model calculations have been carried out for MBBA for sample thicknesses of
50 pm and 100 pm. The data for viscosity coefficients and elastic constants are
those reported by Gahwiller (1971) and Haller (1972) respectively. The value of X,
has been taken from Gasparoux et al (1971). In every case eq. (14) reduces to
a transcendental equation which has been solved by the Newton-Rhapson method
coupled with iteration on an IBM 360/44 computer with double precision arithmetic.
For stationary perturbations 8 is treated as a constant and eq. (14) yields a relation
between b and H for a given sample thickness. For a given value of H there exists
a value b, of b such that 6, @ and u cannot exist for 0< b<b,. In the investigation
of time dependent perturbations, the time dependence of all relevant quantities is
assumed to be of the form exp (vt) with » being assumed to be real (since propagating
modes are generally not found in nematics). A solution of eq. (14) yields v as a
function of b and H.

When a destabilizing field H=H, is applied it is found that b, decreases with
increasing field strength (figure 1) becoming zero when H=HT={n/d} (AL
the Freedericksz value corresponding to the twist deformation. A similar result is
obtained for the field H=H,: b, goes to zero for H=H,S={n|d}(ky/x,)} the critical
field strength for the splay geometry (figure 1). These instabilities correspond to
the mode which is such that 8 and p are symmetric about the centre of the sample
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Figure 1. Variation of b, as a function of destabilizing magnetic field for two different
sample thicknesses (a) 50 u (b) 100 . Dashed lines correspond to a field H; while
the solid lines correspond to a field H,.

while  is antisymmetric and thus the net flow associated with it is zero. Since the
mode corresponding to a symmetric # can occur only for special values of the sample
thickness (Leslie 1976) it has not been discussed here.

Figure 2 illustrates the effect of a destabilizing magnetic ficld H, on the time cons-
tant » of a time dependent perturbation. It is found that there are two solutions—
solution A which exists for B =m,my+hyn, v—nyn, v > 0 and solution B which exists
for other values of 8. The difference between the two solutions lies in a wave vector
being real for one solution while becoming imaginary for the other. For instance
0 for the two solutions has the following form:

Solution A

g — [Aalk2—n)-+m; Ag] [sin kyz+sin ky(d—2)]
' (k2 +kz?) sin kyd

+ [Ay(ks2+nv)—my A,] [sinh kyz+sinh ky(d—2)] _
(e 1 kosinh kyd 1

2k = [{Ag—v (ny+np)}2-+d(mymy+ honyy—nyngy?) 1t 4-{ hy—v(my+ny) }
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Figure 2. Variation of the time constant v as a function of destabilizing field H), for
different values of 5. (1) 0-5 (2) 04 (3) 0-3 (4) 0-15 dynes cm~2. Solid lines pertain to
solution A while the dashed line corresponds to solution B.

Solution B

g — MAs— Ak +np)] [sin kyz +sin ky(d—z)]
(P —Tysin kyd

[A (k2 +npw)—my A, [sin kyz+sin ky(d—2))
+ — A
(ky2—k,?) sin kyd

2k2) g =hy—v(ny+ng) - [{ he—v(ny +-ng) } 2+ 4(mymy+hemyy—nyngy®)] ¢

A,, ; are constants depending on m,, my, hy, h,, etc.

Solution B is found to explain the dependence of v on b and H for low enough values
of these quantities, while solution A exists for higher values of b and H where insta-
bility can set in. For a given value 4’ of b one finds that » <0 for H< H’ (see figure 1
for b’ and H'). For H=H', v becomes zero and this corresponds to the instability
threshold. For H>H’, v becomes positive indicating that instability can set in.
In this region of field the calculation (as also the linearised equations) cease to have
any significance. Similar results can be obtained for field H, also.

3. Plane Poiseuille flow

The nematic is assumed to be confined between two plane parallel plates z=-+d and
to flow along the positive y direction under the action of a constant pressure gradient
Dsy- The director is initially oriented along x. We seek solutions for the director
and velocity fields in the form

n,=1 ‘ n, = p(z, t) n,=0(z1t)

o, =u(z,1t) v,=1v(z,1) v,=0'
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under the action of a magnetic field H and an electric field E=(0, 0, E). (The
theory worked out here is for a pure nematic. But in practice a static electric field
can give rise to electrohydrodynamic effects owing to ionic impurities. - Hence in an
experiment one has to use an alternating electric field of high enough frequency to
exclude these effects and E would then correspond to the rms value). Transforming
to the variable é=z/d, ignoring inertial effects and linearising the Ericksen-Leslie
equations in terms of 6, p and » one obtains

v =p,,d? & — 1)/}1.4 (15)
Mg’ = my — £p — mg 0 : (16)

Stabilizing magnetic field H = H,

Q" + mod £0 — hyd® ¢ — nyd?p =0 a7
0" + myd® gp — gar s H:”TZ |

+ Mamed” (s e _ 4o §— (1)

7!

Destabilizing field H = H,
0" + myd® [m4 %_f;@ + fp] +eyd?0 —nyd? 6 =0 (19)
@ + my £ d%0 + hyd?p — nyd® ¢ =0 (20)

Destabilizifzg field H= H,
P" +my £d30 —d?ny ¢ =0 1)
6" 4 myd® [m4 (_"%i‘i) + gqa] + hyd?0 — md? § =0 22)

where e, = e,E2[dnkyy, hy = X H?[kyg, by = (4mX,H2+ €, E)[4mkyy,
my = (M+A) Poylkay (a+pgti)s My = (Aa—A) Pyy[pekas,
my = (gt py+ gt [2P5y A*(pig+1tg), My = pgd[d(ps+pig)s
Mg = poity sy d(ps+ptg)s My = [pa{ M+ 20 (gt pra+1tg) } — Al ks

ny = — Ax,/kzz» o' = 0p/0§,
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¢, is the dielectric anisotropy and 8p,, is the value of the stress #,,. 8 (and hence m
is a function of time alone. Since e, is negative for MBBA (see for instance table |
of Manneville and Dubois-Violette 1976a) the electric field acts as a stabilizing
force. For a given field the differential equations governing & and p are solved
with boundary conditions

(t£1,)=p(£1,7)=0 (23)

The method of solution is exactly the same as employed by Manneville and Dubois-
Violette (1976b) involving Fourier expansion of the perturbations for the case of
stationary perturbations. By utilizing eq. (16) which is solved wilth the boundary
conditions #(+ 1, t) = 0 one obtains an infinite dimensional matrix which should
have a null determinant. This condition gives the necessary relation between the
Ericksen number &,=d3(m,m,)}, the applied field, etc. For stationary perturbations
Manneville and Dubois-Violette (1976b) have shown that one can get good conver-
gence by retaining the first ten terms in the Fourier series so that the condition of null
determinant has to be applied to a 10 X 10 matrix. In this section eqs (16)—(22)
have been solved only for stationary perturbations. Since m, is in general a func-
tion of time for stationary perturbations it is treated as a pure number.

To get a clear picture of the homogeneous instability one can analyse eqs (16)—~(22)
by writing every quantity as the sum of an even function of £ and an odd function
of £, The system of equations breaks up into two closed sub-systems of equations
corresponding to two distinct modes—(i) in which 6 is even but ¢ and u are odd in ¢
and (ii) in which ¢ and u are even but 8 is odd in £. Mode () is called the average
splay mode (or mode S in this section) and mode (ii) is called the average twist mode
(ormode T). Inmode S 8 being an even function of ¢ has a non-vanishing average
over the sample and gives an average splay distortion. On the other hand, ¢ and u
have vanishing averages. Thus mode S is characterized by the absence of net secon-
dary flow. On the other hand, for mode T, 8 has a vanishing average over the sample
but ¢ and u have non-vanishing averages. Also, this mode, so named because p is a
twist distortion, has a net secondary flow associated with it. In any analysis these
modes are treated separately. Manneville and Dubois-Violette (1976b) showed that
for the field free case or for stabilizing magnetic fields mode S has an Ericksen num-
ber 8,5 which is always larger than the Ericksen number &,7 for mode T indicating
thereby that mode T is more favourable than mode S. This has been verified by
Janossy et al (1976) who also observed net secondary flow.

The variation of &, as a function of a destabilizing field H=H, for different electric
fields is shown in figure 3. A sample thickness of 200 um has been employed in the
calculation. For E=0, &, for both the modes decreases with increasing H, but 8,5 is
always greater than 8,7. When H=H_T=(n[2d) (ky/X,)? 8,7 becomes zero. But
8,5 goes to zero only for H=2H_T. This is because, for mode T, @ is an even function
P (€) and at fields H, close to H,T the occurrence of @, (¢) will be more favourable
than that of its antisymmetric counterpart p ,(£) pertaining to mode S; to excite @ ,(¢)
in the static case one would need twice the field H,”. In the presence of an electric
field E along z the critical field for the twist configuration does not change. The
presence of E simply enhances &, for both the modes, due to its stabilizing influence,
Thus the T mode continues to be more favourable than the S mode even for desta-
blizing fields H, with or without electric field along z.
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Figure 3. Variation of Ericksen number §, for § and T modes as a function of des-

tabilizing magnetic field H,. Curves 1 and 2 are for the S mode for E=0-8 cgs and
E=0 cgs respectively; 3 and 4 are the corresponding curves for the T mode.

’I:he effect of a destablizing field H, is more interesting. Figure 4a illustrates the
variation of 8, for both the modes as a function of H for E=0. As H increases &,
decreases, the decrease being more rapid for the S mode than the T mode. On
further increasing H, &, goes to zero at H=H_S=(r[2d) (ky/X,)} for the S mode
while 8,7 becomes zero at 2H,S.  Thus for sufficiently low fields (H < H,), 8,7<8,°.
But for larger fields (H > H,) there is a reversal in the trend. This indicates that
for H< H, the occurrence of the 7 mode is favoured while for H > H,, the occur-
rence of the S mode is favoured. The reason for this is not far to seek. In the
static case for a field H, one gets a 0 distortion 0, (£) which is an even function of §,
for H> H.S. Since for the S mode 6 is an even function it can become more
favourable than the 7 mode in the vicinity of HS.

In the presence of an electric field E along z, &, can be negative, zero or positive

according as HEE(—- e /4nX )t =H, (say). For H=H,, hy=0, the effects of E and

H are annulled and one has effectively the field-free case. For 4, 20 one gets two
solutions f9r the S mode which differ from one another to the extent that the wave
vector k¥ is real or imaginary. For instance for § one obtains for H < H,

o= 2; 6, (®)
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Figure 4. Variation of Ericksen number &, as a function of destabilizing magnetic

field H, for different electric fields. (a) E=0 cgs; curve 1 for S mode and curve 2 for
T mode. H, is the magnetic field corresponding to a cross over between S and T
modes. (b) Curves 1 and 2 for the S mode for E=1-5 cgs and 0-8 cgs respectively.

- 3 and 4 are the corresponding curves for the T mode. H,” and H," are the cross over
fields for E=0-8 cgs and E=1"5 cgs respectively.

where

(—1? cosh k¢
cosh k

o,(§)=Aqmld3[ 2qm g

T + cos qwf}

4 gsingmé (——l)‘”l(m,-i-#s){ { _ cosh kf% ]
(k2+g3=2) qrkiu, cosh k

. 0
with k2 = —md® and for H>H, 0= z . ', (¢€) where
q =
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, 2qm i(— 1)%+1 cos k, € }
0 = A md3
9 i [(klz—q”nz)z cos k, +oeosgmé

__ §singné n (=1 (u3+pg) {COS k§ 1 } ]
(kls__qzﬂ.z) qﬂv‘u,4k12 COS k1

with k,2=hd® A, are the Fourier coefficients of ¢. Naturally for low fields (H<H)
5> 6,7 so that for these fields the T mode is more favourable than the S mode
(figure 4d dotted curves). On the other hand for H>H,>H, 8. can become less
than &,7 so that the occurrence of the S mode is more favourable than that of the T’
mode. Of course for H, < H< H, the T mode continues to be more favourable than
the S mode. Also one find that the field H, shifts to higher values with increasing
E and the H values at which &, becomes zero for the two modes move closer.
However, since the deformation of the S mode is energetically more favourable than
that of the T'mode in the vicinity of small §, one cannot expect any further reversal
in the roles of the S and T modes with increasing E.
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