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Abstract. The theory of propagation in an infinite cholesteric medium
is applied here to the problem of a sample bounded by plane paralilel
surfaces normal to the optic axis. For each circular polarization at
normal incidence, the reflected and transmitted waves are found to
consist of both circular polarizations. Thus, four coefficients of refle-
xion and transmission are needed to describe the problem fully. These
have been calculated in a closed analytical form, which has the correct
behaviour in various limiting cases. Numerical computations are used
to investigate the effect of finite sample thickness in modifying the
rotation and circular dichroism predicted from the infinite medium
theory. This is of importance in interpreting the results of experiments.

Introduction

The theory of the propagation of light along the axis of a cholesteric
liquid crystal was first given by de Vries! using the Oseen? modle for the
dielectric tensor, subject to certain approximations. (For a discussion of
these approximations, see, Nityananda3, hereafter referred to as I).
Recently, an exact solution of this problem was given by Kats4 and by
Nityananda’. We now use that solution to calculate the reflection and
transmission coefficients of a plane parallel cholesteric film. These were
approximately calculated by de Vries. The novel feature of our calculation
is the presence of both circular polarisations in the reflected and trans-
mitted beams, even if only one circular polarisation is incident. Thus we
define ‘diagonal’ and ‘off d'agonal’ coefficients r,, and r-. where, by
convention, the second suffix gives the sense of rotation of the electric
vector of the incident wave, and the first the sense of the reflected (or
transmitted ) wave, For example, f,_ is the amplitude of the ( + ) circular
component of the transmitted light for the unit incident amplitude of
(- ) light. The convention is the same as in I, with ( 4 ) denoting rotation
in the clockwise sense in the xy-plane. This would be called a right
circular wave if it travelled along +2z, but left circular if the wave vector
were along —z. For a transparent dielectric at normal incidence, ( + ) is
reflected as (+) and (—) as (—). A right handed cholesteric liquid
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crystal, studied at a wavelength near the reflection band, reflects ( + ) as
predominantly ( —). In his calculation of the reflection and transmission
coefficients, de Vries! assumed that the medium on either side of the
" cholesteric film had a refractive index equal to the average for the choles-
_teric. Further, the birefringence §n was treated as a small quantity —an
approximation which is certainly valid in practice. Under these conditions,
the transmitted wave has the same circular polarisation as the incident
wave and one circular wave is reflected, completely reversed in sensc.
This agrees with experimental observations, which approach the conditions
assumed since the liquid crystal is enclosed by glass slides. The work of
Chandrasekhar and Prasad® based on the dynamical theory led to similar
results. '

The emphasis in the present paper is on removing the restrictions in
earlier treatments. Thus, the birefringence could be large (as is some-
times attained by dissolving optically active molecules in 2 nematic to
form a cholesteric) and the wavelength far from, or close to the Bragg
reflection. The refractive index of the surrounding medium can be
arbitrary. This additional generality has not led to qualitatively new
results, however. Indeed, Chandrasekhar et al.®# have shown that the
dynamical theory leads to close quantitative agreement with the exact
solution presented here in practical cases. The coefficients like r,, which
were neglected in earlier treatments would describe Fresnel reflection for
an isotropic dielectric, and would be of the order of the refractive index
difference between the cholesteric and the glass slide. A coefficient like
t- . would vanish for an isotropic dielectric — the formulae given below show
it to be of order §n (this is the local birefringence of the cholesteric).
When we come to intensities these estimates are naturally squared, so that
neglecting them has not caused serious error in the earlier work.

2. Calcnlation of the reflection and transmission coefficients

The sample, of thickness I, is assumed to occupy the region between
the planes z =0 and z =T, with its helical axis parallel to z, i.e.,
normal to the plane of the sample. This is called the plane texture and
is a commonly used experimental geometry. The incident wave is taken
to be a general superposition of (+ ) and ( —) circular polarisations,
with complex amplitudes E,; and E_,. (We use the suffix ‘i’ for incident,
‘r’ for reflected, and ‘t’ for transmitted light.) Its wavevector is (0,
0, K) where K = w/c if the region z << 0 is free space,

The reflected wave has wave vector (0, 0, —K) and is a superposition
of both circular components with amplitudes E,, and E_,. In the region
z>T, we have a transmitted wave with wave vector (0, 0, K) and
_circular components E 4+ ,. In what follows we use the notation of I in
which the two circular components are written together in the form of a
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row or column vector (1x2 or 2x1 matrix ). Thus, the incident wave is
written as

[E,, &%, E ei®].

The reflected and transmitted waves are wriiten similarly (figure 1).

We now have to match thesc waves outside the cholesteric to a suitable
solution of Maxwell’s equations within. This solution is given in the
work of Kats4 and in that of Nityananda3. From general considerations
we see that there must be four independent solutions for propagation
along the axis because we have two coupled second order differential
equations (essentially the wave equation V x (V X E) = —— iz . a;ﬁ
in component form) for E, and E, or E, and E.. For example, in an
isotropic dielectric, these four solutions could just be two linearly polarised
waves along +z and two more along —z. For the cholesteric, the four
independent solutions are

U'+ =[eix,z, deitxl_zq».]
Uys = [de-im-20s ]
U‘__ :[fei(K,+2q):’ eix’l]

U,- = [e-ix,z"f e-i®i+2qz]

We choose a linear combination of these four solutions with coefficients
ty+, ty+ to describe the electric field in the medium*. We have four
boundary conditions to fulfil at each interface; one for each cartesian or
circular component of the electric and magnetic fields. The magnetic
field can be expressed in terms of the electric field using Maxwell’s
equations. Because the fields have no dependence on x and y, and no z
components, these reduce to

iw .

C_Bx = 1(—k:E7)

iw

— By =i(kE,)

. . . . E‘ :t iEy .
In terms of the circular components E+ = ,.__\/__é_ we get (w/c) B =

+ ik,Ei. The factor of 4 i means that the magnetic field is af right

* The expessions for K,, K,, d and f are gwen in Appendlx I along with the
reason for the notation. :
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angles to the rotating electric field and hence leads or lags it by 90° in phase.
Apart from a constant factor, we get the circular components of the
- magnetic field by multiplying those of the electric field by the wave vector.
We match these on the two sides of each interface, along with the electric
ficlds themselves,

FE” 1f’ exp (iK z)
exp (iKz) +
= dexp [i (K, -2q)2]
. [-E" t, [t exo [i 11, +20)23
—~— exp(-iKz) Semi~infinite
= exp (iKyz ) Sample
€, A ty,| exp (ikz) Yo | texp [i Ky +2q)2)
exp (iKz) +
—
E i i -
= | d exp [i(K-2q)z] | | exp (iK,2) d | — exp (1K2}
[e, ] r i 1.7 ] €
or exp (-iK,2) i(K - -t
B exp (-iKz}) ‘b, 2 tb- dexp ["Ku 2q) Z]
+ +
L_E"_J fe*P['i‘K:*ZQ)lJ_j exp (K 2) Finite
K L J Sample

Figure 1 The solution of Maxwell’s equations for a semi-infinite and finite choles-
teric film at normal incidence. The coefficients Lty t4s E:t' and Eit

have to be determined from the boundary conditions.

The solutions in the three regions are given in figure 1. The matching
conditions, which are written down in table 1 constitute eight equations for
the eight unknown quantities in our solution E4, E4,, t,+ and f,+.
The last four appear as intermediate variables only, and the final aim is
to express E4, and E 4+, in terms of E4+,, which are assumed to be known,
The coefficients in these expressions are identified with the quantities r, 4
etc. defined in the introduciion. Thus,

Eiv=rsv Evy + 1 E_,

E—, = r.s E+l + r—- E—|
A similar pair of equations relates E+, to E ,, viz.,

Eyy =1ty Eyy + ty- E_y
E—‘ = t—+ E+‘ + t——E-—] .
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Table 1. Boundary conditions for the electric field

At z = 0:
Ey 4+ Eyp = ty, + fteme + ty, + dty- (1)
E, 4+ E_ =dt,, + t1- + ftoy + to- (2)
At z =T:
E,, exp (iKT) = t,, exp (iKiT') + fr,-exp[i(K; +29)T]
+ ty,exp( —iK,T) + dty-exp[—i(K1—29)T] (3)

E_, exp (iKT) = dt,, exp[i(Kys —29)T] + ¢, exp (iK.T)

+ fteoexp[ —i(K2 + 29)T] + ty-exp( - iKiT) (4)

Boundary conditions for the magnetic field

At z = 0:
K(Ey —Es) = Kitys + f(Ka +q) t,- =Katye — (Ki —2gq)dty- (")

K(E,, ~E.,)=d(Ki —29)t;+ + Kot = (K2 + 29)ty+ — Kity- (2')

At z = T:
KE,, exp (iKT) =Kyt,. exp (iKiT) + f( Ky + 29) ti-exp[i( Kz + 29) T']
— Kyty.exp( —iKoT) — (Ky —2q) dty-exp[ —i (K1 =29)T] (3)

KE_,exp (iKT) =d (K — 29)t;. exp[i ( Ky — 2q) T]+ Kyt,-exp (iK,T')
~f(K+2q)tysexp[ — i (K +29)T] = Kuty-exp( — K, T) (4)

Eliminating t,4+ and f,4+ as indicated, we obtain expressions for the
reflexion and transmission coefficients, which are given in table 2. It is
convenient to define various intermediate quantities 4, B, X and Y with
suffixes from 1 to 4, D and A. This is solely to shorten the expressions
for r and ¢t. The next section gives the results of numerical calculations
based on these formulae,
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Table 2

a=3+ 8y, =L B2 4 g1 X,

4 =411 - L2,
B = 3 (1-5, Bz=-§[-—M1,Bs=w+ ],

X; = (K —K?) — d*(Ki — 29 + K)(Ki — 29 — K)

X, = [f(K+Ki) (K +29-K) —d(K+ Ki —29) (K, — K)]
exp[-i(K; — 29 — K;)T]

X; = [d(Ki —2g—K)(K+ K2) - f(K+ K +2) (Ky - K)]
exp [i(K; — 29 — K;)T]

Xe = (K3 -K2) - f2(K2 + 29+ K) (K2 + 29 - K)

D=cexp[-i(Ki + K2)T] [(K + K1) (K + K3)
—df(K+ K> +29) (K + K1 —2q)]1

A = (AlD + A3X1 + A4X3) (B3D + BzX‘z + B]X4) .
— (A2D + AsX» + A4X4) (B4D + Br1Xy + B1X;)

Y| = D(B3D+BzXz +31X4), Y, = —D(AzD—{-A;Xz +A4X4)
Y; = -D(A2D + A3X; + AsXy), Y4 = D (AD + 43Xy + A4X3)

B Y B,Y. 1
rey = = 'Z 223 4 pa [ B (XiY1 + Xa¥3) + Ba (X311 + XaY3)]

_ BY:; + B:)Y,

re- = A +DA[Ba(X1Y2+XzY4)+B4(X3Y2+X4Y4)]
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AsY A5Y. 1
roo = AOEAD 4 (Y XaT) + i (XY 4 XeY)]
_ AsYs 4 437,

A

+ o L4 (Xi¥s + XaYa) + s (T2 +X72)]
Yl . Y3 .
tey = - exp[i(Ki—K)T]+ & fexpli(K +2g - K)T]
+*DLA‘“[(X1 Y) + X2¥3)exp {— i (K2 + K) T}

+d(X3Y1+X4Y3)€Xp{ —i(Kl —2q+ K)T}]

te = [Y2exp {i(Ky —K)T} + Yafexp{i(Ka+29 — K)T}]
- A

+%[(X1Y2 4 Xa¥s)exp {—i (K2 4+ K)T )+ d(Xs¥2+ Xa¥s)

exp { —i(Ki - 29 +K)T}]

toy = LA[dylexp{i(Kl-zq-K) T} 4 Ysexp{i(K, — K)T}]

+“D1—A [f(X1Y1 + XaY;5)exp{ — i(K2+29+K)T}

+ (XY + XaYs)exp { — i (K1 + K)T}]

-_— =

‘Ll\_[dYZeXP {i(Ki —29 — K)T}+ Ysexp {i(K2—K)T}]
+7;K [f(XiY2 + XoYa)exp{ — i(K2+ 29+ K)T}

+ (X5Y2 + XaYs)exp { —i(K1 + K)T}]

The experimental quantities usually studied are optical rotation and
circular -dichroism. The latter is usually defined by

‘ VIig+VT.
where I + and I_ are the intensities of the transmitted beam for equal

incident intensities of the two circular polarisations. The above
definition contains the implicit provision that ( + ) light is transmitted
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only as ( + ) and (—) light as (—). Correspondingly, the experimenter
does not usually analyse the transmitted light into its circular components
before making intensity measurements. We have seen in the previous section
that the transmitted light contains both circular polarisations. To conform
to the experimental situation, we take the total intensity of these two
components as T4+ or I. in plotting the theoretical curves. Likewise,
when computing optical rotation, bearing in mind that the transmitted
light is in general elliptic, the major axis of the ellipse is chosen as the
direction of the emergent polarisation. In all the numerical examples, the
pitch P has been set equal to 0.3571 u and the birefringence 3n = 0.07,
the mean refractive index is 1.435, so that the two principal refractive
indices are 1.4 and 1.47. The thickness T is variable and is indicated
in each figure. The reflection band is centered at A = nP = 0-5125 u
and has a width Pén ~ 0.05 u.

Figure 2 shows the reflection coefficient | r-4 | 2. This measures
reflection with change in sense of the circular polarisation, which is the
characteristic property of the cholesteric liquid crystal. This is for a
sample of thickness 6 u, and shows the oscillations characteristic of finite
samples studied by Chandrasekhar and Prasad’ and by Drcher, Meier and
SaupeS. The spacing of these oscillations agree approximately with what
would be calculated for a plane parallel film of isotropic dielectric with the
same mean refractive index and thickness, but their amplitude is of course
greatly enhanced near the reflection band.

0.9}
T'G}l

o VAVaVAVY/ 1 /\
0.4 0.45 0.5 0.55 0.6

A

Figure 2 Inten‘sity of reflection with change in sense of circular polarisation as a
function of wavelength A computed from the formula in table 2. The
sample thickness is 6 ¢,
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Figure 3 shows the transmitted infensity T and circular dichroism D
as functions of wavelength for 4 u (figure 34)and 6 u (figure 35 ) samples.
T is plotted for each circular polarisation separately, as indicated by the
symbols ( + ) and (—) on the respective curves. As expected, the (+)
circular component which is Bragg reflected shows a strong dip in trans-
mission at the same wavelength, The circular dichroism shows a strong
negative peak there, since I-> I4. The effect of increasing the sample
thickness is seen by comparing figures 3a and 3. The suppression of the
R component in the transmitted beam is more complete, the negative peak
in D stronger, and the oscillations more closely spaced. Further we see
an approach to the case of an infinite medium which has a flat reflection
maximum. The transmission curve approaches a shape with a flat minimum

0.0 : —

-0.1 L

T=4
0.2k H
D
..03 —
-0.4 |
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.: o
(723
-4
w
|
£
(=]
w
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=
=
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- 0.0 l 1 1
04 045 05 0.55 0.6
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Fignre 3a Transmitted intensity T and circular dichroism D computed as functions
of wavelength A. Sample thickness 4 .
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0.0 ~ ~~7 {\/—\/\/v-

: T=6 L

0.8

0.6
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0.2
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0.0 ! 1 1]
0.4 0.45 0.5 0.55 0.6

A

Figure 3 b Transmitted intensity T and circular dichroism D computed as functions of
wavelength ). Sample thickness 6 .

close to zero. The extinction length of the attenuated normal wave at
n

the centre of the reflection band is ~ (P/27) ~ 1.4 u in our example,

increasing to o at the edges of the reflection band. Therefore, the
infinite medium behaviour first occurs at the centre and then spreads
outwards.
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It is noteworthy that the circular dichroism does not change sign away
from the reflection band for a non-absorbing sample. It tends to zero as
the values of T for ( + ) and ( — ) circular polarisations tend to equality.
The behaviour of absorbing samples is different and the following paper
discusses it.

Finally figures 4a and 45 show optical rotation as a function of
wavelength near the reflection band for thickness 1 u and 3 u respectively.
The dispersion qualitatively resembles that for infinite samples3. However,

(b
T=3 1L

~l2F

0.45 05 0.55

Figure 4 Optical rotation vs A. ‘The dotted curve is for incident linear polarisation
along y, the dashed curve for x. Sample thickness (a) 1 ¢ (b) 3 &.
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the curve for T = 1 u ( which is about 3 times the pitch) reveals that the
rotation angle depends on the azimuth of the incident light. The dashed
curve shows the rotation for incident linear polarisation along x and the
dotted one for y. The director of the cholesteric is taken along x at the
plane z = 0. The solid line shows the average. Even this average is not
proportional to thickness —if it were the solid curves would differ only in
scale. Chandrasekhar and PrasadS noted the thickness dependence and
studied it experimentally. Ranganath (private communication) has noted
the azimuth dependence of the rotation for mixtures of right and left
handed cholesterics when the pitch is much larger than the wavelength of
light. This azimuth dependence is considerably reduced if the medium on
either side of the cholesteric matches its avarage refractive index.

The behaviour of the rotaiory dispersion can be correlated to that of
the circular dichroism vig the Kramers Kronig dispsrsion relation. As the
thickness is reduced the band of circular dichroism widens and is rounded
off, so that we expect the maximum and minimum of the rotation to be
reduced in strength and shifted outwards. The oscillations in the circular
dichroism are reflected in those of rotation*,

Summary

An exact analytical solution of the problem of reflection and transmission
at normal incidence by a cholesteric film has been given. This differs
from earlier treatments in including off diagonal transmission and reflection
coefficients. Numerical calculations show these to be small, and confirm
the results of earlier work! % 6 on finite specimens.

Appendix 1

In the infinite medium theory developed in I the normal waves were given
by superpositions of two circular waves of opposite sense, with wave
vectors differing by 2¢, for example

[ eiKlz s dci(Kx -3z ]'

The term with coefficient unity is called the dominant component. There
are two reasons for this — firstly, that the coefficients d and f never exceed
1 (in absolute magnitude) near the reflection band, and secondly, that
they vanish in the limiting case of an isotropic dielectric (3n — 0). In

2:" . The suffixes b and f

the same limiting case, K; reduces to K, =

* Such a correlation can only be qualitative —to our knowledge no quantitative
formulation of the dispersion relation has been given for a non-uniform
medium like cholesteric. While one can study the analytic properties of
K, and K,, we have seen that these do not directly give rotation and circular
dichroism for finite samples.
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used in the text refer to *backward’ and ‘forward’. The normal wave
written above reduces to a circular wave propagating along + z as d— 0,
and would hence be called ‘forward’. The formulae for K; K;, 4 and f
are given below. w = frequency of incident light, ¢ = velocity of light
in vacuum, ¢, and e, are the principal dielectric constants,

€, +¢€,
2

E,—F%y

. 27 ® [3) _—
, B==5— P=Pitch, g=—%-, K=—, Ka=—~V'¢

K; = q[sz_[_ qz__ (4K_2q2 + 52K4)1'2]}
Ky = —q+ [Ka? + g2 + (4K.%q% + f2K*) 1'2] 172

Ki?—K,? Ky — K2

d= BKZ ’ f= BK?
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