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Abstract. Viscoelastic properties of liquid crystals are very important for applications like display
technology. However, there are not many direct techniques to study them. In this review, we describe
our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering.
We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C
phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition.
In cholesteric liquid crystals, we consider the director fluctuations in a wavevector range comparable
to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the
Bragg reflection using a novel geometry will be presented.
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1. Introduction

Liquid crystals or mesophases are states of matter with a molecular order between that of
liquids and crystals. Liquid crystals exhibit interesting viscoelastic properties [1,2]. The
study of viscoelastic modes in them is important not only in understanding the structural
dynamics but also in selecting suitable materials for display devices. In liquid crystals,
thermal fluctuations in the average direction of orientation of the molecules (the director)
result in strong fluctuations in the dielectric tensor causing intense scattering of light. Dy-
namic light scattering (DLS) is a useful technique to study the fluctuations in the scattered
intensity which in turn can reveal the dynamics occurring in the scattering medium [3]. In
liquid crystals, DLS studies yield relaxation times of the modes of the director’s thermal
fluctuations. In this review, we describe our studies on the viscoelastic modes in some
chiral smectic C liquid crystals and in cholesteric liquid crystals.

Chiral smectic C liquid crystal (Sc*) has a helical structure of layers having uniformly
tilted molecules. The director makes a constant angle with the layer normal and rotates
uniformly from one layer to another. The tiltθ and the azimuthφ of the director are the
amplitude and phase of the order parameters in the Sc* phase respectively. The temperature
fluctuations of the director leads to fluctuation in the tilt and azimuth giving rise to strong
scattering of light. DLS is a useful technique to study the fluctuations at the Sc*–Smectic A
transition (Tc) and in the Sc* phase [4,5]. The soft mode is associated with the fluctuations
in the tilt angle and the Goldstone-mode is associated with the fluctuations in the azimuth
[4,6]. In the vicinity of the direct beam for a sample aligned in the Bragg mode and
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in the vicinity of any diffraction order in the phase grating mode, the fluctuations in the
intensity will reveal these modes. We have reported the measurement of relaxation time of
the Goldstone-mode to determine the ratio of viscosity coefficient to elastic constant [7].
The determination of such a parameter is very useful in the application of chiral smectic C
liquid crystals to optical devices like light modulators and display devices [8,9].

In a cholesteric liquid crystal (cholesteric), the director twists uniformly about a particu-
lar direction giving rise to a helicoidal structure of a definite pitch. Theoretical studies pre-
dict [1,10,11] the existence of two distinct modes of director fluctuations with wavevectors
parallel to the helix axis. These are (i) the twist mode, with director fluctuations perpen-
dicular to the helix axis and (ii) the umbrella mode, with out-of-plane director fluctuations
[1]. Both these modes couple strongly to light. In spite of their importance in the under-
standing of the structural dynamics of cholesterics, in literature, there have been very few
experimental investigations on these modes. Duke and Du Pre [12,13] studied these modes
in a lyotropic cholesteric whose wavevector was about two orders of magnitude smaller
than the wavevector of light. Their studies were carried out in the frequency domain in
which they observed the broadening of the Rayleigh lines corresponding to the two modes.
The large difference between the wavelength of light and the cholesteric pitch did not al-
low them to probe the dynamics of the cholesteric structure on length scales comparable
to the pitch. Borsaliet al [14] have measured the twist viscoelastic coefficient,k22=γ1, at
room temperature for a cholesteric with and without a polymer additive. These systems
were also probed with light whose wavevector is about 20 times larger than that of the
cholesteric system.

We have reported a study of the twist mode which yields the viscoelastic coefficient
k22=γ1 [15]. The novelty in this study was the application of the Bragg reflection, a phe-
nomenon arising out of the optical periodicity of the cholesteric, to locate the scattering
wavevector at which one gets a minimum in the dispersion curve. The dispersion relation
gives the dependence of the inverse relaxation time on the wavevector. Here, the scattering
wavevectorq can be made parallel to the cholesteric twist axis. This enables one to select
the modes with wavevectors parallel to the twist axis. Further, in the experiment the light
scattered can be determined in the vicinity of the Bragg reflection, where the twist mode’s
contribution is very dominant [1,10]. The twist mode fluctuations involve winding and
unwinding of the helical cholesteric structure. We describe the study of the twist mode as a
function of temperature in a wavevector regime comparable to the equilibrium wavevector
of the cholesteric.

2. Theory

Chiral smectic C

In the case of chiral smectic C phase, one can write the relaxation time of the Goldstone-
mode [4,5] as

1
τG

=
K2

γ
(qz�q0)

2+
K+

γ
q2

x; (1)

whereq0 is the wavevector of the helix and is given by the relationq0= 2π=P, P being
the pitch of the helix.qx andqz are the scattering wavevector components alongx- and
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Figure 1. The scattering geometry used for a homeotropically aligned sample.

z-direction respectively,γ is the viscosity coefficient. Here the twist axis is taken along
thez-axis in the laboratory frame.K+ is given byK+ = (K1+K3)=2. K1, K2 andK3 are
analogous to the usual splay, twist and bend elastic constants respectively.

In the homeotropic geometry, for small scattering anglesθ s (see figure 1), we can write

qz= qsin(θs=2) and qx = qcos(θs=2); (2)

whereq= 2ki sin(θs=2), ki = 2π=λ . Hereq is the magnitude of the scattering wavevector
q, ki the magnitude of the incident wavevectork i andλ the wavelength of light. At a given
temperature the relaxation time data at different scattering angles were fitted to eq. (1) and
the ratios ofK+=γ andK2=γ were extracted.

Cholesteric liquid crystal

In cholesterics, the director fluctuations are treated as thermally induced perturbations
about the equilibrium structure [1]. The director is represented by a vectorn. Assum-
ing the twist axis to be along thez-direction, the director components in the presence of
only twist fluctuations can be described by

nx = cos(q0z+u); (3)

ny = sin(q0z+u); (4)

nz= 0; (5)

whereu� u(z; t) is a dimensionless fluctuation amplitude andq0= 2π=P, with P being the
pitch of the helix. The amplitude of the fluctuationu can be decomposed into its Fourier
components:

u(z; t) =
∞

∑
l=�∞

ul (t)e
ilz; (6)
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whereul (t) is the amplitude of thel th component of wavevectorl . The twist deformation
leads to the off-diagonal elementεxy of the dielectric tensor [1]. This is given by

εxy = εafnxδny+nyδnxg (7)

=
εa

2 ∑
l

fei2q0z
+e�i2q0z

gul(t)e
ilz: (8)

Here,εa is the dielectric anisotropy of the medium andδnx andδny are the fluctuations
in the director componentsnx andny respectively.

Thus, in general,εxy is associated with the scattering wavevector

q= l �2q0: (9)

For pure twist deformations in cholesterics, we can write the distortion-free energy den-
sity [1] as

Fd =
k22

2
(n � (∇�n)+q0)

2 (10)

=
k22

2

�
∂θ 0

∂z
�q0

�2

: (11)

Here,θ 0 = (q0z+u(z; t)) andk22 is the twist elastic constant.
The Langevin equation for the dynamical variableθ 0 is

γ1
∂θ 0

∂ t
=�

δFd

δθ 0
; (12)

where the right-hand side is the functional derivative ofFd andγ1 is the twist viscosity
coefficient. Now,

δFd

δθ 0
=�k22

∂ 2θ 0

∂z2 : (13)

Hence we get

γ1
∂θ 0

∂ t
= k22

∂ 2θ 0

∂z2 (14)

which leads to

γ1
∂u(z; t)

∂ t
= k22

∂ 2u(z; t)
∂z2 : (15)

In the Fourier space, the equation of motion for thel th Fourier component is

γ1

∂ul (t)

∂ t
=�k22l

2ul (t): (16)

Hence, we can obtain an expression for the relaxation timeτ l of the amplitude of the
fluctuation with wavevectorl ,
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1
τl
=

k22l
2

γ1
: (17)

In a cholesteric, 2q0 is the wavevector corresponding to the optical periodicity sensed
by the incident light. Thus, it can be seen from eq. (17) that the relaxation time of the
twist fluctuation goes to infinity asl ! 0 or equivalently, asq!�2q0. This result can be
understood intuitively by looking upon the equilibrium twist of the cholesteric as a ‘frozen
in’ fluctuation having an infinitely long relaxation time.

The director fluctuations couple to the incident light via the dielectric tensor. Fluctu-
ations of the dielectric tensor gives rise to the scattering of incident light. The intensity
of the scattered light can be studied for its autocorrelation. The intensity autocorrelation
function is related to the electric field autocorrelation function via the Siegert relation [16]

g2(τ ;q) = 1+β jg1(τ ;q)j2: (18)

Here,g2(τ ;q) andg1(τ ;q) are respectively the intensity and the electric field autocor-
relation functions. The parameterβ is a coherence factor that depends on experimental
conditions like coherence area, average intensity and so on. It is a measure of the signal-to-
noise ratio in the experiment. The autocorrelation is with respect toτ , the delay time. The
relaxation time of the dynamics occurring on the length scaleq�1 is obtained by analysing
the decay ofg2(τ ;q).

3. Experimental

Chiral smectic C

In this, experiments were carried out both in the homeotropic (smectic layers parallel to
the glass substrate) and homogeneous (smectic layers perpendicular to the glass substrate)
geometries. For the homeotropic alignment, the cleaned glass plates were coated with
ODSE (0.1% octadecyl triethoxy silane in tolune solvent) and cured at 150ÆC. For the
homogeneous alignment the glass plates were coated with the polymide solution and cured
at 300ÆC. Then the glass plates were rubbed in the preferred direction.

The materials used were SCE6, ZL5014-100 and SCE13 and their transition tempera-
tures were as follows:

SCE6:

Sc�
54:3ÆC
 ! Smectic A

84ÆC
 ! Cholesteric

120ÆC
 ! Isotropic.

ZL5014-100:

Sc�
65:6ÆC
 ! Smectic A

70ÆC
 ! Cholesteric

72ÆC
 ! Isotropic.

SCE13:

Sc�
60ÆC
 ! Smectic A

86ÆC
 ! Cholesteric

103ÆC
 ! Isotropic.

Light from a He–Ne 35 mw laser (λ = 0:6328µm) with polarization parallel to the
scattering plane was incident normally on the sample. The scattered light was analysed
perpendicular to the scattering plane. A photon correlator (Malvern 4700c) was used to
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Figure 2. The intensity autocorrelation data obtained for SCE6 at 2.0ÆC below smectic
A–Sc* transition temperature (Tc). The data is fitted to a single exponential.

acquire the intensity autocorrelation data. A typical intensity autocorrelation data obtained
for SCE6 is shown in figure 2. This intensity autocorrelation was fitted to an exponential
function given by

G(t) = a+b exp(�t=τ); (19)

whereτ is the relaxation time,a represents the baseline andb depends on the experimental
conditions. Experiments were performed at various scattering angles for fixed tempera-
tures.

The appearance of the diffraction pattern as one cools the sample from the smectic A
phase also indicates the phase transition to the Sc* phase. The pitch of the materials in the
Sc* phase was obtained by measuring the angle of diffraction of the first order in the phase
grating mode [17,18].

Cholesteric liquid crystal

Here, mixtures of cholesterics with opposite helicities in various proportions were prepared
to get a cholesteric of a pitch comparable to the wavelength of light. The sample used in the
experiment was a three-component mixture of cholesteryl chloride, cholesteryl nonanoate
and cholesteryl oleyl carbonate. These were taken in the proportions 63.8%, 26.5% and
9.7% respectively which yielded a right-handed cholesteric with a cholesteric-to-isotropic
transition temperature of 62.8ÆC. The sample was filled into a cell and treated to get a
planar alignment in the cholesteric phase. The cell was placed in a specially designed
oven. The oven had a cylindrical cross-section, and was filled with glycerin which acted
both as an index matching fluid and heat transferring medium. A cross-sectional side view
of the sample cell placed in the oven is shown in figure 3. The light scattered by the
sample in the cell was detected by a photomultiplier tube. For a certain orientation of the
cell with respect to the incident light, the prominent Bragg reflection could be seen in the
back scattering geometry. The scattered intensity was analysed in the vicinity of the Bragg
reflection since the amplitude of the twist fluctuation is very large in this angular range.
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Figure 3. A cross-sectional side view of the sample cell placed inside the refractive
index matched oven. (1) Incident beam, (2) unscattered beam, (3) the specular reflection
from the front of the sample cell, (4) cell normal, (5) electrical leads for the heaters and
resistance temperature device, (6) cylindrical glass tube, (7) sample cell containing
the cholesteric liquid crystal, (8) goniometer and oven axis and (9) refractive index
matching and heat transfer medium. The angleψ is in a plane perpendicular to the
scattering plane and it is highly exaggerated in the figure. In the experiment, it is less
than 2Æ degrees through which the sample cell is tilted downwards, away from the
scattering plane. Since the detector is sufficiently far away from the sample, this small
angle tilt is enough to prevent the specularly reflected beam from entering the detector.

Using eqs (6)–(11) and applying the equipartition theorem, the expression for the thermal
square amplitude oful can be obtained as

hjul j
2
i=

kBT

k22l
2 : (20)

Here,kB is the Boltzmann constant andT the absolute temperature. It can be seen that
asq!�2q0, l ! 0 and the factorhjul j

2
i diverges.

In the experiment, the intense static Bragg scattered beam was prevented from entering
the detector. Thus the mode of light detection will be homodyne. Further, an analyser was
used to minimize stray light entering the detector. The minimum in the twist dispersion
curve occurs when the Bragg condition is satisfied. A schematic representation of the
scattering geometry is shown in figure 4.

The pitch of the sample was determined from its transmission spectrum using a double
beam spectrophotometer (Hitachi U-3200). The well-defined minimum,λ 0, at the center
of the Bragg reflection band in the spectrum is related to the pitch [1] of the cholesteric by

λ0 = µ̄P:

Here,µ̄ is the average refractive index of the medium. The temperature dependence ofP
obtained using this method is shown in figure 5.
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Figure 4. The scattering geometry used in the experiment. Here, the sample is aligned
such that the twist axis is parallel to the cell normal. The vectorski , k f and q are
the incident, final and the scattering wavevectors respectively, while the vectori is the
polarisation direction of the incident light andf is the polarisation direction in which
the scattered light is analysed. The angle made by the cell normal (twist axis) with
respect to the incident light isξ and can be adjusted each time such thatq is parallel to
the twist axis. The angleξ is in the scattering plane. The magnitude of the wavevector
q is given byq= (4πµ̄=λ )sin(θs=2), whereθs is the scattering angle;λ = 488 nm,
is the wavelength of light and̄µ = 1:5 is the average refractive index of the scattering
medium.

Figure 5. Variation of the pitch with temperature obtained by (�) selective reflec-
tion experiments, (N) fitting the dispersion curves from the DLS experiments. The
cholesteric-isotropic transition temperature,Tc is 62.8ÆC. The solid line is a cue to the
eye.

Light from a 488 nm argon ion laser (Spectra Physics, model 163c), polarized perpendic-
ular to the scattering plane was incident on the sample cell kept inside the oven at the center
of the goniometer. The scattered light was detected by a photon counting photomultiplier
tube (Electron Tubes Ltd., 9863/KB) whose output was fed to an amplifier-discriminator
followed by a digital correlator (Malvern 4700c).

In the experiments, the following method was adopted to ensure that the scatter-
ing wavevector was parallel to the twist axis for every scattering angle. Laser light,
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Figure 6. A typical un-normalized intensity correlogram obtained in the experiment.
The data was taken at a scattering angle (θs) of 95Æ and with a delay time of 150µs.
The total integration time was 300 s. The solid line is a theoretical fit with single
exponential decay.

polarized vertically with respect to the scattering plane, was made to fall on the sample
cell positioned at the center of the goniometer. The cell was then rotated about an axis
perpendicular to the scattering plane until a prominent, but slightly broad Bragg reflection
could be observed on a white screen placed in front of the cell. At the center of the Bragg
spot, a faint but sharp specular reflection could be observed. This was the specular reflec-
tion of the incident beam from the sample cell surface. The cell was now rotated slightly
away from the Bragg angle. Here, the Bragg spot became very weak and only the specular
reflection remained on the screen. The detector was positioned along the direction of the
specular reflection. Then, the specular reflection was prevented from entering the detector
by very slightly tilting the cell normal downwards, through an angleψ , away from the
scattering plane. This arrangement is shown in figure 3. In this position, the projection
of the cell normal in the scattering plane exactly bisects the angle made by the incident
wavevector,k i , and the scattered wavevector,k f , as shown in figure 4. Then the scattering
wavevectorq will be parallel to the cell normal, which is, in principle, the direction of the
twist axis. This procedure of simultaneously reorienting the sample cell and the detector
such that the cell normal exactly bisected the angle 2ξ betweenk i andk f , was carried out
for every scattering angle. Thus, it was ensured that for every angle,q was parallel to the
cell normal (twist axis).

In figure 6 we show a typical correlogram obtained in the experiments. Such an un-
normalized correlogram is denoted byG2(τ). Curve fitting is performed after normalizing
such data with respect to their baselines. The baseline is automatically calculated by the
correlator using very long sample times and it yields the valueG2(∞). The normalized cor-
relogramg2(τ ;q) is given byG2(τ)=G2(∞)�1. Assuming that in the scattering geometry,
the detected intensity fluctuations are predominantly due to the twist mode, one can fit the
following function to the normalized data:

g2(τ ;q) = a1+βe�2(τ=τr(q)): (21)

Here,a1 is the baseline andτr(q) the relaxation time of the fluctuations of wavevector
q. For the twist mode fluctuations
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τr(q) = τq�2q0
: (22)

The values of the parametersa1, β andτr(q) are obtained from standard non-linear curve
fitting routines. The twist dispersion curve at a given temperature is obtained by plotting
the inverse of the relaxation time as a function ofq. By fitting such a curve to a generalized
second degree function ofq, bothq0 andk22=γ1 can be obtained.

In birefringent systems, the magnitudes of the scattered wavevector will generally dif-
fer from the magnitude of the incident wavevector. When the birefringence is small, the
magnitude of the scattered and incident wavevectors can be considered to be equal, that
is, the scattering is quasi elastic. A cholesteric can be looked upon as an uniform helical
stack of birefringent layers. If the birefringence∆µ of such a layer is small, the angular
dependence inq is only through the sin(θs=2) factor. In the analysis, the average refractive
indexµ̄ and the layer birefringence∆µ have been taken equal to 1.5 and 0.05 respectively.
These are close to the values reported in the literature.

4. Results and discussion

Temperature dependence of the helical pitch of the three chiral smectic C materials are
shown in figure 7. The pitch of SCE13 is almost constant in the Sc* phase. The tem-
perature dependence of the relaxation time across the smectic A–Sc* transition for ho-
mogeneously aligned SCE6 is shown in figure 8. Here, the inverse of the relaxation time
corresponding to the degenerate mode in the smectic A phase drops sharply at the smectic
A–Sc* transition. One may notice that the Goldstone-mode in the Sc* phase has an almost
constant relaxation time. Scattering angle dependence of the inverse of the relaxation time
of the Goldstone-mode in the homeotropically aligned Sc* phase for the SCE6 material is
shown in figure 9. As expected from the simple elastic theory, the inverse of the relaxation
time is dependent quadratically on the scattering angle. Similar dependence exists in all
the three materials. Hence eq. (1) can be fitted with the data to extract the values ofK+=γ
andK2=γ at different temperatures. The calculated values ofK+=γ andK2=γ for the three
materials SCE6, ZL5014-100 and SCE13 are shown in tables 1, 2 and 3. These values do
not follow a regular trend with temperature. However, the values are of the same order of
magnitude as those reported in literature for chiral smectic C liquid crystals [5,19–21].

Figure 7. The measured pitch for the materials as a function of temperature. The
symbols�, � andÆ represents the data for SCE6, ZL5014-100 and SCE13 respectively.
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Figure 8. The inverse of the relaxation timeτ�1 across the smectic A-to-Sc* phase
transition for SCE6. The open circles represent the inverse of the relaxation time cor-
responding to the degenerate mode in the smectic A phase. The dark circles represents
the Goldstone-mode in the Sc� phase. The data was taken for a homogeneously aligned
sample at a constant scattering angle.

Figure 9. τ�1
G corresponding to the Goldstone-mode relaxation as a function of scat-

tering angle for SCE6 in the Sc� phase. The data is fitted to the quadratic function of
scattering angle.

Table 1. Viscoelastic coefficients for the SCE6 at different temperatures.

T�Tc (
ÆC) K2=γ (cm2 s�1) K

+
=γ (cm2 s�1)

�0.3 1:08�0:135�10�6 2:82�0:350�10�7

�1:3 4:05�0:848�10�6 5:08�0:722�10�7

�2:3 6:36�0:529�10�6 7:33�0:609�10�7

�3:3 7:79�0:569�10�6 8:98�0:655�10�7

�4:3 8:43�0:960�10�6 9:72�0:110�10�7

�5:0 7:26�0:619�10�6 8:50�0:724�10�7

�9:3 7:24�0:693�10�6 9:16�0:876�10�7
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Table 2. Viscoelastic coefficients for the ZL5014-100 at different temperatures.

T�Tc (
ÆC) K2=γ (cm2 s�1) K+=γ (cm2 s�1)

�1:0 4:55�1:40�10�6 3:57�1:32�10�7

�1:6 9:91�1:94�10�6 8:35�1:63�10�7

�2:6 3:59�2:98�10�6 3:50�2:36�10�7

�3:6 5:62�1:13�10�6 5:63�1:12�10�7

�4:6 8:42�1:35�10�6 8:70�1:39�10�7

�5:6 5:19�1:60�10�6 5:59�1:70�10�7

�10:6 3:49�1:49�10�6 4:63�1:96�10�7

�15:6 3:37�1:51�10�6 4:76�1:11�10�7

Table 3. Viscoelastic coefficients for the SCE13 at different temperatures.

T�Tc (
ÆC) K2=γ (cm2 s�1) K

+
=γ (cm2 s�1)

�1:0 2:22�0:663�10�5 1:27�0:363�10�7

�2:0 1:36�0:226�10�5 0:81�0:134�10�7

�3:0 1:95�0:255�10�5 1:18�0:154�10�7

�4:0 1:89�0:352�10�5 1:16�0:326�10�7

�5:0 1:34�0:386�10�5 0:83�0:239�10�7

�8:7 1:86�0:589�10�5 1:16�0:368�10�7

An interesting result of this study is the observation of a new relatively slow relaxation
mode in SCE6 material, in addition to the Goldstone-mode, in a sample aligned in the
homogeneous geometry. The relaxation time of the slow mode was nearly independent
of the scattering angle. It is worth noting that this slow relaxation mode is not observed
in the homeotropically aligned sample and only present in the sample aligned in the ho-
mogeneous geometry. It is well-known that a chiral smectic C liquid crystal with high
polarization placed under an external biased electric field or confined in a restricted geom-
etry can give rise to additional modes which try to recover the broken helicoidal symmetry
[22,23]. One can attribute the origin of the slow mode in SCE6, to the boundary effects
which can deform the helical structure of the Sc� phase. However, this type of slow mode
was not observed in ZL5014-100 and SCE13 samples, even though the cell thicknesses
used were comparable to that of SCE6. It is interesting to probe this mode as a function of
sample thickness and in the presence of an external applied DC electric field.

In the case of cholesteric liquid crystals, dispersion curves for the twist fluctuations have
been obtained in a wavevector range in the neighbourhood of the equilibrium cholesteric
wavevector. A typical dispersion curve is depicted in figure 10. From the dispersion curves
obtained at various temperatures we have evaluated the temperature dependence of the vis-
coelastic coefficientk22=γ1. It can be seen from eq. (17) that the twist mode relaxation
frequency should be exactly zero atq= �2q0. But our results indicate the presence of
a finite relaxation frequency at 2q0. The finite non-zero relaxation frequency atq= 2q0
in the dispersion curves, could be either due to contributions from the umbrella mode or
from modes which might arise due to non-uniformities in the orientation of the helix axis.
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Figure 10. Dispersion curve of the twist mode obtained in a wavevector range
in the neighbourhood of the equilibrium cholesteric wavevector at a temperature of
50�0.05ÆC. The solid line is a least square quadratic fit to the experimental points. The
value ofk22=γ1 obtained from this data set is (5.588� 0.007)� 10�11 m2s�1.

The assumption that the helix axis is exactly parallel to the cell normal over the entire
scattering volume is not true in practice. In an actual sample, there always will be some
non-uniformities in the cholesteric structure arising due to defects on the bounding sur-
faces leading to misalignments in the twist axis. Such misalignments in the twist axis can
lead to a small contamination of the scattered light from the umbrella mode. Due to this,
the autocorrelation function of the scattered intensity is not exactly described by a single
exponential. This is revealed by a close examination of the tail of the correlogram. The
small out-of-plane tilt,ψ , imparted to the sample may also result in a slight contribution
from other modes. Such contributions from other modes may explain the gap in the twist
mode dispersion curves. Drevenˇseket al [24] and Muševič et al [25] also give a similar
explanation to account for the gap found in the dispersion curves for chiral smectic C. We
believe that the dominant contribution to the scattered intensity is due to the twist mode
and have analysed the data accordingly.

The minimum in the dispersion curve occurs at a value ofq which corresponds to 2q 0.
From the value ofq0 thus obtained, one can evaluate the pitch of the cholesteric system. We
find a good agreement between the values of the pitch obtained by fitting the dispersion
curves and those obtained by the reflection spectroscopy experiments (figure 5). They
reveal that the pitch of the cholesteric mixture increases with temperature. The increase in
pitch causes the Bragg reflection angle to decrease.

For temperatures close to the cholesteric–isotropic transition, the Bragg reflected light
was not accessible in the set up. But the trend in the temperature behaviour of the vis-
coelastic coefficientk22=γ1 is clearly borne out by the data obtained from the experimen-
tally accessible scattering wavevectors. The temperature variation of the twist viscoelastic
coefficient is shown in figure 11.

Borsaliet al [14] have studied the modes of director fluctuations in a cholesteric system
where the pitch was 10µm (q0 � 0.6� 106 m�1). The wavelength of light used in their
experiments was about 20 times smaller than the pitch of the cholesteric. In our experi-
ments, the pitch of the cholesteric is of the order of 0.4µm (q0� 16� 106 m�1) and the
wavelength of light is 0.488µm. This combination of pitch and wavelength allows us to
probe the fluctuations of the cholesteric structure on length scales comparable to the pitch.
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Figure 11. The twist viscoelastic coefficientk22=γ1 as a function of temperature. The
cholesteric–isotropic transition temperature,Tc, is 335.8 K. The solid line is a fit to an
exponential function of the formb1+b2e�Ea=kBT to the data. Here,b1 andb2 are fit
parameters. The value ofEa has been taken to be 1.16 eV.

Another advantage of having the cholesteric pitch comparable to the wavelength of light
is that one can utilize the Bragg reflection to locate the range of wavevectors over which
the twist mode is most dominant. We have experimentally obtained the variation in the
value ofk22=γ1 as a function of temperature and we find thatk22=γ1 increases sharply as
one approaches the cholesteric–isotropic transition temperature.

In the geometry used by Borsaliet al the component of the scattering wavevector per-
pendicular to the twist axis (q?), is assumed to be much smaller thanq and hence the
component parallel to the twist axis (q

k
) was considered to be nearly equal toq. In our

geometry, by suitably adjusting the orientation of the sample cell with respect to the inci-
dent beam, one can maintainq? � 0 andq

k
� q at all scattering angles. Interestingly, we

find that the values ofk22=γ1 are about an order of magnitude higher compared to the val-
ues in their cholesteric system [14]. This is very likely due to the fact that the cholesteric
molecules in our system are bulkier than the molecules in their system. Also, they find that
in the presence of a polymer additive, the value ofk22=γ1 reduces. Incidentally, the values
of the twist viscoelastic coefficient for cholesterics are much lower than those in the chiral
smectic phases [7]. In addition, the viscoelastic coefficients of the cholesteric system show
a monotonic trend as a function of temperature unlike those in the chiral smectic phases.

There have been a few reports on the measurements of the twist viscoelastic coefficient
k22=γ1 for nematic liquid crystals in the literature [26–28]. Seftonet al [26] have carried
out dynamic light scattering experiments to determinek22=γ1 for pure nematic pentyl-
cyanobiphenyl (5CB) and for the system doped with different amounts of a polymeric side
chain liquid crystal. Their values of the twist viscoelastic coefficientk22=γ1 are compa-
rable to those obtained by us. As a function of increasing temperature, they observe a
non-linear increase in the value ofk22=γ1. Guet al [27] and recently Borsaliet al [28] have
also reported measurements ofk22=γ1 of the same nematic liquid crystal, 5CB. Though our
system is cholesteric, the values ofk22=γ1 are of the same order of magnitude reported in
nematics [26–28].
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Assuming the usual temperature dependence ofγ1 andk22 of nematics [29], we have
compared our results on the variation ofk22=γ1 as a function of temperature. We take the
temperature dependence of the viscosity coefficientγ1 to be

γ1(T) ∝ S(T)e(Ea=kBT); (23)

whereS is the orientational order parameter andEa the activation energy. We take the
temperature dependence ofk22 to be

k22(T) ∝ S2
(T): (24)

For comparison, we fit our data to a function of the form

b1+b2S(T)e(�Ea=kBT); (25)

whereb1 andb2 are fit parameters, andEa is taken to be 1.16 eV. TheS(T) values for a
nematic are taken from the literature [2]. Over the temperature range in which the experi-
ment was performed, the magnitude ofS(T) remains almost constant and can be absorbed
in the parameterb2. The fit is shown as a solid line in figure 11. It shows a reasonably
good agreement.

We have studied the temperature dependence of the pure twist viscoelastic mode in a
thermotropic cholesteric. We have selected a combination of pitch and the wavelength
of light that allows us to investigate twist fluctuations of cholesterics on a length scale
comparable to the pitch. Such studies give the values of twist viscoelastic coefficients
which are very important to characterize cholesterics for device applications [30,31].
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