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Viscodity of suspensonsand glass:
Turning power-law divergence into
essential sngularity
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Raman Research Ingtitute, Bangaore 560 080, India

Starting with an expression, due originally to Einstein,
for the shear viscosity h(df) of a liquid having a small
fraction df by volume of solid particulate matter sus-
pended in it at random, an effective-medium viscosty
h(f) for arbitrary f is derived, which is precisely of the
Vogel-+Fulcher form. An essential point of the derivation
is the incorporation of the excluded-volume effect at each
turn of the iteration fn+1=f, +df. The modd is frankly
mechanical, but applicable directly to soft matter like
a dense suspension of microspheres in a liquid as a func-
tion of the number densty. Extension to a dass-forming
supercooled liquid is plausible inasmuch as the latter
may be modelled datistically as a mixture of rigid, solid-
like regions (f) and floppy, liquidlike regions (1-f), for
f increasing monotonically with supercooling.

GLASS has become a paadigm of complexity, much as
turbulence is. The very thought of it gives a sense of messi-
ness, without our being able to put the finger on anythingin
paticular. One might say that glass is what glass does.
But, whatever it does, it does so dowly. This atreme dow
dynamics defines an approach to the glassy date. At the
macroscopic scae, it manifests as a rise of shear viscodty,
typicaly by 15 orders of magnitude, as that state is reached
through supercooling of the glassforming liquid. The
Vogel-Fulcher (VF) law describes that growth of viscosityl.
The present work derivesthe VF law”,

A griking feature of the VF law is the essential sngularity,
rather than a power-law divergence, of the shear viscodty
a a temperature T,. The relaxation times, however, exceed
the expeimentd timescde a what is identified as the glass
transition temperature Ty>To, thus maeking the glass tran-
stion a kingtic crossover. This inverse exponentid VF law
is well known to hold for the fragile structural-glass-forming
liquids'. But, significantly, it is also obeyed by a broad
class of soft-matter systems that exhibit the edreme dow
dynamitsl. This includes purdy mechanicad sysems, eg.
of weekly perturbed granular aggregates, where the degree
of compaction and the perturbation strength, rather than
mass density and temperature, are the relevant varidble
and the control parameter, and the underlying physcs is
that of jamming or blocking, by rigid granular contacts™™.
And, smilarly for the case of a dense sispension of nicro-
spheresl. Motivated by its ubiquity and universdity, we
have attempted a derivation of the VF law for a fluid-mecha-
nicd modd of a liquid containing a volume fragion f of
solid particulate matter suspended in it a random. It is an
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effective medium theory (EMT) dong the line of Brugge
mann’'s asymmetric EMT, but it goes beyond the mesan
fidd by incorporating the solid-solid excluson explicitly
in red space, which indeed is the essentid point of our
derivation. This, frankly mechanicd modd can, however,
be reinterpreted as a modd for the glass forming supe-
cooled liquid inagmuch as the later may be re-gpproxi meted
as a datigicd mixture of shortranged rigidity (solid-like
fraction f) and the floppy liquid-like fraction (1-f). In our
view, the present work complements other derivations of
the VF law which are based on the idea of margind smiing6
and some simple exdusion models®™.

We sat with the expression, due origindly to Einstein'?
for the shear viscosity h(df) of a liquid containing a smdl
volume fraction of of solid particulate matter sugpended
init at random:

h(df ) = h(0)(1+adf ), @

where a, of order unity, is a fluid-dynamic dimensionless
parameter specifying the particle shape and the flow boundary
condition, and o = (4p3a’ch assuming sphericd partides
of radius a with dnh being the number density. The physicd
basis of eg. (1) is tha in the steady state the rigid parts of
the liquid move practicaly as complete wholes, and hence
the effect of their existence is to dminish the thickness of
the layer through which momerntum has to be transported
by the mobile molecules, and thus to increase the viscosity™.
We can iterate eq. (1) to higher volume fraction f, in the
spirit of an EMT, by the recursion reldion

h(f +df)=h(f)§i+a 1df—f9, 7
]

where the factor (1-f) in the denominator on the right-hand
sde ensures tha the eemental increment o is reckoned
relative to the liquid-like volume fraction (1-f) remaining
a the current stage of iteration. Now, proceeding to the
limitd ® O, we obtain the differentid equetion

dh _aa 6

hOTg @
withthesolution

h(f)=h(0)(1-f) -2, @

that gives a power-law divergence for the effedive shear
viscosity h(f). Here h(0) is the ‘bar€ viscodity of the pure
liquid with f =0. Such a power-law temperature dependence
is wdl known to follow from the viscosty feedback
mechanism  giving the Batchinski—Hildebrand law™  (with
a=1), or from the Mode Coupling Theory® giving the
critical behaviour (with a =2). Both these exponent veues lie
inthe range for the parameter a as described below.
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Equetion (4) giving this criticd behaviour is, however,
in error in that it mathematicaly fals to incorporate fully
the physicaly important excluded-volume effect. The point
is that the liquid fraction (1-f) in the denominator of eq.
(3) must be repleced by the liquid fraction (1) as weigh-
ted by the probability that the incremental solid fraction
df, added a random, lands in it". This therefore, effecti-
vely replaces (1-f) by (1—f)2. Equation (4) then gets modi-
fied accordingly to

dh _ a

h T @-f)?’ ®
giving

h(f) =(h(O)e 2)ed® ", ©)

Equetion (6) is daready of the VF form as an inverse expo-
nential function of f diverging essentidly a f =1. This
however, needs a refinement dictated by the physics of
the problem, namely that the solid volume fraction f nesd
approach only the rigidity percolation threshold fo (<1) in
order to reach the three-dimensond rigidity. Therefore,
(1) above must be displaced to €o—f). Thus, we findly
have

h(f) =(hoera Mo)en ftfo-1), ™

which tends to h(0) for f ® O (pure liquid), and diverges
asf® fofrombdow (the glassy state).

Equetion (7) is our main result. For the smplest case
of spherica, non-spinning particles, we have™® a =25,
while for particles free to spin, a =1. Also, we can estimate
the rigidity percolation threshold" (f3P) in three dimen-
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Figure 1 Plot of normaized shear viscosty h(f)/h(0) against the

solid-like volume fraction f from eg. (7) deived in the text for a =2.5.
Here f, is the rigidity percolation threshold and fy maks the point
(f(0)=10". The regime 0<f < fy is nominaly the supercooled
liquid; fg < f < fotheglassy liquid and f > fo the rigid glassy solid.
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sions from its 2D vaue, f2P @0.80 by use of the sinple
relationf 30 = 4/3p2(f2P)3/2, We ga f* @054 In
Figure 1, we have plotted h(f) againgt f for the vaues of
the parameters a =25 andf ® =054. This is essentidly
auniversl curve.

While eq. (7) is expected to be directly appliceble to,
for example a sugpenson of microspheres in a viscous
liquid, its extension to the glass forming supercooled liquids
is plausble as discussed earlier. Then f must be regarded
as a function of temperature, incressing monotonicaly as
the temperature decreases. This will turn egq. (6) explicitly
into the VF form, or its variant, the Voge—Tammann—Fulcher
law, h(T) = hoexp[DTd(T-Tg)] asT® To, from the above.

I would like to conclude with the following remarks
The above fluidmechanicd modd implies physicaly that
the derivation may apply more readily to fragile rather
than to srong (network forming) liquids. As noted above,
the numericd vaue of a occurring in eg. (7) depends on
the particle shape (taken to be sphericd here), and on
whether the particles are free to spin (a=1) or not
(@a=25) in the presence of a shear rate. This can make the
parameter a temperaturedependent, with the higher
vdue a =25 appropriate to the lower temperatures. With
the solid-like volume fraction f now becaming a function
of temperature, and, therefore, a thermodynamic parame-
ter, eg. (7) shows how shear viscosity (a transport property)
is actudly controlled by thermodynamics. The thermody-
namicdly controlled liquid-like fraction (fof) acts as an
ider taking up the shear rae. This is the smplest redi-
zation of a viscosty amplification that underlies the macro-
scopic dow dynamics described by the VF law, where the
iding liquid-like fraction esentidly retains its bare low
vadue ¢(0). Extension to 2D systemsiis straightforward.
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Microwave-asssted stepsin the synthess
of poly(3-thiophenylacetic acid)
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An efficdent and microwave-asssted irradiation method
(MWR) has been developed for the total synthesis of
poly(3-thiophenylacetic acid) (P3TAA), in which the total
synthesis consists of esterification of 3-thiophenylacetic
acid (3TAA) and hydrolyss of poly(3-thiophene methyl-
acetate) in aqueous alkaline media. Relative yields in
ederification and hydrolyss were compared under MWR
and conventional refluxing (CR) methods at ambient
atmospheric pressure. The eterification of 3TAA by
MWR vyielded 90% in 10min of irradiation. The corre-
sponding yied obtained was 49% when CR was em-
ployed. The rdative yidd of P3TAA was enhanced
approximately twofold, while the whole reaction time
was reduced threefold when MWR was employed.

IN recent years, synthess of processable conjugated poly -
mers (CP) have been under intense invedigation due to

e-mail: rsena@ifs.ac.lk

CURRENT SCIENCE, VOL. 88, NO. 1, 10 JANUARY 2005

ther potentid applications in many eectrical devices such
as photovoltaic cdls, rechargesble batteries, eectrochromic
devices, chemicd and opticad sensors, anti-stetic  coatings,
ec™ Paticulaly, in many photovoltaic devices, CPs
have been utilized as hole-conducting mediun?™? and few
attempts have been made to use them as sendtizers for
wide band gap semiconductors™™. However, to use CPs as
a sengtizer, rigid bonding such as the chemica bording
between carboxylic moieties in the Ru-complex dyes and
semiconducting  substrate  is  required®’. The carboxylic
groups enable the necessary dectronic coupling between
the sendtizer and the semiconductor surface. In this context,
poly(3-thiophenylacetic acid) (P3TAA) is one of the bes-
known conducting polymers, which possesses suitable
band matching with many inorganic semicondudors used
in the dyesenstized photovoltac cells. However, the
chemica polymerization of this polymer mainly corsists
of three seps including edterification of monomer, oxida
tive polymerization and hydrolysis of esterified polymer. In
order to protect from the oxidative decompostion of the
carboxylic acid moiety of 3-thiophenylacetic acid) (3TAA),
during the oxidaivecoupling polymerization and to ohtain
the polymer successfully, edterification and hydrolysis
processes have to be essentidly carried out. Therefore, it
should be emphasized that edteification and hydrolyss
processes (as shown in Scheme 1) are crucid in this complete
polymerization reaction. In the total synthesis of P3TAA,
the conventiond oil bath with long refluxing time is emplo-
yed™. Therefore, in the synthesis of P3TAA in a lage
scae, it is required to establish a rgpid and efficient syn-
thess method. In this context, microwave irradiaion
(MWR) has many <specific characteristics for promoting
chemicd reactions. The radiation passes through the walls
of the glass reaction vessd and heats only the reactants
and/or solvent, avoiding loca overheating at the reaction
walls, which can diminate the side reactions’ . Therefore,
in order to speed up the process and to obtain higher yields
of P3TAA, we have employed MWR in the totd synthesis
of P3TAA. Here we report an efficient MWR-assisted
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Scheme 1. Complete conventiond polymerization reaction mecha

nism of poly(3thiophenylacetic acid).
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