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Abstract. A model calculation is given for the energy relaxation of a non-equilibrium
distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar
indirect band-gap semiconductor, which has been subjected to homogeneous photoexci-
tation by a femtosecond laser pulse. The model assumes that the pulsed photoexcita-
tion creates two distinct but spatially interpenetrating electron and hole non-equilibrium
subsystems that initially relax non-radiatively through the electron (hole)–phonon pro-
cesses towards the conduction (valence) band minimum (maximum), and finally radiatively
through the phonon-assisted electron–hole recombination across the band-gap, which is a
relatively slow process. This leads to an accumulation of electrons (holes) at the conduc-
tion (valence) band minimum (maximum). The resulting peaking of the carrier density
and the entire evolution of the hot electron (hole) distribution has been calculated. The
latter may be time resolved by a pump-probe study. The model is particularly applicable
to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier con-
centration and strong electron–phonon coupling, where the usual two-temperature model
[1–4] may not be appropriate.
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1. Introduction

Consider the kinetic evolution of a photoexcited non-equilibrium system of elec-
trons (holes) in the conduction (valence) band of a polar, indirect band-gap semi-
conductor with a low carrier density and strong electron–phonon coupling with
high anharmonicity, such that, τe−eÀτe−pÀτp−p. Here, τe−e, τe−p, and τp−p are,
respectively, the electron–electron, electron–phonon and the phonon–phonon relax-
ation time-scales. This is the regime, in which the usual two-temperature model is
not applicable [1–4]. The photoexcited non-degenerate hot electron (hole) distribu-
tion then evolves predominately through the non-radiative electron (hole)–phonon
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Figure 1. A polar, indirect band-gap semiconductor.

processes. Due to this quasi-continuous phononic energy loss mechanism, the pho-
toexcited electrons (holes) tend to accumulate at the conduction (valence) band
minimum (maximum). The final relaxation step (i.e., electron–hole recombination)
involves a relatively slow phonon-assisted radiative interband transition across the
indirect gap as shown in figure 1. There is thus a pile up of the hot electrons (holes)
at the bottom (top) of the conduction (valence) band. Thus, the entire relaxation
process proceeds on two time-scales, namely, the initial, fast time-scale involv-
ing the quasi-continuous intraband electron–phonon interaction, and the final slow
time-scale involving the phonon-assisted radiative interband transition across the
indirect gap. We have derived an analytical expression for the entire time evolution
of the non-equilibrium hot-electron distribution, following the initial preparation
by the femtosecond laser pulse. The fast and the slow relaxation processes, can,
in principle be time resolved using the pump-probe experimental technique. Our
calculations clearly capture the peaking of the electron number as the latter ac-
cumulate at the conduction band minimum. (The calculation for the holes is, of
course, identical.)

2. Theory

Consider the sample as homogeneously photoexcited (i.e., no spatial diffusion) by
an fs-laser pulse. Let this generate a gas of hot electrons with a non-equilibrium
distribution function fe(ε, t). In this work we will consider two models of electron–
phonon interaction (friction) for the relaxation of fe(ε, t), a linear model in which
the phonon friction is taken to be linear in the velocity of the hot electrons, and
the other in which the phonon friction is non-linear in the electron velocity. For
these, we derive analytical expressions for the time-dependent non-equilibrium hot-
electron distribution.

A. Linear model

Here the phononic friction is proportional to the electron velocity v. The kinetic
equation for fe(ε, t) is
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∂fe(ε, t)

∂t
+ ε̇

∂fe(ε, t)

∂ε
= −

∂fe(ε, t)

τr
. (1)

Here, ε̇ ≡ d
dt (mv

2/2) = −γpv2 = −ε/τp, where τr and τp are, respectively, the
radiative and the non-radiative relaxation times, and α = t/τp, αr = τr/τp are
dimensionless variable parameters. With these, eq. (1) reduces to

∂fe(ε, α)

∂α
−
∂fe(ε, α)

∂ ln ε
= −

∂fe(ε, α)

αr
, (2)

that can be solved analytically to give

fe(ε, α) = e−α/αrΘ(−α− ln[ε/(εc + εL)]), for t > 0 (3)

with the initial condition imposed at t = 0. Here, Θ is the Heavyside step function.
We have assumed here an initial delta-function laser pulse of photon energy εL that
excites electrons uniformly in the energy interval εc ≤ ε ≤ εc+ εL in the conduction
band, with εc the conduction band minimum and εL > εg (the band-gap energy). In
as much as physically eq. (2) has only the forward propagating solution in the energy
space, we can readily incorporate the boundary condition corresponding to this slow
recombination relaxation process effectively at the bottom of the conduction band
simply by introducing a longer relaxation time, τpc > τp, there. This gives rise the
peaking effect referred to above. Thus, eq. (3) is our basic result. In terms of it, we
can calculate the total number Nc(α) of the hot electrons piled up in the bottom of
conduction band, as also the total number Nhot(α) of hot electrons above εc. The
number of hot electrons with energy ε > εc is N>(ε) = Nhot(ε)−Nc(ε).
The time evolution of the hot electrons in the pile up is given by

Ṅc(t) + Ṅ>(t) = −Nc(t)/tpc.

Defining η = τp/τpc, the solution may be written as

Nc(α) =
f0(εc + εL)e

−ηα

1− η
[1− e−(1−η)α], (4)

Nhot(α) ≡ Nc(α) +N>(α) = f0(εc + εL)e
−α

×
[

1 +
e(1−η)α

1− η
(1− e−(1−η)α)

]

. (5)

Time evolution of these two populations are plotted in figures 2 and 3. Here f0

is the initial number density of photoexcited electrons per unit energy interval for
εc < ε < εc + εL.

B Non-linear model

Here the phonon friction is non-linear in the electron velocity. The kinetic equation
is
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Figure 2. Decay of hot electrons Nc(α) in the pile up as a function of α (α
is along the horizontal axis in all the figures). Top most curve is for η = 0,
lowest for η = 0.9 with a step of 0.1.
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Figure 3. Decay of hot electrons Nhot(α). Top most curve is for η = 0,
lowest for η = 0.9 with a step of 0.1.

∂fe(ε, t;n)

∂t
+ ε̇

∂fe(ε, t;n)

∂ε
= −

∂fe(ε, t;n)

τr
(6)

with ε̇ = − ε
τp
[ εε0 ]

n and ε0 is an associated energy scale. In line with the linear

model, this kinetic equation has the solution

fe(ε, α;n) = e−α/αrΘ

(

−α−
1

n

(

ε0
εL + εc

)[

1−
(

εL + εc
ε

)n])

. (7)

The number N>;n(α), of hot electrons with energy greater than εc is
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Figure 4. Decay of hot electrons Nc;n(α) in the pile up as a function of α,
for η = 0.5, χ = 0.5, and 0.8 < n < 1.2, peaking effect is clear around, α = 0.5.
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Figure 5. Decay of hot electrons Nhot;n(α) as a function of α. Here
n = 0.28, χ = 1, and 0 < η < 1.2.

N>;n(α) =

∫ εc+εL

εc

fe(ε, α;n)dε = f0;n(εc + εL)

[

1 +
α

β

]−1/n

, (8)

where β = 1
n (χ)

n, χ = ε0
εc+εL

. As in the linear model, the number of hot electrons
in the pile up near the bottom of the conduction band comes out to be

Nc;n(α) = f0(εc + εL)

[

1

n

]n+1

η1/ne−α(η+χn/n)

×

[

∫ η(α+β)

ηβ

y−(n+1)/neydy

]

. (9)
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Figure 6. Decay of hot electrons Nc;p(α) in the pile up as a function of α in
the presence of a rectangular laser pulse with width αp = 3. Top most curve
is for η = 0, lowest for η = 0.9 with a step of 0.1.
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Figure 7. Decay of hot electrons Nhot;p(α) as a function of α, with same set
of parameters as in figure 5.

The total number of hot electrons, Nhot;n(α), is then Nhot;n(α) = N>;n(α) +
Nc;n(α). These populations are plotted in figures 3 and 4.

In the limit α ¿ β, or t ¿ τp

n

(

ε0
εc+εL

)n

, these expressions for the hot electrons

in the pile up, and the total number of hot electrons reduce to

Nc;n(α) =
f0;n(εc + εL)χ

−ne−ηα

χ−n − η
[1− e−(χ−n−η)α], (10)
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Nhot;n(α) =
f0;n(εc + εL)χ

−ne−ηα

χ−n − η
[1− e−(χ−n−η)α] + (1 + α/β)−1/n.

(11)

In the limit n→ 0, we recover the results of the linear model, as indeed we must.

3. Incorporating pump pulse duration

So far we have taken the pump laser pulse to be a delta-function in time. We now
consider the system as being pumped by a rectangular femtosecond pulse of duration
tp. The effect of the pulse width can be taken into account as the convolution
integral of the respective hot-electron time-evolution with the rectangular pulse.
Thus, for the case n = 0 we obtain

Np
f (α) =

1

αp

∫ min(αp,α)

0

Nc(α− x)dx, (12)

Np
f (α) =

1

αp

∫ min(αp,α)

0

Nhot(α− x)dx. (13)

4. Discussion

One of the distinctive features of our calculated time evolution of the photoexcited
electron distribution in the conduction band is the peaking effect which is clearly
seen in figures 2–7. It reflects the effect of the slow radiative relaxation across the
indirect band gap. This can be probed in a pump-probe experiment. This calcula-
tion refers to a situation τe−p ¿ τe−e, not describable by the usual two-temperature
model τe−e ¿ τe−p [1]. In our case, the non-degenerate system of electrons relaxes
towards the bottom of the conduction band predominantly by a quasi-continuous
energy loss to the phonons (intraband relaxation). The model is applicable under
the condition δ ∼ kBTD (∼ mev)¿ εg (∼ ev), where δ is the intraband energy-level
spacing in the nanometric sample. Here TD is the Debye temperature of the mate-
rial. Accordingly, the lower limit to the size of a nanoparticle for the application
of this model is given as (~/

√
2mkBTD ∼ 2 nm) for TD ∼ 200 K. Such a situa-

tion is expected in a polar, indirect band-gap semiconductor with a low electron
concentration and strong electron–phonon coupling.
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