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1. PROLOGUE

It is a privilege and pleasure to be invited to contribute an article
to the JVN Fest. When I received this invitation, I tried to go back
along my world-line and look for intersections with Jayant. A popular
article by Jayant Narlikar entitled ‘The Arrow of Time’ [1] mystified and
fascinated me. It roused an almost romantic longing and an urge to ap-
preciate, if not investigate, such basic problems. Probably it was these
subconscious fantasies that propelled me towards physics and eventu-
ally, general relativity. I still remember the first time I heard a public
talk by Narlikar on Cosmology after his return to India. It was at the
Homi Bhabha auditorium of TIFR in 1972. The hall was overflowing
and I heard his (favorite?) joke on the mathematician, physicist and
astronomer for the first time. I heard it again this year in his talk at the
Academy and was impressed by his un-apologetic use of it to make his
point! I met Jayant Narlikar at the Einstein centenary symposium in
Ahmedabad in 1979 and his interests then included scale invariant cos-
mology (with Ajit Kembhavi) and black holes as tachyon detectors (with
Sanjeev Dhurandhar). He carried his fame lightly, was unassuming and
though he was not very talkative, he felt very approachable. When I fin-
ished my Ph.D. with Arvind Kumar at the Bombay University, I could
not get a post doc at TIFR or work with Jayant, since he was away that
particular year. Over the last sixteen years, I have had much overlap
with Jayant in the organization of Relativity related activities in India.
There is much to admire in Jayant and emulate. His time management,
missionary zeal to the popularization of science, vision and hard work,
pedagogic skills, fervor for the non-standard and ability to play devil’s
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advocate in his research almost as a point of faith. In addition to the
above, personally, I also admire him for his ability to take criticism and
his democratic mode of functioning.

I am always impressed by Jayant’s ability to start a lecture on fairly
profound, subtle and technical themes like action at a distance in physics
and cosmology or Mach’s principle from a very elementary basic discus-
sion. In every lecture of his that I have heard he covers a fair amount
of ground starting from the very beginning and leading to what he is
currently researching on. He reminds me of a capable, composed and
competent guide taking a group of motley tourists up a mountain, lead-
ing everyone to the heights their capability can reach. Everyone gets a
view, maybe a different glimpse, but everyone is happy to have partici-
pated in the trek and adventure that Jayant leads them on. No wonder
he is a populariser par excellence and probably holds a record for such
lectures and writing at least in India.

I have heard that Jayant has a soft corner for his work related to elec-
trodynamics and action-at-a-distance [2]; he considers it to be one of the
important topics in his research career. Recent progress in theoretical
gravitational radiation research is very reminiscent of this research and
as a tribute to Jayant, I shall try to imitate him and without getting lost
in technical details compare these developments in general relativity to
those in electrodynamics.

2. GRAVITATION AND
ELECTROMAGNETISM

The similarity of gravitation and electromagnetism does not escape
any thoughtful student of an elementary physics course [3]. Both New-
ton’s law of gravitation and Coulomb’s law of electrostatics are inverse
square laws. They are proportional to their respective charges: gravi-
tational mass and electric charge. The gravitational charge is of only
one kind, while there are two kinds of electric charges, conventionally
denoted as positive and negative. In electrostatics, like charges repel,
while unlike charges attract. Gravitation on the other hand is always
attractive and in gravitation, like charges attract! Though functionally
similar, the numerical strengths of these forces is very different. The
gravitational force is about 103 times weaker than the electrical force
and this has experimental implications, as we shall see later. Unlike
electromagnetic forces, gravitation cannot be screened out. Moreover,
matter in the universe is predominantly neutral. This is why, in spite of
its enormous weakness, gravitation determines the large scale structure
of the universe.
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Both Newton’s law of gravitation and Coulomb’s law of electrostatics
assume instantaneous action-at-a-distance. Thus they cannot be con-
sistent with the principle of special relativity. Coulomb’s law is not
adequate to describe moving charges. Electromagnetic phenomena are
more simply described by field equations and a moving charge produces
both an electric field and a magnetic field. The laws of electromag-
netism are summarized by Maxwell’s equations and Lorentz equation
of motion. These equations are relativistically invariant. However, in
Newtonian gravitation, there is no analogue of the magnetic field; a
moving mass produces the same field, as a mass at rest, if the mass dis-
tributions are identical. The situation is different in Einstein’s general
theory of relativity and closer to electromagnetism. Here the gravita-
tional field produced by a body depends not only on the distribution
of matter but also the state of its motion. Mathematically, the source
of the gravitational field is the energy momentum tensor whose compo-
nents include mass, motion and stresses. The gravitational analogue of
the magnetic force is called gravimagnetism and like the Lorentz force
in electrodynamics, depends on the test particle velocity. It has physical
consequences like the dragging of inertial frames, Lense Thirring effect
or precession of gyroscopes. Usual tests of general relativity normally
involve only the gravielectric component. Like the magnetic force, the
gravimagnetic component is usually smaller by a factor of v/c relative to
the gravielectric part and experiments are under way to verify it directly.
One can set up a detailed analogy between rotation in general relativity
and magnetism. In electromagnetism, there has long been a conjecture
about the possible existence of magnetic monopoles. Given the detailed
similarity between rotation and magnetic fields, one can ask, if there
is such a thing as the gravimagnetic monopole. The answer is in the
affirmative. The famous NUT solution is the gravimagnetic monopole
[4]. Of course, the Schwarzschild solution the gravielectric monopole.

3. ELECTROMAGNETIC WAVES AND
GRAVITATIONAL WAVES

As mentioned earlier, the laws of electromagnetism are summarized
by Maxwell’s equations. Maxwell’s equations admit wave like solutions
" and these are electromagnetic (EM) waves. EM waves are produced
by accelerated electric charges. The dominant radiation is dipole radi-
ation and is caused by the time varying dipole moment of the charge
distribution. The EM field is of spin one (a vector field) and has a con-
served quantity associated with it: charge. Consequently there is no
monopole EM radiation. EM waves propagate at speed of light ¢, they
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are transverse and have two independent states of linear polarization
corresponding to oscillations of the electric field in two perpendicular
directions. The effect of an EM wave can be seen by its action on a test
particle. If a sinusoidally varying EM wave is incident on a test particle,
it impresses on it this sinusoidal motion. Thus, by studying the motion
of a test particle, we can infer the passage of a EM wave. EM is a strong
force. Consequently by the oscillation of charges and currents we can
produce EM waves at one end of the laboratory and detect it at the
other end: the famous Hertz experiment.

Similarly, the best description of gravitation is via Einstein’s equa-
tions. These equations also admit wave like solutions. Gravitational
waves are not mere artefacts of our choice of coordinates, but indeed
physical, in that they carry energy. For a fascinating historical account
of these debates, see Kennefick [5]. Gravitational waves are produced by
accelerated motions of masses. The dominant radiation is quadrupolar
and caused by the second time variation of the quadrupole moment of
the mass energy distribution. The gravitational field is of spin two (a
tensor field) and has conserved quantities associated with it correspond-
ing to mass, linear momentum and angular momentum. Consequently,
there is no monopole or dipole radiation. Gravitational waves also prop-
agate with speed c, are transverse and have two independent states of
linear polarization. The effect of a gravitational wave cannot be seen by
its action on a single test particle. Gravity obeys the equivalence prin-
ciple and consequently a uniform gravitational field can be transformed
away by going to an accelerated frame. Tidal fields cannot be so trans-
formed and provide a true measure of gravitational fields. Gravitational
waves induce a weak time-dependent tidal field and thus, a gravitational
wave can be detected by letting it impinge on a circular ring of particles.
Due to the tidal field, the ring is squeezed in one direction and elon-
gated along the perpendicular direction. Since the tidal field oscillates
in time, the ring will go through a pattern of shapes, characteristic of
the tidal field. Starting out as a ring of particles, after a quarter of a
period the ring elongates into a ellipse, say along the x axis, back to a
circle, then an ellipse elongated along y axis and back again to a circular
shape. This pattern repeats thereafter and is characteristic of spin two.
This is referred to as plus polarization. The other independent mode
of polarization yields an ellipse rotated by 45° and is referred to as the
cross polarisation. Gravitational wave detectors differ in the way they
measure this minute tidal effect. Broadly we can classify them as bars
(spheres), interferometers on earth and interferometers in space.

Unlike EM, gravitation is a very weak force. Consequently, the oscil-
lation of masses in the laboratory cannot produce gravitational waves of
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measurable strength. The detection by any suitable method is equally
difficult for the same reason. A Hertz type experiment is not possible in
this case and one is forced to appeal to astronomy, to provide sources
that will radiate in this bandwidth.

4. INSPIRALING COMPACT BINARIES
AND GW PHASING

The Binary pulsars 1913416 and 1534+12 establish the reality of
gravitational radiation [6]. They provide proof of the validity of Ein-
stein’s general relativity in the strong field regime. More importantly,
they are prototypes of inspiralling compact binaries, which are strong
sources of gravitational waves for ground based laser interferometric
detectors like LIGO and VIRGO [7]. The phenomenal success of the
high-precision radio wave observation of the binary pulsar makes crucial
use of an accurate relativistic ‘Pulsar timing formula’ [8, 9]. Similarly,
precise gravitational-wave observation of inspiraling compact binaries
would require an equivalent accurate ‘Phasing formula’ [7, 10] i.e. an
accurate mathematical model of the continuous evolution of the grav-
itational wave phase. The lowest order gravitational wave radiation
reaction is sufficient to treat pulsar timing. Gravitational wave phasing,
on the other hand, requires higher post-Newtonian order gravitational
radiation reaction, since in the final stages the systems are highly rela-
tivistic.

At this point, it is worth comparing the situation here in general rel-
ativity (GR) to that in electrodynamics (ED) to illustrate the issues.
For instance, in ED we have the following categories of problems: (a)
Given the charge and current distribution, compute the electromagnetic
field; e.g. evaluate fields in wave-guides. (b) Given the external electro-
magnetic field, compute the effect on charges and currents; e.g. energy
losses of charged particles moving past a nucleus. (¢) Given the energy
loss by say the Larmor formula, compute the reaction on the motion;
e.g. Abraham-Lorentz, Planck. The corresponding situation in GR, in
the inspiraling binary problem, is the following: (i) Generation Prob-
lem: Given the compact binary and its orbital motion, compute the
gravitational field in this situation. (ii) Given the gravitational field,
compute the far-zone energy and angular momentum fluxes. (iii) Radia-
tion Reaction problem: Given the far zone fluxes of energy and angular
momentum, compute the reaction on the near zone motion, assuming en-
ergy (angular momentum) balance. Or compute it directly, by a higher
iteration of the equations of motion.
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In what follows, we will discuss briefly aspects of motion, generation
and radiation reaction and draw parallels to the EM case, where possible.

5. MOTION

It may be worth mentioning that unlike linear EM, non-linear GR
has the feature, that its field equations contain the equations of motion.
For discussions on the relation between the above feature, non-linearity
and tensor nature of the field, see the review article by Havas [11]. The
N-body problem as in Newtonian gravity is decomposed into an external
problem and an internal problem. The former refers to the problem of
defining and determining the motion of the center of mass and the latter
to motion of each body around the center of mass. The effacement of
internal structure in the external problem and effacement of external
structure on the internal problem involves subtle issues in the problem
of motion and we cannot do better than refer the reader to the beautiful
review by Damour [12].

The topic of EOM for compact binary systems received careful scrutiny
in the years following the discovery of the binary pulsar. There have been
three different approaches to the complete kinematical description of a
two body system upto the level where radiation damping first occurs
(2.5PN). Damour’s method explicitly discusses the external motion of
two condensed bodies without ambiguities, using harmonic coordinates,
in which all metric deviation components satisfy hyperbolic (wave) equa-
tions. The method employs the best techniques to treat various subprob-
lems. (a) A Post-Minkowskian approximation to obtain the gravitational
field outside the bodies incorporating a natural ‘no incoming-radiation
condition’ whose validity is not restricted to only the near-zone. (b) A
matched asymptotic expansion scheme to prove effacement and uniquely
determine the gravitational field exterior to the condensed bodies. (c)
An Einstein Infeld Hoffmann Kerr type approach to compute equations
of orbital motion from knowledge of the external field only. The nt"
approximate EOM is obtained from the integrability condition on the
(n + 1) approximated vacuum field equations. (d) Use of Riesz’s an-
alytic continuation technique to evaluate surface integrals. The final
EOM at 2.5PN level are expressed only in terms of instantaneous po-
sitions, velocities and spins in a given harmonic coordinate system and
given explicitly in Ref.[12]. The two mass parameters in these formulas
are the Schwarzschild masses of the two condensed bodies.

The conservative part of the EOM upto 2PN (excluding the secular
2.5PN terms) are not deducible from an conventional Lagrangian (func-
tion of positions and velocities) in harmonic coordinates, but only from
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a generalized Lagrangian (depending on accelerations). This is con-
sistent with the result in classical field theory that in Lorentz-covariant
field theories there exists no (ordinary) Lagrangian description at O(c™%)
[13]. This Lagrangian is invariant under the Poincare group and thus al-
lows one to construct ten Noetherian quantities that would be conserved
during the motion. These include the ‘Energy’, ‘Angular Momentum’,
‘Center of Mass’ and thus a solution to the problem of ‘motion’ provides
the Energy that enters into the phasing formula. The EOM for the gen-
eral case is given in [12] and crucially used in the following studies of
generation and radiation reaction. All the above has detailed parallels
in the electromagnetic case and the relevant Lagrangian and associated
subtleties are discussed in the Les Houches lecture by Damour [9].

Schafer’s [14] approach, on the other hand, is based on the Hamil-
tonian approach to the interaction of spinless point particles with the
gravitational wave field. The Hamiltonian formulation is best done in
the Arnowitt-Deser-Misner (ADM) coordinates, in which two metric co-
efficients satisfy hyperbolic equations (evolution) while the remaining
eight are of elliptic type (constraints). It uses a different gauge that
allows an elegant separation of conservative and damping effects. One
recovers the damping force acting on the Hamiltonian subsystem of in-
stantaneously interacting particles coming from its interaction with the
dynamical degrees of freedom of the gravitational field. In this approach,
point masses are used as sources and regularisation uses Hadamard’s
‘partie finie’ based on Laurent’s series expansion regularisation.

The last approach due to Grischuk and Kopejkin [15] on the other
hand is based on (a) Post-Newtonian approximation scheme (b) assump-
tion that bodies are non-rotating ‘spherically-symmetric’ fluid balls. The
syminetry is in the coordinate sense. The EOM of the center of mass of
each body are obtained by integration of the local PN EOM. These are
explicitly calculated retaining all higher derivatives that appear. One
then reduces the higher derivatives by EOM and obtains the final re-
sults. Formally collecting the various relativistic corrections into a ‘ef-
fective mass’, one can have a PN proof of effacement of internal structure
and provide a plausibility argument for validity of ‘weak field formulas’
for compact objects.

The fact that three independent methods give formally identical equa-
tions of motion at 2PN order is a strong confirmation of the validity of
the numerical coefficients in the EOM. This work provides the basis for
the timing formula mentioned earlier. The damping terms can be con-
sidered as perturbation to a Lagrangian system which is multi-periodic -
a radial period and a angular period corresponding to periastron preces-
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sion — and leads to the observed secular acceleration effect in the binary
pulsar. No balance argument is involved at any stage.

The situation is now under investigation at the 3PN level. The work
on 3PN generation crucially requires the EOM at 3PN accuracy and
work is in progress to obtain the 3PN contributions by different tech-
niques. These include the MPM method supplemented by Hadamard
‘partie-finie’ [16], the Epstein Wagoner Will Wiseman method [17] as
also the Hamiltonian formalism [18]. As mentioned above, upto 2.5PN,
three distinct computational techniques led to a unique EOM. Prelim-
inary investigations have even raised questions about whether this sort
of uniqueness will persist at 3PN.

It is interesting to note that both the Riesz regularisation and the
Hadamard finite part averaged over all directions of approach to the sin-
gularity are techniques employed in the discussions of EOM in EM [19].
Both continuous source distributions and point sources (delta functions)
have also been used in these computations. However, the situation in
EM is much better than in gravitation because all the divergent terms
can be renormalized into the mass after regularization. In gravitation,
these offensive terms have a more complicated structure and we do not
renormalize and simply throw away these divergent terms. The proce-
dure in EM is also different since it is Lorentz invariant. In gravitation
on the other hand we work in a particular frame and hope that in the
end the EOM is nevertheless Lorentz invariant. Of course, if they are,
it is a very powerful check that all is well with the computation [20]!

6. GENERATION

There are two approaches to calculate gravitational wave generation
to higher orders, philosophically following the approaches of Fock and
Landau-Lifshitz; the Blanchet-Damour-Iyer (BDI) [21] approach and the
Epstein-Wagoner-Thorne-Will-Wiseman (EWTWW) [22, 23] approach
respectively. Blanchet, Damour and Iyer build on a Fock type derivation
using the double-expansion method of Bonnor. This approach makes
a clean separation of the near-zone and the wave zone effects. It is
mathematically well defined, algorithmic and provides corrections to the
quadrupolar formalism in the form of compact support integrals or more
generally well defined analytically continued integrals. The BDI scheme
has a modular structure: the final results are obtained by combining an
‘external zone module’ with a ‘radiative zone module’ and a ‘near zone
module’. For dealing with strongly self-gravitating material sources like
neutron stars or black holes one needs to use a ‘compact body module’
together with an ‘equation of motion module’. It correctly takes into



RADIATION REACTION 153

account all the nonlinear effects. It should be noted that, in generation
problems, as one goes to higher orders of approximation, two indepen-
dent complications arise. Though algebraically involved in principle, the
first is simpler: contributions from higher multipoles. The second com-
plication is not only algebraically tedious but technically more involved:
contributions from higher nonlinearities e.g for 2PN generation cubic
nonlinearities need to be handled.

The Epstein and Wagoner (EW) approach, also starts by rewriting
the Einstein equations in a “relaxed” form. As in electromagnetism, one
can write down a single formal solution valid everywhere in spacetime
based on the flat-spacetime retarded Green function. The retarded inte-
gral equation for h®%, can then be iterated in a slow-motion (v/c < 1),
weak-field (J|h*#|| < 1) approximation as shown by Thorne [22]. Unlike
in the electromagnetic case, however, the non-linear field contributions
make the integrand of this retarded integral non-compact. The EW
formalism leads to integrals that are not well defined, or worse, are di-
vergent. Though at the first few PN orders, different arguments were
given to ignore these issues, they provide no justification that the di-
vergences do not become fatal at higher orders. Consequently, the EW
formalism did not appear to be a reliable route to discuss higher PN ap-
proximations. Recently, Will and Wiseman have critically examined the
EW formalism and provided a solution to the problem of its divergences
by taking literally the statement that the solution is a retarded integral,
i.e. an integral over the entire past null cone of the field point. The new
EW method proposed by Will and Wiseman can be carried to higher
orders in a straightforward, albeit very tedious manner and the result is
a manifestly finite, well-defined procedure for calculating gravitational
radiation to high PN orders.

The end result of the computations are expressions for the radiative
mass and current multipole moments characterizing the source distribu-
tion. Once they are on hand, one can proceed to compute the associ-
ated gravitational waveform. From the waveform, the far zone energy
flux may be computed by time differentiation (this is why one needs the
EOM) and integration over all directions. The energy flux can also be
computed directly from the moments and this provides a simple check
on the algebraic correctness of the long computations. The angular mo-
mentum flux can also be computed for non-circular orbits. At the 2PN
level this program is complete not only for circular, but also general
orbits [24]. The extension to spinning bodies is also available [25]. The
extension of these results to 3PN accuracy is an algebraically heavy and
conceptually involved exercise, under investigation since 1996, using the
multipolar post-Minkowskian approach [26]. The Hadamard regulariza-
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tion, based on the Hadamard partie finie, used in the computation of
motion is also used in generation and provides consistent results. Though
the known test particle limits are recovered, the finite mass correction
introduces a plethora of new contributions. Hopefully in the near future
the EW and ADM formalisms [17, 18] should provide a check on these
results.

The solution to the generation problem thus provides the second input
for phasing once we make the assumption of energy balance.

7. RADIATION REACTION IN
ELECTRODYNAMICS

The idea of a damping force associated with an interaction that prop-
agates with a finite velocity was first discussed in the context of elec-
tromagnetism by Lorentz. He obtained it by a direct calculation of the
total force acting on a small extended particle due to its ‘self-field’. The
answer was incorrect by a numerical factor and the correct result was
first obtained by Planck using a ‘heuristic’ argument based on energy
balance which prompted Lorentz to re-examine his calculations and con-
firm Planck’s result, F* = % 272 #* , where v; is the velocity of the parti-
cle. The relativistic generalization of the radiation reaction by Abraham
based on arguments of energy and linear momentum balance preceded
by a few years the direct relativistic self-field calculation by Schott and
illustrates the utility of this heuristic, albeit less rigorous, approach [9].
The argument based on energy balance proceeds thus: A non-accelerated
particle does not radiate and satisfies Newton’s (conservative) equation
of motion. If it is accelerated, it radiates, loses energy and this implies
damping terms in the equation of motion. Equating the work done by
the reactive force on the particle in a unit time interval, to the nega-
tive of the energy radiated by the accelerated particle in that interval
(Larmor’s formula) the reactive acceleration is determined and one is
led to the Abraham-Lorentz equation of motion for the charged particle.
Lorentz’s direct method of obtaining radiation damping, on the other
hand, is based on the evaluation of the retarded action of each piece
of the charge on the other parts. Starting with the momentum conser-
vation law for the electromagnetic fields, one rewrites this as Newton’s
equation of motion, by decomposing the electromagnetic fields into an
‘external field’ and a ‘self-field’. Expanding the self-field in terms of po-
tentials, solving for them in terms of retarded fields and finally making
a retardation expansion, one obtains the required equation of motion,
when one goes to the point particle limit. For a historical summary of
classical theories of radiation reaction see Erber’s account [27].
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There have been two broad approaches to radiation reaction later:
The field theory one originally due to Dirac [28], that considers the to-
tal field at all points in space to be a fundamental physical quantity and
point charges as singularities of the field; the action-at-a-distance
one originally due to Wheeler and Feynman [29], that considers only
forces exerted on the charge by other charges as physically meaning-
ful. Each approach strictly goes beyond Maxwell’s equations and uses
an additional assumption: the conservation law for the EM energy mo-
mentum tensor in field theory and the relation between Lorentz force
and momentum of the particle in action-at-a-distance theory. Though
the plausibility of the physical idea of reducing everything to interaction
of particles is the fascinating advantage of action-at-a-distance theories,
none of the viewpoints appears preferable to the other from considera-
tions of simplicity. Hoyle and Narlikar [3] have assessed the status of
action-at-a-distance theories both in classical and the quantum electro-
dynamics. As there are no fields, the usual problems of divergences are
absent in this treatment. When considered within cosmological models,
these theories place stringent requirements on the future and past null
cones of the universe. The theories will not work in Friedman cosmolo-
gies but do in steady state or quasi-steady state models. Issues related
to the use of advanced fields in the Dirac derivation, were clarified later
[30] and an approach to radiation reaction without advanced fields was
presented by properly taking into account the retarded self-field of the
point charge as required by the idea of energy-momentum localization.
Since the retarded field diverges on the world line of the particle and the
‘limit’ depends on the direction of approach, one defines the field at the
singularity as the average value over all possible directions [19]. A recent
novel approach to radiation reaction is due to Gupta and Padmanabhan
[31]. They show that fields of charged particles moving on arbitrary
trajectories in an inertial frame can be related in a simple manner to
the fields of a uniformly accelerated charged particle in its proper rest
frame. Since the latter field is static and easily calculable, the former
field is obtained by a coordinate transformation. It also allows them
to compute the self force on the charged particle and recover the Dirac
result.

8. RADIATION REACTION IN GR

As in electromagnetism, radiation reaction forces arise in gravitation
from the use of retarded potentials satisfying time asymmetric bound-
ary conditions like no-incoming boundary condition at past null infinity.
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The problem is more complicated because of the nonlinearity of general
relativity.

The approach to gravitational radiation damping has been based on
the balance methods, the reaction potential or a full iteration of Ein-
stein’s equation. The first computation in general relativity was by Ein-
stein who derived the loss in energy of a spinning rod by a far-zone
energy flux computation. The same was derived by Eddington by a di-
rect near-zone radiation damping approach. He also pointed out that
the physical mechanism causing damping was the effect discussed by
Laplace, that if gravity was not propagated instantaneously, reactive
forces could result. An useful development was the introduction of the
radiation reaction potential by Burke and Thorne [32] using the method
of matched asymptotic expansions. In this approach, one derives the
equation of motion by constructing an outgoing wave solution of Ein-
stein’s equation in some convenient gauge and then matching it to the
near-zone solution. Restricting attention only to lowest order Newtonian
terms and terms sensitive to the outgoing (in-going) boundary conditions
and neglecting all other terms, one obtains the required result. The first
complete direct calculation & la Lorentz of the gravitational radiation
reaction force was by Chandrasekhar and Esposito. Chandrasekhar and
collaborators [33] developed a systematic post-Newtonian expansion for
extended perfect fluid systems and put together correctly the necessary
elements like the Landau-Lifshitz pseudo-tensor, the retarded potentials
and the near-zone expansion. These works established the balance equa-
tions to Newtonian order, albeit for weakly self-gravitating fluid systems.
The revival of interest in these issues following the discovery of the binary
pulsar and the applicability of these very equations to binary systems of
compact objects follows from the works of Damour [9] and Damour and
Deruelle [8] discussed earlier.

Many other approaches to radiation reaction problems have emerged
in the last five years. For instance, given the formulas for the far-zone
energy and angular momentum fluxes to a particular PN accuracy, to
what extent can one infer the radiation reaction acceleration in the (lo-
cal) EOM? Given the algebraic complexity of various computations and
subtle evaluations of various small coefficients, it is worthwhile to check
the obvious consistency requirement on the far-zone fluxes. To this end,
Iyer and Will (IW) [34] proposed a refinement of the text-book treat-
ment of the energy balance method used to discuss radiation damping.
This generalization uses both energy and angular momentum balance
to deduce the radiation reaction force for a binary system made of non-
spinning structureless particles moving on general orbits. Starting from
the 1PN conserved dynamics of the two-body system, and the radiated
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energy and angular momentum in the gravitational waves, and taking
into account the arbitrariness of the ‘balance’ upto total time derivatives,
they determined the 2.5PN and 3.5PN terms in the equations of motion
of the binary system. The part not fixed by the balance equations was
identified with the freedom still residing in the choice of the coordinate
system at that order. The explicit gauge transformations they corre-
spond to has also been constructed. Blanchet [35], on the other hand,
obtained the post-Newtonian corrections to the radiation reaction force
from first principles using a combination of post-Minkowskian, multi-
polar and post-Newtonian schemes together with techniques of analytic
continuation and asymptotic matching. By looking at “antisymmetric”
waves — a solution of the d’Alembertian equation composed of retarded
wave minus advanced wave, regular all over the source, including the
origin — and matching, one obtains a radiation reaction tensor poten-
tial that generalizes the Burke-Thorne reaction potential, in terms of
explicit integrals over matter fields in the source. The wvalidity of the
balance equations upto 1.5PN is also proved. By specializing this po-
tential to two-body sytems, Iyer and Will [34] checked that this solution
indeed corresponds to a unique and consistent choice of coordinate sys-
tem. This provides a delicate and non-trivial check on the validity of the
1PN reaction potentials and the overall consistency of the direct meth-
ods based on iteration of the near-field equations and indirect methods
based on energy and angular momentum balance. It should be noted
that the ‘balance method’ by itself cannot fix the particular expression
for the reactive force in a given coordinate system. In order to solve a
practical problem (in which we erect a particular coordinate system), the
method is in principle insufficient by itself, but it provides an extremely
powerful check of other methods based on first principles. Gopakumar,
Iyer and Iyer [36] have applied the refined balance method to obtain
the 2PN radiation reaction — 4.5PN terms in the equation of motion.
Different facets of the IW choice like the functional form of the reac-
tive acceleration have been systematically and critically explored and a
better understanding of the origin of redundant equations is provided
by studying variants obtained by modifying the functional forms of the
ambiguities in energy and angular momentum. These reactive solutions
are general enough to treat as particular cases any reactive acceleration
obtained from first principles in the future.

Within the ADM approach, the radiative 3.5PN terms in the ADM
Hamiltonian has been obtained by Jaranowski and Schafer [37]. Work is
in progress to check that this leads to expressions for 3.5PN acceleration
that is a particular case of the general IW solution. In the test parti-
cle case, work on radiation reaction has focussed on understanding the
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evolution of Carter constant in Kerr geometry by a variety of methods.
Issues related to radiative versus retarded fields, adaptation of Dewitt-
Brehme and asymptotic matching methods, axiomatic treatments as well
as extension to spinning particles have also been investigated in the last
three years [38].

9. CONCLUSION

It is amazing that in the macroscopic world, the computations of
small higher order corrections so reminiscent of Lamb shift corrections
in quantum electrodynamics (microscopic world) are in-expendable to
extract the best from the LIGO and VIRGO facilities that will be able
to look for gravitational wave signals by 2001. General relativity, far
from being an esoteric and abstruse theory driven by aesthetic consider-
ations is in a situation where experiments are driving the theory. We are
on the threshold of opening another window to this marvelous universe
and gravitational wave astronomy could well be the new astronomy of
the 21st century. With the inauguration of the Gravitational Wave As-
tronomy, more than ever before, General Relativity will have found its
true home.
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