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Abstract. The energy relaxation between the hot degenerate electrons of a homoge-
neously photoexcited metal film and the surface phonons (phonon wave vectors in two
dimensions) is considered under Debye approximation. The state of electrons and phonons
is described by equilibrium Fermi and Bose functions with different temperatures. Two
cases for electron scattering by the metal surface, namely specular and diffuse scattering,
are considered.
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1. Introduction

In nanoscale metallic systems such as island metal films used in microelectronics
[1], the phenomenon of hot electron scattering by surface phonons is quite im-
portant. One important problem in this field is to calculate the energy transfer
between excited hot electrons and the lattice bath. The present paper is devoted
to the calculation of energy transfer rate from degenerate hot electrons to surface
phonons. We consider the case of a homogeneously photoexcited (no spatial dif-
fusion) nanoscale metal film, in which the electron mean free path is more than
the film thickness (as in case of metals, in which even at high temperatures, the
electron mean free path is several hundred angstroms). So the electrons will be
scattered by the film surface. The excited metal can be thought of as consist-
ing of two subsystems, namely, degenerate electronic subsystem at temperature
Te and the surface phonon bath at temperature T (Te > T ). The condition for
degenerate hot electron subsystem is justified, because, the time required to estab-
lish equilibrium in the electron gas (strong electron–electron interactions) is much
less than the time for achieving equilibrium between the electrons and the phonons,
τe−e ¿ τe−p À τp−p. In other words, the electron–electron and the phonon–phonon
relaxation processes are fast enough to maintain the electron and the phonon
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distributions in their respective equilibrium conditions, i.e. Fermi–Dirac and Bose
distribution functions respectively. Thus, one calculates the energy transfer from
the degenerate electron subsystem at the elevated temperature Te to the phonon
subsystem at lower temperature T [2]. In the present work we consider the case
of electron energy relaxation from higher-lying (energy-wise) electron subsystem to
the lower-lying surface phonon subsystem under Debye approximation. It is as-
sumed that electron surface phonon coupling constant is the same as electron bulk
phonon coupling constant.

2. Theory

Case 1. The incident and scattered electron wave vectors are in the same plane of
incidence.
Consider an electron gas of volume V ′ bounded by x–y plane. The electrons

scatter from the surface and transfer their energy to surface phonon modes. Initial
temperature of degenerate electron gas is Te and that of phonon bath is T (Te > T ).
We calculate the energy transfer rate Usurface from electron subsystem to surface
phonon subsystem. The equilibrium distributions of electron gas and the surface
phonon bath is

Nk = 1/{exp(βe[ε− ε0]) + 1}, βe = 1/KTe,

Np = 1/{exp(β~ω)− 1}, β = 1/KT, Te > T,

K is the Boltzmann constant.
Conservation of energy and momentum gives

εk′ − εk = ~ω, ω = sf,

k′|| − k|| = f, (1)

k′ sin θ − k sin θ′ = f,

k′ cos θ = −k cos θ′. (2)

Consider that the linear dispersion relation holds good for surface phonons, where
f is the phonon wave vector and s is the speed of sound at the surface of the metal
film. The mentioned process will always happen, as from eq. (1), sin θ ≈ f/2k′ and
f À 2ms/~, which holds good in a metal. The rate of phonon generation can be
written as [2]

Ṅp =

∫ ∫ ∫

fmin

αω[(Np + 1)Nk′(1−Nk)

−NpNk(1−Nk′)]d3k
2V ′

(2π)3
δ(εk′ − εk − ~ω), (3)

where α = πU2/ρV s2 is having the dimension of energy. Here U is the electron
phonon interaction constant, ρ is the density of the metal and V is the lattice
volume.
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Equation (3) will reduce to

Ṅp =
( αmω

4π2~2
)

{

eβ~ω − eβe~ω

eβ~ω − 1

}
∫ ∞

fmin

eβe(εk′−ε0)

(eβe(εk′−εk) + 1)2
dk′. (4)

Expanding the integral near the Fermi surface, the integral in eq. (4) will be

∫ ku=kf+∆k/s

kl=kf−∆k/2

(

1 + (k′ − kf )
βe~2kf
m

)/(

2 + (k′ − kf )
βe~2kf
m

)2

dk′.

Ṅp =
αm2ω2[ln 5/3− 4/15]

4π2~3k0

{

eβ~ω − eβe~ω

(eβ~ω − 1)(eβe~ω − 1)

}

. (5)

The energy transferred by the electrons to the surface modes per unit volume per
unit time is

Usurface =

∫

Ṅp~ω
(area of unit cell)

4π2
2πfdf.

On comparing with the bulk case [2], we get

Usurface
Ubulk

=
π1/3(ln 5/3− 4/15)

2.31/3an1/3
= 0.08.

For T À T0 and Te − T ¿ T , the energy transfer rate will reduce to [2],

Usurface =

[

π7/3ms2n2/3(ln 5/3− ln 4/15)

34/3aτ(T )T

]

{Te − T}. (6)

Here n is the electron number density, a is the lattice constant and τ(T ) is the
electron flight time at temperature T , which is inversely proportional to T . Thus
the electron phonon coupling constant (the expression in square brackets) is tem-
perature independent.

Case 2. Diffuse scattering (when the incident and scattered electron waves are not
in the same plane of incidence). The scattered phonon can go in any direction in
x–y plane (figure 1).
In line with Case 1, conservation of energy and momentum equations are

εk′ − εk = ~ω,

~2

2m
[k′2x − (k′x − fx)

2 + k′2y − (k′y − fy)
2] = ~sf.

Scattered phonon can go in any direction in x–y plane.
The rate of phonon generation is

Ṅp =

∫ ∫ ∫

fmin

αω[(Np + 1)Nk′(1−Nk)

−NpNk(1−Nk′)]k′2 sin θ dθ dk′ dφ
4mV ′

(2π)3~2f
×δ(2k′ sin θ cos(φ− φ′)− f).

Pramana – J. Phys., Vol. 63, No. 5, November 2004 1085



Navinder Singh

Figure 1. Scattering of an electron from x–y plane. The emitted phonon is
confined in the plane of incidence.

Ṅp =
αm2ωsV ′

(2π)2~3

{

eβ~ω − eβe~ω

(eβ~ω − 1)(eβe~ω − 1)

}

.

When T , Te ¿ T0,

U ′surface =

(

πU2m2

(2π)3~2ρas3

)(

KT0
~

)4 [
T 4e − T 4

T 40

]
∫ ∞

0

x3

ex − 1
dx.

For T À T0 and Te − T ¿ T , the energy transfer rate will reduce to

U ′surface =

(

πm2U2(KT0)
4

3(2π)3~6ρas3

)(

Te − T

T0

)

. (7)

Now, [2]

Ubulk =

(

m2U2(KT0)
5

2~7ρs4(2π)3

)(

Te − T

T0

)

.

U ′surface
Ubulk

= η

[

s5n4/3

aω50

]

∼= 0.14.

Here ω0 is the Debye frequency. η = 27π3/3. The calculation is done for gold.

3. Conclusion

The expressions for electron energy loss rate to surface phonons (Usurface) are ob-
tained in case of a nano-metric metal film. We found that in low temperature
regime (T, Te ¿ T0), Usurface is proportional to the fourth power of the electron
temperature, whereas, in the bulk case [2], it is proportional to the fifth power of
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electron temperature. The ratio of energy transferred by hot electrons to surface
phonons, with that of bulk case is calculated for high temperature regime (T À T0
and Te − T ¿ T ). We show that, in Case 1 where the emitted phonon is confined
in the plane of incidence (less freedom), this ratio bUsurface/Ubulkc of energy trans-
ferred by hot electrons is about 8%. The same ratio is about 14% in Case 2 (more
freedom for phonon direction), i.e., the diffuse scattering case.
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