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_ INTRODUCTION 

In this general lecture I shall begin with simple observa­
tions and concepts and move towards the latest developments 
within the field. 

During calm sununer days in August one often sees small 
flocks of black-headed gulls gliding and circling in narrow spirals 
near to my cottage in Tibirke in Denmark. Suddenly, a bird will 
'stop', flap briefly and catch one of the hovering beetles which, 
together with floating seeds of willow herb, have been carried up 
by a feeble and invisible dust devil. This little scene embodies 
the large range of performances exhibited by flying organisms, 
from passive floating and gliding to active flapping flight where 
the energy to remain airborne is provided by the rapidly con­
tracting wing muscles. Our main problem is whether the basic 
aerodyna:r:nic mechanisms are the same in all kinds of flight or 
whether different principles are involved and to which extent. 
Obviously, floating seeds and aerial plankton of wingless arthro­
pods must use the aerodynamic drag and this may apply to very 
small winged insects, Pterygota, in between burst of activity (cf. 
R. A. Norberg, ( 197 2a) ). On the other hand, gliding and soaring 
in bats, birds and insects of course depend on the usual aerofoil 
action of their wings, i.e. on the steady-state aerodynamic lift 
which acts perpendicular to the direction of movement through the 
air, while the drag acts in the direcHon of the movement. How­
ever, when the wings flap under the influence of muscular contrac­
tions, unsteady flow patterns must occur and we shall see that 
unsteady flow may become dominant features in some animals. 
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However, we are only beginning to understand the nature of how 
animals make use of unsteady flow (Weis-Fogh, (1973); Lighthill, 
(1973)). 

The lift principle as applied to steady flow is most likely 
to dominate the performance when the animal is relatively large 
and flies at a high forward speed, i.e. during fast forward flight,· 
as discussed by Lighthill in this Symposium, . This is the situation 
for instance in most birds and in large insects like locusts and 
migrating hawk moths. However, the majority of insects are 
small and make use of hovering and slow flight. Under these 
conditions the wings sweep through a large angle and their outer 
parts obtain air speeds far in excess of that of the body. When an 
animal is gliding, its wing tips of course travel at the same speed 
as that of the base and of the body, but during normal forward 
flight of many birds the air speed at the tip is 1. 3-1. 4 times 
larger than at the base (pigeon, pheasant, rook, partridge, gull); 
it is two times larger in the desert locust Schis.tocerca gregaria 
(2g), three times in the horse fly Tabanus affinis (0. 2g), and five 
times larger in the mosquito Aedes nearcticus (0. 004g) (Weis-Fogh 
and Jensen (1956)). During true hovering on the spot, the body 
does not move forward at all and is exposed only to the vertical 
wind induced by the moving wings. As we shall see, hovering is 
also the type of flight during which the wings must be twisted at 
the highest angular velocities when they are pronated and supi­
nated. The small forward speed and the high rate of wing twisting 
both tend to increase the relative importance of unsteady flow 
patterns. It is therefore of P<:1rticular interest to analyze hovering .. 
from the point of view of aerodynamics and energetics. In addition,. 
hovering and slow flight characterise the vast majority of flying 
animals, the Pterygota. Since late Devonian~· about 350 million 
years ago, this group has been so successful in exploring the new 
environment created by the emergence of tall terrestrial plants 
that they represent three quarters, or 750, 000, of all know 
animal species, fossil and living. This figures illustrates the 
extraordinary evolutionary success of active flapping flight which 
has been adopted as the principal mode of locomotion by birds of 
mass up .to 10 kg, bats and by insects as small as 1 µg. 

An attempt will be made to synthestz.~. our present know­
ledge and to indicate future developments. The timing is • 
fortunate partly because some important aspects of the energetics 
of fast forward flight have been analyzed recently (Pennycuick,. 
(1968), (1969), 1972); Tucker (1973)) and partly because new 
studies of hovering flight have offered more insight and revealed 
novel aerodynamic mechanisms of general interest (Weis-Fogh, 
(1972'), (1973); Lighthill, (1973)). In order to avoid technical 
language and mathematical expressions as far as possible, only 
the most essential physical relationships are described and 
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readers with special interest must consult the original literature 
and the succeeding ~ontributions to this Symposium. 

Power Supply 

Lighthill {1974) emphasized that effective flapping flight 
has developed independently at four different times in the course 
of evolution, first in insects, later in reptiles and then in birds 
and bats. Whether the animal is large ( 10 kg) or tiny ( 1 µg), the 
mechanical power is derived from the same type of tissue, striat­
ed muscle. I have recently discussed the available information 
about the mechanical power output from birds, bats and insects 
and found that the power is independent of size and usually ranges 
between 50 and 200 W'"kg- 1 muscle depending on the type of flight. 
These are very large figures for living sys.terns and correspond 
to a chemical power output (metabolic rate) of at least 250 to 1000 
W kg- 1 (Weis-Fogh (1975)). Active sustained flight therefore al­
ways depend on aerobic metabolism while the design of the animals 
and the differences in their metabolic pathways are immaterial in 
this context. Essentially, all flying creatures are powered by an 
aerobic engine which can deliver up to 200 W per kg muscle irre­
spective of the size of the animal. The engine usually represents 
O. 2 of the airborne mass but this ratio varies from 0. 1 to 0. 3, 'so 
that the mechanical power available to the :flying animal varies 
from 5 to 60 W per kg airborne mass or 0. 5 to 6 W per Newton 
lifted (W /N). The design and mechanisms must comply with these 
limitations and no obvious exceptions are known at present. 

Drag or Lift? 

Any actively flying animal must accelerate air downwards 
. in order to counteract its own weight. . This could be done either 
•• 

1 by using the drag of the wings, as the oars are used when rowing, 
" or by means of the lift mechanism which is much less expensive 

• in energy, at least in 3:arge and medium-sized animals. When we 
compare birds, bats and insects of different size, from a wing 
span of over 2 m to 1 mm, the flight contours are surprisingly 
similar. This means that small forms have smaller wing loadings 
than !arge forms; some examples are given in Table I. A natural 
consequence would be that below a certain size the wings may be 
used not as aerofoils but as I oars' which only depend on drag. At 
this point another effect of size must be considered, Reynolds 
number (Re). 

When a volume of.air is accelerated its mass gives rise to 
inertial forces but at the same time there will be internal shearing 
forces caused by its viscosity. Reyn9lds number is the ratio 
between the inertial and the viscous forces in a particular flow 
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TABLE I 

Wing loadings in flying animals (from Weis-Fogh, (1973)), 
expressed as the total weight of the animal divided by the sustain­
ing wing area (N /m2). One asterisk (=-:<) indicates that most of the 
species hover in the normal way while two asterisks (:>!el<) imply 
that slow forward flight and hovering involve unusual aerodynamic 
mechanisms. 

* Small bats: 

Birds: 

medium sized and large 
small passarines 

* hummingbirds 
""swifts, swallows, bee-eaters 

Insects: 

>'.<large Coleoptera, Lamellicornia 
:>!'large Hymenoptera, Vespoidea & Apoidea 
*large Diptera, Brachycera & Cyclorrhapha 
*large Lepidoptera, Sphingidae 
*medium sized Lepidoptera, Noctuidea 
*many small Coleoptera 

:>!o>,'true hover flies, Syrphinae 
** Odonata, dragonflies· 
:.:,,.., Drosophila virilis (wing length 3 mm) 
:.:0:, Encarsia formosa (wing length O. 6 mm..) 
:.:,* Lepidoptera Rhopalocera, butterflies 

2 . 
range (N/m ) 

10-20 

30-170 
20-50 
20-30 
13-25 

12-40 
8-44 
5-20 
4-12 
3-6 
1-6 
3-11 
1-6 
3-4 
1-2 

0. 4-2/ 

situation. It is proportional both to the size of the wing, as 
measured by a characteristic wing width or chord, and to its 
velocity r_elative to the undisturbed air. It therefore decreases 
with decreasing size and some examples are given in Table II. 
This means that the viscous forces and the. drag increase rela­
tive to the inertial forces and the lift when the-·animal becomes 
small; The lift is usually the dominant force for (Re) exceeding 
100 but in many tiny insects (Re) ranges between I and 10 
(Horridge, (1956); R. A. Norberg, (1972a)), so that the drag will 
dominate and the usual steady-state lift becomes insignificant 
(Thom and Swart, ( 1940) ). This and the dee reased wing loading 
both indicate that small or lightly loaded insects may use a drag 
mechanism for flight rather than the lift principle. However, 
there are some arguments against this. • 



TABLE II 

Examples of the calculated average coefficient of lift CL during normal hovering 
from (Weis-Fogh, (1973)). The values in brackets refer to species or groups which tu~ned 
up to make use of unusual mechanism and cannot be treated according to the simple steady­
state theory. An asterisk (:i:') means that the insects do not perform normal hovering. 

airborne Reynolds 
CL wei~ht number 

( 1 O- N) (Rd) 

Bats: Plecotus auritus 90 ;14000 1. 3 
! 

Hummingbird: Amazilia fimbriata 50 j 7500 2. 0 

Coleptera: Melolontha vulgaris 5. 9 4700 o. 6 
Amphimallon solstitialis 2. 8 3000 o. 7 
Helicicopris sp. 125 23000 o. 5 

Lepidoptera: Pieris napi 0. 4 1400 (2. 2) 
Sphinx ligustri 15. 7 6300 I. 2 
Manduca sexta 20. 8 6700 I. 2 
Macroglossum stellatarum 2. 8 2800 I. 1 

Hymenoptera: Vespa crabro 5. 9 4200 o. 8 
Bombus terre stris 8. 6 4500 1.2 
Api s mellifica 0. 98 5 

1900 o. 8 
Encarsia formosa 25x 10- 15 ( 5. 0 )t 

Diptera: Tipula sp. 0. 28 770 o. 8 
Aedes aegypti 0. 01 170 o. 6 
Eristalis tenax I. 5 2000 o. 9 
Drosophilia virilis o. 02 210 I. 0 

):< Syrphus spp. 0. 2-0. 3 500 ( 2 to 3) 

Odonata: :i:<Aeshna grandis 8. 4 1750 ( 2 to 3) 

t Revised estimates, for more accurate figures see Ellington ( 1974). 
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First, we have never yet observed a flapping animal which 
uses drag rather than· lift, neither the lightly loaded plume moths • 
(Microlepidoptera; R. A. Norberg, (l 972b)) nor the small chalcid 
wasp Encarsia formosa (wing length 0. 6 mm; see later; Weis-Fogh, 
(1973)) but many more cases need to be examined. Second, the 
drag principle is difficult to apply when the wings remain totally 
immersed in the fluid, as in the case with wings in air but not with 
rowing oars where the effective stroke is in water and the return 
stroke in air. (When a man is sculling a dinghy from the stern by 
means of a continuously submerged oar he is in fact using the lift 
principle.) In order to produce a net force the drag must of course 
be large during the effective stroke and reduced during the return 
stroke. This is feasible provided that there is a difference in 
speed between the two half strokes or if the extended wings could 
be folded or bent extensively during one half of the stroke. The 
latter mechanism is probably of limited use at low Reynolds num­
ber because the drag of a stiff extended wing of an insect tends to 
become independent of its actual shape and of the angle of attack 
of the wing and is determined mainly by its length. In general, we 
approach conditions in fluid dynamics where the flow tends to be­
come reversible and many interesting problems will undoubtedly 
be found within the range (Re) 1 to _100 where good experimental 
facts are hard to come by. It represents a ,'twilight' zone. 

The extremely small Ptiliidae (Coleoptera), Trichogramma­
tidae and Myrmaridae (Hymenoptera) have wings which are only 
0. 07 to 0. 2 mm long and consist of a 'stem' surrounded by a flat 
marginal brim of hairs (Horridge, (1956)). As pointed out by 
R. A. Norberg (1972a), they must operate at a (Re) of about 1 and 
this virtually excludes ·any lift action, probably even the newly 
discovered fling mechanism to be described later. Another possi­
bility not hitherto suggested ,in the literatur~ is an acceleration of 
the air caused by a twisting movement of the wing which is propa­
gated from base to tip as a consequence of I delayed elasticity' 
(Weis-Fogh, (1973), see later). If this turns out to be the case, 
these tiny insects 'swim' actively by means of a screw-like action 
reminiscent of that of an undulating membrane. However, we do 
not have al'.ly direct evidence for this as yet and Kuethe ( 197 4) is 
suggesti~g another solution, also without experimental data. 

Nature of the Aerodynamic Lift 

If a solid cylinder is placed horizontally in still air and 
spins round its axis in the direction indicated in Figure IA, the 
surrounding air is set ih uniform motion due to viscous effects. 
At the surface itself the air rotates with the same speed and direc- • 
tion as the solid sqrface and the speed decreases linearly with the 
distance from the cylinder. The result is a steady cylindrical 
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vortex of air 1bound 1 to the cylinder but this does not in itself 
imply any other forces than a small drag against its rotation. If, 
however, a horizontal wind blows fron). left to right, the resulting 
air velocities on the upper side will become increased and become 
decreased on the lower side. This causes the pressure to decrease 
above the cylinder and to increase beneath it due to the usual 
Berµoulli effect. The cylinder will now experience an aerodynamic 
force in the transverse vertical direction which we call the lift. 
The phenomenon observed with the spinning cylinder is known as 
the Magnus effect. Figure lA shows the resulting streamlines 
when the horizontal wind is superimposed upon the vortex. Note 
that the air behind the cylinder has been accelerated downwards. 

Lift and circulation. The magnitude of the lift L is deter­
mined only by the translational wind velocity Vt and a p1:operty of 
the vortex called its circulation r. The circulation is .-the same 
at all distances from the cylinder surface and can easily be -calcu­
lated as the product of the surface speed w r and the circumference 
21rr, r = 21rwrZ(cmZ/ s), where w is the angular velocity of rotation 
and r is the radius of the cylinder. 

In other cases it may be difficult to estimate r but whether 
we are dealing with a cylinder or any other long body like a wing, . 
the fundamental relationship holds: 

L/unit length = pvtr, (1) 

where L is lift, p the mass density of the air and vt the trans -
lational wind velocity. This applies to an infinitely long wing and 
has to be modified due to the formation of tip vortices in a real 
wing because air will move from the high-pressure region below 
into the low-pressure region above the wing at the tip region. This 
gives rise to a loss in usable flow and energy which manifests it­
self in less lift, higher drag and the so-called induced power loss 
(see later);· Because the loss is related to the pressure differen­
tial, i.e. to the actual lift produced, it can sometimes be calcu­
lated with fair precision, as first done by Prandtl for a wing with 
elliptical pres sure distribution along its span. Provided a circu­
lation .is established in some way or other, the wing will experience 
a lift when exposed to a wind, in accordance with equation (1). But 
how is the circulation set up in the first place? The answer is 
essential for an understanding of several aspects of animal flight: 

Bound and starting vortex. We return to the infinitely long 
aerofoil seen in transverse section in Figure 1, i.e. to the simpli­
fied case of two-dimensional flow. Let us first assume that the 
aerofoil is immersed in a fluid which has mass but no viscosity, 
i. e. in an ideal fluid. It is then possible to calculate the flow 
pattern but since a wing cannot generate (or destroy) vorticity and 
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circulation in an inviscid fluid, the calculated ideal flow in Figure 
lB (irrotational or potential flow) results in zero lift and drag. 
This was one of the dilemmas in classic al fluid dynamics. It is 
seen both that the fluid is not directed downwards behind the wing 
and also that there are some discontinuities near to the trailing 
edge, leading to large shearing forces in a real fluid like air or 
water. If, however, the pure ·rotational flow in Figure lC is 
superimposed on the irrotational flow in Figure IB, the result is 
the orderly I streamlined' flow in Figure ID which corresponds to 
the observed flow round an aerofoil after it has been in uniform 
motion relative to the fluid for some time, i.e. after it has reached 
a steady state. The streamlines are now directed downwards be­
hind the profile and lift is produced. 

The problem of creating the bound vortex with the circula- • 
tion round the aerofoil was solved by Pra.ndtl in 1912, the main 
point being that in a real fluid of even very small viscosity like 
air, the flow in the boundary layer near the solid surface must be 
influenced by viscous forces, particularly near to the trailing edge 
in Figure IB. When an aerofoil starts from rest or when its angle 
of attack is so small that no lift is produced and the angle is then 
suddenly increased, these viscous forces will induce a vortex be­
hind the profile, the starting vortex, which has the opposite serue 
of that seen in Figure IC. Now, it is a fundamental rule in fluid 
dynamics that no vortex can be created unless a vortex of the 
opposite sense and strength is set up simultaneously. In our case 
this is the bound vortex in Figure IC which causes the lift. 

At the start of movement or when the lift changes we now 
have to consider two opposite vortices close to each other, the 
starting and the bound vortex, and they interact destructively in 
proportion to their distance apart. At the sta·rt of the streaming 
the net circulation round the aerofoil will therefore only be about 
half as large as later on when the starting vortex has been left well 
behind. This interaction and delay in building up of lift is called 
the Wagner effect and represents an unavoidable unsteady phase in 
the action of an ordinary aerofoil. Conversely, when a flapping 
wing stops. and the lift is reduced at the end of one half- stroke, the 
bound vortex must be shed and become a 'free' vortex which will 
interact with the new starting and bound vortice.s which initiate the 
return stroke (Weis -Fogh, ( 1972)). Some of these phenomena will 
be discussed by Ellington ( 1974) in relation to a small insect. 

Ordinary aerofoil action. An ordinary wing or aerofoil is 
then a solid body which is shaped and placed relative to the stream­
ing air in such a manner that viscous forces create a starting vortex 
near to its trailing edge and therefore a bound vortex'of the opposite 
sense round its profile. The starting vortex is left behind and the 
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Figure I. Two-dimensional flow and circulation. (A) a spinning cylinder placed in horizon­
tally streaming air or water, the Magnus effect. (B) the flow round an aerofoil in an ideal 
£1-1.,.id (irrotational or potential flow). (C) pure rotational flow, and (D) the real steady-state 
flow in a real fluid where (B) and (C) are combined. 
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steady-state bound vortex is maintained by the continuous shedding 
of small vortices; this gives rise to a small drag component. In 
addition, friction in the boundary layer close to the surface repre­
sents a skin drag; together the two are called the profile drag. 
Furthermore, a wing of limited span also experiences an induced 
drag caused by the tip vortices, as already explained. 

After the flow has become steady it is customary to express 
the lift in terms of the coefficient of lift CL rather than in terms 
of circulation. The two are related as follows, 

(2) 

where c is the width or chord of the wing sectlon in question. 
Because of the increased importance of viscous over inertial 
forces at low Reynolds numbers it is understood intuitively that 
both the creation of a starting vortex and the maintenance of a 

• 9ound vortex become expensive in energy and difficult to achieve. 
The result is that the lift decreases relative to the drag. The 
maximum CL for a Drosophila wing at (Re) = 200 is about 0. 9 
(Vogel, ( 1967) ), for the £crewing of a locust at 2000 it is 1. 3 
(Jensen, (1956), while it may reach 2. 0 or even more in bird 
wings operating at 5000 or above. We may therefore use the cal­
culated value of CL as an indicator of whether ordinary steady 
flow is sufficient to explain a given flight performance or not 
(Osborne, ( 1951 ); Weis-Fogh and Jensen, ( 1956); Bennett, (1970); 
Weis-Fogh, (1972)), but more detailed investigations are needed 
in order to estimate the true role of steady versus unsteady flow. 
This is particularly relevant to flapping flight where the lift changes 
rhythmically throughout the wingstroke.. The extreme is reached 
when the animal hovers because the-lift then drops to zero at each 
end of the wing path. In the case of ordinary _aerofoil action, a 
hovering animal must experience the Wagner effect during an 
appreciable part of the wingstroke~ This need not be as serious a· 
problem as one may think at a first glance because stalling is also 
delayed and CL can be increased above the usual stalling limit 
for brief periods of time so that the two effects tend to cancel each 
other, but extra power is of course needed (Hertel, (1966); 
Weis-Fogh,-- (1972)). 

We shall now discuss active flapping-flrght in the light of 
these elementary considerations, starting with the simplest and 
best known cases. 

Fast Forward Flight 

Although the majority of insects and some small birds and 
bats use hovering and slow flight when feeding and courting, all 
birds and bats and some insects make extensive use of fast forward 
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flight. The air speed V of the body then corresponds to 50-300 
body lengths per_ second. This is a complicated mode of forward 
transport because the wind forces acting on the individual wing 
segments vary from base to tip as the square of the vector sum 
of the horizontal velocity V and the flapping velocity relative to 
the body. 'It is therefore not surprising that there is no exact 
theory for this type of flight but only approximations relating to 
certain aspects, including the generalized equations of Osborne 
(1951} and the approximate expressions for the aerodynamic power 
components in birds derived by Pennycuick (1968), (1969} and 
recently revised by Tucker ( 1973 }. All theories applied s_o far 
re st on the assumption that the principles of steady flow dominate 
the pattern and this _is indeed likely to be the case during forward 
flight, as discussed -elsewhere (Weis -Fogh and Jensen ( 19 56}; 
Lighthill ( 197 4)). However, we have only one complete experimen­
tal study of fast forward flight, namely Martin Jensen' s--analysis 
(1956} of the desert locust which offers direct and details insight 
into the aerodynamic pro.cesses. This and the recent studies of 
bird flight make it possible to extend his results and compare them 
with the power requirements of other animals in relation to the 
speed and cost of transport. The latter is particularly_ relevant to 
an understanding of migrating insec;:ts. 

Horizontal flight of the desert locust. An average 
Schistocerca gregaria has a mass of Zg and the ratio between 
flapping and forward speed is about I, i.e. appreciably larger 
than in most birds. In a detailed wind-tunnel study.we first estab­
lished the normal range of variation of the flight parameters 
(Weis-Fogh (1956)} and then Martin Jensen (1956) analyzed the 
kinematics, aerodynamics and energetics of a few selected exam­
ples on the basis of our stroboscopic slow motion films. Figure 2 
shows the wing movements during the downstroke (A) and upstroke 
(B) when the insect flew horizontally (vertical force equals weight} 
at a forward speed of 3. 5 m/ s. During the downstroke the leading -
edge of both wings is twisted downwards, i.e. pronated and, in 
addition, a flap at the trailing edge of the forewing is tilted down­
wards when it passes the horizontal position. During the upstroke, 
th~ leading edge is supinated (cf. frames iz and 13) and the flap is 
bent upwards (frame 1.4), creating the so-called Z-profile. The 
exact movements of the wings relative to the air were computed 
and Figure 3 is an approximate visual image of the forewing. In 
both cases and in both wings, the individual wing profiles meet the 
air under small positive angles of attack during the downstroke and 
almost edgewise during the shorter upstroke. This is consistent 
with an ordinary and orderly aerofoil action whereby an aerody­
namic lift is produced perpendicular to the tangent of the path 
through the air. The resulting force points upwards and provides 
thrust and a large vertical force during the downstroke and a small 
vertical force and some negative thrust during the upstroke. 
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Figure 2. The wing movements of a desert locust (Schistocerca 
gregaria) flying horizontally at a speed of 3. 5 m/ s (from 
Weis-Fogh, (1973)). (A) downstroke and (B) upstroke. 

Indeed, this was the mechanism proposed by Otto Lilienthal ( 1889) 
and illustrated in Figure 4, redrawn from his famous monograph 
on flying storks which heralded the era of modern aeronautics 
(and his own. death in a crash). · • 

Martin Jensen then measured the lift and drag of the actual 
locust wings in a special wind tunnel in which he established a 
smooth velocity gradient from base to tip almost similar to that 
observed during real flight but, of course, under steady condi­
tions of flow. On the assumptions that steady principles apply he 
could compute the fluctuating vertical and horizontal forces which 
the wings impart upon the body and compare. th~m with the average 
forces measured in the aerodynamic balance when we exposed the 
film. Within a few per cent the two sets of results agree and it is 
therefore justified to conclude that fast forward flight of locusts 
depends on a succession of steady flow situations. He also took 
into account the mutual effect of the d·rculation round the two 
pairs of wings; it is small but significant. Another point was the 
effect of the new starting vortex which must be .created between 
fra.mes 18 and 1 in Figure 2. Under the worst conceivable 
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Figure 3. The movements of the wing chord near to the tip (A) 
and at the middle of a locust £crewing {B) in relation to the air. 
The two-dimensional diagram is in fact the unfolded surface of 
the elliptical cylinder upon which the mid-points of the two chords 
travel, disregarding small forwards and backwards movements. 
(Redrawn from Jensen, (1956)). 

conditions the effect would amount to less than lOo/o of the total, 
probably to 5% reduction in lift, and this also applies to fast·· 
flying hover flies and mosquitoes. 

We are therefore able to proceed with the anlysis of power 
requirements both in this and in other insects provided that the 
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Figure 4. The main force component during-fast forward flight 
in the stork (from Lilienthal, ( 1889)), and the desert locust (from 
Weis-Fogh, (1961)). The downstroke is shown to the left-hand 
side and the upstroke to the right. 

wings are in _fact moved in such an orderly fashion. During the 
major part of the wingstroke, Nachtigall (1966) found a similar 

• type of movement in the blow fly Phormia regina but with an 
apparently disturbing difference at the top and at the bottom of the 
stroke. Here the rate of change in wing twist is large and the 
angles of attack are very high (Figure 5). This may indicate im­
portant unsteady periods to be discu€ised later. 
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Figure 5. A diagram similar to that of Figure 3 but for the large 
Dipte ran fly Phormia regina, flying at 2. 8 m/ s in a wind tunnel. 
(Redrawn from Nachtigall, (1966)). , 

Aerodynamic power and speed in locusts. In the example 
just mentioned (Jensen, (1956)) the power expended against wind 
forces (energy per unit time) as determined directly from the 
movements amounted to 0. 86 WIN at the speed of 3. 5 m/ s; this 
is the aerodynamic power per unit vertical force produced, or the 
s ecific aerod namic ower P:<. In another locust flying at 3. 2 
m s and lifting 162% of its bod~ weight, the specific power was 
O. 82 WIN, the average being 0. 84 W /N at these speeds. 

It is of more than trivial interest to compare these results 
with the power calculated according to the procedure of Pennycuick 
(1969) and Tucker (1973), partly because it enables us to make 
predictions about migrating locusts and partly because the strength 
and shortcomings of the theory bec'om·e obvious. In insects, we 
need not incorporate the increased work done by the circulatory 
and respiratory systems during flight (Tucker, ( 197 3 )) because 
these components are negligible (Weis-Fogh, ( 1967)) compared 
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with the work done against the air and against inertial forces due 
to the oscillating wing mass. As to the inertial power needed to 
oscillate the wings without doing any aerodynamic work, it is 
probably true that fast flying birds. make use of the kinetic energy 
of the wings for aerodynamic work, as assumed implicitly in the 
theory (Pennycuick, (1969); Tucker, (1973)) although this appar­
ently does not apply to hovering hummingbirds (Weis-Fogh, ( 1972)). 
In insects, the fast flying locust also uses the kinetic energy to 
some extent (Jensen, ( 1956)) but the major part is stored in an 
elastic system in its thorax and paid back with high efficiency 
later during the wingstroke (Weis-Fogh, (1961), (1972), (1973)). 
We may therefore confine ourselves to the specific aerodynamic 
power p~< which in insects can be compared direct"ly with the 
metabolit rate during flight. The ratio between the two is a meas­
ure of the mechanical efficiency of the flight system. 

Since power equals drag times velocity, the method of 
Pennycuick ( 1968, 1969) is to split up the components into three 
independent parts which are then summed. Let the air speed of 
the animal be V . The drag D of the body plus the appendages 
is the parasite drag and is proportional to v2, similar to the lift 
in equation (2). This means that the parasite power is nv3. 
This is the uniformly increasing curve in Figure 6. As already 
mentioned, the flapping wings exert a drag whether they produce 
any lift or not. It is not a simple function of V and depends on 
the wingstroke frequency and the stroke angle. However, detailed 
computations on the actual wing movements of a pigeon flying 
horizontally at different speeds showed that the profile power was 
almost constant and independent of the speed (Pennycuick, (1968)) 
and this we shall assume to be the case also in locusts, as seen 
by the horizontal straight line in Figure 6. In the present treat­
ment, there is no need to introduce the modifications caused by 
Reynolds number (Tucker, ( 1973)) because we are dealing with a 
first-order approximation and the drag components were meas­
ured at an intermediate value of Reynolds numbe'r. 

The third major power component is caused by the tip 
vortices.which are shed continuously and give rise to the induced 
drag already mentioned. During moderate to high forward speeds 
the induced power caused by this componen-t. _has the form 

induced power= 2G
2

/(1rpb
2

R 1 V), (3) 

where G is the weight of the horizontally flying animal and equals 
the average vertical force, b is the wing span, and R 1 is a 
correction factor for the wing dis-c area, 1rb2 / 4, through which 
air is accelerated downwards. Note that the power decreases when 
the speed increases. The expression applies not to a flapping 
animal but to a convertional fixed-winged monoplane with elliptical 
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Figure 6. The relationship between specific aerodynamic power 
(W /N, ordinate) and horizontal flying speed (m/ s, Abscissa) in a 
desert locust. The three curves for parasite power, profile 
power and induced power are estimated either from measured 
parasite and profile drag (Jensen, ( 19 56)) or calculated according 
to Pennycuick (1969) hut with correction factors based upon true 
flapping flight, as explained in the text. The tangent from the 
origin to the upper thick curve indicates the speed for minimum 
cost of transport. The two filled circles are values found inde­
pendently by expe:dment (Jensen, ( 1956)). 

pressure distribution, or to a helicopter; in practice the correc­
tion factor for well-designed aircrafts varies from 0. 90 to 0. 95. 
Tucker (1973) reduced it to 0. 7 in birds because of the w\dth of 
the body relative to the total span. However, the authors on bird 
flight did not take into account (a) that the actual speed of the 
flapping wings is larger than V and tends to reduce the power, 

7 

(b) that lift is produced mainly during.the downstroke in real birds 
and insects so that the effective G2 is higher and tends to increase 
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R', (c) that the downstroke usually lasts longer than the upstroke 
and, most important,· (d) that the aerodynamic lift is not vertical 
except when the wings happen to pass the horizontal position; the 
vortex sheet created by the tip vortices is therefore not horizontal. 
The last point is particularly important when the stroke angles a.re 
as large as in locusts and other insects. Without giving the de­
tails here, I have calculated .the correction factor for a desert 
locust on the basis of all the known details of the wingstroke as 
analyzed in the wind tunnel, (Jensen, (1956); Weis-Fogh, (1956)). 
The result was R 1 = 0. 47, or 0. 5, and this is the value used for 
the steadily decreasing curve in Figure 6. It should be noted that 
a real locust cannot lift its body weight at speeds lower than 2. 5 
m/ s indicated by a vertical line (Weis -Fogh, ( 19 56)) because its 
wings then begin to stall (Weis-Fogh and Jensen, (1956)). Finally, 
the theoretical power needed for true hovering, if this were possi­
ble for the insect, would be too small if estimated according to 
Pennycuick ( 1969) who estimated it directly from the momentum 
theorem applied to an actuator disc of 100% efficiency,. and both 
the profile power and the induced power are .therefore not included. 
In the hummingbird this increases the figure by a factor of 2 and 
in Drosophila by 4 (Weis-Fogh, (1972). In Figure 6, I have there­
fore multiplied the calculated value by 2. 

The s·ummed thick curve in Figure 6 serves to bring the 
transport performance of fast-flying insects into a form compara­
ble to that of birds and aeroplanes. The two values found by 
Martin Jensen from the direct anlysis (1956; solid circles) are 
seen to be in remarkably goqd agreement with the indirect approach 
by Pennycuick provided that the correction factors are introduced 
as explained. This justifies the extrapolation to higher speeds. A 
number of interesting features then emerge. •• As pointed out by -
Pennycuick (1969), the U-shaped curve is a_consequence of the 
induced power being inversely proportional to the speed and the 
fact that the parasite power increases as v 3 so that it is negligi­
ble at small speeds. The minimum specific aerodynamic power 
for steady horizontal flight in locusts (0. 84 W /N) occurs exactly 
at the speed for steady long-range flights in the laboratory, about 
3. 5 m/s (Weis-Fogh, (1956)); this is also likely to be true of 
locusts flying freely in nature during long continuous migrations. 
In contrast, the speed for minimum cost of transport is higher 
and range from 4 .. 5 to 5. 5 m/ s, as seen from the tangent drawn 
from the origin of the graph. This might explain why direct 
measurements of migrating Schistocerca gregaria in nature have 
r .. es ulted in values ranging mainly between 4 and 6 m/ s (Waloff, 
(1972)) because most observations were obtained during inter­
mittent flight when the locusts were disturbed and probably tried 
to escape quickly. However, from an aerodynamic and energetic 
point of view there is no reason why locusts should not exceed 7 
m/ s for short periods since they can double the metabolic rate 
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relative to the rate needed for sustained flying at 3. 5 m/ s (Weis -
Fogh, (1964). At _the latter speed the metabolic rate is 7. 7 W /N 
so that the ave rall metabolic efficiency during long migrations is 
o. 84/7. 7 = 0. 1 I. • 

I£ suitable methods for correcting the 'disc area' are 
tntroduced, there is therefore good reason to believe that 
Pennycuick' s procedure can be applied to other migrating insects 
with advantage, for instance to the moths of army worms in East 
Africa, dragonflies, etc. It is also of interest to compare the 
minimum aerodynamic power p>',< in insects and birds. Accord­
ing to Tucker (1973) it varies fr~m I. 9 W/N in the budgerigar 
(mass 35 g) to I. 0 W /N in the laughing gull (322 g), 1. 4 W /N 
being the average val-ue··calculated from non-passarine birds 
ranging in mass from 3 to I 0000 g. This is the same order of 
magnitude as found in locusts. It reflects what appears to be a 
general rule, namely that the aerodynamic power expenditure of 
flying animals tends to be proportional to the body weight through­
out the Animal Kingdom. This also applies to hovering species 
(Table III)' and of course reflects the properties of the wing mus­
cles already discussed. 

Normal Hov~ring 

A different approach based upon an analytical model of the 
moving wings has recently been proposed by Weis-Fogh (1973) and 
has resulted in a reasonably complete theory for hovering flight. 
Essentially it consists of estimating the lift and drag forces at 
each instant, using steady-state lift/ drag diagrams of known wings, 
and integrating the results over a complete wing stroke. In this 
way the induced and the profile drag are incorporated simultane­
ously. One can then quickly calculate the average lift coefficient 

• CL needed to hover on the spot and compare it with the maximum 
values to be expected from the type of wings and the Reynolds 
number involved. At present, this can only be done in a few cases 
because we lack information about the lift/ drag relationship, 
particularly at low (Re). Only. reliable flight data from freely 
flying animals were applied but one had to assume.that the animal 
performed normal hovering with wings beating sinusoidally and in 

_ an almost horizontal plane. This is in fact true for the majority 
' of animals, and is illustrated in Figure 7. 

Coefficient of lift. With the exception of the true hover 
flies (Syrphinae) and the dragonflies (Aeshnidae) in Table II, all 
the animals listed perform normal hovering. The general result 
is that the average coefficient of lift is sufficiently small for the 

_ flight to be explained on the basis of steady-state aerodynamics. 
This is true also of the heavily loaded lamellicorn beetles hitherto 
considered exceptions (Osborne, (1951); Bennett, (1966), (1970)) 
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TABLE III 

The calculated aerodynamic power output per unit body 
•• weight lifted during normal hovering (the specific power P':', in 
• W /N), the dynamic efficiency 1'J, and the measured metab8l.ic 
' rate if known (lvf, in W /N). Same examples as in Table II with the 

exclusion of the unusual cases. (From Weis-Fogh, ( 1973) ). 

Hummingbird: 

Coleoptera: 

Lepidoptera: 

Amazilia fimbriata 

Melolontha vulgaris 

Amphimallon 
solstitialis 

Heliocopris sp. 

Sphinx ligustri . 

Manduca sexta 

Macroglossum 
stellatar·um 

Hymenoptera: • Vespa crabro 

Bombus terrestris 

Diptera: 

Apis mellifica 

Tipula sp. ,,, 

Aedes' aegypti 

Eristalis tenax 

Drosophila virilis 

,,, 

p"' 
a 

(W/NJ 

2. 6 

2. 7 

2. 3 

4. 7 

1. 8 

1. 4 

1.7 

2. 1 

3. 9 

2. 1 

2. 1 

3. 3 

2. 3 

2. 3 

TJ 

o. 51 

o. 41 

o. 47 

0. 49 

0. 47 

0. 33 

0. 31 

0. 51 

o. 30 

o. 39 

0.70 

0. 34 

0. 95 

M 

(W/N) 

24 

12 

35 

12 

14 

14 

and of bees and wasps. However, there are some notable excep­
tions for which the results are shown in bra.'ckets, namely butter­
flies (Rhopalocerca), the tiny chalcid wasp Encarsia fo:r;mosa, 
Syrphus and Aeshna species. We shall return to them later. 

From these results it would be wrong to conclude that 
steady flow principles are the only ones of importance during 
normal hovering but with some confidence we may assume that 
they represent the major mechanism in most animals, even quite 
small ones. ' 
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(a) (b) 

(c) (dJ 

(e) (f) 

Figure 7. Examples of normal hovering as indicated from flash 
photographs; (A) hummingbird, (B) sphingid moth Deilephila, 
(C) hawk moth Manduca, (D) bumble. bee Bombus, (E) Manduca 
during quick escape, and (F) cockchafer Melolontha. (From 
Weis -Fogh, ( 197 3)). 
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* . 
Aerodynamic power P . If we exclude the exceptional a 

cases in this context, the theory makes it possible realistically 
to calculate the cost of hovering, as seen in Table III. It ranges . 
from I. 4 to 4. 7 W /N with an average of 2. 5. Again, there is no 
obvious variation with size and the general conclusion must be 
that flying animals have adjusted their shape and performance to 
the mechanical power output available from the contracting wing 
muscles. This output depends mainly on muscle volume, i.e. on 
the cross-sectional area times the length of the muscles, because 
the contractile force F is determined by the area and the short­
ening velocity U by the length. The power, F x U, is then 
proportional to the weight of the wing muscles so that in similarly 
built animals the specific power is independent of size, as found 
empirically (although details may modify the relationship to some 
extent; Pennycuick, (1969); Weis-Fogh, (1961)). Some animals 
may in fact not need as much power because of small wing loadings, 
gliding or soaring; they may then reduce the relative amount of 
muscle or fly in a more 'expensive' way in accordance to whatever 
selective advantage they may gain. It is in this light we should 
view the variations in shape and performance of flying animals. 

Dynamic efficiency. A problem common to ali hovering 
animals is that a major loss in energy must occur if the kinetic 
energy of the oscillating wings cannot be converted into stored 
elastic energy (Weis-Fogh, (1972); (1973')). How much this loss 
could amount to is expressed by the ratio 11 in.Table III between 
the aerodynamic work and the aerodynamic + inertial work, as 
integrated over one complete wing stroke. The results show that 
a hovering hummingbird pays the penalty of lacking an elastic 
system and must combust fuel at a much higher rate than needed 
for flight alone whereas the potential loss in some insects like 
Drosophila is insignificant (Weis-Fogh, (1972)). Although ham­
pered by lack of material, I have tried to find an elastic system 
in recently dead hummingbirds but without luck. Vertebrate 
muscles are not elastic when inactive in contrast to insect wing 
muscles. One should be open to the possibility that somehow 
activated breast muscles of some small birds may have suitable 
elastic properties but it is not known. The majority of insects 
have low dynamic efficiencies and could not fly at the relatively, 
small metabolic rates shown in the Table III:unless they possess 
an elastic storage system which decreases the loss and increases 
the true efficiency. Such a system is known in locusts and some 
other insects. The morphology of the insect pterothorax must 
then be understood not only in terms of wing movements and mus­
cle contractions hut, equally important, in terms of the capacity 
to store elastic energy and release _it effectively at high rates. 
This represents a large but difficult field of investigation for 
functional morphologists. It has been suggested (Pennycuick, 
personal communication) that some birds may store useful energy 
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when the primaries are bent towards the end of each half stroke 
but a similar.mechanism has not been reported from insects and 
hummingbirds. 

Novel Aerodynamic Mechanisms • 
) 

The four exceptions in Table II are characterized by un­
usually large lift coefficients and fall into two distinct categories. 
The first consists of the butterfly Pieris and the small wasp 
Encarsia which appear to hover normally but at very high lift 
coefficients of 3 or more. They 'clap' their wings together and 
'fling' them open at the one extreme wing position (Encarsia) or 
at both ends of the stx.oke (Pieris) (Weis-Fogh, (1973), and un­
published). Such a clap may also be pre sent in a slowly flying 
Drosophila (Vogel, (1965)). The other category consists of the 
true hover flies, (Syrphinae) and the large dragonflies {Aeshnidae) 
which hover with horizontal body and_nonhorizontal, obliquely 
beating wings which never touch each other. In addition, the 
stroke angles in the latter groups are so small that the average 
steady-state lift coefficients range between 2 and 3 as an absolute 
minimum. As will be discussed by R. A. Norberg (1974) the lift 
eoefficient for a hovering Aeshnae species is in fact as high as 
between 4 and 6. All these forms must make use of unsteady 
principles. What are their nature? 

The best understood case is the Hymenopteran wasp 
Encarsia formosa Gahan (Figure 8) which is used for biological 
control of the greenhouse white-fly Trialeurodes vaporariorum 
Westwood which, incidentally, also uses the clap-fling mechanism 
(Weis -Fogh, unpublished). • -

'-, 

Flight of a tiny wasp and the fling mechanism. By means 
of high-speed cinematography of freely flying Encarsia the follow­
ing picture was obtained recently by Weis-Fogh (1973). Like 
many insects Encarsia can jump but the wing movements seen in 
Figure 9 relates to free unaided hovering with a slow climb. It 
is seen that the wings are moved essentially in a horizontal plane 
both during the morphological downstroke (frames Oto 7) and 
during the upstroke (frames 7 to 14). This strongly indicates 
that the flight depends on a true lift mechanism. It is also seen 
that the sequence of movements contains three phases which are 
unusual in the sense that nobody seems to have noticed them be­
fore nor their significance: (a) the clap preceeding the down­
stroke where the two pairs of wings are brought together as a 
single vertical plate (frames 14to 17); (b) a very rapidpronation 
where the wings are flung open in a manner reminiscent of the 
'flinging open' of a book and before the two pairs of wings start 
the horizontal downstroke; this I shall refer to simply as the 
fling (frame I at the beginning and frame O at the end); and (c) a 
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Figure 8. The small chalcid wasp Encarsia formosa (A} as 
compared with a larger related species Coccophagus spectabilis. 
(From Weis-Fogh, (1973)). 

very rapid supination before the upstroke which I shall call the 
flip (between frame 7 and 9). .According to the direct analysis of 
the films these phases are always present in-Encarsia during all 
kinds of flight. Moreover, the lift equalled the body weight long 
before the wings in Figure 9 reached maximum angular velocity, 
namely between frames 3 and 4, as if circulc!-tion had been built 
up prior to the wing sweep itself an,_d during the fling. This led to 
the idea illustrated in Figure lOA. Towards the end of the clap, 
the wings· are essentially at rest relative to the air. During the 
fling it remains at rest along the-'hinge' represented by the hind 
margins of the hindwings but a potential flow. i$ induced so as to 
fill the triangular void created between the two upper wing sur­
faces, giving rise to two bound vortices of equal strength and 
opposite sign. When the wings break apart along the 'hinge' and 
start the horizontal downstroke in Figure lOC, they already have 
circulation and can produce lift in accordance with equation ( 1) 
and independently of a starting vortex, the two vortices being both 
bound vortices so that there is no delay and no Wagner effect. 
Also, the creation of the two bound vortices of opposite sign and 
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'1gure 9. Tracings from a high-speed film of a freely hovering 
Cncarsia formosa, at 7150 frall?-es per· second. (From Weis-Fogh, 
1973)). 
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Clap Fling End of fling 

A 

\ 

B T 
a a Cl 

2 3 4 

C 

D r=O E 

Figure I 0. The fling mechanism for creating circulation prior 
to the separation of the wings after the I clap' (A). (B) details 
of the flow, (C) the bound and tip vortices after the wi:G.gs have 
separated. ( (D) and (E) indicate additional details: from 
Weis-Fogh, (1973)). 
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equal strength does not depend on viscous forces but can be under­
stood in terms of irrotational flow applicable also to an ideal 
inviscid fluid. Moreover, the energy needed to start the vortices 
is higher in the beginning (between Figure 1 OB, 1 and 2) than 
later (3}, and the major cost occurs before viscous forces create 
serious problems (Weis -Fogh, ( 197 3) ). 

These results are surprising at a first glance because 
they appear to violate established principles of flight but, in fact, 
they do not. They have been analyzed and amplified in an impor­
tant theoretical study by Lighthill ( 197 3) who was able to derive 
an expression for the circulation r round each wing as· calcu­
lated on the basis of_two-dimensional potential flow. Combined 
with the general exp~e-s-sion in equation ( 1) the unsteady lift 
caused by the fling takes the form 

. 2 
L/unit length = pv/l c g( a) (3) 

Wh.ere p is the rp.ass density of air (as before), Vt is the 
flapping velocity indicated by the arrow in Figure lOC, r, is the 
angular velocity with which the two sets of wings open during the 
fling (cf. Figure lOB, • I and 2), c is the wing chord, and g(a) is 
a function the numerical value of which depends on the angle a 
which is the angle through which each wing has rotated from the 
vertical (Figure lOB, 2) and until they split apart before the 
downstroke. The function g(a) can be computed exactly and is 
analogous to the coefficient of lift for the case of steady flow 
(Figure 11). It has the interesting property that its value changes 
only slowly from 0. 90 to 0. 64 when a. varies from 30° to 90°. 
For a small angle of 1 o0 the coefficient shoots up to 1. 7, in 
conformity with the previous remarks about the energy needed. 

. 2 
In the case of Encarsia, r = O. 69 Ge and this is equal to 

a circulation of 2. 7 cm2/sec. Using this value in equation (1), 
the flapping speed at which lift equals body weight is reached 
about frame 3 in Figure 9, i.e. when direct film observations 
showed that parity between lift and body weight was in fact 
achieved. Lighthill (197 3) also analyzed some aspects of the 
boundary layer {cf. Figure lOB, 4) and the three-dimensional 
flow; the reader should consult his paper on these important points 
and also Ellington I s ( 197 4) more detailed calculation of CL and 

• the time course. 

The novel principle which I call the fling mechanism is 
therefore that during the rapid opening phase after a clap useful 
circulation is created round each wing profile independently of 
the Prandtl mechanism and prior to the translation of the wing as 
a whole through the air. The clap-fling situation is particularly 
simple and amenable to theoretical (and experimental) analyses 
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Figure 11. The coefficient g(a.} in equation (3) for the unsteady 
fling mechanism. a is the half-angle between the two wing chords 
just before the wings from the two sides separate and begin to 
swing 'downwards' or 1upwards 1,(reproduced after Lighthill, (1973)), 

but it need only represent one extreme possibility out of many. As 
already mentioned, the clap appears to be present in Drosophila 
and I have recently observed it in Trialeurodes as well as during 
vigorous _hovering flight of the cabbage white Pieris brassicae, in 
the latter case both at the top and bottom of the horizontal stroke. 
It also appears present in a moth Euoxa ochrogaster, according to 
smoke trail observations by Chance ( 197 4). • • ···-

Flight of Syrphinae and Aeshnidae. The flip phase in 
Encarsia (Figure 9, frames 8-9) cannot be resolved for detailed 
analysis on the basis of existing material but the results indicate 
that the building up of cii-:culation at the extreme wing positions 
prior to the succeeding wing movement through the air is possible 
also without a clap followed by a f\ing. The hover flies and dragon­
flies also hover without any clap and so that the wings on the two 
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sides remain far apart and independent of each other (Weis -Fogh, 
(1973)), and still they attain lift coefficients which are far too high 
for steady aerodynamics. The suggested explanation is the flip 
mechanism illustrated in Figure 12. It rests partly. on Nachtigall Is 
(1966) measurements of the twisting speeds during pronation,and 
supination in Phormia, a fly of the same size and wingstroke fre­
quency as a large hover fly, partly on the observation that the 
wings of Syrphinae and Aeshnidae are stiff and reinforced at their 
anterior leading edge and very soft and pliable ~t the trailing edge, 
and finally, on rough calculations of the speeds with which a tor­
sional deformation during pronation and supination can travel from 
the base of the wing to the tip in the stiff anterior region as com­
pared with the soft posterior part. The main result is that the 
deformations cannot reach the trailing edge before they ·are com­
pleted at the anterior part (' delayed elasticity'). The trailing edge 

pl. 

A B 

t=O I= J0- 4 S t=2x 10-4 s 

Figure 12. (A) A hover fly Platychirus peltatus. (B) A wing 
of Syrphus balteatus with a stiff anterior part, a large pterostigma 
(pt.) and a soft almost rubber-like posterior membrane. (C) The 
suggested propagation of a twisting wave resulting in two opposite 
vortices, the trailing edge being a stagnation line. (From 
Weis-Fogh, (1973)). 
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may therefore represent a stagnation line relative to the air so 
that the pronation in Figure 11 (or a similar supination) should 
result in two opposite vortices, an anterior one bound to the wing 
and a posterior one which is free and situated mainly behind the 
hind margin. When the actual translation starts during the down­
stroke or the upstroke', the bound vortex gives rise to lift from 
the very beginning of the stroke, although the resulting lift is 
somewhat reduced to begin with because. of the Wagner effect 
which is unavoidable in this case. Further analysis showed that 

·•· such a system renders supreme manoevrability based mainly upon 
alterations of the wing-tip path (Weis-Fogh ( 1973)), but much 
more direct and detailed evidence is needed before it is profitable 
to discuss this and other possible effects in detail. There is un­
doubtedly a rich field for discovery here and other solutions than· 
those outlined may come to light. Also, . the flip mechanism has 
not been subject to any theoretical analysis _as yet. 

General Aspects of Flapping Flight 
\ 

There._mu.st be non-steady periods in any type of active 
flapping flight but the quantitative importance of non-steady aero­
dynamics is small during fast forward flight of birds, bats and 
most insects, and even when the majority of them hover on the 
spot. f.[owever, in very small insects and in some insect groups 
which have small wing loadings (cf. Table I), novel but definable 
non-steady principles based upon :the creation of circulation, and 
thereby aerodynamic lift rather than drag, dominate the flow 
pattern. It is also significant that lift caused by the fling me~ha­
nism is independent of size and can operate at both sniall and high 
Reynolds numbers so that it could be used to good effect during 
hovering and vertical takeoff and in emergencies, also in birds. 
It is highly interesting that ·u. M. Norberg ( 197 4) has found that a 
flycatcher Ficedula hypoleuca obtains a CL of about 4 when hov­
ering (wing loading 13 Nm- 2 ). The wood pigeon (Columba 
palumbus), the rock dove (Columba livia) and its domestic descen­
dants often start flight with one or two audible claps when disturbed, 
as already described by Virgil (Vergilius ( 19 B. C. )) in the Aeneid 
(5th book,. Vs. 213-17) and shown by Marey (1890) to be caused by 
the two fully stretched wings meeting dorsally in a real clap-fling. 
It should also be mentioned that the relatively .. .small wing loadings 
of terns and kestrels may make it possible for these birds to hov-
er according to the flip principle although Lighthill has some jus­
tified misgivings about this being true hovering (1974). Only future 
studies can tell. 

One point needs emphasis. As is the case with the revolving 
cylinder used to illustrate the Magnus effect, the creation of circu- • 
lation of the air round the wing is the essential prerequisite for lift , 
production and the actual shape of the wing is of less significance 
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during the non-steady period. This may explain the otherwise 
abnormally high geometrical angles of attack found in Phormia 
regina towards each end of the stroke (Nachtigall (1966); see 
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Figure 5) and one should not use these observations to draw con­
clusions about forces based upon steady-state considerations alone. 
It may also explain some of the bizarre wing shapes seen particu-

· larly ih many Neuroptera, Lepidoptera and perhaps Thysanoptera. 
Application of non-steady principles makes possible innumerable 
modifications of flight mechanisms and wing shapes and one must 
take this into account when discussing the function and evolution 
of winged insects. 

A figure of mer.it. In order to estimate the relative impor­
tance of the unsteady fling mechanism as compared with the usual 
steady flow, I have recently derived a ratio between the c::irculation 
immediately after the fling and the circulation caused by the nor- · 
mal lift mechanism at the rniddle of the half-stroke. If we disre­
gard the dying-off of the unsteady flow in the course of the half­
stroke, this figure of merit µ is unity when the two circulations 
are equal. It has the form 

/ 
/ 

where 2a. is the angle between the wing chords c just before the 
wings split apart in Figure 10b3 (usually about 2 rad);~ e is the 
fraction of the stroke period occupied by pronation and supination 
(about 0. 05 to 0. I), R is the wing length and </> the stroke angle. 
The interesting observation is that µ··is independent of the absolute 
size and of the wingstroke frequency. We also observe some inter­
esting correlations between this expression and the morphology and 
flight of the animals now known to utilize unusual aerodynamics. 
For instance, animals with a small aspect ratio (ZR/ c) should 
benefit most from unsteady flow, butterflies and moths being a 
good example. A small stroke angle also increases µ in accord­
ance with our observations on hoverflies and dragonflies. Finally, 
since g(a.) does not vary much, it is seen that the animals with 
small wing loadings and therefore small values of CL should be 
able to take m(),st advantage of the unsteady flow situations, exactly 
as observed and indicated by the double a_sterisks in Table I. 

For Encarsia and hovering butterflies, µ is larger than 5 
and they are likely to depend almost entirely on unsteady flow, a 
general result substantiated by the more detailed calculations of 
Ellington ( 197 4). If there is a true effective clap in Drosophila, 
µ is about 3. In these and similar cases one must take into 
consideration that the fling circulation is likely to have become 
reduced when the wings reach their full angular velocity. In 
hovering hummingbirds the figure would be I. 5 if they did use 
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a clap (which they do not) but in a pigeon starting vertically from 
a perch with a real clap the figure of merit is 1 so that unsteady 
flow could contribute significantly during take-off. Virgil's obser­
vation that the rock dove starts from its nest on the cliff with a 
few loud claps before it glides silently through the peaceful air 
probably indicates a real transition from unsteady to steady-state 
aerodynamics. We may find.the answer two millenia after the 
observation was first recorded. 
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