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ABSTRACT

Electroosmotic flow (EOF) plays a vital role in fluid transport within micro- and nano-scale systems handling ionic fluids. Driven by electric
fields and resisted by viscous forces, EOF is especially relevant for microfluidic applications. This study presents the theoretical framework
for EOF of power-law fluids in fractal-like branching networks, addressing both volume and surface-area constraints, a domain unexplored
in existing literature on flow optimization. Prior EOF analyses have focused on Newtonian fluids in fractal networks or numerical analysis of
power-law fluid flows in complex geometries; here, we extend the scope to non-Newtonian fluids and complex hierarchies using theory and
derived scaling laws. Assuming fully developed, steady, axisymmetric, and incompressible EOF in cylindrical microchannels, the model incor-
porates the Debye—Hiickel approximation to linearize electrokinetic behavior and neglects pressure-driven components. The resulting electro-
osmotic flow rates Q for power-law fluid enhance for shear-thinning fluids (lower #n) compared to Newtonian or shear-thickening fluids.
Under volume constraints, we show that the optimal branching radius ratio * scales as N~!/2, yielding uniform mean velocity across all gen-
erations. This configuration yields a maximum normalized conductance E,, = 1, independent of the number of bifurcations N, length ratio
7, or generation count . Under surface-area constraints, * scales as N~("*1)/(2#+1) yhere n is the power-law index. Here, optimal transport
depends on n and N, with conductance Eg, decreasing as 7, n, m, or N increases. These novel scaling laws, reported for the first time for elec-
troosmotic flow of power-law fluids in branching networks, underscore the fundamental differences between electroosmotic and pressure-
driven flows. The results offer novel, valuable insights for designing bioinspired microfluidic designs, electrokinetic pumps, and lab-on-a-chip
devices. This work bridges fluid rheology with network geometry, offering a rigorous theoretical foundation for efficient EOF transport.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0282910

NOMENCLATURE
Symbol

R Channel radius (m)
Ri  Radius in generation k (m)
u,  Axial velocity (m/s)
AV Applied electric potential difference (V)

€ Vacuum permittivity (F/m)

€, Relative permittivity I. INTRODUCTION

{  Zeta potential (V) The widespread adoption of microfluidic devices across diverse
1o Consistency factor of the viscosity (Pa-s") scientific domains stems from their advantageous features, such as
Ap  Debye length (m) high surface-to-volume ratios and enhanced rates of heat and mass
Ai  Cross-sectional area of generation k (m?) transfer. These characteristics facilitate efficient chemical separations,

k  Branching generation index rapid reactions, sensitive detections, and improved operational

L Channel length (m) safety.l‘2 Microfluidic systems find critical applications in micro-total
Ly Length of channels in generation k (m) analysis systems for DNA sequencing, biosensing, targeted drug

n  Power-law index (rheology parameter) delivery,‘“ and thermal management of compact electronic circuits.”

Q  Electroosmotic volumetric ﬂ(3)W rate (m*/s) Among the various transport mechanisms in microfluidics, elec-
Qr  Flow rate in generation k (m’/s) troosmotic flow (EOF) is a fundamental electrokinetic phenomenon
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widely employed in microfluidic and nanofluidic systems, particularly
for manipulating ionic solutions in confined geometries. Unlike
pressure-driven flows that rely on mechanical pumps, EOF is induced
by the interaction between an applied electric field and the electrical
double layer (EDL) formed at the solid-liquid interface. This mecha-
nism enables precise, silent, and valve-less control of fluid motion,
making it especially attractive for lab-on-a-chip technologies, biomedi-
cal diagnostics, and chemical separation processes.” '’

Recent studies have extended the utility of electroosmotic
phenomena to a wide range of advanced applications. These include
nanoparticle-laden flows in biomedical microchips,”'" electrokinetically-
driven nanofluid-based cooling systems,”'* and ionic microreactors
where nanoparticle suspensions exhibit non-Newtonian electrolyte
behavior.”"” The ability to predict optimal electroosmotic performance
in such systems is essential for enhancing energy conversion, diagnostics,
and targeted drug delivery at the microscale.”"'

However, most EOF-based scaling laws and flow analyses have
traditionally assumed Newtonian fluid behavior, which does not reflect
the rheological complexity of many real-world fluids, such as polymer
solutions, biological specimens, and colloidal dispersions that exhibit
non-Newtonian characteristics. Among various rheological models,
power-law fluids offer a simple yet effective means of modeling shear-
dependent viscosity, described by the relation T = #,|7|" "%, where n
is the flow behavior index."* These fluids demonstrate distinct electro-
osmotic behavior, including shear-thinning for n < 1, Newtonian for
n = 1, and shear-thickening for n > 1.

Several researchers have explored the implications of such non-
Newtonian effects in microfluidic electrokinetics. Zhao and Yang'’
analyzed power-law fluid flow in single microchannel with electroki-
netic effects and derived analytical solutions for specific cases with
n=1,1/2, and 1/3. Bharti et al.'® numerically examined electrovis-
cous influences in fully developed, pressure-driven flows of power-law
fluids in single circular microchannel. Vasu and De'” extended the
analysis to EOF of power-law fluids in slit microchannels, especially
under high zeta potentials, and also studied pressure-driven flows
using the Debye-Hiickel approximation,'® focuses on the formation
and characteristics of stationary planes during EOF. Additionally,
Srinivas'” performed numerical simulations of EOF in elliptical geom-
etries to highlight shape-induced effects.

Further studies found that the rheology changes the dynamics of
EOF. For instance, under alternating current (AC) fields, shear-
thinning fluids demonstrate accelerated transient responses and larger
velocity amplitudes due to reduced viscous resistance.”’ In another
investigation of electroosmotic flow of an Oldroyd-B fluid over asym-
metrically charged surfaces in microchannels. The study reveals how
surface charge modulation and viscoelasticity significantly alter slip
velocity, flow symmetry, and net throughput.”" Further, Jing and Qi”’
numerically found that the electroosmotic flow (EOF) in fractal tree-
like convergent microchannel networks. They analyzed how geometric
parameters such as branch convergence, branching number, and chan-
nel height, affect flow rate and resistance. The paper identifies optimal
fractal tree-like convergent microchannel network structures for maxi-
mizing EOF transport efficiency, aiding in microfluidic design.
Furthermore, Jing and Zhan” found that for Newtonian fluids, the
dependence of EOF fluidic resistance in a symmetric fractal rectangu-
lar microchannel network is governed primarily by the channel width
as kK = N~ ! when the total channel volume is conserved, where N is
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the branching number. In contrast, under surface area constraint, the
optimal cross-sectional dimensions must satisfy both width x = N~

and height H = ﬁ : W, where y is the length ratio and m is the

total branching levels. Similarly, in another study by Jing and Yi**

found the optimal radius ratio for EOF of Newtonian fluid under vol-
1/2

19N

ume constraint to be equal to N~'/2. In addition, Jing et al.”” revised
Murray’s law”® by incorporating surface charge-induced electroviscous
effects in fractal tree-like microchannel networks. It showed that both
zeta potential and microchannel radius caused non-monotonic varia-
tions in the optimal branching radius ratio. The optimal design for
minimizing hydraulic resistance depended on the apparent electro-
viscosity and channel length ratio across successive branching levels.
Moreover, in another numerical study by Choi et al.”’ found EOF of
non-Newtonian power-law fluids in rectangular microchannels that
the shear-thinning fluids (lower behavior index) enhance flow. Higher
flow is observed when the bottom surface has a strong zeta potential
and side walls are present. Further, Choi et al.”® found an approximate
solution for the EOF of power-law fluids in a planar single microchan-
nel, with thinning enhances the flow. We clearly can guess that these
rheological effects could further complicate in fractal branching net-
works, ubiquitous in biological systems (e.g., vascular networks) and
engineered devices, where self-similar bifurcations optimize transport
efficiency under physical constraints. From the literature, it has been
found that prior EOF analyses have focused on Newtonian fluids in
fractal networks or numerical analysis of power-law fluid flows in
complex geometries.

This study explores the EOF of power-law fluids in fractal-like
branching networks. These networks exhibit a hierarchical, fractal,
self-similar branching network composed of axisymmetric cylindrical
microchannels, mimics natural and engineered transport systems
frequently encountered in biomedical and microscale engineering
applications. The underlying structure is designed to emulate multi-
generational bifurcating microchannel arrays, similar to those found in
biological vasculature (e.g., bronchial trees, arterial networks) or artifi-
cial microfluidic devices for lab-on-a-chip technologies.

In the context of an engineering process, Fig. 1 illustrates an ink-
jet printing system that utilizes electroosmotic flow (EOF) for precise
ink ejection. At the top, an ink reservoir supplies the ink to a printhead
assembly. Within the printhead, there are multiple individual channels,
each acting as a nozzle. At the top of each channel, electrodes are posi-
tioned, connected to a power source. These electrodes apply an electric
field across the ink within the nozzle channels. This electric field inter-
acts with charges on the channel walls and within the ink, generating
electroosmotic flow, which precisely propels the ink downward. By
controlling the electric field at each nozzle, the system can selectively
eject individual ink droplets onto a selective nozzle on the substrate
below, forming desired patterns or images through the controlled
deposition of different colored inks, as shown.

The fractal domain geometry, represented schematically in Fig. 2,
allows uniform distribution of flow or electric field intensity when
optimized properly. The analytical model captures how the radius Ry,
length Ly, and zeta potential { vary spatially under volume or surface
constraints. This is crucial for devices such as electrokinetic micro-
pumps, electroosmotic mixers, or heat exchangers using nanofluids,
where flow uniformity and energy efficiency depend on precise geome-
try—flow coupling.
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FIG. 1. This figure illustrates an inkjet printing system that leverages electroosmotic
flow (EOF) for precise ink ejection. An ink reservoir feeds into a printhead with mul-
tiple nozzles. Electrodes at each nozzle generate an electric field, which interacts
with charged ink molecules and channel walls to create EOF, propelling ink droplets
downward. Depending on the electric field at each nozzle, this controlled EOF
allows for selective and precise deposition of different colored ink droplets onto a
substrate.

2Ry _
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FIG. 2. Schematic of electroosmotic flow of power-law fluids in a fractal self-similar
network of circular cross section. Here, N is the splitting at the junction and k is
generations. Ry is the radius at ky, generation.

However, to date, there has been no comprehensive analytical
framework that integrates electroosmotic transport, power-law rheol-
ogy, and fractal geometry under design constraints such as fixed vol-
ume or surface area. Here, in this paper, we extend the scope to non-
Newtonian fluids and complex hierarchies using theory and derived
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scaling laws under both the volume and the surface-area constraint.
These scaling principles extend Murray’s law (originally for blood ves-
sels)”” to electrokinetic systems, minimizing flow resistance while max-
imizing conductance. By mathematically modeling the domain under
steady, fully developed EOF and accounting for power-law fluid behav-
ior, this study provides an engineering framework to directly guide the
fabrication of fractal microchannel systems with optimized perfor-
mance metrics such as conductance, velocity uniformity, and energy
efficiency.

The model presented in this study offers the theoretical frame-
work that couples electroosmotic transport with power-law fluid rhe-
ology in hierarchically branching networks under specific physical
constraints (volume or surface area). Unlike earlier studies confined
to Newtonian fluids or numerically-intensive simulations, our analyt-
ical treatment yields closed-form scaling laws applicable to a wide
range of fluid index n for bioinspired and engineered microfluidic
designs.

Our work derives novel scaling laws for optimized EOF transport,
demonstrating that the optimal branching radius ratio is uniquely
influenced by the number of bifurcations and fluid rheology. We ana-
lytically show that under a volume constraint, an optimal radius ratio
of f* = N~'/2 results in a universal geometrical design, ensuring uni-
form mean velocity and maximal normalized conductance irrespective
of network specifics or fluid power-law index. Conversely, under a
surface-area constraint we discover that the optimal branching ratio
follows f* = N~ (#+1/2n+1) ‘highlighting a strong dependence of con-
ductance on both the power-law index #n and network complexity.
Ultimately, this research establishes critical relationships between net-
work geometry, fluid rheology, and EOF transport efficiency. By gener-
alizing electroosmotic transport through self-similar networks, the
model not only advances fundamental understanding but also provides
optimization guidelines critical for device-level implementations such
as electrokinetic drug delivery, lab-on-a-chip flows, and nanofluidic
heat exchangers.

The governing equations are derived from the Poisson-
Boltzmann and Navier-Stokes formulations, simplified under the
Debye-Hiickel approximation, which assumes a low surface potential
and thin EDL. Flow within the EDL is considered negligible, and the
system is driven purely by the electric field, with no applied pressure
gradient. A schematic is shown in Fig. 2.

Il. THEORETICAL MODEL FOR ELECTROOSMOTIC
POWER-LAW FLUID FLOW IN THE FRACTAL NETWORK

A. Governing equations

Electroosmotic flow (EOF) occurs when an external electric field
drives a fluid containing positive and negative ions along a charged
cylindrical surface. In this study, we consider EOF inside a cylindrical
microchannel of radius R and length L filled with an electrolyte solu-
tion. The outer/inner surface of the cylinder carries a uniform nega-
tive/positive charge, leading to the formation of a zeta potential,
denoted as {, which is assumed to be uniform along the axial (z) direc-
tion as shown in Fig. 3 for a single tube. The electrostatic interactions
between the charged surface and the ions in the electrolyte result in the
formation of an electrical double layer (EDL) near the charged cylin-
drical surface.

We assume that the flow is fully developed, steady, and governed
by the Stokes equation since the Reynolds number is significantly less
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FIG. 3. Schematic diagram of the electroosmotic flow in a single tube of radius R
and length L.  is the potential applied at the surface. EDL is the electrical double
layer (EDL) length within which the electrical potential varies.

than one, i.e., Re < 1. Therefore, the inertial forces are negligible com-
pared to viscous forces. This assumption holds for electroosmotic flows
in cylindrical microchannels due to typically low fluid velocities. The
momentum and continuity equation under Stokes flow in cylindrical
coordinates is given by

V.u=0, (1b)

where u and 7 are the velocity vector and stress tensor, respectively. p
and p; are the pressure and net charge density, respectively. The elec-
tric field is related to the potential ¢ as

E=-V¢. @)

B. Boundary conditions

The impermeable and no-slip condition at the wall ensures

U Ny =0, u-tyy =0, (3)

where ny, and t, are the unit normal and tangential vectors at the
boundary. At the centerline, symmetry dictates

U Neenterline = 0, £+ Meenterdine = 0, (4)

where t is the traction on the wall. The velocity gradients vanish at the
centerline (r = 0) due to symmetry. Further, far from the charged wall
outside EDL, which is of order of a few nanometers O(10 nm) (i.e.,
toward the center of the channel for large r), the equilibrium potential
due to the EDL formation tends to zero.

C. Power-law fluids

We model the power-law fluid as™

T=1,|7["" where (i, m, [7]) = noly["", ®)

where 7(11,,n,|7]), T, and 7 are the viscosity, the stress tensor (or t
in 1D), and the strain-rate tensor (or 7 in 1D), respectively.
Further, n, and n are the consistency factor and power-law index,
respectively. Furthermore, || is the strain rate invariant (or || in
1D). In the stress strain-rate relation t = 1(n,,n, |7|)j, the strain-
rate tensor is
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7=((Vv)+(V»)")
i 28u, %_ﬁ_(l@u,_@) ou, 8uz-
or or rod r 0z Or

_ ﬁu(;+(18u, ﬂ) 2<18u0+&) %_‘_lauz . (6)

o \rao r ro0 ' r oz ' r oo
ou, . Ou, % +18uz 5 Ou,
0z Or 0z r 00 0z

Despite its broad relevance, the power-law model, employed in
this study to represent non-Newtonian fluid behavior, does come
with certain well-recognized limitations. It does not capture yield stress
effects present in Herschel-Bulkley fluids, nor does it reflect viscosity pla-
teaus at very low or high shear rates. For shear-thinning fluids (n < 1), it
predicts unphysically infinite viscosity as shear rate approaches zero,
making it unsuitable for low-shear regimes. More comprehensive mod-
els, such as the Carreau-Yasuda, Cross, Bingham, or viscoplastic and
thixotropic formulations, may better represent the full rheological com-
plexity, particularly for time-dependent or elastic effects.

Despite its limitations, the power-law model continues to serve as
an analytically convenient and widely utilized framework for capturing
non-Newtonian behavior in many applications. It captures key shear-
dependent features of numerous real fluids, such as blood, polymer
solutions, and suspensions like ketchup or paint, within moderate
shear-rate ranges. In our work, the power-law model is not intended as
a precise fit to a particular material, but rather as a simplified yet
insightful tool to explore the influence of nonlinearity in viscosity
under electrokinetic effects, particularly in complex geometries such as
branching networks. Its simplicity enables the derivation of analytical
solutions and scaling laws, offering a tractable route to understand fun-
damental flow behavior that can later be refined using more sophisti-
cated rheological models.

Moreover, even in more advanced models such as the Herschel-
Bulkley or viscoelastic frameworks, the power-law formulation is often
embedded as a constitutive backbone, especially in the regime above
the yield stress or at low Deborah numbers. In shear-thickening fluids
(n > 1), while real behaviors are more intricate, the power-law
approximation is frequently employed piecewise to represent distinct
thinning and thickening regions.

D. Axisymmetric model

The analytical approach employed in this study is based on classi-
cal electrokinetic theory, integrating the linearized Poisson-Boltzmann
equation with the Stokes equations to model low Reynolds number
flow of power-law fluids. The development of an axisymmetric model
is motivated by the need for closed-form scaling laws that remain valid
across multiple branching generations and a broad range of fluid
rheologies. Unlike previous studies that often derive analytical solu-
tions only for specific values of the flow behavior index n, the present
formulation retains generality for any #, thereby offering greater flexi-
bility and applicability for non-Newtonian systems.

Unlike numerical techniques such as finite element or finite vol-
ume methods, which are computationally intensive and often case-
specific, the analytical framework enables the derivation of explicit
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expressions for flow velocity, conductance, and optimal geometry.
These results provide direct physical insight and design relevance, par-
ticularly under practical constraints such as fixed network volume or
surface area.

Although more comprehensive models, such as those incorporat-
ing the full Poisson-Nernst-Planck system or nonlinear electric double
layer (EDL) effects exist, they are often less suited for extracting univer-
sal design principles with closed-form solutions and are unable to retain
generality. Therefore, the present methodology offers a balanced solu-
tion: mathematically tractable, physically representative, and broadly
applicable to microfluidic systems involving non-Newtonian fluids.

To derive the axisymmetric model from the Stokes equations (1),
the following assumptions are considered as

* &() = 0 for assuming axisymmetry.

* No variation in pressure/stress along the azimuthal direction,
which gives ug = 0.

* We assume steady flow, which means 2 () = 0.

* We assume a fully developed velocity profile along the axial
direction, which means, 2 (1) = 0.

e Incompressible, EOF with no gravitational forces, and no losses
near the branch splitting or any secondary flows.

* No pressure gradient in any direction.

The laminar electroosmotic flow in a circular tube with radius R
is shown in Fig. 3. We assume the velocity u, and u,, along the axial
(2) and radial directions (r), respectively, with the r measured from the
center of the tube. Using the assumptions with an impermeable wall,
we get, u,(r = R) = 0, from the continuity equation, and also we get
the radial velocity vanishes everywhere,31 ie.,

uy(r,t) = 0. (7)

Further assuming lubrication approximations and using the
boundary condition, the axial direction equation for an axisymmetric
system becomes

op 1d
0=—=+—-——"(r1 E 8
Bz+rdr( rz)+pj Z) ()
where % = 0 as no pressure gradient is applied. The electric field is
related to the electrostatic potential ¢ as

9¢
E, =——". 9
z %z &)
The electrostatic potential ¢ consists of two components as
¢ = _EOZ + ¢eq(r)7 (10)

where E, is the externally applied uniform electric field along the
z-direction, and ¢,,(r) is the equilibrium potential due to the EDL.
The charge density p; is determined from Poisson’s equation as’”

pp = —€V2, (11)

where € is the permittivity of the fluid, further Eq. (11) becomes in
cylindrical coordinates as

1d d%)) N

pubs.aip.org/aip/pof

For a power-law fluid, the constitutive equation relating the shear

stress 7,, and the velocity gradient is given by

n—1 duz
dr’

du,

I 13)

Tz =M,

where n < 1 for shear-thinning fluids, n = 1 for Newtonian fluids,
and n > 1 for shear-thickening (dilatant) fluids. Thus, the governing
equation for electroosmotic flow simplifies to

1 d n-l duz 1 d < dd)eq)

var (”70 dr) =Fa\e )0
The boundary conditions for the velocity profile and for the electro-
static potential are

du;
dr

u,(r=R) =0 (No—slipcondition), ¢, (r=R)={, (15)

du,
W:O, Peog(r=0)=0 at r=0. (16)
Integrating once, we get
du\""" du de
== £ = eEgr— 1+ C. 17
n°r< dr> ar g T4 (17)

Applying the boundary condition at r — 0, we get C; = 0. Further,
Y= ‘2,‘1 Additionally, as radius r increases, the velocity decreases;
therefore, a negative sign is introduced in the bracket in order to

remove the modulus. After rearranging, we get

duz § EEO d¢eq
—(-==) =2 1
< dr) 0, dr (18)
Taking the nth root on both sides gives
du, [ —cEydp,\"
— = . 1
dr ( n, dr (19)

Integrating both sides gives

- Jduz = J <%EO d?f) dr. (20)

As we know, in a circular pipe of radius R, the equilibrium elec-
trostatic potential ¢,,(r) in the presence of an electrical double layer

(EDL) is governed by the Poisson-Boltzmann equation. For small zeta
potential ((e/kT < 1, Debye-Hiickel approximation®’) the linearized
form of the Poisson-Boltzmann equation in cylindrical coordinates (r-
direction) can be written as

1d( do, R
< ") =1 (21)

——\r
rdr dr yiS

which has a general solution to this differential equation as
$eq(r) = Alo(r/2p) + BKo(r/ D), (22)

where I and K are the zeroth-order modified Bessel functions of the
first and second kind, respectively. Ap is the Debye length, which char-
acterizes the thickness of the EDL. At the wall (r = R): the potential is
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set to the zeta potential ¢,,(R) = (. At the pipe center (r = 0),
outside the EDL, the solution must decay to zero, meaning we
discard Ko (r/Ap) because it diverges at r = 0. Thus, the solution sim-
plifies to™”

_ o Jo(r/7p)
¢eq(r) - Cm (23)

While the Bessel function does not have a simple closed-form
expression, however, for large arguments (x > 1), the modified Bessel
function Iy(x) can be approximated by

Therefore,

o/p eR/7p
Vi) S
Thus, the equilibrium potential can be rewritten as

1% LT
EN
For large R/ Ap, near the pipe wall r — R, we can simplify this to
eg(r) e LT,

The approximation is valid for large R/Ap, and mimics the exponential

IO(T'/AD) ~

decay seen in planar geometries, where the potential decays as e %/%>
away from a charged surface. The EDL is of the order of O(10nm) or
smaller, therefore, for a microchannel R/Ap >> 1. Substituting this
into the integral, we get

1

—u, = J (lEOé e(V*R)/AD)"dV7 (24)

No 4D

and after integrating, obtain

1
_¢E W
—u, = < ¢ 0—§) nip R/ 4,

]

Mo 4D

_ (—GEO ¢eq(r)> nip+ . (25)
Mo ‘D

Applying the boundary condition at r = R, ¢,(R) = {, and u, = 0,
we get

—€Ey 1\" /1), .
wmntn( L) (07— 0, 0)7). 9

o /D
Further, the voltage drop 6V = V,—y — V,_| across the pipe length L
leads to a uniform electric field. Therefore, we can write
Vii—Vio AV
L L
Moreover, the permittivity of the liquid €, can be written in terms of

the vacuum permittivity €, and relative permittivity €, of the liquid as
€ = €,¢,. Therefore, Eq. (26) can be written as

E():

pubs.aip.org/aip/pof

1

u, = nip (EOIEJAL>”C1/"(I _ rR)/nip). (27)
n )»D

o

The Eq. (27) for the axial velocity u, of electroosmotic flow can be
interpreted inside and outside the electric double layer (EDL).

1. Within the electric double layer (EDL)

Thin region near the pipe wall for R — /p=r < R, the charge
density is significant and electrostatic forces are actively driving the
flow. The velocity grows from zero at the wall toward its maximum

bulk value. The exponential term e varies rapidly from 0 to nearly 1.
This means velocity increases sharply within the EDL thickness from 0
up to a value close to

1
. bulk . (€& AV
uzfvuzu :n/L,D(zn:—/{D) C/n

2. Outside the electric double layer (in the bulk)

For r < R — Zp, in the bulk region, the exponential decays to zero
r—R
e =~ 0.

So the velocity reaches a uniform plug-like profile given by

bk 5 (€& AV,
MZ:uZu :n/LD(anaiiD) C/n

This is a characteristic of electroosmotic flow for Newtonian fluids,
especially in low Reynolds number and thin EDL regimes, where the
flow is nearly uniform plug-like outside the EDL. The EDL is of the
order of O(10nm) or smaller; therefore, R/Ap > 1, which gives the
approximate total flow rate, which is mainly flowing within the bulk of
a microchannel, can be written as

1
Qr QP — R % — nRnip (GoerAv);Cl/n. 28)
L;/IO)LD

To investigate the influence of the power-law index 7 on electro-
osmotic flow rate Q, the parameters used in the Fig. 4 include a tube
radius R = 50 um, Debye length Ap = 10nm, vacuum permittivity
€0 = 8.854 X 1072 F/m, relative permittivity for water ¢, = 80, vary-
ing applied voltage AV =0 — 100V, channel length L = 1mm,
dynamic viscosity #, = 1 mPa - s, and zeta potential { = 50 mV. The
power-law index 7 is varied from 0.4 to 10 to capture both shear-
thinning and shear-thickening behaviors. The resulting flow rates Q
from Eq. (28) were plotted against n, demonstrating that shear-
thinning fluids (lower n) yield enhanced electroosmotic transport

compared to Newtonian or shear-thickening fluids as shown in Fig. 4.
Previous studies have highlighted the strong influence of fluid
rheology on electroosmotic flow (EOF) dynamics. Numerical investi-
gations by Zhao et al”’ and Choi et al.”” demonstrated that shear-
thinning fluids enhance EOF due to reduced viscous resistance. Our
analytical findings are consistent with these results, confirming that
power-law fluids exhibit distinct flow behaviors governed by the flow
behavior index . Shear-thinning fluids (n < 1) yield higher flow rates
owing to lower effective viscosity and flatter, plug-like velocity profiles,
whereas shear-thickening fluids (n > 1) exhibit reduced EOF due to
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(a)

0.1 FIG. 4. Variation of electroosmotic volu-
= —n=09 Q metric flow rate Q with applied voltage
Soosl|—n=10 2 AV and power-law index n is shown in
= —n=12 5 panels (a) and (b), respectively. In (a), the
Q;O 06 ° flow rate increases with an increase in
= E applied voltage AV for given n. Figure (b)
‘: = demonstrating increased flow rates for
5004 2 shear-thinning fluids n < 1 and decreased
F k= flow for shear-thickening fluids n > 1,

0.02 under identical electrokinetic and geomet-

ric conditions.
% 20 40 60 80 100 10° 10'
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increased viscous resistance. The governing expression for the volu- Thus, the total resistance R is
metric flow rate Q further highlights this trend, showing that Q Lo
increases as n decreases. These insights underscore the importance of — Z AV (33)
accounting for fluid rheology when designing microfluidic systems, Q=

especially those involving complex fractal networks.

I1l. FLOW IN SELF-SIMILAR BRANCHING NETWORK

While electroosmotic flow (EOF) in straight or single channels is
well understood for Newtonian fluids, the flow behavior in branched net-
works remains largely unexplored, specifically under generalized network
conditions and different fluid rheology for shear-thinning and thickening
fluids. We model and analyze how channel geometry, surface charge,
and fluid rheology properties influence flow rate and distribution in hier-
archically branching microchannels. The network considered consists of
a series of bifurcating microchannels, where each branch divides into N
daughter branches in successive generations, which varies from the initial
k = 0 to the final generation level k = m. In this section, we calculate
the total electroosmotic resistance and the corresponding normalized
conductance in a tree-like circular tube network when subject to global
volume and surface area constraints. These constraints are critical in
both biological transport systems and miniaturized microfluidic devices,
where material usage and device compactness must be optimized.

A. Flow resistance
The resistance Ry at the ky, generation level in the network is

given by

AVk o Lknn;LD

Ry = —_ Gl
Qr eoe,(nRin)LDCI/”)"

; (29)

where Ry and Ly are the radius and length of the pipe at the ky;, genera-
tion level, respectively. At level k, the side and length scales as  and 7,
respectively. Therefore,

= Ryf¥, (30)
Li = Loy, (31)

Here, R and L are the initial radius and length of the pipe at the start-
ing Oy, generation level. Using these in Eq. (29) gives

Here, k =0 and k = m are the initial and final generation levels,
respectively. A single branch splits into N new branches, creates N*
branches at ky, generation level. Thus, the total resistance is

1 “ “ Ran Lon/L “
Ri=—>)» AVy= k — oD
ERM Yo et s (o)
y m+1
_ Lo,y " (Nnﬁzn) (34)
L6 (nR3n)" 7 '
N"ﬁzn

where Q = Qi N¥. Further, the total volume V and the total surface-
area of the network is

and S = ZZNkn(Rk)Lk. (35)

k=0

Y= Z N*7(Re)* Ly
k=0

Utilizing the previously defined scaling and summing the series, we get

1—(N 2, \m+1 MV
v, =T g s—2mrer, =M )
1—-NB —Npy
B. Flow conductance E in fractal networks with
volume and surface-area constraints
The equivalent single-tube length is
m m — il
=Y =Y wten e @)
=0 =0 -7

Under the volume constraint, equating the total network volume
V to that of an equivalent single tube, yields the radius of the equiva-
lent single tube as

1/2
Lin, Lon,Ab™ /7y \F 1—y 1—(Np2y)"H!
Ry — Ko/D S olofp " (7N () Regat = Ro [ 1 (N /2) . (38)
o€ (TR2niplH™) leoer(nRGN)" \ B 1—vy 1 —NB%
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Equation (38) defines the radius of a hypothetical single conduit
that maintains the same total volume and length as the entire fractal
network. The corresponding flow resistance for this equivalent tube,
preserving volume and length, is then given by

R AV Leglo/py "
==
€q, vo! QZ €a€rC(7TR§q.vol n)n

Lo L=y 1 Npy
e {(mR3n)" | 1 -7 1— (Nﬁz«/)m“

| e

The dimensionless conductance under a fixed volume constraint,
denoted as E,q, is formulated as the ratio between the total conduc-
tance of the network, E, = 1/R;, and the conductance of an equiva-
lent single conduit, Eeq = 1/Req, vol, expressed as

By R
1/Req,vol
1=y T - Ngy 1 N
= 2 \mtl it |- (40)
1=y 1-(NB) 1—(y/N"B™)

Furthermore, the equivalent tube radius under surface-area constraint
is expressed as

(41)

PO B S S\ 70 e
eq, surf — £80 1—?m+1 I—Nﬁv .

Accordingly, the non-dimensional flow conductance under a surface-
area constraint, denoted as Eg,¢, can be expressed as

/R,

1/Req, surf

{l—wﬂrnﬂ) 1-Ngy | -y

iy L—(Nﬁ“/)m“} [1—(V/N”ﬁ2")m+l}
(42)

Egut =

IV. RESULTS AND DISCUSSION

In this section, we examine how the normalized conductance E
varies with the branching radius ratio f§ across the network. The analy-
sis explores the influence of key parameters such as the length ratio 7,
the number of daughter branches N, and the total number of genera-
tions m. The constraints on total volume or surface area, as discussed
in Secs. IV A and IV B for volume-limited and surface-limited net-
works, respectively, enable the identification of optimal conditions for
electroosmotic flow. In addition, generalized scaling laws characteriz-
ing optimal transport in such constrained networks are established in
Secs. [V A2 and IV B2 for the cases of volume and surface-area con-
straints, respectively.

A. Volume constrained networks

Electroosmotic flow conductance E,q in a tree-like circular tube
network for power-law fluid flow will be investigated under a total vol-
ume constraint, where the sum of the volumes of all branches across
generations remains constant. Under limiting cases, the results are vali-
dated with previous numerical simulations and scaling laws on the

ARTICLE pubs.aip.org/aip/pof

Newtonian fluids with limited network topology. The results demon-
strate how the flow behavior is influenced by various network and
fluid rheology parameters. This condition is critical in biological
systems and microfluidic device designs where spatial constraints are
significant.

1. Effect of y, m, and N

Figure 5 illustrates the variation of normalized electroosmotic
conductance Eyq of the network with the dimensionless branching
radius ratio f§ for various conditions of varying length ratio y (a)-(c),
the generations m (d)-(e), and the branches splitting N (g)-(i) for
power-law fluids at n = 0.6 (a), (d), and (g) for shear-thinning, n = 1
(b), (e), and (h) for Newtonian, and n = 1.5 (c), (), and (i) for shear-
thickening fluids.

The flow through the network is primarily driven by the applied
electric field, while it is resisted by the viscous resistance due to fluid
motion through the branched microchannels. Hence, the balance
between the electroosmotic driving force and the viscous resistance
dictates the flow behavior across the network. The figure shows a non-
monotonic relationship between E,, and f, indicating the existence of
an optimal branching condition that maximizes conductance. At low
P, the viscous resistance dominates and restricts electroosmotic flow.
As f increases, EOF becomes more efficient, which depends on net-
work parameters.

For very small values of the radius ratio (f ~ 0), the normalized
electroosmotic conductance E,, approaches zero, regardless of the
power-law index #, length ratio 7y, branching level m, or bifurcation
number N. This represents the minimum conductance. As the fluid
becomes more shear-thickening (i.e., with increasing #), this low-
conductance regime (E,, ~ 0) persists over a wider range of 5.

For Newtonian fluids (n = 1) and N = 2, the optimal value

* = 0.71 corresponds exactly to the prediction by Jing and Yi,”'
thereby validating our results. At the other extreme, for large radius
ratios (f ~ 1), the rate of increase in conductance differs markedly
with rheology. Specifically, shear-thickening fluids (n > 1) exhibit a
much steeper increase in Ey, than shear-thinning fluids (n < 1).

Moreover, Figs. 5(a)-5(c) (varying y) and Figs. 5(d)-5(f) (varying
m) confirm that the optimal radius ratio f* = 0.71 is independent of
both the length ratio y and the number of generations m, as well as the
power-law index n. However, these parameters do influence the overall
magnitude of the normalized electroosmotic conductance across beta,
but the maximum value for E,, = 1 at optimal condition f* for all
values of m, , and N. Considering networks with a radius ratio f < 1,
the electroosmotic driving force, proportional to the surface area and
zeta potential, accumulates across generations due to increased total
surface exposure. Simultaneously, the viscous resistance also increases
in successive generations as the effective hydraulic resistance of the
network rises due to decreasing radii. The concurrent increase in both
the electroosmotic driving force and the viscous resistance across gen-
erations leads to a balance. This balance keeps constant the maximum
normalized electroosmotic conductance E,, at an optimal branching
configuration f* as that of a single equivalent tube with E,q = 1 as
shown in all subfigures. It implies that branching networks can be
designed to be just as efficient as a single straight tube in terms of elec-
troosmotic transport despite having such complex geometry, thus
establishing " as a universal design optimum under a volume
constraint.
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FIG. 5. We show the variation of the nor-
malized electroosmotic conductance Eq
of the network with the dimensionless
branching radius ratio f under volume
constraint, for different parameter condi-
tions. Subfigures (a)—(c) show the effect of
varying the length ratio v at fixed values of
m=3 and N =2. Subfigures (d)—(f)
illustrate the influence of the generation
levels m, while keeping N =2 and
y = 0.5. Subfigures (g)-(i) explore the

n=1 impact of the number of branch splitting N

- 0.5 atm =3 and y = 0.5. Each column cor-

B responds to a different fluid rheology:

(2) (h) shear-thinning fluids with n = 0.6 (a), (d),
1f=N = % 1=y = % and (g), Newtonian fluids with n = 1 (b),
+$;\7 2451 +$;\r ;% (e), and (h), and shear-thickening fluids

with n = 1.5 (c), (f), and (i).

07177 F
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Further analysis shows that, while the optimal " remains indepen- of daughter branches N. We consider minimizing the total flow resis-

dent of y and m for a fixed rheological index 7, the optimal radius ratio tance [Eq. (34)] across a two-level (parent-daughter) branch at the kth
[" is sensitive to the bifurcation number N. As N decreases, the optimal level of a hierarchical electroosmotic network,

[ increases. Specifically, we observe f* = 0.45, 0.50, 0.58, and0.71 o

for N =5, 4, 3, and2, respectively, across all values of n. As the num- Re — i R, — Nolpy " Ly n Lit1 (43)
ber of bifurcations N increases, f* decreases with constant E,,,q. ot p— " Leoer(nn)" (Nm)F R ( Nkt R ’

2. Scaling laws and flow rate dependency where 7, is the consistency index, n is the power-law index, L; and
Ly are the lengths of the parent and daughter segments, and Ry,
Ri+1 being their corresponding radii. To minimize Ry for a fixed
fluid index n, we define

Figures 6(a)-6(c) show that the optimal branching radius ratio f*
corresponding to the maximum electroosmotic conductance E, sys-
tematically varies with the number of bifurcation branches N. The

0%:00:60 G20z Joquiaydes 91

results, plotted on a log-log scale, reveal a power-law dependence of z_ Ly Ly (44)
the form f* oc N, where s, is the scaling exponent. Interestingly, this = ok T R g
R (R,

exponent remains constant at s, = —1/2 across all values of the

power-law index #, including shear-thinning, Newtonian, and shear- to equivalently minimize subject to a volume constraint over the

thickening fluids. parent-daughter segment as

Using a similar analysis as performed by Garg,”* Garg et al.,”” we P ol 2
investigate the scaling of the optimal radius ratio f* with the number V = nN"RiLx + nN"" Ry Liyr- (45)
0.

(a) 10 ~n=15 FIG. 6. Variation of the optimal radius ratio
B as a function of the number of bifurca-
tion branches N for different power-law

x index fluids on a log—log scale. Each sub-
= figure [(a)—(c)] corresponds to a distinct
power-law index: n=0.6, 1, and 1.5,
respectively. The results reveal a robust
107°° power-law scaling relationship * ~ N,
0 1 2 where the scaling exponent s, = —1/2
10 1]9] 10 remains invariant across all fluid types.
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Letting x = R} and y = R{ |, we can substitute y = (A — Bx) using
the volume constraint, where
1% Ly

A=——" B= .
N’ k+1Lk+1 NLjy

Substituting into Eq. (44), we obtain

Ly Ly
—F o T o e
(N")"xm - (N™)" (A — Bx)

Z(x) = (46)

Setting the derivative 22 = 0, rearranging the terms and using the rela-
tion Ry, /Ry = * yield

i R e (47)
Ry
This result indicates that the optimal radius ratio /* is constant
across all branching levels k, and thus applies to the entire network.
Importantly, this optimal ratio is also independent of the length ratio
7 = Li41/Ly, the branching depth m, and the power-law index n.
Thus, the scaling f* o< N* with s, = —1/2 holds universally across all
power-law fluids. The finding that s, = —1/2 under a limiting sce-
nario for the Newtonian fluids (n = 1) aligns well with previous results
by Jing and Yi,”* serving as a validation of our model. This universality
in electroosmotic flows contrasts with pressure-driven flows, where the
optimal scaling exponent appears as s, = —1/3 under volume con-
straints, studied by Garg et al,” showcasing different scaling laws
across different flow-driving mechanisms.
Finally, we evaluate the scaling of the volumetric flow rate using
this optimal ratio. From Eq. (47), we obtain

* 2
<Q5:1) = % = (lezzl) = QxR

under volume constraint for all 7. (48)

Further, for a given electroosmotic flow and a fixed volumetric
flow rate in an m-branched tree-like channel network, the parameters
Ry, Ly, and m are constants. Under the total geometric volume con-
straint of the network, we have from Eq. (49)

V=nRL Y (N, (49)
k=0

which implies that Ny must be a constant, denoted as y. Now, at the
optimal radius scaling for electroosmotic systems, which is
B ~ N~1/2, the volume constraint leads to

NBFy~N-N"'y=y=y~y,

where using a similar analysis as shown by Refs. 36 and 37 given in the
Appendix, we can prove that y = 1 under optimal conditions.

Thus, the ratio of applied voltage between the daughter and par-
ent branches is given by

AV _ ( Lyt > (Rﬁ"QZ) _ Vi (50)

AV RYL QL) \ Lk BN’
where we used the fact that Qi1 /Qx = 1/N. For Newtonian fluid, we
get AAV‘Z‘ = /fZLN’ same as shown by Ref. 24. At optimal conditions with

f*=N"12andy = y = 1, we obtain
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AVkﬂ)
——] =z=1 51
( N (51)

This result signifies an equipartition of voltage drops across each
branching level under optimal electroosmotic flow conditions. Further,
at optimal conditions, the mean velocity U, scales as

2
Qk+l Um.k+le+1

=7 (52)
Qx Up kRE
which implies
U, 1
Imkt1 =1 (53)
Um,k Nﬁ

This is another remarkable result, highlighting that under the
optimal radius scaling f* = N~/2 for electroosmotic flow, the mean
velocity remains uniform across all levels of the branching network
under volume constraint. To our knowledge, these scalings have not
been reported before. Such uniformity in velocity distribution ensures
efficient transport without velocity gradients that may cause dispersion
or mixing inefficiencies.

Furthermore, the scaling relationship between the surface area
and volume of the tube at the optimal flow condition, across successive
levels in the parent-daughter network at the k™ level, is given by

S Ry L
( k+1) _ Rerilin = N2, (54)
Sk B Ry Ly

while the corresponding volume ratio scales as

Vk+1 _ Ri+;Lk+1 _ Nil. (55)
Vi B RiLy
Combining these two relations yields the following elegant power-law
relationship:
Skt _ (YVin k& (56)
Sk Vi )

This analysis highlights how the optimal radius ratio governs the
scaling of geometrical quantities. Importantly, the optimal diameter
ratio fi*, as well as the volume and surface area, are functions of the
branching number N, and hence vary with network complexity. These
results are crucial for the rational design of efficient tree-like flow net-
works under electroosmotic transport for power-law fluids.

B. surface-area constrained networks

In this section, we investigate the electroosmotic flow conductance
Equf in a tree-like circular tube network transporting power-law fluids,
under the constraint of fixed total surface area of the network. Such a
constraint is relevant in systems where surface-dominated phenomena
(e.g., surface reactions, electroosmotic forces, and heat or mass transfer)
are prominent in microfluidics transport systems. The analysis reveals
how electroosmotic flow conductance is modulated by key parameters,
such as fluid rheology, network geometry, and branching structure.

1. Effect of y, m, and N

Figure 7 depicts the normalized electroosmotic conductance Egy¢
as a function of the branching radius ratio f3, evaluated under fixed
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FIG. 7. We show the variation of normal-
ized electroosmotic conductance Eg,;s of

the network with the dimensionless
branching radius ratio f/ under surface-

area constraint, for different parameter
conditions. Subfigures (a)-(c) show the
effect of varying the length ratio y at fixed
values of m =3 and N = 2. Subfigures
(d)—(f) illustrate the influence of the gener-
ation levels m, while keeping N = 2 and
y = 0.5. Subfigures (g)-(i) explore the
impact of the number of branch splitting N
at m = 3 and y = 0.5. Each column cor-
responds to different fluid rheology: shear-

(8)os (h () thinning fluids with n = 0.6 (a), (d), and
“IEN=3 06N =3 N=3 (g), Newtonian fluids with n =1 (b), (e),
06 +% =1 +§\\; = 451 0.4 +% = %1 and (h), and shear—thlckenmg fluids with
=5 = ~ = n=15(c), (f), and (i).
% o2 ¥R
0.5 1 00 0.5 1
B B

surface area conditions. The figure presents results for varying axial
length ratios y (a)—(c), number of generations m (d)-(f), and the num-
ber of daughter branches N (g)-(i). The trends are shown for three
types of fluids based on the flow behavior index # for shear-thinning
[n=0.6; (a), (d), (g)], Newtonian [n = 1; (b), (e), (h)], and shear-
thickening fluids [# = 1.5; (c), (), (1)].

The flow is driven by the electroosmotic force, while opposed by
the viscous resistance. Figure 7 exhibits a non-monotonic dependence
of the normalized electroosmotic conductance Egy,s on the branching
radius ratio f3, indicating the presence of an optimal branching config-
uration f* that maximizes conductance.

Similar to the flow characteristic under volume constraint, under
surface area constraints, for small values of f (ie, f — 0), Egu¢
approaches zero across all values of the flow behavior index #, length
ratio 7, generation number m, and bifurcation number N. In this
regime, the viscous resistance overwhelmingly dominates, impeding
electroosmotic transport. This low-conductance region extends over a
broader f range as the fluid becomes more shear-thickening (increas-
ing n), indicating a strong rheological influence.

As [ increases, electroosmotic transport becomes more efficient.
The trend is rheology-dependent as shear-thickening fluids (1 > 1)
exhibit a sharper rise in Eg,s with f§ compared to Newtonian (n = 1)
and shear-thinning (n < 1) fluids.

Figures 7(a)-7(c), which examine the influence of 7, and
Figs. 7(d)-7(f), which vary m, confirm that the optimal radius ratio
f* =0.60, 0.63, and 0.65 for n=0.6, 1, and 1.5, respectively, show
that with respect to the length ratio y, and the number of generations
m, [f* is invariant, however, depends on the rheological parameter n.
While these parameters alter the overall magnitude of Egyyf, the

maximum normalized conductance decreases with all parameters flow
behavior index 7, length ratio y, generation number m, and bifurcation
number N unlike the maximum conductance E,q = 1 remains
unchanged under volume constraint. Further investigation reveals that
while " is independent of y and m for a given rheological index 1, it is
sensitive to the bifurcation number N. As N increases, the optimal
radius ratio 8 decreases. We also find that 8 increases with » for all
given parameters.

2. Scaling laws and flow rate dependency

Figures 8(a)-8(1) show that the optimal branching radius ratio ff*
corresponding to the maximum electroosmotic conductance E system-
atically varies with the number of bifurcation branches N. The results,
plotted on a log -log scale, reveal a power-law dependence of the form
f* o< N, where s, is the scaling exponent.

Using a similar analysis as performed by Garg,™* Garg et al.,”” we
investigate the scaling of the optimal radius ratio * with the number
of daughter branches N. We consider minimizing the total flow resis-
tance [Eq. (34)] across a two-level (parent-daughter) branch at the kth
level of a hierarchical electroosmotic network,

k+1 1-n
'70’“1) Lk Lk+l
Riot = Ri= + . (57)
tot Z}; i nger(nn)n <(N")kRin (Nn)k+1Rin+]
To minimize Ry for a fixed fluid index n, we define
Ly Liys
Z = + , (58)
(N")'RE" (N™)'RY
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to equivalently minimize subject to a fixed surface-area constraint over This result indicates that the optimal radius ratio 5 is constant across
the parent-daughter segment as all branching levels k, and thus applies to the entire network. Importantly,
this optimal ratio is independent of the length ratio y = Ly, /Ly, the
— k k1 P P V= Lit1/ Lk
S = 2N ReLic + 2nN"" Rip1 L1 (59) branching depth 1, however, varies with N and the power-law index 7. So
Letting x = Ry and y = Ry, we can substitute y = (A — Bx) using far, we have not come across such scaling law for electro osmotic flow for
the surface-area constraint, where power law fluids under surface area constraint in any limiting scenario to
S L validate. However, this law s, = —(n +1)/(2n + 1) in electroosmotic
A= Y , B= . flows, contrasts with pressure-driven flows, where the optimal scaling
2N Ly NLjt
exponent appears as s, = —(n+1)/(3n+2) under surface-area
Substituting into Eq. (44), we obtain constraints, studied by Garg et al.,”” showcasing different scaling laws
Ly Lior across different flow-driving mechanisms.
Z(x) = ( N”)kxzn + ( Nn)kﬂ (4- Bx)Z" . (60) Finally, we evaluate the scaling of the volumetric flow rate using

this optimal ratio. From Eq. (47), we obtain
Setting the derivative 22 = 0, rearranging the terms, and using the
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relation Ry, /Ry = f* yield <Qk+1>* 1 <Rk+l) ren/ty Qi o R/ (1)
=—_=(== = Qi x
B = Riyq — N1/ @nr1) (61) Qx N Ry k
Ry under surface — area constraint. (62)
Phys. Fluids 37, 082137 (2025); doi: 10.1063/5.0282910 37, 082137-12

Published under an exclusive license by AIP Publishing


pubs.aip.org/aip/phf

Physics of Fluids

Further, for a given electroosmotic flow and a fixed volumetric
flow rate in an m-branched tree-like channel network, the parameters
Ry, Ly, and m are constants. Under the total geometric surface-area
constraint of the network, we have from Eq. (63)

S =2nRyLo zm: (NBy)¥, (63)
k=0

which implies that Ny must be a constant, denoted as . Now, at the
optimal radius scaling for electroosmotic systems, which is
B~ N—(+1)/@n+1) ‘the surface-area constraint leads to

Nﬁ'y ~ N - Nf(”+1)/(2”+1) Y=gy~ XN(frl/(ZfH»l)’

where using a similar analysis as shown by Refs. 36 and 37, we can
prove that y = 1 under optimal conditions.

Thus, the ratio of applied voltage between the daughter and par-
ent branches is given by

AV, o Lyt Ri"Qz 7
. = (e
AVy R Qi Ly B NT

where we used the fact that Q+1/Qx = 1/N. At optimal conditions
with §* = N~(+1D/@n+1) and y = ¥ = 1, we obtain

AV

This result signifies an equipartition of voltage drops across each
branching level under surface-area constraint at optimal electroos-
motic flow conditions. Further, at optimal conditions, the mean veloc-
ity U,,, scales as

2
Q1 Unikn Ry

=—m (66)
Qk U iR}
which implies
Unmier _ L _ njensy, 67)
U i Nf

This is another remarkable result, highlighting that at "
= N-(n+1)/2nt1) for electroosmotic flow, the mean velocity increases
with bifurcation number N, however, it is in contrast to the pressure
driven viscous flows, where it decreases with N.** To our knowledge,
these scalings have not been reported before. Furthermore, the scaling
relationship between the surface area and volume of the tube at the
optimal flow condition, across successive levels in the parent-daughter
network at the k'™ level, is given by

S Ry L
( k+1) _ Rker1bktn —N! (68)
IS

Sk R Ly ’

while the corresponding volume ratio scales as

(Vk+1) _ Riy Lkt _
i

e Rsz _ N—(3n+2)/(2n+1). (69)
k

This analysis highlights how the optimal radius ratio governs the
scaling of geometrical quantities. Importantly, the optimal diameter
ratio fi*, as well as the mean velocity, geometrical volume, and surface
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area, are the functions of the branching number N and fluid index #,
and hence vary with network complexity. These results are crucial for
the rational design of efficient tree-like flow networks under electroos-
motic transport for power-law fluids.

C. Critical evaluation of the study

The primary objective of this study was to derive and analyze
scaling laws governing electroosmotic transport of power-law fluids
without any limitation on the fluid index » in self-similar fractal
branching microchannel networks, particularly under two practical
constraints: total fluid volume and total surface area. The analytical
approach provided closed-form relationships for key flow metrics such
as mean velocity, conductance, and optimal branching ratio ("), eval-
uated across varying fluid rheologies characterized by the power-law
index n.

The research findings comprehensively address the posed ques-
tions within the theoretical framework. Under the volume constraint,
the model demonstrates that the optimal radius scaling f* = N~'/2
leads to uniform mean velocity across all generations and maximum
normalized conductance (Ey, = 1), which holds independently of
structural parameters, such as bifurcation number (N), length ratio (y),
and total generations (). This result is robust and general, indicating
a global performance optimum for a wide range of non-Newtonian
fluids, including both shear-thinning and shear-thickening agents.

Under the surface-area constraint, however, the optimal radius
ratio becomes a function of n, given by f* = N~(*+1)/+1) Here, the
conductance Eg,s can decrease significantly for higher values of #,
reflecting increased viscous resistance and energy dissipation in shear-
thickening fluids. While this outcome supports the theoretical model,
it identifies a potential limitation in using such fluids in highly
branched networks with restricted surface areas. This motivates future
research on compensatory strategies for efficient flows, such as surface
charge tuning, electrical field modulation, or hybrid electro-pressure
schemes.

Minor deviations from ideal performance indicate that for certain
n and N combinations, branching alone may not deliver optimal elec-
trokinetic efficiency due to viscoplastic effects not captured in the
shear-dependent viscosity model. Similarly, wall effects, electroviscous
drag under high surface potential, or complex EDL structures may
introduce deviations beyond the Debye-Hiickel regime, suggesting
directions for extension. Nonetheless, the presented framework pro-
vides a powerful baseline for predicting performance trends and guid-
ing device optimization.

V. CONCLUSIONS

Electroosmotic flow (EOF) is a crucial mechanism for fluid trans-
port in microfluidic systems, particularly when dealing with ionic solu-
tions in micro- to nano-scale channels. This study presents a
comprehensive analysis of electroosmotic flow (EOF) in fractal-like
branching networks, focusing on power-law fluids and their behavior
under volume and surface-area constraints. The research extends exist-
ing knowledge of EOF from single channels to complex, hierarchically
branching networks, offering insights into scaling laws, flow resistance,
and optimal branching configurations. The flow through the network
is primarily driven by the applied electric field, while it is resisted by
the viscous resistance due to fluid motion through the branched
microchannels. By integrating fluid rheology with network geometry,
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this work establishes universal design principles for efficient fluid
transport in both natural and engineered systems.

The theoretical framework developed in this study models EOF
in cylindrical microchannels filled with power-law fluids, accounting
for electric double layers (EDL), zeta potential, and non-Newtonian
fluid behavior. We assumed fully developed, axisymmetric, steady, and
incompressible flow field. The EOF is modeled under the Debye-
Hiickel approximation, assuming low surface potential (i.e., thin elec-
tric double layer), no pressure gradient (purely electroosmotic). A
combination of Poisson-Boltzmann for charge density and Navier-
Stokes equations is used, adapted for EOF, and solved using boundary
conditions tailored to branching geometries. The flow rate within the
EDL is neglected in the analysis as it is a negligible comparison to the
bulk flow rate of the channel. The resulting electroosmotic flow rates Q
for power-law fluid enhance for shear-thinning fluids (lower n) com-
pared to Newtonian or shear-thickening fluids. Further, the analysis
demonstrates that under volume constraints, the optimal branching
radius ratio §* scales as N~'/2, where N is the number of bifurcations.
This scaling ensures uniform mean velocity across all levels of the net-
work, highlighting the efficiency of electroosmotic transport. The
results reveal that the normalized conductance E, reaches a constant
maximum value of 1 under volume constraints, independent of any
parameters such as length ratio 7, generations m, N, or .

In contrast, under surface-area constraints, f* scales as
N-(#+1/@n+1) \where n is the power-law index. For surface-area-con-
strained networks, the optimal 8 varies with fluid rheology n and N
but remains invariant to y and m. The maximum conductance Egyf
decreases with increasing #, m, or N. The voltage drop across each gen-
eration remains the same under both volume and surface-area con-
straints at optimal conditions. Further, these scaling laws underscore
the distinct characteristics of EOF compared to pressure-driven vis-
cous flows. We further find that under optimal conditions, the volume
and surface-area of each generation level are uniform under volume
and surface-area constraints, respectively.

The integration of power-law fluid dynamics into fractal network
models uncovers new optimization challenges. For example, in com-
bined pressure-driven and electroosmotic flows, the optimal branch
convergence ratio (f5) transitions from N -1/3 (pressure-dominated) to
N~1/2 (EOF-dominated) under volume constraint [N—(#+1)/Gn+2)
(pressure-dominated) to N—("+1/@m+1)  (EQF-dominated) under
surface-area constraint, respectively] as the voltage-to-pressure ratio
increases. This transition is sensitive to network parameters such as
length ratios (7) and branching levels (m), with shear-thinning/thick-
ening fluids exhibiting enhanced/reduced flow rates under AC/DC
hybrid fields.

The implications of this research are significant for designing bio-
inspired microfluidic devices, electrokinetic pumps, and lab-on-a-chip
systems. The derived scaling laws provide a foundation for optimizing
fluid transport in applications ranging from diagnostics to drug delivery.

Future work could refine the model by incorporating junction
flow resistance and secondary flows at bifurcations. Extending the
framework to non-Newtonian fluids with yield stress”® or turbulent
flow”” regimes would broaden its applicability. Investigating asymmet-
ric branching or charging configurations could also enhance its rele-
vance for real-world engineering challenges.”'

In conclusion, this study advances our understanding of EOF in
complex geometries by integrating fluid rheology with fractal network

pubs.aip.org/aip/pof

design principles. The findings establish a robust theoretical foundation
for optimizing electroosmotic transport in diverse systems while offer-
ing practical guidelines for engineering efficient microfluidic networks.
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APPENDIX: DERIVATION OF PRESSURE AND VOLUME
PARTITIONING

The total geometrical volume constraint imposed on the fractal
network is expressed as

V=1L (NF), (A1)
k=0

suggesting that Np*y is assumed as y. At f* = N~1/2, the Nf*y
gives 7 = y. Here, the parameter y must be determined based on the
total volume constraint of the network within a defined spatial
domain. By applying Eqs. (57) and (45) at the optimal radius ratio
f*, the total hydraulic resistance of a single parent-daughter
branching unit and its corresponding tube volume are given by

1-n
(Rusly = oo T AGARC
and
W)y = n(N)k Ri(Lk + Liyr), (A3)
which yields
(R L (Li+ L)™' (Ad)

 Leoer ()" (NmyF R

36

Furthermore, as proposed by Bejan et al.,” the planar spatial
area A, in any direction in the k™ generation of the network, occu-
pied by the branches of lengths Ly and Ly is related by

LiLgy o As,k =const. = Lilgy = kaAs,ka (A5)

where oy is a proportionality constant at the k™ level. To minimize
the total flow resistance (Riot) ;- subject to the volume constraint V),

we optimize the lengths Ly and Ly, under the spatial constraint
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defined by the planar area A;j. From Eq. (A4), it is sufficient to
minimize the functional ‘P, given by

VY =L + L+ 1, (A6)

subject to the constraint in Eq. (A5). Applying the method of
Lagrange multipliers, or direct minimization under this constraint,
yields the optimal lengths as

Ly = (oA )%, (A7)
Lis1 = (Asx)"/2 (A8)

From Egs. (A7) and (A8), the length ratio at the optimal condition
simplifies to

_ Lita

=1 A9
L ; (A9)

7
implying a constant value of y = 1. Substituting this into Eq. (51)
confirms the equipartition of the applied voltage across each level.
Moreover, y = 1 not only ensures voltage equipartition but also
indicates equal volume distribution among branches across genera-
tions under volume constraint.
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