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Interference in Quantum Mechanics

1 � One‑Photon Interference
1.1 � Single‑Photon‑Sources
Before exploring quantum interference with pho-
tons, it is important to understand what a single 
photon is. A photon is the smallest unit of light, 
representing an elementary excitation of a sin-
gle mode of the quantized electromagnetic field. 
Each mode, labeled by its frequency ( νk ), cor-
responds to photons with energy ( hνk ), where h 
is Planck’s constant. A single photon in the ideal 
state is represented as |1�k , where k defines the 
mode of the field. This mode may describe the 
photon’s spatial distribution, spectral characteris-
tics, or temporal structure.

Photons interact weakly with their environ-
ment and can travel long distances at the speed 
of light, resulting in minimal noise and loss. They 
can also be easily manipulated using linear optics. 
These properties make photons an excellent 
platform for encoding information as photonic 
qubits, where the quantum state of the photon–
such as its polarization, momentum, or energy–
serves as the carrier of information. As a result, 
single photons are essential for applications in 
quantum computation and quantum information 
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Abstract | Physicist and Nobel Laureate Richard P. Feynman once 
remarked, "We choose to examine a phenomenon which is impossible, 
absolutely impossible, to explain in any classical way, and which has in 
it the heart of quantum mechanics. In reality, it contains the only mystery. 
We cannot make the mystery go away by “explaining” how it works. We 
will just tell you how it works. In telling you how it works, we will have told 
you about the basic peculiarities of all quantum mechanics"1. The phe-
nomenon of interference is ubiquitous in the quantum world and indeed 
holds within itself the explanation for many counterintuitive quantum phe-
nomena. In this review, we choose to focus on a few ramifications and 
manifestations of quantum interference that have deep implications for 
the foundations of quantum mechanics. These include single-photon or 
second-order interference, two-photon or fourth-order interference and 
higher-order interference.
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science, enabling secure communication, precise 
manipulation, and efficient data processing.

An ideal single-photon source produces one 
photon at a time in a specific mode, ensuring that 
the photon’s properties remain consistent with 
every emission. In practice, a perfect single-pho-
ton source cannot be achieved due to losses and 
the presence of multiphoton emissions. In terms 
of statistics, Poissonian and super-Poissonian dis-
tributions can be explained by classical wave the-
ory, whereas sub-Poissonian statistics cannot. The 
observation of sub-Poissonian statistics provides 
strong evidence for the quantized nature of light.

There are various physical methods to gener-
ate single photons. Single-photon sources can be 
broadly classified into two categories: determin-
istic and probabilistic. Deterministic sources rely 
on systems such as colour centres, quantum dots, 
and single atoms, producing photons at fixed 
intervals. Probabilistic single-photon sources 
often utilize phenomena like Spontaneous Para-
metric Down-Conversion (SPDC) in nonlinear 
crystals, where photon pairs are generated by 
a pump laser. A key advantage of this method 
is that one photon (called the idler or heralding 
photon) signals the creation of the other photon 
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(called the signal or heralded photon). In princi-
ple, the exact timing of the signal cannot be pre-
dicted. However, by using a pulsed pump laser, 
the heralding signal can be predicted within the 
pulse width time. For a more detailed discussion 
on different types of single-photon sources and 
their properties, readers are encouraged to con-
sult the references2,3.

1.2 � Interference in Quantum Mechanics
Quantum interference is rooted in the concept of 
the superposition of probability amplitudes from 
processes contributing to a given phenomenon. 
As Dirac famously stated, "Each photon inter-
feres only with itself." He explained that in quan-
tum mechanics, the entities that interfere are not 
particles but probability amplitudes for specific 
events. It is the fact that these probability ampli-
tudes add like complex numbers that give rise to 
all quantum mechanical interferences4.

In classical mechanics, superposition pro-
duces a distinct and definite new state. In con-
trast, in quantum mechanics, superposition does 
not result in a definite new state but instead alters 
the probabilities of the system being observed in 
its basis states. In classical mechanics, interfer-
ence is described through the division of ampli-
tude, which inherently leads to a division of 
energy. In quantum mechanics, however, inter-
ference is described through the division of the 
wave function, which does not imply a division of 
energy, as a photon cannot be divided. In the case 
of a Mach-Zehnder interferometer, two physical 
waves with independent energies can be mutually 
coherent, allowing them to interfere. In the quan-
tum picture, however, each individual photon 
simultaneously exists in both arms of the inter-
ferometer, with finite probability amplitudes that 
interfere with one another.

In classical wave theory, when two coherent 
waves interfere, their amplitudes add up alge-
braically. The waves may come from two different 
sources, such as two slits in a double-slit experi-
ment or two arms in a Mach-Zehnder interfer-
ometer. Let’s consider two waves travelling in the 
same direction. The electric fields of these waves 
at a given point are E1 , and E2 , and we assume 
they are coherent. The total electric field Etotal 
is the sum of the individual electric fields. For 
simplicity, let’s assume the two waves have the 
same amplitude A, so: E1 = A cos(ωt + φ1) , and 
E2 = A cos(ωt + φ2) . The total electric field will 
be: Etotal = A cos(ωt + φ1)+ A cos(ωt + φ2)

= 2A cos( φ1+φ2
2

) cos(φ1−φ2
2

) . The intensity is pro-
portional to the square of the total amplitude:

cos( φ1+φ2
2

) describes a modulation factor that 
accounts for the combined effect of both phases. 
The factor cos2( φ1−φ2

2
) reflects how the interfer-

ence varies as a function of the phase difference, 
(φ1 − φ2) and this causes the intensity to oscillate 
between constructive interference and destructive 
interference. The amplitude of the resulting wave 
is directly related to the sum of the amplitudes of 
the individual waves. The electric fields E1 and E2 
are added (or subtracted), meaning they divide 
the total amplitude into contributions from each 
wave.

In quantum mechanics, a system is described 
by a wave function ψ . The wave function ψ(x) at a 
position x gives the probability amplitude for the 
photon to be found at that location. The probabil-
ity of detecting the photon at x is proportional to 
the square of the magnitude of the wave function: 
P(x) = |ψ(x)|2 . This gives us a probability distri-
bution, which tells us where the photon is most 
likely to be detected, but it is not a deterministic 
prediction. The photon does not "choose" a sin-
gle path or location until it is observed; rather, it 
exists in a superposition of all possible paths. In 
a Mach-Zehnder interferometer, the photon takes 
both paths simultaneously, and the two paths are 
described by separate probability amplitudes, 
ψ1 , and ψ2 . The total wave function at the detec-
tor is the sum of these probability amplitudes: 
ψtotal = ψ1 + ψ2 . The probability of detecting the 
photon is related to the square of the total wave 
function:

The photon’s energy is not divided between the 
two arms of the interferometer; instead, the prob-
abilities for detecting the photon are modified 
due to the interference between the probability 
amplitudes.

1.3 � Interferometer Components
In photonic architectures, an interferometer 
typically consists of passive linear optical com-
ponents, such as Beam-Splitters (BS), mirrors, 
and waveplates. It has input ports where light 
enters and output ports that record either pho-
ton counts in the single-photon regime or pho-
tocurrent proportional to the laser intensity. 

(1)Itotal ∝ |Etotal |2 = 4A2 cos2(
φ1 + φ2

2
) cos2(

φ1 − φ2

2
)

(2)
Pdet = |ψtotal |2 = |ψ1|2 + |ψ2|2 + 2R(ψ∗

1ψ2)
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A BS is a key component in many practical 
interferometers. It splits incident light into two 
separate beams–one transmitted and the other 
reflected–at a specific ratio. A BS has two input 
ports and two output ports. Light entering 
through one input port is split, with the trans-
mitted and reflected components measured at 
the two output ports. Alternatively, light can 
enter through both input ports simultaneously, 
and the resulting split beams can be observed 
at both output ports. While a BS is a straight-
forward device from the perspective of classi-
cal physics, its behaviour becomes complex and 
non-trivial in the context of quantum mechan-
ics. The statistical behaviour of photons at the 
BS output changes, giving rise to fundamental 
quantum phenomena such as quantum super-
position and randomness. A BS can also create 
entanglement between the output fields5,6.

In the quantum mechanical description, the 
input and output fields of a BS are represented 
by operators. As shown in Fig.  1, the input 
ports of the BS are labeled a and b, while the 
output ports are labeled c and d. A mathemati-
cal relationship connects the input and output 

operators. The input modes a and b are associ-
ated with the annihilation and creation opera-
tors â , â† and b̂ , b̂† , respectively. Similarly, the 
output modes c and d correspond to the anni-
hilation and creation operators ĉ , ĉ† and d̂ , d̂† , 
respectively. The input–output transformation 
matrix can be expressed by replacing the clas-
sical electric field components with their corre-
sponding quantum operators.

Here, T and R represent the transmission and 
reflection coefficients of a BS, respectively. Both T 
and R are complex numbers. For a lossless BS, the 
BS matrix is unitary, meaning |T |2 + |R|2 = 1 , 
and also R∗T + T ∗R = 0 . Starting from the Eq. 3, 
it can also be expressed as,

In the case of a 50  : 50 BS, the transmission and 
reflection coefficients each correspond to 50% of 

(3)
(

ĉ

d̂

)

=
(

R T
T R

)(

â

b̂

)

(4)
(

â

b̂

)

=
(

R∗ T ∗

T ∗ R∗

)(

ĉ

d̂

)

Figure 1  The schematic illustrates the HBT interference setup. A 50 : 50 BS is shown with two input ports 
( a and b ) and two output ports ( c and d ). Detectors are positioned at the c and d output ports to measure 
the intensities. The correlation between the measured intensities is determined using a coincidence coun-
ter.
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the incident light, giving a complex amplitude of 
1√
2
 . If the BS is symmetric, the reflection intro-

duces a phase shift of π
2
 relative to the transmis-

sion. So, the BS matrix is expressed as 1√
2

(

1 i
i 1

)

.

A basic interferometer can be created using 
a BS, which demonstrates the Hanbury Brown-
Twiss (HBT) effect. Although the setup is simple, 
the HBT interference effect remains a landmark 
experiment in quantum optics7.

1.4 � Theoretical Derivation of HBT 
Interference

In this effect, light passes through a BS and 
reaches two detectors at the two output ports. The 
correlation of the intensities measured by these 
detectors is recorded. The key observation of the 
HBT effect is that the correlation between the 
light intensity at two different detectors can reveal 
the properties of the light. The second-order 
correlation function g (2)(τ ) quantifies the cor-
relation between the intensities measured at the 
two detectors at different times. If l1 is the opti-
cal path length traversed by light from the BS to 
the detector at output port c, and l2 is the optical 
path length traversed by light from the BS to the 
detector at output port d, then the time delay τ is 
given by τ = |l1−l2|

c  , where c is the speed of light. 
If light with intensity I is incident on a BS, Ic(t) 
and Id(t + τ ) represent the intensities measured 
by the detectors at output ports c and d at times t 
and (t + τ ) , respectively. The normalized correla-
tion function of the light intensity is then given 
by:

g (2) measures how correlated the intensities at 
the two detectors are. For a 50 : 50 beam splitter, 
when τ = 0 , the g (2) equals 1 for classical light.

In quantum mechanics, photons are described 
using the Fock state formalism. When a single 
photon is incident on the BS, its state is |1�a|0�b . A 
single photon in a specific mode is represented by 
applying the creation operator to the vacuum state 
of that mode, expressed as |1�a|0�b = â†|0�a|0�b . 
From Eq. 4, â† = Rĉ† + Td̂† . Therefore, the out-
put state is,

(5)g (2)(τ ) = �Ic(t)Id(t + τ )�
�Ic(t)��Id(t + τ )�

(6)
|ψHBT � = (Rĉ† + Td̂

†) |0�c|0�d = R |1�c|0�d + T |0�c|1�d

This represents the superposition state of a pho-
ton being in output port c or a photon being in 
port d. For a 50 : 50 BS, the output state is,

The average number of photons in port 
c is given by the expectation value of the 
number operator â†â , which evaluates to 
�ψHBT |â†â|ψHBT � = |R|2 = 1

2
 . The same result 

holds for output port d.
If we repeat the measurement many times, 

half of the incident photons are detected by the 
detector in port c, and the other half are detected 
by the detector in port d. This result aligns per-
fectly with classical predictions. However, when 
examining the correlation between the detected 
photons in both output ports, non-classicality 
becomes evident. In calculating g (2) using Eq.  5 
the average intensity �Ic(t)Id(t + τ )� is replaced 
by photon number operator. The expectation 
value of the photon number operator then gives 
the photon count in practice. At τ = 0 , the 
expression for g (2) is then given by,

This result yields a value of 0, which is a hallmark 
of quantum behaviour. This outcome serves as a 
crucial test for the single-photon source, confirm-
ing that it indeed generates photons one at a time.

2 � Two‑Photon interference
The interference of two photons generated simul-
taneously through parametric down-conversion 
was analyzed in 19868. The study explored fourth-
order interference effects, distinct from standard 
second-order interference involving single-field 
quantities. These effects were observed by meas-
uring the joint probability of detecting both 
photons at two points in the interference plane 
using photoelectric detectors. The joint detec-
tion probability exhibited cosine-like modula-
tion with visibility approaching 100% under ideal 
conditions. In 1987, C.K. Hong, Z.Y. Ou, and L. 
Mandel conducted a seminal experiment dem-
onstrating a quantum interference effect when 
indistinguishable photons were incident on a 
50  :  50 BS9. This phenomenon, known as "pho-
ton bunching," resulted in the two photons exit-
ing the BS together in the same output port. The 
authors have demonstrated the measurement of 
extremely short time intervals between two pho-
tons, providing insights into the length of the 

(7)|ψHBT � =
1√
2
(i|1�c|0�d + |0�c|1�d)

(8)g (2)(τ = 0) = �ĉ† ĉ d̂† d̂�

�ĉ† ĉ� � ˆ
d† d̂�
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photon wave packet. This was further investigated 
by10, where the researchers demonstrated that, 
unlike second-order interference, which is absent 
due to the lack of a definite phase relationship 
between photons, fourth-order interference man-
ifested through joint probability measurements of 
photon detection at two positions. The interfer-
ence exhibited 100% visibility, revealing nonclas-
sical features. These results aligned with quantum 
predictions and contrasted with classical wave 
theories, which predicted a maximum visibility of 
only 50% . The theory of fourth-order interference 
using a BS has been explored in detail11, includ-
ing the conditions under which classical and 
quantum fields exhibit interference. In 1988, Y.H. 
Shih, and C.O. Alley conducted an experiment12 
with correlated photons generated from a nonlin-
ear crystal via down conversion. They measured 
both coincidence counts and single counts and 
then calculated the ratio between them. Polar-
izers were placed in front of the detectors to cre-
ate different polarization eigenstates. The results 
showed that the ratio reached its maximum when 
the polarization axes were perpendicular and its 
minimum when the axes were parallel.

Around the same period, Fearn and Loudon 
explored theoretical frameworks of two-pho-
ton interference13 for different types of photon 
sources. The authors calculated the second fac-
torial moments of photocounts and the cross-
correlation function for the two output arms of 
a lossless BS. When photon pairs enter the BS 
through separate input arms and arrive simul-
taneously, the output state where one photon 
is detected in each arm is strongly suppressed. 
This suppression is evident in the photo count 
cross-correlation, which can vanish for certain 
input parameters from two-atom or parametric 
oscillator sources and is reduced to half for light 
from cascade emission sources. J.G. Rarity and 
P.R. Tapster14 delved into the application of two-
photon interference in the context of the Bell test 
experiment. Their work extended the fundamen-
tal principles established by Hong, Ou, and Man-
del, focusing on utilizing two-photon interference 
for testing quantum nonlocality.

Two-photon interference, commonly referred 
to as the Hong-Ou-Mandel (HOM) effect, is a 
fundamental phenomenon in quantum optics. 
Figure  2 shows a schematic of the experimen-
tal setup for the HOM experiment15. The HOM 
effect occurs when two indistinguishable photons 
enter a BS from two different input ports (ports 
2, and 3 in Fig.  2), leading to interference that 
results in the photons being detected at the same 
output port (either port 4 or 5 in Fig.  2), even 

though classical physics would predict otherwise. 
This two-photon interference with a balanced 
BS can be derived using quantum mechanical 
formalism.

2.1 � Theoretical Derivation for HOM 
Interference

Consider,two optical input modes (a,b), and 
two output modes (c,d) of a lossless 50− 50 BS. 
(a, a†) , (b, b†) , (c, c†) , and (d, d†) are the annihila-
tion and creation operators in the BS modes, such 
that,

where j, and k are photon’s properties which 
determine how distinguishable they are. The 
transformation of a state during its interference 
on a BS can be described using a unitary operator. 
This operator governs the evolution of the crea-

tion operators as a† → c†j+d†j√
2

 and b† → c†k−d†k√
2

 . 

The output state is,

If all the properties of the photon pair are identi-
cal ( j = k ), then the second and fourth terms in 
Eq. 9 cancel out. Therefore, the output state is,

The state is still normalized because 
a† |n� =

√
n+ 1 |n+ 1�.

If the two photons are completely indistin-
guishable, the probability of detecting a coinci-
dence at the output ports of the BS is 0. However, 
if the photons are distinguishable, the second and 
third terms in Eq. 9 do not cancel out. As a result, 
the output state is given by,

The probability of coincidence is | 1
2
|2 + | − 1

2
|2 = 1

2
.

As the time delay (τ ) between the photons is 
varied, the coincidence detection rate shows a dip 
at zero delay, which is a signature of the HOM 
effect. The depth of this dip serves as a key indi-
cator of the quantum nature of the light source 
and the degree of indistinguishability between the 

|1; j�a|1; k�b = a†j b
†
k |0�a|0�b,

(9)

|ψHOM� = c†j+d†j√
2

c†k−d†k√
2

|0�c |0�d
= 1

2

(

c†j c
†
k − c†j d

†
k + d†j c

†
k − d†j d

†
k

)

|0�c |0�d

(10)|ψHOM� = 1√
2
(|2�c |0�d − |0�c |2�d)

(11)
|ψdis� =

1

2
(|2�c |0�d − |1�c |1�d + |1�d |1�c − |0�c |2�d)
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photon pair. This measure is referred to as the vis-
ibility of the interference.

Based on the discussion above, the probability 
of coincidence at the output ports of the BS is 1

2
 

when j  = k and 0 when j = k , the visibility of the 
HOM dip can be expressed as,

, where p(τ ) represents coincidence probability, 
given by,

where δ(τ ) is defined as δ(τ ) = 1 at τ = 0 and 
δ(τ ) = 0 otherwise.

(12)VHOM = p(τ = ∞)− p(τ = 0)

p(τ = ∞)+ p(τ = 0)
,

(13)p(τ ) = 1

2
[1− δ(τ )],

In this context, it is important to note that 
practical simultaneous detection is limited by a 
finite time window. If two signals arrive within 
this defined interval, they are regarded as arriv-
ing simultaneously. This interval is known as 
the coincidence window.

Here, the indistinguishability between the 
pair of photons encompasses their spectral, 
polarization, and temporal overlap. If the arrival 
times of the two photons at the 50 : 50 BS differ, 
a temporal delay τ is introduced between them. 
This delay causes the temporal mode func-
tions of the two photons to no longer perfectly 
overlap. In the operator formalism, the crea-
tion operators acquire temporal dependence: 

Figure 2  Illustration of the HOM experimental setup, adapted from15. A diode laser generates a coherent 
pump beam at 405 nm wavelength, which falls on a type II BBO crystal (C). A pair of lenses (L1) and (L2) 
is used to focus the pump beam at the crystal and to collimate the beam, respectively. The polarization of 
the pump beam is maintained as horizontal (H). The crystal is tilted such that the collinear phase match-
ing condition is satisfied. In this configuration, down-conversion creates pairs of orthogonally polarized, 
frequency-degenerate photons at 810 nm wavelength. A long-pass filter (F1) blocks the pump beam (405 
nm) and passes only the single-photon pairs (810 nm). A band-pass filter (F2) with a 3.1 nm bandwidth 
centred on 810 nm restricts the bandwidth of the transmitted photons and minimize any distinguishability 
in spectral degree of freedom. Two photons with orthogonal polarization, in any pair, are split in two direc-
tions by a polarizing beam splitter (PBS). Again, a half-wave plate (HWP) in one of the output arms of 
the PBS is used to make both photons the same polarized. Two fiber-couplers collect photons from the 
same pair in two single-mode fibers; in order to maintain indistinguishability in spatial degree of freedom, 
and inject them in a 2× 2 polarization maintaining, fused fiber beam-splitter (FBS). One of the couplers is 
mounted on a motorized stage, which translates along the direction of the beam, to set a variable delay δτ 
between the two photons. After passing through the FBS, photons are detected in two single-photon ava-
lanche detectors (SPAD), which are connected to a single-photon counting module; in order to perform 
coincidence measurement.
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a†j → a†j (t) and b†k → b†k(t + τ ) . Using thes, the 
output state becomes

If τ = 0 and j = k , the operators c†j (t) and 
c†k(t + τ ) (and similarly for the d mode operators) 
act on the same temporal mode. In that case, the 
second and third terms have the same magnitude 
but opposite sign, leading to a commutation-like 
cancellation. However, if τ  = 0 even when j = k , 
the creation operators act on different temporal 
modes due to the delay. As a result, the cancel-
lation of the second and third terms is no longer 
perfect. To quantify the partial cancellation, the 
temporal mode functions φj(t) and φk(t + τ ) are 
introduced. These functions describe the tem-
poral profile of the photon wavepackets at times 
t and t + τ , respectively, and satisfy the nor-
malization condition: 

∫

|φj(t)|2dt = 1 . For sim-
plicity, these functions can be assumed to have 
a Gaussian profile. The operators act on these 
envelopes of wavepackets as: a†j (t) = φj(t) a

†
j  and 

b†k(t + τ ) = φk(t + τ ) b†k . The degree of cancel-
lation between the second and third terms in 
Eq.  14 depends on the overlap of the temporal 
mode functions: �φj|φk� =

∫

φ∗
j (t) φk(t + τ )dt . 

At τ = 0 , φj(t) = φk(t) , so the overlap is 1, lead-
ing to perfect cancellation of the second and third 
terms in Eq. 14. At τ  = 0 , the overlap decreases. 
Consequently, the coincidence probability in 
Eq. 13 is modified to:

.

2.2 � Spectral Distingushability
In practice, the incident photons are not per-
fectly monochromatic, meaning the two photons 
are not spectrally identical and possess a spectral 
width σω . As a result, Eq. 13 is modified by,

The spectral amplitudes of the two photons can 
be correlated, as observed in parametric down-
conversion processes. This spectral correla-
tion is described by the joint spectral amplitude 
f (ω1,ω2) , where ω1 , and ω2 represent the central 

(14)

|ψHOM� = 1

2

(

c†j (t)c
†
k(t + τ )− c†j (t)d

†
k(t + τ )

+d†j (t)c
†
k(t + τ )− d†j (t)d

†
k(t + τ )

)

|0�c |0�d

(15)p(τ ) = 1

2
[1− |�φj|φk�|2]

(16)p(τ ) = 1

2
[1− eσ

2
ω τ 2 ]

frequencies of the two incident photons. The 
coincidence probability in this scenario has been 
both theoretically and experimentally demon-
strated, as shown in16, and is given by,

The spectral function, f (ω1,ω2) can be modified 
by applying a bandpass filter. Typically, the filter 
function can be approximated by a sinc function, 
which results in a bump in the wings of the HOM 
dip as shown in Fig. 3.

Spectral and temporal distinguishability in 
multi-photon interference has been explored 
both theoretically and experimentally, and HOM 
dips have been observed with different degrees of 
visibility, depending on the level of indistinguish-
ability achieved in different experimental scenar-
ios, in the ref.17–31.

Furthermore, the variation in the visibil-
ity with the pump power in parametric down-
conversion has been studied both theoretically 
and experimentally for type I and type II phase-
matching crystals in32.

2.3 � Application of HOM Interference
2.3.1 � Manifestation of Quantumness
A 50% visibility in the HOM dip is generally 
regarded as the threshold distinguishing classical 
from quantum behavior of light. When two clas-
sical beams with equal intensities and randomly 
varying relative phase are incident on a 50:50 
BS, the maximum achievable HOM dip visibil-
ity is limited to 50%33. However, in15, an experi-
ment demonstrated that nearly 100% visibility in 
the HOM dip can be achieved even with classical 
fields. In the semiclassical framework of photo-
detection theory, the coincidence probability is 
proportional to the cross-correlation of the inte-
grated intensities at the detectors. The normal-
ized correlation function C(τ ) is derived, and it 
is shown that the visibility of the coincidence dip, 
denoted as V, depends on the fluctuation prob-
ability distribution of the relative phase φ between 
the input pulses. To further elaborate, the phase 
fluctuations between the input fields are critical in 
determining the visibility of the HOM dip. In the 
context of this experiment, the phase is treated 
as a random variable, and its fluctuation is cap-
tured by a fixed probability distribution P(φ) . The 
probability distribution is chosen such that the 
average fluctuation of the phase, when weighted 
by P(φ) , does not introduce a bias, which requires 
∫

P(φ) cosφ dφ = 0 . This ensures that the cosine 

(17)

p(τ ) = 1

2

(

1−
∫ ∞

0

∫ ∞

0

dω1 dω2 |f (ω1,ω2)|2 ei(ω1−ω2)τ

)
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function’s average value over all phase values is 
zero. This condition effectively represents a uni-
form distribution of phase fluctuations without a 
net phase shift. Therefore, V is expressed as,

When the relative phase φ is uniformly rand-
omized over [0, 2π ] , Eq.  18 shows that the V 
reaches the classical limit of 50% . However, with 
controlled phase distributions, such as [0,π ] , V 
can reach 100% , even with classical pulses. This 
demonstrates that the classical upper limit of 50% 
arises from a lack of phase control rather than 
being an inherent boundary of classical electro-
magnetic field theory.

The experiment employs an electrical system 
where phase control is directly achieved through 
an arbitrary waveform generator. Two Gaussian 
amplitude-modulated sine waves, generated by 
the waveform generator, are input to a balanced 
BS (power splitter) with carrier frequencies and 
relative phases controlled to ensure identical 
inputs. The system’s components, including mix-
ers, oscilloscopes, and power splitters, are cali-
brated for optimal performance. The time delay 
between the two input signals is varied system-
atically, and the cross-correlation of the outputs 
is analyzed to determine visibility. With phase 

(18)V =
∫

P(φ) cos2 φ dφ

values restricted to [0,π ] , with equal probability, 
the experiment achieves a visibility of 99.63%.

To further distinguish between quantum and 
classical behavior, a complementarity test was 
conducted by introducing an additional BS into 
the setup, effectively constructing a Mach-
Zehnder interferometer with a phase shifter. The 
experiment was carried out in two scenarios: In 
Case I, both input arms of the second BS were 
open, while in Case II, one of the input arms was 
blocked. In Case I, both arms of the interferome-
ter are unblocked, and the second BS recombines 
the photon paths. In the classical scenario, the 
output from the first BS enters both arms, result-
ing in an interference pattern with a 100% corre-
lation. In the quantum scenario, the photons are 
in a superposition state, and the system behaves 
similarly, also showing a 100% coincidence. In 
Case II, in the classical scenario, when one arm of 
the interferometer is blocked, it effectively blocks 
half of the signal. The unblocked arm is then split 
into two, resulting in a 50% cross-correlation 
compared to Case I, as the beam is only partially 
recombined. In the quantum scenario, when one 
arm is blocked, the superposition state collapses 
to one of two possibilities: |0, 2� or |2, 0� , each with 
equal probabilities. After passing through the sec-
ond BS, the output state is given by: 
1
2
|0, 2� + 1

2
|2, 0� + 1√

2
|1, 1� . This results in a coin-

Figure 3  An example of a HOM dip, where the coincidence counts are plotted as a function of the path 
delay between two photons, is achieved in the experimental setup presented in Fig 215. The data acquisi-
tion time is 5 seconds, and for each time delay the measurement is repeated 100 times to improve aver-
aging. Blue points represent the experimental mean.
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cidence probability of 1
2
 . The decrease in coinci-

dence probability, combined with the blocking of 
half of the superposition states, leads to a 25% 
coincidence rate compared to Case I.

In34, the quantum and classical aspects of the 
HOM experiment were analyzed, presenting a 
general expression for intensity correlations that 
clearly highlights the differences between a classi-
cal HOM-like dip and a quantum one.

2.3.2  �Indicator of Indistinguishability
The visibility of a HOM dip is a critical meas-
ure of the indistinguishability of input photons. 
Two photons are considered indistinguishable if 
they share the same electromagnetic field mode, 
meaning they have identical polarization, fre-
quency, arrival time, and spatial profile. When 
photons are perfectly indistinguishable, the HOM 
visibility approaches 1. This phenomenon is com-
monly used to assess the mode indistinguish-
ability of photons generated through SPDC9,12,14. 
However, HOM interference is not limited to 
SPDC-generated photons. It can also be applied 
to single photons produced by other physical sys-
tems, such as quantum dots and vacancy centers, 
to evaluate their indistinguishability35–37.

HOM interference can also occur between two 
photons originating from independent sources–
one from source 1 and the other from source 2. 
This type of interference is crucial for quantum 
communication protocols, such as quantum tele-
portation. Figure 4 illustrates a general schematic 
of the experimental setup. Here, signal photons 
(s1 and s2) from both sources are directed to the 
two input ports of a BS, while the corresponding 
idler photons (i1 and i2) are used for heralding. 
In this scenario, Eq. 17 is modified to reflect the 
four-fold coincidence probability38.

The four-fold coincidence, p4(τ ) can be 
expressed as a function of the time delay τ,

For 100% visibility, at τ = 0 , p4(τ ) must be 0. As 
demonstrated by Eq.  19, this condition is satis-
fied if, f1(ωs1,ωi1) f2(ωs2,ωi2) = f1(ωs2,ωi1) f2

(ωs1,ωi2) . This condition is met when the two 
joint spectral amplitudes are identical.

(19)

p4(τ ) = 1
4

∫∞
0

∫∞
0

∫∞
0

∫∞
0

dωs1 dωi1 dωs2 dωi2
|f1(ωs1,ωi1) f2(ωs2,ωi2)−

f1(ωs2,ωi1) f2(ωs1,ωi2) e
−i(ωs2−ωs1)τ |2

(20)f1(ωs1,ωi1) = f2(ωs2,ωi2)

Figure  4  The schematic illustrates the experimental setup for HOM interference between two photons 
originating from two distinct single-photon sources (source 1 and source 2). Signal photons (s1 and s2) 
from each source interfere at the BS, while the corresponding idler photons (i1 and i2) are used for herald-
ing. Four single-photon detectors (SPADs) are employed to measure photon counts, and a coincidence 
counter records the four-fold coincidence events.
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Additionally, both functions must be separable 
such that they can be expressed as a product of 
independent components.

Eq. 20 indicates that the two sources emit indis-
tinguishable photons and Eq.  21 indicates that 
the sources are spectrally pure, meaning that the 
photons emitted by the sources have well-defined 
spectral properties, such as a narrow bandwidth 
and a single frequency component. The integral 
in Eq.  19 is evaluated only for the signal pho-
tons, as they contribute to the HOM interference. 
Equation 19 exclusively for the signal photons,

The photon spectra are considered as normalized 
Gaussian functions 
( Fs(ωs) =

√

2
π σ 2

s
exp [−(

ωs−ωs0
σs

)2] ). After inte-

gration Eq. 22 simplifies to,

where ωs10 and ωs20 represent the central fre-
quencies of the photons, while σs1 and σs2 denote 
their respective bandwidths. Equation  23 shows 
that as the central frequencies of the photons 
deviate from each other, the visibility of the HOM 
dip decreases. Similarly, if the bandwidth of one 
photon becomes larger than that of the other, the 
visibility also diminishes.

HOM interference experiments between two 
photons generated from independent sources 
have been demonstrated, including experiments 
with two photons generated by two separate 
SPDC sources, as well as experiments involving 
one single photon generated by SPDC and one 
from a weak coherent pulse. In this setup, one 
of two configurations is typically used to gener-
ate the pump wavelength required for SPDC. In 
the first configuration, a mode-locked titanium-
sapphire laser serves as the master laser. The 
laser output undergoes frequency doubling to 
produce the desired pump wavelength, which 
is then split by a BS. The reflected beam pumps 
one nonlinear crystal, while the transmitted 
beam pumps the second crystal, effectively cre-
ating two independent SPDC sources39. Using 

(21)f (ωs,ωi) = Fs(ωs)Fi(ωi)

(22)

p4(τ ) =
1

4

∫ ∞

0

∫ ∞

0

dωs1 dωs2 |Fs1(ωs1)Fs2(ωs2)

− Fs1(ωs2)Fs2(ωs1)e
−i(ωs2−ωs1)τ |2

(23)

p4(τ ) =
1

2
− σs1 σs2

σ 2
s1
+ σ 2

s2

exp

[

−
(

σ 2
s1
σ 2
s2
τ 2 + 4(ωs20 − ωs10)

2

2(σ 2
s1
+ σ 2

s2
)

)]

,

this setup, HOM visibility as high as 94% has 
been achieved, demonstrating the high level of 
indistinguishability between the two independ-
ent sources40. Alternatively, the two nonlinear 
crystals can be pumped sequentially by direct-
ing the beam through both crystals41. These 
configurations ensure that both crystals are 
pumped by the same master laser, maintaining 
coherence between the two-photon sources. 
Alternatively, in the second configuration, two 
independent titanium-sapphire lasers are used 
to pump the two SPDC sources. To ensure syn-
chronization between the laser pulses, an elec-
tronic feedback mechanism is employed42.

If one of the sources is a weak, coherent pulse, 
the setup is slightly modified. In this case, a BS is 
placed in the path of the titanium-sapphire laser 
beam. One of the split beams serves as the weak 
coherent pulse source after being attenuated by 
a filter, while the other beam is directed towards 
the nonlinear crystal for SPDC after undergo-
ing frequency doubling.33. In this configuration, 
three-fold coincidence counts are typically meas-
ured to plot the HOM dip. Visibility as high as 
89% has been achieved43.

In those cases, it is important to ensure that 
the two photons arrive at the BS simultaneously. 
To achieve this, an optical path delay may need to 
be introduced into the photon paths within the 
experimental setup. This adjustment compen-
sates for any difference in travel distance, thereby 
aligning the arrival times and optimizing the 
interference visibility.

Haldar et al. demonstrated two-photon inter-
ference between two independent SPDC sources, 
where each crystal was pumped by a continuous-
wave laser44. A key requirement for this interfer-
ence is that the detection times must be measured 
with a precision finer than the coherence time of 
the photons. Since single-photon detectors inher-
ently exhibit minimal jitter, the coherence time of 
the photons must be extended to surpass this jit-
ter. This is achieved by applying narrow spectral 
filtering. In their experiment, a highly narrow 
bandpass filter with a bandwidth of 10 picometers 
was used to ensure sufficient coherence.

Two-photon interference between independ-
ent single-photon sources has been demon-
strated beyond SPDC. This includes interference 
between photons emitted from two vacancy 
centers within a nanodiamond45,46 or from two 
remotely positioned nanodiamonds47,48, as well 
as between two quantum dots49. Additionally, 
two-photon interference has been achieved using 
photons retrieved from two separate quantum 
memories50,51. These demonstrations highlight 
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the versatility of HOM interference across various 
quantum systems.

2.3.3  �Entanglement‑Based Communication
Entanglement is a crucial element of quantum 
communication. Entanglement is generated by 
either producing two entangled particles from 
the same source or through direct interaction 
between particles. However, entanglement can 
also be established through a process known as 
entanglement swapping, which leverages the 
projection of two particles onto an entangled 
state. Notably, this approach does not necessitate 
any physical interaction between the particles 
involved. Instead, if each particle is already entan-
gled with another partner, performing a measure-
ment, such as a Bell-state measurement, on the 
partner particles can project the remaining two 
particles into an entangled state. This remarkable 
manifestation of the projection postulate forms 
the foundation of entanglement swapping52,53.

A Bell-state measurement (BSM) is a process 
that projects two particles onto one of four maxi-
mally entangled states, known as Bell states. This 
measurement is essential for entanglement swap-
ping as it determines the final entangled state 
of the remaining particles (Fig.  5). The physical 

mechanism behind BSM often relies on two-
photon interference, a phenomenon where two 
indistinguishable photons interfere destructively 
or constructively depending on their relative 
phase and polarization. When two photons arrive 
simultaneously at a beam splitter, the interference 
pattern generated dictates the projection onto a 
specific Bell state. By harnessing this interference, 
BSM can effectively entangle distant particles, 
making it a key ingredient in entanglement dis-
tribution protocols54,55. BSM plays a vital role in 
quantum teleportation56

Consider two single-photon sources. The first 
source generates an entangled photon pair, where 
both photons are either horizontal (HH) or verti-
cal (VV) polarized, denoted as photons 1 and 2 
with the state |ψ1� = 1√

2
(|HH�12 + |VV �12.

The second source generates a similar entan-
gled photon pair, also either HH or VV polarized, 
denoted as photons 3 and 4 with the state 
|ψ1� = 1√

2
(|HH�34 + |VV �34 . Thus, the total state 

of the system (photons 1, 2, 3, and 4) is the com-
bined state of the two entangled pairs:

Figure 5  The schematic illustrates the experimental setup for BSM.
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Photons 2 and 3 undergo BSM, where they inter-
fere on a balanced beam splitter. The BSM pro-
jects the state of photons 2 and 3 onto one of the 
four Bell states:

Now, considering the total state of photons 1, 2, 3, 
and 4, we can rewrite it in terms of the Bell states. 
If photons 2 and 3 are projected into the |φ+� 
state, the total state collapses to:

This process results in photons 1 and 4 becoming 
entangled. The final entangled state between pho-
tons 1 and 4 is, |ψ�14 = 1√

2
(|HH�14 + |VV �14) . If 

photons 2 and 3 are measured in the |φ−� state, 
the result is |ψ�14 = 1√

2
(|HH�14 − |VV �14) . 

Therefore, the entanglement-swapping process 
depends on the BSM outcome.

Entanglement swapping plays a critical role 
in developing quantum repeater networks, which 
are essential for extending the range of quantum 
communication. In a quantum repeater architec-
ture, quantum memories are distributed along 
a communication channel, with each memory 
holding two atoms capable of emitting photons 
in opposite directions. A Bell-state analyzer posi-
tioned midway between two adjacent memories 
detects the photons travelling from each memory, 
performing a BSM to establish entanglement 
between the atoms stored in the two memo-
ries. By repeating this process across successive 
links, entanglement can gradually be extended 
across multiple memories, effectively connect-
ing distant locations. Once successful, this chain 

(24)

|ψtotal� = |ψ1� ⊗ |ψ2�

= 1

2
(|HH�12 + |VV �12)⊗

(|HH�34 + |VV �34)

|φ+� = 1√
2
(|HH� + |VV �)

|φ−� = 1√
2
(|HH� − |VV �)

|ψ+� = 1√
2
(|HV � + |VH�)

|ψ−� = 1√
2
(|HV � − |VH�)

(25)

|ψtotal� =
1

2
(|φ+�23)⊗ (|HH�14 + |VV �14)

of entanglement enables the creation of entan-
gled pairs between the first and final nodes of 
the network, facilitating secure quantum com-
munication over long distances57–59. A detailed 
and comprehensive exploration of entanglement 
swapping in quantum repeater network archi-
tecture would warrant a separate review paper. 
Readers are encouraged to refer to60,61 for further 
information.

2.3.4  �Signature of Precision
As previously mentioned, the HOM dip serves 
as a key indicator of photon indistinguishability. 
It provides a means to quantify the optical delay 
between two photons. The width of the HOM dip 
is inherently broad, and this width can be pre-
cisely controlled, making it particularly effective 
for detecting and measuring small optical delays. 
The control over the HOM dip width allows for 
fine-tuning of the system to improve precision in 
timing measurements. In the case of SPDC, the 
width of the HOM dip can be adjusted by varying 
the crystal length62. Additionally, the bandwidth 
of the bandpass filter can also be adjusted to con-
trol the HOM dip width63. In a common-path 
HOM setup described in64, researchers success-
fully measured the group delay of photons with 
an impressive precision of 0.1 femtoseconds and 
the phase delay with a precision of 8 attoseconds. 
Further advancements in precision measurement 
were introduced by Lyons et al. in their work on 
attosecond-resolution HOM interferometry63. 
They devised a measurement strategy based on 
Fisher information analysis, which enabled the 
team to achieve an accuracy of 0.5 attoseconds.

The HOM dip can be effectively applied to 
measure and control the group velocity of pho-
tons by manipulating their transverse profiles. 
By structuring the signal photon’s wavefront 
using spatial light modulators, it is possible to 
induce changes in the photon’s group velocity. 
This is achieved by altering the transverse spatial 
characteristics of the photon, such as its wave-
front shape. After the photon travels through 
free space, a second Spatial light modulator is 
used to reverse the wavefront modification, 
thereby restoring the photon to its original state. 
The interference between the structured sig-
nal photon and the idler photon, when both are 
directed onto a balanced BS, produces the HOM 
dip. Importantly, when the group velocity of the 
signal photon is changed, the HOM dip shifts. 
This shift in the HOM dip directly corresponds 
to a time delay, providing a clear measurement 
of the change in the photon’s group velocity65. 
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An experiment described in66 further demon-
strates this concept. The researchers showed that 
a change in the orbital angular momentum of a 
photon introduces a time shift in the HOM dip. 
By modifying the orbital angular momentum 
of the signal photon, the HOM dip undergoes a 
shift, effectively linking the photon’s orbital angu-
lar momentum to a temporal delay. This high-
lights the potential of HOM interference as a 
powerful tool for measuring and controlling pho-
ton velocities.67 identifies an optimal scaling rela-
tionship between the precision and visibility of 
the HOM dip. Therefore, HOM interference can 
be used in quantum metrology to achieve meas-
urements with exceptionally high precision, thus 
opening a new regime in precision measurement 
techniques. However, the detailed discussion on 
this topic, including its applications and theoreti-
cal framework, is outside the scope of this review 
paper. For further reading, readers are advised to 
refer to68.

Optical Coherence Tomography (OCT) is an 
imaging technique used for depth profiling of 
tissue samples. It works by measuring the inter-
ference between light reflected from the sample 
and a reference beam. In practice, this technique 
is limited by the coherence of the light source 
and the dispersion of the sample. In this context, 
HOM interference offers a significant improve-
ment. To overcome the limitations, a technique 
called Quantum Optical Coherence Tomogra-
phy (QOCT) has been proposed. This technique 
leverages the automatic dispersion cancellation 
inherent in the two-photon interference effect69. 
Additionally, QOCT offers a twofold improve-
ment in resolution compared to classical OCT. 
In the experimental setup, the sample is placed in 
one arm of the HOM interferometer, and coinci-
dence counts are recorded while varying the path 
of the other arm using a translation stage. Shortly 
after its proposal, QOCT was experimentally 
demonstrated, achieving a fivefold improvement 
in resolution compared to OCT70. Various experi-
ments using different techniques have achieved 
even better depth resolution. However, a detailed 
discussion of these experiments is beyond the 
scope of this review. For further information, 
readers are advised to consult71.

3 � Multiple Photon Path Interference
3.1 � Interference and Sum Rule
In his seminal paper72 Rafael D. Sorkin examines 
how interference emerges as a consequence of the 
failure of classical probability additivity. It intro-
duces a hierarchy of sum rules, where the second 

sum rule corresponds to classical probability and 
ensures no interference. However, quantum prob-
abilities obey a weaker condition where interfer-
ence terms persist. The second sum rule refers to 
the classical additivity of probabilities:

for mutually exclusive events A and B. In classi-
cal probability theory, this always holds, meaning 
there is no interference between different paths or 
events. However, in quantum mechanics, prob-
abilities do not always sum linearly due to inter-
ference effects. The deviation from this classical 
additivity is captured by an interference term:

To derive the third-order sum rule for a triple-slit 
experiment, the Born rule and the superposition 
principle are used. According to the Born rule, 
the probability of an event is given by the squared 
modulus of the wavefunction: P(X) = |ψ(X)|2 . 
For a particle passing through slits A, B, and C, 
the total wavefunction is the sum of contribu-
tions from each slit: ψA,B,C = ψA + ψB + ψC . 
For two slits A and B, the probability is: 
P(A ∪ B) = |ψA + ψB|2 . Expanding using the 
Born’s rule, the above equation becomes,

Here, R(ψ∗
AψB) is the interference term between 

slits A and B. Similarly, for other pairs:

For all three slits open:

The third-order interference term is defined as:

Substituting Eqs.  31,30,29,and 28 in Eq.  32, and 
expanding all terms, I(A,B,C) = 0 . Therefore, 
I(A,B,C) = 0 serves as a test for the validity of 
the Born rule. In this context, the Sorkin param-
eter quantifies any deviation from the expected 
quantum probability sum, measuring the extent 

(26)P(A ∪ B) = P(A)+ P(B)

(27)I(A,B) = P(A ∪ B)− P(A)− P(B)

(28)
P(A ∪ B) = |ψA|2 + |ψB|2 + 2R(ψ∗

AψB)

(29)
P(B ∪ C) = |ψB|2 + |ψC |2 + 2R(ψ∗

BψC)

(30)
P(A ∪ C) = |ψA|2 + |ψC |2 + 2R(ψ∗

AψC)

(31)

P(A ∪ B ∪ C)

= |ψA + ψB + ψC |2 = |ψA|2 + |ψB|2 + |ψC |2

+ 2R(ψ∗
A
ψB)+ 2R(ψ∗

B
ψC )+ 2R(ψ∗

A
ψC )

(32)

I(A,B,C)

= P(A ∪ B ∪ C)− P(A ∪ B)

− P(B ∪ C)− P(A ∪ C)+ P(A)+ P(B)+ P(C)
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to which the observed probability differs from the 
classical sum of individual slit probabilities.

In73, the authors have conducted a three-slit 
experiment with photons to test the validity of 
Born’s rule by investigating the presence of third-
order interference. They measured the quantity ǫ , 
defined as

where PABC is the probability of detection when 
all three slits are open, PAB , PAC , PBC are prob-
abilities when two slits are open, PA , PB , PC cor-
respond to single-slit openings, and P0 accounts 
for background noise (probability of detection 
when all slits are closed). To compare any possible 
deviation from the rule, the study defines a nor-
malized quantity: κ = ǫ

δ
 , where δ is defined as,

If κ = 0 , Born’s rule holds perfectly, whereas 
κ  = 0 suggests a deviation from it. The experi-
ment employed an optical setup with a triple-slit, 
where each slit could be selectively opened or 
blocked using a blocking mask, with slit combi-
nations chosen randomly to minimize system-
atic errors. Various types of photon sources were 
used, and the interference patterns were recorded 
using SPADs. By analyzing photon intensities 
across all slit configurations (single-, double-, and 
triple-slit cases), the researchers established an 
upper bound on three-path interference, limit-
ing it to less than 10−2 of the expected two-path 
interference for SPDC based single photons and 
constraining it to 10−3 for the attenuated coher-
ent laser beam. The results were consistent with 
Born’s rule, effectively ruling out higher-order 
interference with high precision.

Several experiments have since been con-
ducted to test Born’s rule. In74 the authors present 
a different approach using a three-path inter-
ferometer to establish a tighter empirical upper 
bound on potential deviations. Unlike conven-
tional slit-based setups, this experiment employs 
a transmission grating to generate three inde-
pendent optical paths. Two paths pass through 
individually controlled phase plates, allowing 
precise phase adjustments. All three paths are 
then retroreflected using a common mirror. To 
separate the outgoing and incoming beams, the 
setup incorporates a double pass through a quar-
ter-wave plate and a polarizing BS. To account 
for detector nonlinearity, the researchers model 

(33)
ǫ = PABC − (PAB + PAC + PBC)

+ (PA + PB + PC)− P0

δ = |IAB| + |IAB| + |IAB|
= |PAB − PA − PB + P0| + |PBC − PB − PC + P0|
+ |PAC − PA − PC + P0|

the response using a Poissonian light source and 
a nonlinearity equation, allowing them to pre-
dict and subtract systematic errors. By measur-
ing and comparing the three-path interference 
pattern with theoretical predictions, they set a 
new upper bound on three-path interference: 
< 0.0015± 0.0029 . Improved precision was 
achieved75 by using a stabilized five-path interfer-
ometer instead of a three-path setup, minimizing 
systematic errors such as detector nonlinearity 
and phase drift. Two diffractive BS were employed 
to create and recombine five independent paths, 
with shutter assemblies providing control over 
which paths were open. Phase plates, mounted on 
motorized rotation stages, were inserted in each 
path for precise phase control. Detector nonlin-
earity was modelled and calibrated by separately 
measuring response curves. The entire interfer-
ometer was enclosed and temperature-stabilized. 
This study set tighter upper bounds on higher-
order interference at: 10−3 . κ = 0 has also been 
measured in various systems beyond photonics, 
including matter wave, atomic tests, and nuclear 
magnetic resonance systems. However, these are 
beyond the scope of this review article.

3.2 � Non‑Zero Sorkin Parameter
A nonzero ǫ signals a departure from standard 
quantum mechanics, indicating the presence of 
third-order interference. However, a nonzero ǫ 
does not necessarily imply a violation of Born’s 
rule. The double-slit experiment, a cornerstone 
of both optics and quantum mechanics, typically 
assumes the wave function with both slits open 
is the sum of the individual wave functions from 
each slit: ψAB = ψA + ψB . However, this assump-
tion is mathematically inaccurate. The three sce-
narios mentioned above correspond to distinct 
boundary conditions, meaning that the superpo-
sition principle can only be applied as an approxi-
mation in these cases. This can be addressed by 
Feynman’s path integral formalism. This formal-
ism involves summing over all possible paths a 
particle can take through the two slits. It includes 
not only the near-straight trajectories from the 
source to the detector through either slit (green 
paths in Fig. 6), but also incorporates nonclassical 
paths, such as the looped ones shown in purple in 
Fig. 6. While these looped paths contribute much 
less to the total intensity at the detector compared 
to the straight-line paths, their effect is nonzero 
and finite76. These contributions lead to a modi-
fied wave function ψAB = ψA + ψB + ψL , where 
ψL represents the looped paths. The presence of 
nonclassical paths, as shown in Fig. 6, challenges 
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the conventional application of the superposition 
principle in interference experiments.

76 suggests that the triple-slit experiment 
can be used to quantify the impact of nonclassi-
cal paths. These paths also affect the calculation 
of the experimentally measurable quantity κ , 
which has been used to set bounds on higher-
order interference terms in quantum mechanics. 
κ exhibits modulation in its nonzero values as a 
function of the detector position. This means that 
if one plots the triple-slit interference pattern–
intensity versus position– κ varies along the spa-
tial coordinate. If only classical paths contributed 
to interference, κ would be zero. However, consid-
ering nonclassical paths allows for nonzero values 
of κ , indicating that a nonzero κ does not falsify 
Born’s rule but instead supports the broader Fey-
nman path integral formalism. The experiment in 
Ref.73 did not detect the expected nonzero value 
of κ due to systematic errors. However, these 
errors can be corrected in future experiments, 
enabling more accurate measurements. Further 
analysis reveals that κ is highly sensitive to experi-
mental parameters, and there is potential for 
larger κ values under certain conditions, such as 
increasing the wavelength of the photons.

An analytic formula has been derived to 
establish a bound on κ as a function of detector 
position in the far-field diffraction regime77. This 
formula has been verified against results from 
Finite Difference Time Domain simulations and 
numerical integration, demonstrating close 
agreement. The derived bound is: 

|κmax| ≈ 0.03 �
3
2

d
1
2 w

 , where � is the wavelength of 

the light or particle used in the experiment.
The experimental verification of looped tra-

jectories in a triple-slit interference experiment 
was achieved by enhancing electromagnetic near-
fields around the slits using surface plasmons78. 
A nanostructured gold film with three slits in 
different opening configurations was fabricated 
to support surface plasmon excitation. A her-
alded single-photon source was used, and photon 
polarization was controlled with a half-wave plate 
and a polarizer to either excite surface plasmons 
(x-polarization) or suppress them (y-polariza-
tion). For x-polarization, the electric field oscil-
lates parallel to the plane of the slits, inducing 
electron motion along the metal film and excit-
ing surface plasmon waves. These plasmons 
enhances near-field interactions, increasing cou-
pling between slits and amplifying the probability 
of looped trajectories. In contrast, for y-polari-
zation, where the electric field oscillates perpen-
dicular to the slit plane, surface plasmons are not 
excited, and only direct (classical) paths contrib-
utes, making looped trajectories negligible. As a 
result, the y-polarized interference pattern fol-
lows a standard three-slit distribution with no 
visible looped paths, while the x-polarized pat-
tern shows significant deviations, with increased 
visibility due to interference between classical 
and looped trajectories. The probability ratios for 
x- and y-polarized photons varies across different 
slit configurations, confirming that looped paths 

Figure 6  A point source is located at (xs , ys , zs) at a distance L from a triple-slit system. Each slit has a width 
w, height h, and an inter-slit separation d. The detection point is at (xd , yd , zd) situated at a distance D from 
the slit. The green path represents the classical trajectory, while the purple loops around the slits illustrate 
non-classical paths76.
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influences the pattern differently under varying 
conditions. The measured κ remained close to 
zero for y-polarization but became significantly 
nonzero for x-polarization, demonstrating that 
looped trajectories contribute to interference 
fringes when near-field effects are enhanced 
through material-induced enhancement.

While the κ was enhanced by utilizing near-
field components of the photon wave function 
and material-induced effects in78, a non-zero 
κ , purely attributed to length scale-dependent 
boundary condition effects on the superposition 
principle, was observed in a completely differ-
ent wavelength domain in79. The experiment 
was designed to control the effects of non-clas-
sical paths, allowing the researchers to increase 
or decrease the effect by adding or remov-
ing obstructions, providing definitive proof of 
their existence. A precision triple-slot setup as 
shown in Fig. 7 in the centimeter-wave domain 
was employed, using pyramidal horn antennas 
and specially designed composite materials as 
microwave absorbers. To minimize electromag-
netic noise and interference, the experiment was 
conducted in a remote location, effectively sim-
ulating an anechoic chamber. Since etching slits 

in an absorbing layer at this scale was imprac-
tical, the experiment used absorbing slots sur-
rounded by free space to approximate infinitely 
large boundaries. The modified expression for κ 
is defined based on the magnitude of the Poynt-
ing vector at specific detector positions and is 
calculated by measuring power values for differ-
ent slot combinations,

A pyramidal horn antenna, operating at a 5 
cm wavelength, emitted electromagnetic waves 
directed at 10 cm-wide slots with a 13 cm inter-
slot distance. The slots were constructed from 
composite materials: two layers of Eccosorb SF6.0 
(a near-perfect microwave absorber) with an alu-
minium layer sandwiched in between to enhance 
absorption, particularly of back-reflected beams. 
A detector horn antenna, mounted on a moving 
rail, collected power measurements at various 
positions. The source and detector were placed 
2.5 meters apart (1.25 meters between the source 
and slot plane, and the same distance between 
the slot and detector plane), and the values of 

(34)

κ ′ = P0 − (PABC − PAB − PBC − PAC + PA + PB + PC )

max(P0)

Figure 7  Schematic of the experimental setup in79. The green antennas on both sides are pyramidal horn 
antennas, serving as the source and receiver of electromagnetic waves at 5 cm wavelength. The receiv-
ing antenna is mounted on a movable rail, allowing for the measurement of diffraction patterns. Positioned 
between the source and receiver are three slots. The inset illustrates a triple-slit schematic, where the blue 
line represents a classically dominant path, while the green line depicts a sub-leading path within the path 
integral formalism.
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κ ′ showed modulation as a function of detector 
position.To ensure that the measurement time 
scale was sufficient, an antenna radiation pat-
tern was recorded before measuring each slot 
combination. The background patterns remained 
stable throughout, confirming that noise fluctua-
tions occurred on a much longer timescale than 
the measurement period. Background levels were 
averaged before and after each measurement to 
minimize bias, and the order of slot combinations 
was randomized to eliminate systematic errors. 
To independently verify that the observed κ ′ was 
not due to unaccounted experimental errors, 
absorbers (baffles) were introduced perpendicu-
lar to the slots to gradually suppress the effects 
of non-classical paths. As suggested in76, "hug-
ging paths"–which cross the slit plane twice–are 
the primary contributors to κ ′ . By systematically 
increasing the baffle size, a clear decrease in κ ′ 
was observed, confirming that hugging paths 
dominate its non-zero value.

A key potential error in observing a non-zero 
κ ′ is detector non-linearity–if the detector response 
deviates from linearity with increasing power, it 
could introduce a false non-zero. To rule this out, 
a detailed analysis using spline interpolation and 
polynomial fitting was conducted. The non-line-
arity effects estimated through these models were 
found to be at least two to three orders of magni-
tude smaller than the measured κ ′ , demonstrating 
that detector non-linearity could not account for 
the observed values. Additionally, potential non-
linearity in the source was ruled out, as the source 
was operated at a constant power.

While the slit experiment typically results in a 
small third-order interference term, it was theo-
retically shown80 that higher-order interference 
can arise within the standard second quantization 
framework due to nonlinear effects in multipar-
tite interactions. An increased value of nonzero 
third-order interference can be observed with 
current technologies, such as nonlinear optics or 
Bose-Einstein condensates.81 demonstrated an 
experiment using a ‘nonlinear triple slit’, which 
consists of three laser beams interacting in an 
optically nonlinear crystal. The authors showed 
that higher-order interference can be turned on 
and off by modulating the nonlinear interac-
tions in the system. A beam with a wavelength of 
nanometers is used, and the parameter κ is found 
to be 0.0334 ± 0.0002 .A study82 has established 
that interference of order (2M + 1) and higher 
vanishes for M particles. Furthermore, it intro-
duced generalized many-particle Sorkin param-
eters, which are predicted to be zero if Born’s rule 
holds. Many-particle higher-order interference has 

been experimentally demonstrated using a five-slit 
setup with a coherent state at a 633 nm wavelength, 
where the mean photon number was varied83. The 
study demonstrated that fifth-order interference 
is constrained to 10−3 in the intensity-correlation 
regime and 10−2 in the photon-correlation regime. 
The search for a genuine non-zero Sorkin param-
eter continues, pushing the boundaries of our 
understanding of higher-order interference. Future 
experiments with advanced photon sources and 
detection techniques may provide deeper insights 
into this fundamental question.

4 � Conclusion and Outlook
The exploration of interference phenomena 
stands as a cornerstone in our understanding 
of quantum mechanics. From the fundamental 
second-order correlation measurements ( g (2) ) 
to the more sophisticated Hong-Ou-Mandel 
interference effects, these experimental observa-
tions not only validate theoretical frameworks 
but also challenge our classical intuitions about 
the nature of reality. The g (2) correlation func-
tion has proven invaluable for distinguishing 
quantum from classical light, providing a robust 
metric for characterizing non-classical photon 
statistics. Meanwhile, the HOM effect–where 
identical photons entering a BS through differ-
ent ports demonstrate fourth-order interference 
by emerging together–has become emblematic of 
quantum behavior with no classical analog. Yet, 
as discussed in this article, even this quintessen-
tially quantum phenomenon can be mimicked 
by classical fields through careful phase control 
between classical pulses, blurring the bound-
ary between quantum and classical descriptions. 
This remarkable ability to reproduce ostensibly 
quantum effects through classical means raises 
profound questions about the true nature of the 
quantum-classical divide. Rather than viewing 
these domains as fundamentally separate, per-
haps we should understand them as different 
mathematical frameworks describing the same 
underlying reality, with quantum mechanics 
offering a more general description that reduces 
to classical physics under appropriate conditions. 
The investigation of higher-order interference, 
initiated by Sorkin’s hierarchical framework, rep-
resents the next frontier in this ongoing inquiry. 
Sorkin’s parameter κ , designed to quantify depar-
tures from the quantum superposition principle, 
offers a tantalizing window into possible physics 
beyond standard quantum mechanics. Despite 
numerous experimental efforts, a conclusive 
measurement of a non-zero Sorkin parameter 
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that withstands all experimental scrutiny remains 
elusive. The technical challenges are formida-
ble–requiring unprecedented precision in phase 
stability, detector efficiency, and background sup-
pression–yet the potential rewards are equally 
substantial. Should future experiments defini-
tively establish a non-zero Sorkin parameter, the 
implications would be revolutionary, potentially 
necessitating modifications to quantum theory 
itself. Conversely, increasingly precise null results 
would further cement quantum mechanics as a 
complete description of interference phenomena, 
placing ever-tighter constraints on alternative 
theories. As experimental techniques continue 
to advance, particularly in integrated photon-
ics, quantum dot single-photon sources, and 
superconducting detector technology, we stand 
at the threshold of resolving these fundamental 
questions. The story of interference in quantum 
mechanics thus remains unfinished–a vibrant 
field of inquiry where fundamental questions 
about the nature of reality continue to drive both 
theoretical innovation and experimental ingenu-
ity. The path forward lies not merely in refining 
existing experiments, but in developing entirely 
new paradigms for probing quantum interfer-
ence at ever-higher orders and with unprec-
edented precision. Whether these investigations 
ultimately reveal physics beyond standard quan-
tum mechanics or further validate its remarkable 
descriptive power, they will undoubtedly deepen 
our understanding of the fundamental principles 
governing our universe.
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