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Hydrodynamics of a hard-core active lattice gas
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We present a fluctuating hydrodynamic description of an active lattice gas model with excluded volume inter-
actions that exhibits motility-induced phase separation under appropriate conditions. For quasi-one-dimension
and higher, stability analysis of the noiseless hydrodynamics gives quantitative bounds on the phase boundary of
the motility-induced phase separation in terms of spinodal and binodal. Inclusion of the multiplicative noise in
the fluctuating hydrodynamics describes the exponentially decaying two-point correlations in the stationary-state
homogeneous phase. Our hydrodynamic description and theoretical predictions based on it are in excellent
agreement with our Monte Carlo simulations and pseudospectral iteration of the hydrodynamics equations. Our
construction of hydrodynamics for this model is not suitable in strictly one dimension with single-file constraints,
and we argue that this breakdown is associated with microphase separation.
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I. INTRODUCTION

Active matter commonly refers to nonequilibrium sys-
tems with energy injections at the microscopic scale that
independently drives individual constituents and often leads
to large-scale self-organized structures [1–4]. Although they
are inspired by living matter, active systems have been real-
ized in synthetic objects such as Janus particles [5], vibrated
rods [6], driven granular systems [7], motor driven robots
[8,9], and even in quantum matter [10]. The prominence
of the field comes from the novel emergent collective be-
haviors that often comes as a surprise from an equilibrium
viewpoint. Besides their potential applicability [11,12], these
emergent many-body structures pose an intriguing challenge
for nonequilibrium statistical mechanics. In recent decades,
major efforts have been devoted to developing a theoreti-
cal understanding based on effective field theories [13] and
large-scale computer simulations [14–16]. However, even
for simple characteristic many-body phases of active mat-
ter, namely, the Motility-Induced Phase Separation (MIPS)
[17,18], there is no clear bottom-up theoretical understanding,
analogous to equilibrium statistical mechanics for liquid-gas
coexistence, that could relate the large-scale phases to the
underlying microscopic dynamics.

A promising bottom-up approach for many-body dy-
namics is in terms of fluctuating hydrodynamics, that has
been phenomenally successful in capturing nonequilibrium
fluctuations in diffusive transport models [19], Hamiltonian
dynamical systems [20,21], and even in quantum integrable
models [22–24]. Hydrodynamics description has also proven
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tremendously effective in active matter [25–29], although a
rigorous derivation relating to microscopic dynamics is avail-
able only for a handful of cases. One such example is an
active lattice gas [30,31], whose hydrodynamics was proven
in mathematical terms, and its fluctuation extension incorpo-
rating a stochasticity has been recently obtained [32,33] using
intriguing mapping to a well-known ABC exclusion model.
However, the model involves an exchange dynamics between
particles that seems unphysical, presumably incorporated to
sustain MIPS. Most well-known off-lattice active dynamics
[17,34–36] are for impassable particles with finite volume
hard core which provides the much-needed activity-induced
caging effect to sustain MIPS. In fact, volume exclusion is
expected in natural examples of living or synthetic active
matter.

In this article, we propose a lattice model, that is inspired
by [30], but without the exchange dynamics. The dynamics of
our model is closer to realistic off-lattice dynamics of active
matter that are known to exhibit MIPS [17]. For our model
in the quasi-one-dimension of a periodic two-lane ladder lat-
tice, there is a stable MIPS state at a certain range of high
activity and density. For this model, we derive the fluctu-
ating hydrodynamics using a field-theoretical approach that
is generalizable and independent of the previous method in
[32,33]. Within the hydrodynamics we show how dynamical
instabilities of the coupled equations of hydrodynamic fields
quantitatively bound the MIPS boundaries. Moreover, we find
that correlations from the fluctuating hydrodynamics have ex-
cellent agreement with their Monte Carlo results and capture
the qualitative features seen [37] in well-known off-lattice
active matter models. Our construction of the hydrodynamics
straightforwardly extends for the higher-dimensional gener-
alization of the model and in particular, they capture the
existence of MIPS in two dimensions.

The rest of the article is organized as follows. In Sec. II
we precisely define the model in the quasi-one-dimensional
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FIG. 1. Quasi-1D model: A schematic of the model defined in
items (1)–(3) on a two-lane ladder lattice with periodic boundary
condition.

(quasi-1D) ladder lattice and present its fluctuating hydro-
dynamic description in Sec. III. The spinodal and binodal
bounds on the MIPS phase boundary obtained using stabil-
ity analysis of the noiseless hydrodynamics is discussed in
Sec. IV. In Sec. V we compute the spatial correlations of
density and magnetization by incorporating the noise into the
hydrodynamic description. Further generalizations to higher
dimensions are presented in Sec. VI. The limitations of our
hydrodynamic construction in strictly one-dimensional lattice
are discussed in Sec. VII and we conclude the article in
Sec. VIII. Additional details about the construction of the fluc-
tuating hydrodynamics and numerical analysis are relegated to
the Appendixes.

II. A QUASI-1D MODEL

We consider a two-species lattice gas with average den-
sity ρ0 ∈ [0, 1], on a periodic two-lane ladder lattice, with
each lane j = {1, 2} containing L sites indexed as i =
{1, 2, . . . , L}. To incorporate hard-core repulsion among par-
ticles, we enforce a simple exclusion condition that each site
can contain at most one particle at a given instance. The
two species denoted by (+) and (−), representing internal
orientations of an active particle, follow a persistent dynamics
on the lattice with intermittent switching of the orientations,
as defined below. (See Fig. 1 for a schematic of the same.)

(1) Biased diffusion: a (+) particle at site (i, j) hops to site
(i ± 1, j) at rate τ−1

p [(�d/a)2 ± (�p/a)/2] while a (−) particle
at site (i, j) hops to the (i ± 1, j) site at rate τ−1

p [(�d/a)2 ∓
(�p/a)/2], provided the target site is empty.

(2) Tumbling: a (+) particle at any site converts to a (−)
particle at rate τ−1

p and vice versa.
(3) Lane crossing: a particle at a site (i, 1) on lane 1 hops

to the site (i, 2) on lane 2 at rate τ−1
× and vice versa, provided

the target site is empty.
The above dynamics mimics self-propelled particles with

persistence time τp, self-propulsion speed �p/τp, and thermal
diffusivity D = �2

d/τp. The internal state (±) represents the
particle’s preferred direction of motion, towards right and
left, respectively. The ratio of the persistent length �p and the
diffusive length �d, known as the Péclet number Pe = �p/�d, is
a standard measure of activity. The parameter a denotes lattice
spacing, which we set to unity throughout this article.

Multilane lattice models are natural descriptions of protein
transport along microtubules [38] and for breaking integra-
bility in quantum transport [39]. The quasi-one-dimensional
geometry with the lane crossing effectively describes motion
inside narrow channels, where particle size is comparable
to the diameter of the channel, allowing occasional crossing
[40–43].

A microscopic configuration of the system at a given time τ

is specified in terms of the binary occupation variables n±
i, j (τ )

for each species σ = (±), respectively, where nσ
i, j (τ ) = 1 or 0

depending on whether the site (i, j) is occupied by the species
σ or not. A more convenient choice to describe the dynamics
is in terms of the total occupation variable, ni, j = n+

i, j + n−
i, j ,

and the polarization variable, Mi, j = n+
i, j − n−

i, j . Due to the
exclusion condition, ni, j = {0, 1} depending on the occupancy
of the site, while Mi, j = {0,±1} depending on the species of
the occupant.

III. A HYDRODYNAMIC DESCRIPTION

We now present a hydrodynamic description by coarse-
graining these variables such that fast fluctuations are locally
equilibrated over a hydrodynamic scale and slow modes
smoothly evolve. For our dynamics the relevant length and
time scales are �d and τp. The hydrodynamics is defined
in the rescaled coordinates (x, t ) ≡ (i/�d, τ/τp), by taking
�d, �p, and τp large, while keeping the diffusivity D = �2

d/τp

and the Péclet number Pe = �p/�d finite. For finite τ× � τp,
the adjacent sites of the two lanes effectively equilibrate at
the hydrodynamic scale, implying their evolution is described
by the same coarse-grained variables ni, j (τ ) � ρ(x, t ) and
Mi, j (τ ) � m(x, t ), independent of the lane index j.

We show in Appendix A that the evolution of ρ(x, t ) and
m(x, t ) follows the coupled fluctuating hydrodynamics

∂tρ = ∂2
x ρ − Pe ∂x[m(1 − ρ)] + �

−1/2
d ∂xηρ, (1a)

∂t m = (1 − ρ)∂2
x m + m ∂2

x ρ − Pe ∂x[ρ (1 − ρ)] − 2m

+�
−1/2
d (∂xηm + 2η f ), (1b)

where ηρ , ηm, and η f are Gaussian noises, each of zero mean
with covariance 〈ηp(x, t )ηq(x′, t ′)〉 = Sp,qδ(x − x′)δ(t − t ′),
with the mobility matrix Sρ,ρ = Sm,m = 2ρ(1 − ρ), Sρ,m =
Sm,ρ = 2m(1 − ρ), S f , f = ρ, and zero for the rest. The non-
conservative noise η f is due to tumbling events in the
dynamics. The same hydrodynamics extends for multilane
generalizations with the number of lanes ��d. The effective
particle exchange rate along the quasi-one-dimension is much
reduced compared to the exchange rate in [30], resulting in a
different hydrodynamics.

Our detailed derivation for (1), presented in Appendix A, is
based on an evaluation of the Martin–Siggia–Rose–Janssen–
de Dominicis action [44–47] of the stochastic differential
equation (1) following a coarse-graining of the microscopic
generator [48]. This method is generalizable for variations of
the dynamics and dimensionality. It is fundamentally different
from a derivation [32] for a related model [30], which rests
on mapping to stochastic diffusive models whose hydrody-
namics is well tested. Such mapping relies on a very specific
choice of the parameters, and is not extendable for our model.
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FIG. 2. Test of hydrodynamics: Time evolution of the hydro-
dynamic density ρ(x, t ) and polarization m(x, t ), starting from a
Gaussian profile ρ(x, 0) centered around the middle of the system,
with (+) particles placed at the left half and (−) particles at the right
half. The solid lines represent noiseless hydrodynamic evolution (1),
while the points represent Monte Carlo simulations of the micro-
scopic dynamics in (1)–(3). The dashed lines indicate the steady-state
profile from hydrodynamics. The plots are for bulk density ρ0 =
0.66 and microscopic parameter values �d = 1024, τp = 2.5�2

d, �p =
10�d, and τ× = 0.1, and system size L = 4�d, which corresponds to
Pe = 10.

Compared to the hydrodynamics in [30,32], the diffusion ma-
trix and the mobility matrix are significantly different.

In Fig. 2, we compare the noiseless limit of hydrodynamics
(1) with direct Monte Carlo simulation of the microscopic
dynamics (1)–(3). In the initial state, the left half of the system
is occupied with (+) particles and the right half with (−)
particles, each drawn from a Bernoulli distribution with a site-
dependent average density 〈ni〉 = ρ(i/�d, 0), shown in Fig. 2.
Hydrodynamic density and polarization profiles are obtained
by coarse-graining over boxes containing 200 sites. Only
profiles of lane one, averaged over 64 ensembles, are shown
in Fig. 2. For iterating the hydrodynamics we numerically
integrate (1) with zero noise using a Fourier-pseudospectral
method [49]. An excellent agreement seen in the evolution of
the profiles, asymptotically converging towards an inhomoge-
neous state, indicates a phase separation between high-density
and low-density regions.

IV. SPINODAL AND BINODAL ANALYSIS

It is readily seen from (1) that uniform density ρ(x) = ρ0

and m(x) = 0 is a stationary solution of the noiseless hydro-
dynamics. An inhomogeneous phase-separated state, widely
known as the MIPS for active matter systems, is an indication
of the instability of this globally homogeneous solution. The

FIG. 3. Phase diagram: Spinodal and binodal, given by (2) and
(3) respectively, plotted with the solid and dashed lines. Along the
dash-dotted line, the prefactor of the exponential in (4) diverges.
The points represent the "liquid" and "gas" densities obtained from
Monte Carlo simulations and numerical iteration of hydrodynamics.
The error bars indicate the uncertainty due to the width of the density
distribution around the peaks shown in the insets. The bimodal den-
sity distribution inside the spinodal region is an indication of MIPS,
whereas the unimodal density distribution outside the binodal region
is an indication of the homogeneous phase. In the inset, the points
are from MonteCarlo simulations and the solid lines are from an
analytical calculation in Appendix D. We use L = 4096 in Monte
Carlo simulations and a hydrodynamics equation solved numerically
using a Fourier spectral method with 1024 modes.

spinodal curve on the (Pe, ρ0) plane describes the onset of
instability against linear perturbations. A standard linear sta-
bility analysis of the noiseless hydrodynamics (1) (shown in
Appendix E) predicts Pe2(1 − ρ0)(2ρ0 − 1) > 2 as the unsta-
ble regimes. Thus, for 0 < Pe < 4, a homogeneous state with
any density 0 < ρ0 < 1 is always stable under linear perturba-
tions. On the other hand, for Pe > 4, the homogeneous state
is unstable if

3

4
− 1

4

√
1 −

(
4

Pe

)2

< ρ0 <
3

4
+ 1

4

√
1 −

(
4

Pe

)2

. (2)

The spinodal curve is shown in Fig. 3. Indeed, we see from
Fig. 2 that if the parameters (Pe, ρ0) are chosen from within
the spinodal region, the density profile ρ(x, t ) evolves to an
inhomogeneous state. The spinodal region given by Eq. (2)
incidentally coincides with that for the model in [30].

The binodal curve gives the two densities in a phase-
separated state where a “liquidlike” high-density ρl phase
coexists with a “gaslike” low-density ρg phase. Following
[50,51], we find that for our noiseless hydrodynamics (1)
(details in Appendix F), the two coexistence densities are
determined by a pair of relations

g0(ρg) = g0(ρl ) and h0(ρg) = h0(ρl ), (3)

where g0(ρ) = Peρ(1 − ρ) − (2/Pe) ln (1 − ρ) and h0(ρ) =
[2/(9 Pe)](1 − ρ)−3 + (Pe/6)(3 − 4ρ)(1 − ρ)−2. We numer-
ically solve the above pair of relations (3) and obtain the
binodal curve, which we plot in Fig. 3 along with the spinodal.

024128-3



RITWIK MUKHERJEE et al. PHYSICAL REVIEW E 111, 024128 (2025)

Evidently, the volume fraction v of the “liquid” region(s) is
given by ρlv + ρg(1 − v) = ρ0, i.e., v = (ρ0 − ρg)/(ρl − ρg).
Therefore, for Pe > 4, for any global density ρg < ρ0 < ρl , it
is possible to sustain a nonzero fraction 0 < v < 1 of a liquid
region within the analysis of the noiseless hydrodynamics.
In particular, the parameters between the spinodal and the
binodal curves correspond to a metastable region where, de-
pending on the initial condition, the noiseless hydrodynamics
(1) leads to either a homogeneous state or a phase-separated
state (see Fig. 12).

We also numerically iterate the noiseless hydrodynamics
(1) for a long time so that it reaches a stationary state, and
determine the steady-state "liquid" and "gas" densities, by
choosing the minimum and maximum densities in the density
profile, respectively. However, in Monte Carlo simulations,
identifying the lowest and highest densities is less straight-
forward due to the fluctuating nature of the density profile.
To address this, we extract density distributions and aver-
age them over steady-state profiles (depicted in the inset).
The resulting bimodal density distribution indicates the pres-
ence of two distinct densities, characteristic of MIPS.

V. TWO-POINT CORRELATIONS

We now compute the correlation functions in the
stationary-state homogeneous phase, using the fluctuating
hydrodynamics of (1). For example, the density-density
correlation for far-separated points in the stationary-state ho-
mogeneous phase has the asymptote (see Appendix G)

Cρρ (x, x′) � A

B�d
exp

(
− |x − x′|

ξ1

)
, (4)

where A = Pe2ρ2
0 (1 − ρ0)2/

√
1 − ρ0/2, B = 2 − Pe2(1 −

ρ0)(2 − ρ0)(2ρ0 − 1), and the correlation length ξ1 =√
1 − ρ0/2. The line along which the denominator B van-

ishes, indicating a breakdown of linearized hydrodynamics,
is shown in Fig. 3. Its full form and the other correlation
functions are given in Appendix G. We compare our analytical
correlation predictions with Monte Carlo simulations in Fig. 4
and find excellent agreements. An indirect verification of the
multiplicative noise terms in (1) comes from this comparison
of correlations with Monte Carlo results.

VI. GENERALIZATION TO d DIMENSIONS

There are several ways one can generalize our quasi-1D
model to higher dimensions. The straightforward generaliza-
tion takes the number of lanes to be O(�d ) with τ× = �2

d/τp.
In this case, the noiseless hydrodynamic description along
the active direction remains the same as in the quasi-1D
case (see Appendix B). On the other hand, in an isotropic
generalization, we define the d-dimensional version of the
model on a periodic hypercubic lattice of Ld sites and average
density ρ0 ∈ [0, 1]. The lattice sites indexed as (i1, i2, . . . , id ),
where ik = 1, 2, . . . , L with k = 1, 2, . . . , d . The system is
composed of 2d distinct species denoted by σ = 1, 2, . . . , 2d
corresponding to the 2d possible directions of self-propulsion

FIG. 4. Correlations: Solid lines plot the analytical results of the
correlation functions whereas the points are from numerical sim-
ulations. The insets show the asymptotic decay of the correlation
functions (with a constant shift in order to show up in the log-linear
plot), with the dashed guiding lines plotting (4) with a shift for better
visibility. The parameters used in the simulations are �d = 10.24,
τp = 2�2

d, �p = 2�d, τ× = 0.1, L = 100�d, and ρ0 = 0.25, and we
average over 105 statistically independent time steps to generate a
clean curve for comparing with hydrodynamic predictions.

denoted by r̂σ = ±x̂1,±x̂2, . . . ,±x̂d . In this model, a particle
of σ species hops at rate τ−1

p (�2
d + �p/2) in the r̂σ direction

and at rate τ−1
p (�2

d − �p/2) in the other 2d − 1 directions,
provided that the target site is empty. In addition, a particle
changes its species, i.e., tumbles, at rate τ−1

p . The fluctuating
hydrodynamics for this microscopic dynamics turns out to be
(detailed derivation in Appendix B)

∂tρσ = (1 − ρ)∇2ρσ + ρσ ∇2ρ − Pe �∇[ρσ (1 − ρ)] · r̂σ

−
∑
σ ′ 
=σ

(ρσ − ρσ ′ ) + �
−d/2
d

⎡⎣ �∇ · �ησ +
∑
σ ′ 
=σ

ησ→σ ′

⎤⎦.

(5)

Here, the conservative zero-mean Gaussian noise,
�ησ = (η(1)

σ , η(2)
σ , . . . , η(d )

σ ) arising from the biased-hopping
dynamics, has the covariance 〈η(k)

σ (�x, t ) η
(k′ )
σ ′ (�x′, t ′)〉 =

2ρσ (1 − ρ)δσ,σ ′δk,k′δ(�x − �x′)δ(t − t ′) while the noncon-
servative zero-mean Gaussian noise, ησ→σ ′ = −ησ ′→σ ,
arising from the tumbling dynamics, has the covariance
〈ησ→σ ′ (�x, t )ηψ→ψ ′ (�x′, t ′)〉 = (ρσ + ρσ ′ )δσ,ψδσ ′,ψ ′δ(�x − �x′)δ
(t − t ′).

Since the analysis of the above hydrodynamics equa-
tion (5) is similar to the quasi-1D case, we do not repeat it
here. Instead, we perform Monte Carlo simulations for the
two-dimensional microscopic model (d = 2) with both gen-
eralizations. We observe MIPS in our simulations for some
parameters, as shown in Fig. 5, indicating that MIPS can
emerge in two-dimensional systems, even without the ex-
change dynamics of [30]. Therefore, in dimensions higher
than one, neither achieving a strong mixing effect nor ob-
serving the MIPS requires an exchange dynamics between the
particles, making our choice of dynamics naturally conducive
for the desired results.

024128-4



HYDRODYNAMICS OF A HARD-CORE ACTIVE … PHYSICAL REVIEW E 111, 024128 (2025)

FIG. 5. MIPS: Monte Carlo simulation for the two-dimensional
models on a 512 × 512 square lattice with ρ0 = 0.62. Left figure cor-
responds to the two-species (→ and ←) generalization and right
to the four-species (→, ↑, ←, and ↓) generalization. The colors
indicate species (magenta ≡→, cyan ≡↑, green ≡←, red ≡↓).
For the two-species model �d = 128 and for the four-species model
�d = 32, with Pe = 12 and τp = �2

d in both cases. The holes in the
high-density phase were seen earlier in active systems [52,53]. For
the full time evolution, see Appendix I and [54].

VII. A STRICTLY 1D MODEL

For the version of our model on a periodic one-lane lattice
with the dynamics (1) and (2), exclusion interaction intro-
duces single-file constraint, which preserves positional order
of the particles. Our hydrodynamics construction, relying on
an assumption of local equilibrium measure, predicts the same
fluctuating hydrodynamics (1) as in the quasi-1D case, which
predicts the same phase boundary as in Fig. 3. However, our
Monte Carlo simulation of this 1D model does not support
MIPS [55] for the similar parameter ranges as in Fig. 3;
neither do the correlations match with their hydrodynamics
prediction (see Fig. 14). Evidently, the predicted hydrodynam-
ics does not work for this strictly 1D geometry, resonating
similar findings [56,57]. This is further confirmed by a direct
comparison of the noiseless evolution (1) of average fields
with Monte Carlo simulation (see Fig. 10).

Hydrodynamics is by construction about effective dynam-
ics of slow modes rising from local equilibrium of fast modes.
Compared to higher dimensions, the single-file constraint in
1D preserves the local order of species, and therefore, local
polarization at microscopic time scales �τp. This fight be-
tween activity and local conservation, results in the formation
of a large number of microclusters, that does not coarsen as
seen in the kymographs of particles in Fig. 6. Compared to the
fluidlike evolution in the two-lane model in its homogeneous
phase, the particle movements are severely restricted in the
one-lane model at the same parameter values. This reduced
effective diffusivity and drift of particles break our specific
assumption about local equilibration (details in Appendix D),
invalidating the hydrodynamics construction.

VIII. CONCLUSION

In the spirit of statistical mechanics, we have proposed
a minimal model of interacting active particles where the
simplest kind of steric interaction leads to macroscopic
phase separation even in quasi-one-dimension. It would be
of interest to verify our prediction in experimental realiza-
tions of active transport inside narrow channels [58] or in

FIG. 6. Kymographs: Comparison of space-time trajectories of
particles at long hydrodynamic times for two-lane (left) and one-lane
(right) models. Black indicates a tracer. The figures correspond to
parameter values (Pe = 6 and ρ0 = 0.2) outside the binodal curve in
Fig. 3. Time evolution of the trajectories for different Pe are available
in [54] (for more details, see Appendix I).

optical lattices [39]. The simplicity of our model allows
us to theoretically analyze the macroscopic properties using
a systematic bottom-up hydrodynamics theory. This hydro-
dynamic formulation potentially could serve as a minimal
macroscopic description for MIPS, that is shared between dif-
ferent microscopic models, in the spirit of the Landau theory
of phase transitions. There is a plethora of active dynamics
[15,34,59,60] belonging to this class for which a detailed
fluctuating hydrodynamics is not available. It would be inter-
esting to see how the fluctuating hydrodynamics results for
the present work compare with other models, including a full
characterization of macroscopic fluctuations in terms of large
deviations [61–64]. Our current work provides a crucial step
in this promising direction.
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APPENDIX A: AN ACTION FORMULATION
FOR THE QUASI-1D MODEL

Here, we present a derivation of the fluctuating hydro-
dynamic description for the quasi-1D model introduced in
the main text, following a similar route that was used ear-
lier in [48,65] for the symmetric simple exclusion process
(SSEP) and related stochastic lattice gases. The dynamics of
our model is defined in items (1)–(3) of the main text and
schematically shown in Fig. 1.
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TABLE I. Possible values of the various dynamical events for the quantities in (A2) and corresponding rates.

(B+
i,1, B−

i,1, B+
i,2, B−

i,2, Ti,1, Ti,2, L+
i , L−

i ) Rate

(1, 0, 0, 0, 0, 0, 0, 0) τ−1
p (�2

d + �p/2)n+
i,1(1 − n+

i+1,1 − n−
i+1,1)

(−1, 0, 0, 0, 0, 0, 0, 0) τ−1
p (�2

d − �p/2)n+
i+1,1(1 − n+

i,1 − n−
i,1)

(0, 1, 0, 0, 0, 0, 0, 0) τ−1
p (�2

d − �p/2)n−
i,1(1 − n+

i+1,1 − n−
i+1,1)

(0, −1, 0, 0, 0, 0, 0, 0) τ−1
p (�2

d + �p/2)n−
i+1,1(1 − n+

i,1 − n−
i,1)

(0, 0, 1, 0, 0, 0, 0, 0) τ−1
p (�2

d + �p/2)n+
i,2(1 − n+

i+1,2 − n−
i+1,2)

(0, 0, −1, 0, 0, 0, 0, 0) τ−1
p (�2

d − �p/2)n+
i+1,2(1 − n+

i,2 − n−
i,2)

(0, 0, 0, 1, 0, 0, 0, 0) τ−1
p (�2

d − �p/2)n−
i,2(1 − n+

i+1,2 − n−
i+1,2)

(0, 0, 0, −1, 0, 0, 0, 0) τ−1
p (�2

d + �p/2)n−
i+1,2(1 − n+

i,2 − n−
i,2)

(0, 0, 0, 0, ±1, 0, 0, 0) τ−1
p n±

i,1

(0, 0, 0, 0, 0, ±1, 0, 0) τ−1
p n±

i,2

(0, 0, 0, 0, 0, 0, 1, 0) τ−1
× n+

i,1(1 − n+
i,2 − n−

i,2)
(0, 0, 0, 0, 0, 0, −1, 0) τ−1

× n+
i,2(1 − n+

i,1 − n−
i,1)

(0, 0, 0, 0, 0, 0, 0, 1) τ−1
× n−

i,1(1 − n+
i,2 − n−

i,2)
(0, 0, 0, 0, 0, 0, 0, −1) τ−1

× n−
i,2(1 − n+

i,1 − n−
i,1)

The configuration of the system at any time τ is described
by n(τ ) ≡ {n+

i, j (τ ), n−
i, j (τ )} where the occupation variables

take the values

(n+
i, j (τ ), n−

i, j (τ )) = {(1, 0), (0, 1), (0, 0)} (A1)

depending on whether the ith site of the j lane is occu-
pied by a particle of species (+) or (−), or unoccupied,

respectively. The simple exclusion interactions ensure that at
any given time, no more than one particle of either species
occupies a site. The system configuration evolves in time due
to same-lane biased hopping, tumbling, and lane crossing. The
changes in occupation variables of a site relate to counters
associated to the dynamical events in the infinitesimal time
interval between τ and τ + dτ :

n±
i,1(τ + dτ ) − n±

i,1(τ ) = B±
i−1,1(τ ) − B±

i,1(τ ) ∓ Ti,1(τ ) − L±
i (τ ), (A2a)

n±
i,2(τ + dτ ) − n±

i,2(τ ) = B±
i−1,2(τ ) − B±

i,2(τ ) ∓ Ti,2(τ ) + L±
i (τ ), (A2b)

where Bσ
i, j (τ ) is the net number of same-lane hopping of the σ -species particles between the ith and (i + 1)th sites of the jth

lane; Lσ
i is the net number of lane crossings of the σ -species particles from the (i, 1)th site to the (i, 2)th site; Ti, j (τ ) corresponds

the net number of (+)-species to (−)-species tumblings at the ith site of the j lane. For an infinitesimal dτ , the various possible
values that these variables can take are listed in Table I. The rates ensure the exclusion condition and preserve the total number
of particles.

Our interest lies in determining the probability that the system starting from an initial configuration n(0) evolves into a final
configuration n(T ). This transition probability can be written as a path integral over all possible evolutions of the trajectories
{n(τ ),B(τ ),T (τ ),L(τ )} as

Pr[n(T ) | n(0)] =
∫ n(T )

n(0)
[Dn]

〈
T −dτ∏
τ=0

L∏
i=1

(
δn±

i,1(τ+dτ )−n±
i,1(τ ),B±

i−1,1(τ )−B±
i,1(τ )∓Ti,1(τ )−L±

i (τ )

× δn±
i,2(τ+dτ )−n±

i,2(τ ),B±
i−1,2(τ )−B±

i,2(τ )∓Ti,2(τ )+L±
i (τ )

)〉
{B(τ ),T (τ ),L(τ )}

, (A3)

where the Kronecker-delta function δa,b incorporates the particle conservation in (A2), and the angular brackets denote the
average over histories of {B(τ ),T (τ ),L(τ )}. The path-integral measure on the occupation variables is defined as∫

[Dn] :=
T∏

τ=0

L∏
i=1

2∏
j=1

∏
σ=(±)

1∑
nσ

i, j (τ )=0

. (A4)

We use an integral representation of the Kronecker-delta function δa,b = (2π i)−1
∫ iπ
−iπ d̂n e−n̂(a−b) and introduce a response

variable n̂σ
i, j (τ ) at every site for both species. Subsequently, performing the averages over the variables Bσ

i, j , Ti, j , and Lσ using
Table I, we write the transition probability in an action formulation,

Pr[n(T )|n(0)] =
∫ n(T )

n(0)
[Dn][Dn̂]eK[n,̂n]+H[n,̂n] (A5)
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with the “kinetic” term

K[n, n̂] =
L∑

i=1

2∑
j=1

∑
σ=(±)

[
nσ

i, j (0) n̂σ
i, j (0) − nσ

i, j (T ) n̂σ
i, j (T ) +

∫ T

0
dτ

(
nσ

i, j (τ )
d̂nσ

i, j (τ )

dτ

)]
(A6)

and the “Hamiltonian” term

H[n, n̂] = �2
d

τp

L∑
i=1

2∑
j=1

∑
σ=(±)

∫ T

0
dτ
[(

en̂σ
i+1, j−n̂σ

i, j − 1
)
nσ

i, j (1 − ni+1, j ) + (en̂σ
i, j−n̂σ

i+1, j − 1
)

nσ
i+1, j (1 − ni, j )

]

+ �p

2τp

L∑
i=1

2∑
j=1

∫ T

0
dτ [(en̂+

i+1, j−n̂+
i, j − 1)n+

i, j (1 − ni+1, j ) − (en̂+
i, j−n̂+

i+1, j − 1)n+
i+1, j (1 − ni, j )

− (en̂−
i+1, j−n̂−

i, j − 1)n−
i, j (1 − ni+1, j ) + (en̂−

i, j−n̂−
i+1, j − 1)n−

i+1, j (1 − ni, j )]

+ 1

τp

L∑
i=1

2∑
j=1

∫ T

0
dτ [(en̂−

i, j−n̂+
i, j − 1)n+

i, j + (en̂+
i, j−n̂−

i, j − 1)n−
i, j]

+ 1

τ×

L∑
i=1

∑
σ=(±)

∫ T

0
dτ
[(

en̂σ
i,2−n̂σ

i,1 − 1
)
nσ

i,1(1 − ni,2) + (en̂σ
i,1−n̂σ

i,2 − 1
)
nσ

i,2(1 − ni,1)
]
, (A7)

where ni, j (τ ) =∑σ nσ
i, j (τ ) denotes the total occupation num-

ber of the ith site of j lane at time τ . The path-integral measure
on the conjugate response variable is defined as∫ [

Dn̂
]

:=
T∏

τ=0

L∏
i=1

2∏
j=1

∏
σ=(±)

∫ iπ

−iπ

d̂nσ
i, j (τ )

2π i
. (A8)

1. The hydrodynamic limit

Given the diffusive nature of the dynamics for our quasi-1D
model, the local statistics of occupation variables in a region
of length scale �d reach a local equilibrium over a period of
time scale τp = �2

d/D with respect to a slowly varying density
profile. Considering that, in these length and time scales, the
diffusion dominates over drift or tumbling, this local equilib-
rium measure is best approximated by the product measure,

(A9a)
(n+

i, j (τ ), n−
i, j (τ )) =

⎧⎨⎩(1, 0) with prob. ρ+
i (τ )

(0, 1) with prob. ρ−
i (τ )

(0, 0) with prob. 1 − ρi(τ )
(A9b)
(A9c)

similar to the SSEP on two lanes. Here, ρ±
i (τ ) =

ρ±(i/�d, τ/τp) are slowly varying local average densities with
ρi(τ ) = ρ+

i (τ ) + ρ−
i (τ ).

An important assumption is that ρ±
i (τ ) in the two lanes are

the same. This is justified considering that in the time scale
τp � τ×, particles frequently switch lanes before diffusing on
the lane. This results in fast equilibration of adjacent sites on
the two lanes.

To be consistent with this local equilibrium assumption, the
response variables are also considered as slowly varying and
the same on the two lanes. More precisely,

n̂±
i, j (τ ) = ρ̂±

(
i

�d
,

τ

τp

)
≡ ρ̂±

i (τ ). (A10)

In the hydrodynamic scale, defined by the rescaled coordi-
nates (x, t ) ≡ (i/�d, τ/τp), the hydrodynamics description of

the model is in terms of the evolution of these slowly varying
fields ρ±(x, t ) and ρ̂±(x, t ) gives.

In obtaining the transition probability between the initial
and final hydrodynamic densities, ρ(0) and ρ(T ), from the
action formulation in (A5)–(A7), the leading contribution
comes from typical microscopic configurations associated to
the hydrodynamic fields, such that

∑
i

nσ
i, j (0) n̂σ

i, j (0) �
∑

i

ρσ
i (0)̂ρσ

i (0) and

∑
i

nσ
i, j (T ) n̂σ

i, j (T ) �
∑

i

ρσ
i (T )̂ρσ

i (T ) (A11)

for large �d and τp. Taking the average of Pr[n(T ) | n(0)] in
(A5)–(A7) over occupation variables using the local equi-
librium measure (A9a) gives the transition probability in
hydrodynamic scale,

Pr[ρ(T )|ρ(0)] =
∫ ρ(T )

ρ(0)
[Dρ][Dρ̂]〈eK[n,̂ρ]+H[n,̂ρ]〉{n(τ )}

(A12)
with K and H in (A6) and (A7), respectively.

In performing the average, in the large �d and τp limit, the
local equilibrium probability measures at different times are
assumed to be independent of one another, except correlations
through their slowly varying density fields. This way, the
leading-order behavior of the transition probability,

Pr[ρ(T ) | ρ(0)] �
∫ ρ(T )

ρ(0)
[Dρ][Dρ̂]

T∏
τ=0

〈edτ S(τ )〉n(τ )

× e2
∑L

i=1

∑
σ=(±) (ρ

σ
i (0) ρ̂σ

i (0)−ρσ
i (T ) ρ̂σ

i (T ))

(A13)
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with the action

S (τ ) =
L∑

i=1

2∑
j=1

{ ∑
σ=(±)

(
nσ

i, j

dρ̂σ
i

dτ

)
+ �2

d

τp

∑
σ=(±)

[(
eρ̂σ

i+1−ρ̂σ
i − 1

)
nσ

i, j (1 − ni+1, j ) + (eρ̂σ
i −ρ̂σ

i+1 − 1
)
nσ

i+1, j (1 − ni, j )
]

+ �p

2τp
[(eρ̂+

i+1−ρ̂+
i − 1)n+

i, j (1 − ni+1, j ) − (eρ̂+
i −ρ̂+

i+1 − 1)n+
i+1, j (1 − ni, j ) − (eρ̂−

i+1−ρ̂−
i − 1)n−

i, j (1 − ni+1, j )

+ (eρ̂−
i −ρ̂−

i+1 − 1)n−
i+1, j (1 − ni, j )] + 1

τp
[(eρ̂−

i −ρ̂+
i − 1)n+

i, j + (eρ̂+
i −ρ̂−

i − 1)n−
i, j]

}
, (A14a)

where we used (A11). Notably, the contribution in the action from lane crossing (involving τ×) vanishes due to the fast
equilibration assumption between the two lanes, equating their local densities and conjugate fields in (A10).

Further simplification comes from the dτ → 0 limit, where∏
τ

〈edτ S(τ )〉n(τ ) �
∏
τ

edτ 〈S(τ )〉n(τ ) . (A15)

The averaging of the action essentially reduces to replacing n±
i,1(τ ) and n±

i,2(τ ) by ρ±
i (τ ) in ((A14a) This leads to

Pr[ρ(T ) | ρ(0)] =
∫ ρ(T )

ρ(0)
[Dρ][Dρ̂]e2

∫ T
0 dτ

∑L
i=1 Si , (A16)

where the action is

Si = − ρ̂+
i

dρ+
i

dτ
− ρ̂−

i

dρ−
i

dτ
+ �2

d

τp
[(en̂+

i+1−n̂+
i − 1)n+

i (1 − ni+1) + (en̂+
i −n̂+

i+1 − 1)n+
i+1(1 − ni )

+ (en̂−
i −n̂−

i+1 − 1)n−
i+1(1 − ni )] + �p

2τp
[(en̂+

i+1−n̂+
i − 1)n+

i (1 − ni+1) − (en̂+
i −n̂+

i+1 − 1)n+
i+1(1 − ni )

− (en̂−
i+1−n̂−

i − 1)n−
i (1 − ni+1) + (en̂−

i −n̂−
i+1 − 1)n−

i+1(1 − ni )] + 1

τp
[(en̂−

i, j−n̂+
i, j − 1)n+

i, j + (en̂+
i, j−n̂−

i, j − 1)n−
i, j]. (A17)

In writing (A17), we used an integration by parts in the τ variable to cancel the exponential term outside the averaging in (A13).
For writing the path integral in terms of the hydrodynamic fields, we use the definition of ρ±(x, t ) and ρ̂±(x, t ) in (A9a)

and (A10) and perform gradient expansions, for large �d and τp. Keeping the leading-order terms

Pr[ρ±(x,T )|ρ±(x, 0)] =
∫ ρ±(x,T )

ρ±(x,0)
[Dρ±][Dρ̂±]e−2�d

∫T
0 dt[

∫L
0 dx (̂ρ+∂t ρ++ρ̂−∂t ρ− )−H [̂ρ±,ρ±]] (A18)

with the effective Hamiltonian

H =
∫ L

0
dx{ρ+(1 − ρ)(∂xρ̂+)2 + ρ−(1 − ρ)(∂xρ̂−)2

− [(1 − ρ−)∂xρ+ + ρ+∂xρ− − Peρ+(1 − ρ)]∂xρ̂+
− [(1 − ρ+)∂xρ− + ρ−∂xρ+ + Peρ−(1 − ρ)]∂xρ̂−

+ (e−ρ̂++ρ̂− − 1)ρ+ + (eρ̂+−ρ̂− − 1)ρ−}, (A19)

where we denote T/τp = T and L/�d = L. Note, that in our
choice of rates, the thermal diffusivity, D = �2

d/τp, and Péclet
number, Pe = �p/�d, are kept finite.

a. Action in terms of density and polarization fields

The action in (A18) describes the stochastic hydrodynam-
ics of the model. More convenient hydrodynamic fields for
active matter are the total density (ρ = ρ+ + ρ−) and the
polarization (m = ρ+ − ρ−) fields. By defining the corre-
sponding response fields ρ̂ = (̂ρ+ + ρ̂−)/2 and m̂ = (̂ρ+ −

ρ̂−)/2 in (A18) we get the transition probability

Pr[ρ(x,T ), m(x,T )
∣∣ρ(x, 0), m(x, 0)]

�
∫

[Dρ][Dm][Dρ̂][Dm̂]

× e−2�d
∫T

0 dt [
∫L

0 dx (̂ρ∂t ρ+m̂∂t m)−H [̂ρ,m̂,ρ,m]] (A20)

with the effective Hamiltonian

H =
∫ L

0
dx{ρ (1 − ρ)(∂xρ̂ )2 + ρ(1 − ρ)(∂xm̂)2

+ 2m(1 − ρ)∂xρ̂∂xm̂ − [∂xρ − Pem(1 − ρ)]∂xρ̂

− [(1 − ρ)∂xm + m∂xρ − Peρ(1 − ρ)]∂xm̂

+ 2ρ sinh2 m̂ − m sinh 2m̂}. (A21)

b. Gaussian approximation

The effective Hamiltonian in (A21) is non-Gaussian in
m̂. For most states away from transition lines, fluctuations
are small and it is reasonable to assume m̂ to be small. A
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similar quadratic approximation was done in [32] for a related
dynamics. Keeping up to the quadratic order terms in small m̂,
the Hamiltonian is given by

H =
∫ L

0
dx

[
Sρ,ρ

2
(∂xρ̂ )2 + Sm,m

2
(∂xm̂)2 + 2S f , f m̂2

+ Sρ,m∂xρ̂∂xm̂ + J̄ρ∂xρ̂ + J̄m∂xm̂ − 2J̄ f m̂

]
(A22)

with Sρ,ρ = Sm,m = 2ρ(1 − ρ), S f , f = ρ, Sρ,m = 2m(1 − ρ),
and the average conserved currents due to diffusion drift,

J̄ρ = −∂xρ + Pem(1 − ρ), (A23)

J̄m = −(1 − ρ)∂xm − m∂xρ + Peρ(1 − ρ) (A24)

and the nonconserved tumbling current

J̄ f = m. (A25)

2. The fluctuating hydrodynamics equations

The hydrodynamic action in (A20) with the Gaussian
effective Hamiltonian (A22) is the Martin–Siggia–Rose–
Janssen–De Dominicis action [44–47] of a fluctuating hydro-
dynamics equation,

∂tρ = −∂x

(
J̄ρ − 1√

�d
ηρ

)
, (A26a)

∂t m = −∂x

(
J̄m − 1√

�d
ηm

)
− 2

(
J̄ f − 1√

�d
η f

)
, (A26b)

where η ≡ (ηρ ηm η f )T is a multivariate Gaussian noise vec-
tor, whose probability distribution is

Pr(η) ∼ e−2−1
∫

dt dt ′ dx dx′ η(x,t )T �−1 η(x′,t ′ ) (A27)

with the covariance matrix

� = δ(x − x′)δ(t − t ′)

⎛⎝Sρ,ρ Sρ,m 0
Sρ,m Sm,m 0

0 0 S f , f

⎞⎠. (A28)

APPENDIX B: GENERALIZATION TO d DIMENSIONS

Here, we generalize the action formalism and thus, the
fluctuating hydrodynamic description for our model on a d-
dimensional hypercubic lattice with Ld sites with periodic
boundaries. The lattice sites are indexed by their Cartesian
coordinates (i1, i2, . . . , id ) with ik = {1, 2, . . . , L} for k =
1, 2, . . . , d . We discuss two possible generalizations of the
active dynamics, as described in the main text.

1. Case I: Two-species generalization

This case corresponds to the system composed of parti-
cles of two-species [denoted as (±)] similar to the quasi-1D
model. The (±) particles move persistently in the ±x̂1 direc-
tion (which we refer to as active direction) with the motion
being symmetric along all other directions { ± x̂2, . . . ,±x̂d}
(which we refer to as passive directions). The microscopic
dynamics is defined as

(1) Biased hopping: A (+) particle at site (i1, i2, . . . , id )
hops to the site (i1 ± 1, i2, . . . , id ) at rate (�2

d ± �p/2)/τp and

to the sites (i1, i2 ± 1, . . . , id ), . . . , (i1, i2, . . . , id ± 1) at rate
�2

d/τp, while a (−) particle at site (i1, i2, . . . , id ) hops to the
site (i1 ± 1, i2, . . . , id ) at rate (�2

d ∓ �p/2)/τp and to the sites
(i1, i2 ± 1, · · · , id ), . . . , (i1, i2, . . . , id ± 1) at rate �2

d/τp, pro-
vided that the target site is unoccupied

(2) Tumbling: A (+) particle converts to a (−) particle at
rate 1/τp and vice versa.

Starting from an initial configuration ρ±(x, tini ), the proba-
bility that the system eventually reaches a final configuration
ρ±(x, tfin) has a hydrodynamic path integral description

Pr[ρ±(�x, tfin)|ρ±(�x, tini )]

=
∫

[Dρ±][Dρ̂±]e−�d
d

∫
dt[
∫

d�x (̂ρ+∂t ρ++ρ̂−∂t ρ− )−H [̂ρ±,ρ±]]

(B1)

with the Hamiltonian given by

H =
∫

d�x {ρ+(1 − ρ)| �∇ρ̂+|2 + ρ−(1 − ρ)| �∇ρ̂−|2

− [(1 − ρ−) �∇ρ+ + ρ+ �∇ρ− − Peρ+ (1 − ρ)x̂1] · �∇ρ̂+

− [(1 − ρ+) �∇ρ− + ρ− �∇ρ+ + Peρ−(1 − ρ)x̂1] · �∇ρ̂−

+ (e−ρ̂++ρ̂− − 1)ρ+ + (eρ̂+−ρ̂− − 1)ρ−} (B2)

and where we have denoted ρ = ρ+ + ρ−. The derivation is
following a similar analysis as presented in Appendix A.

The fluctuating hydrodynamic equation corresponding to
this action formalism is given by

∂tρ± = (1 − ρ)∇2ρ± + ρ±∇2ρ ∓ Pe∂x1 [ρ±(1 − ρ)]

∓ (ρ+ − ρ−) + 1

�
d/2
d

( �∇ · �η± ± η f ) (B3)

with the Gaussian noises having zero means and covariances
〈(�η±(�x, t ) · x̂k )(�η±(�x′, t ′) · x̂k′ )〉 = 2ρ±(1 − ρ)δk,k′δ(�x −
�x′)δ(t − t ′) and 〈η f (�x, t )η f (�x′, t ′)〉 = ρδ(�x − �x′)δ(t − t ′).

2. Case II: 2d-species generalization

In this generalization, the system is com-
posed of particles belonging to 2d number
of species (denoted as σ = {(±)k} with
k = 1, 2, . . . , d), corresponding to the possible internal
orientations in the spatial directions r̂k = {±x̂k} with
k = 1, 2, . . . , d . This corresponds to the isotropic
generalization of our quasi-1D model in higher dimensions.
The microscopic dynamics is defined as

(1) Biased-hopping: A particle of (+)k species at site
(i1, i2, . . . , id ) hops to the site (i1, i2, . . . , ik + 1, . . . , id ) at
rate (�2

d + �p/2)/τp and to the other adjacent sites at rate
(�2

d − �p/2)/τp, while a particle of (−)k species at site
(i1, i2, . . . , id ) hops to the site (i1, i2, . . . , ik − 1, . . . , id ) at
rate (�2

d + �p/2)/τp and to the other adjacent sites at rate
(�2

d − �p/2)/τp, provided that the target site is unoccupied.
(2) Tumbling: A particle of σ species converts to any other

species at rate 1/τp.
Starting from an initial configuration ρσ (x, tini ), the proba-

bility that the system eventually reaches a final configuration
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ρσ (x, tfin) has a hydrodynamic path integral description

Pr[ρσ (�x, tfin)
∣∣ρσ (�x, tini )]

�
∫

[Dρ][Dρ̂]e−�d
d

∫
dt[
∫

d�x∑σ (̂ρσ ∂t ρσ )−H [ρσ ,̂ρσ ]], (B4)

where the Hamiltonian is given by

H =
∫

d�x
∑

σ

{
ρσ (1 − ρ)| �∇ρ̂σ |2 − [(1 − ρ) �∇ρσ

+ ρσ �∇ρ − Peρσ (1 − ρ)r̂σ ] · �∇ρ̂σ

+
∑
σ ′ 
=σ

ρσ (eρ̂σ ′−ρ̂σ − 1)

}
(B5)

and we have denoted ρ =∑σ ρσ .
Corresponding to this action formalism, the fluctuating

hydrodynamics for the σ -species particle is then given by

∂tρσ = (1 − ρ)∇2ρσ + ρσ ∇2ρ − Pe �∇[ρσ (1 − ρ)] · r̂σ

−
∑
σ ′ 
=σ

(ρσ − ρσ ′ ) + 1

�
d/2
d

⎛⎝ �∇ · �ησ +
∑
σ ′ 
=σ

ησ→σ ′

⎞⎠
(B6)

with the Gaussian noises having zero means and covariances
〈(�ησ (�x, t ) · x̂k )(�ησ ′ (�x′, t ′) · x̂k′ )〉 = 2ρσ (1 − ρ) δσ,σ ′δk,k′δ(�x −
�x′)δ(t − t ′) and 〈ησ→σ ′ (�x, t )ηψ→ψ ′ (�x′, t ′)〉 = (ρσ +
ρσ ′ )δσ,ψδσ ′,ψ ′δ(�x − �x′)δ(t − t ′).

APPENDIX C: THE STRICTLY 1D MODEL
WITH EXCHANGE DYNAMICS

Until now, we have strictly imposed the exclusion con-
straint which forbids two particles in adjacent sites to cross
each other on the 1D lattice. However, in certain physical
examples, this single-file constraint may be partially relaxed.
For example, the dynamics of active particles inside a channel
whose width is of the order of the diameter of the particles
[41]. Motivated by this scenario, we discuss the case where
two adjacent particles on the 1D lattice are allowed to ex-
change their positions at a constant rate, in addition to their
usual biased-hopping and tumbling dynamics described in
items (1) and (2) of the main text.

Precisely, we consider the model on a one-dimensional
lattice with the following dynamics:

(1) Biased hopping: A (+) particle at site i hops to site
i ± 1 at rate (�2

d ± �p/2)/τp while a (−) particle at site i hops
to site i ± 1 at rate (�2

d ∓ �p/2)/τp, provided that the target site
is empty.

(2) Tumbling: A particle changes its internal orientation
[i.e., (+) to (−) and vice versa] at rate 1/τp.

(3) Particle-position exchanging: A pair of (±) particles at
sites i and i + 1, exchanges their positions at rate �2

e/τp.
Following the same procedure outlined in Appendix A,

we write the transition probability of the system starting
from an initial configuration ρ±(x, tini ) and reaching a final

configuration ρ±(x, tfin) in terms of a path integral

Pr[ρ(x, tfin), m(x, tfin)
∣∣ρ(x, tini ), m(x, tini )]

�
∫

[Dρ][Dm][Dρ̂][Dm̂]e−�d
∫

dt[
∫

dx (̂ρ∂t ρ+m̂∂t m)−H [ρ,m,̂ρ,m̂]],

(C1)

for large �d and τp(= �2
d/D), keeping E = �2

e/�
2
d finite, with

the effective Hamiltonian as given in (A22) with the modified
terms Sm,m = 2[ρ(1 − ρ + Eρ) − Em2] and J̄m = −(1 − ρ +
E ρ)∂xm − (m − E m)∂xρ + Peρ(1 − ρ).

The corresponding fluctuating hydrodynamic equation for
the density field is identical to the one in (A26a) with the
same parameters, while that for the polarization field is similar
to the one in (A26b) but with the modified values of J̄m and
〈ηm(x, t )ηm(x′, t ′)〉.

The E = 1 limit corresponds to the lattice-gas model in
[30] for which the fluctuating hydrodynamic description was
derived [32] using an ingenious mapping to known integrable
models. The mapping does not straightforwardly extend for
the dynamics with arbitrary E .

Remark. In the E = 0 limit, the hydrodynamic description
breaks down, as discussed in the main text and also in the next
Appendix.

APPENDIX D: NUMERICAL EVIDENCE
FOR LOCAL EQUILIBRIUM

Our construction of the fluctuating hydrodynamics cru-
cially relies on an assumption of local equilibrium. For our
choice of rates in items (1)–(3) in the main text, diffusion
dominates in length scales of order �d, and consequently, the
nearby sites within this diffusive length are expected to reach
a local equilibrium in times τp ∼ �2

d around a quasistatic aver-
age density defined in (A9a). A consequence of this particular
local equilibrium assumption is that the total number N of
particles, irrespective of their polarity, in a region of l ∼ �d

sites centered around i � x�d at time τ � tτp is given by the
binomial distribution [66]

Prl (N |ρ(x, t )) =
(

l

N

)
ρ(x, t )N (1 − ρ(x, t ))l−N , (D1)

where ρ(x, t ) is the slowly varying local average density.
Taking N and l to be large, while keeping n = N/l finite, a
Stirling’s approximation gives

Prl (n|ρ) � exp

{
− l

[
n ln

n

ρ
+ (1 − n) ln

1 − n

1 − ρ

]}
. (D2)

In the homogeneous stationary state, i.e., outside the bin-
odal region, the most probable local average density profile is
uniform ρ(x) = ρ0 everywhere. The probability Pr(n) of the
number density of particles sampled over random boxes of
fixed length l in the bulk comes from (D2) corresponding to
this typical average density ρ0, leading to

Pr(n) = Prl (n|ρ0). (D3)

In the phase-separated stationary state, i.e., inside the spin-
odal region, there are two typical average densities, ρl and ρg,
corresponding to the liquid and the gas phases, respectively. In
a random sampling of the box position, the probability for the
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FIG. 7. For the quasi-1D model: The number density distribution
from Monte Carlo simulation compared with the distributions (D3)
and (D4) for appropriate phases in the two-lane ladder model defined
in the main text. The bulk-average density is ρ0 = 0.75. For (a), the
parameter values correspond to the homogeneous phase and for (b),
they are for the phase-separated state.

box to be inside the liquid or the gas region is proportional to
their volume fraction. This results in the probability of number
density inside randomly sampled boxes,

Pr(n) = v Prl (n|ρl ) + (1 − v)Prl (n|ρg), (D4)

where v = (ρ0 − ρg)/(ρl − ρg) denotes the volume fraction
of the liquid phase.

The number-density distributions in (D3) and (D4) are
an indirect test of the local equilibrium assumption. To ver-
ify this crucial assumption, we numerically measure Pr(n)
from samples of stationary-state configurations generated us-
ing Monte Carlo simulation of the quasi-one-dimensional
dynamics. Comparison of the numerical results against the
distributions (D3) and (D4) are shown in Fig. 7. The left panel,
corresponding to a parameter regime outside the binodal (high
density, low activity), thus in the homogeneous phase, shows
excellent agreement with (D3). The right panel depicts a high-
density, high-activity regime where MIPS forms, as evidenced
by the bimodal distribution. There is good agreement with
(D4), except slight deviations originating from contributions
near the liquid-gas interface, which are not included in (D4).

A similar test of local equilibrium for the strictly 1D case,
shows a different scenario than in the quasi-one-dimensional
case. At very low Péclet value and low density, the local
equilibrium assumption is consistent as shown in the left
panel of Fig. 8. However, at higher Péclet, but still inside the

FIG. 8. For the strictly-1D model: Comparison of Monte Carlo
results of number density distribution and (D3). Panel (a) shows good
agreement, supporting local equilibrium for bulk average density
ρ0 = 0.25 and low Péclet number. However, as shown in panel (b)
at higher Péclet but at the same ρ0, even though the system is in a
homogeneous phase, (D3) significantly differs from the numerically
observed distribution, indicating a breakdown of our local equilib-
rium assumption.

homogeneous phase, the number distribution differs from the
theoretical prediction (D3), suggesting a breakdown of our
specific assumption of local equilibrium.

The consequence of local equilibrium for quasi-one-
dimension and its breakdown for strict one dimension is
reflected in the validity of hydrodynamics in describing the
Monte Carlo evolution, shown in Figs. 9 and 10.

APPENDIX E: THE SPINODAL ANALYSIS

The noiseless hydrodynamics is obtained from (A26) by
setting the noise terms equal to zero

∂tρ = −∂xJ̄ρ, (E1a)

∂t m = −∂xJ̄m − 2J̄ f , (E1b)

where the conservative currents J̄ρ and J̄m arising due to
biased-diffusion dynamics are given in (A23) and (A24), re-
spectively, while the nonconservative current J̄ f arising due to
tumbling events is given in (A25).

A particular solution for the stationary state of (E1) is given
by the homogeneous profiles ρ(x, t ) = ρ0 and m(x, t ) = 0. A
linear stability analysis of the homogeneous solution gives the
spinodal curves for MIPS. Our analysis is similar to [30,50]
used in a related problem. We perturb the stationary ho-
mogeneous profiles as ρ(x, t ) = ρ0 + δρ(x, t ) and m(x, t ) =
δm(x, t ) with δρ and δm being small fluctuations in the hy-
drodynamic fields. This allows us to write the hydrodynamics
for the small perturbations up to the leading order as

∂t (δρ) = ∂2
x (δρ) − Pe(1 − ρ0)∂x(δm), (E2a)

∂t (δm) = (1 − ρ0)∂2
x (δm) − Pe(1 − 2ρ0)∂x(δρ) − 2δm.

(E2b)

Defining the continuous Fourier transformation(
δ̃ρ(k, t )

δ̃m(k, t )

)
= 1

L/�d

∫ L/�d

0
dx e−ikx

(
δρ(x, t )

δm(x, t )

)
(E3)

for a large L/�d, we can rewrite the Fourier-transformed noise-
less hydrodynamic equations for the small fluctuating fields as

∂t

(
δ̃ρ(k, t )

δ̃m(k, t )

)
=
(

−k2 −i Pe(1 − ρ0)k

i Pe(2ρ0 − 1)k −(1 − ρ0) k2 − 2

)

×
(

δ̃ρ(k, t )

δ̃m(k, t )

)
, (E4)

where k = 2πn�d/L with n = 0,±1,±2, · · · . The eigenval-
ues of the above matrix are given by

λ±(k) = − 1 −
(

1 − ρ0

2

)
k2

±
√

1 + [Pe2(1 − ρ0)(2ρ0 − 1) − ρ0]k2 + ρ2
0 k4

4
,

(E5)

which obey the symmetry λ±(−k) = λ±(k).
The two eigenvalues λ+(0) = 0 and λ−(0) = −2 cor-

responding to the k = 0 mode respectively describe the
invariance of the spatially integrated total density

∫
dx ρ(x, t )
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FIG. 9. Validity of noiseless hydrodynamics in the quasi-1D model: A comparison of the evolution of density ρ(x, t ) and polarization
m(x, t ) from Monte Carlo simulation of the microscopic dynamics and from the noiseless hydrodynamics in (A26). The evolution starts
from a step initial profile for both ρ(x, 0) and m(x, 0), centered around the middle of the system. The solid lines represent noiseless
hydrodynamics evolution (A26), while the markers represent Monte Carlo simulations of the microscopic dynamics. To compare with the
noiseless hydrodynamics, the Monte Carlo results are binned over 20 sites and averaged over 64 realizations. The hydrodynamic simulations
are performed in the domain [0, L/�d = 4] using a pseudospectral method with 29 modes, described later in Appendix H. The plots are for
ρ0 = 0.25 and the system size L = 4�d with the dynamical parameters �d = 128, τp = �2

d, �p = 2�d, and τ× = 0.05, which corresponds to
Pe = 2. These parameters correspond to a homogeneous stationary state.

and the exponential decay of the spatially integrated polar-
ization M(t ) = ∫ dx m(x, t ) = M(0)e−2t , which also directly
follows from (E1).

The homogeneous solutions become linearly unstable at
large wavelengths when one of the eigenvalues corresponding
to the first mode [i.e., k = ±2π/(L/�d )] becomes positive,
λ+ (2π/[L/�d )] > 0. This, consequently, puts a condition on
the macroscopic size of the system as

L/�d >
2π

√
1 − ρ0√

Pe2(1 − ρ0)(2ρ0 − 1) − 2
. (E6)

Note that the term within the square root in the denominator
must be positive, i.e.,

Pe2(1 − ρ0)(2ρ0 − 1) > 2. (E7)

Interestingly, this is the same instability condition found ear-
lier [30], where the single-file constraint is not respected and
a ± pair of particles at neighboring sites is allowed to ex-
change their positions at a rate �2

d/τp. The above condition is

equivalent to (
ρ0 − ρs

l

)(
ρ0 − ρs

h

)
< 0, (E8)

where

ρs
l = 3

4
− 1

4

√
1 −

(
4

Pe

)2

and ρs
h = 3

4
+ 1

4

√
1−
(

4

Pe

)2

.

(E9)

Therefore, for Pe > 4, the system is linearly unstable in the
spinodal region given by ρ0 ∈ [ρs

l , ρ
s
h].

APPENDIX F: THE BINODAL ANALYSIS

For a system in a phase-separated state, a high-density
liquidlike phase and a low-density gaslike phase coexist. The
binodal or the coexistence curve gives the two densities, de-
noted by ρl and ρg respectively, as a function of a control
parameter, which in our case is the Péclet number Pe. To
compute the binodal, we use the procedure followed in

FIG. 10. Breakdown of noiseless hydrodynamics in the strictly 1D model: A similar comparison between hydrodynamic evolution and
Monte Carlo simulations of microscopic dynamics for the single-lane model, for identical parameter values as in Fig. 9. The noticeable
deviations between the microscopic and the hydrodynamics indicate unsuitability of the latter for the 1D model.
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[30,50], which we outline below for the convenience of the
readers.

The stationary state is given by ∂tρ = 0, which has a zero
flux due to symmetry, which gives us J̄ρ = 0. Using (A23),
we obtain

m = 1

Pe

∂xρ

1 − ρ
= − 1

Pe
∂x[ln (1 − ρ)]. (F1)

The stationary state for the polarization field, i.e., ∂t m = 0
gives us ∂xJ̄m − 2J̄ f = 0, which, using (A24) and (A25) and
the above expression of m, can be rewritten as ∂xg = 0, where

g(ρ) = g0(ρ) + 
(ρ)(∂xρ)2 − κ ∂2
x ρ = const, with (F2)

g0(ρ) = Peρ(1 − ρ) − 2

Pe
ln (1 − ρ), (F3)


(ρ) = − 2

Pe

1

1 − ρ
and κ = 1

Pe
. (F4)

The spinodal curve is equivalently defined by g′
0(ρ) = 0,

whose two solutions are given by ρs
l and ρs

h, respectively
[see (E9)].

1. First relation

In the coexisting phase, density is homogeneous in the
liquid (ρl ) and gas (ρg) phases: ∂xρ = ∂2

x ρ = 0 in the two
phases, giving

g0(ρg) = g0(ρl ) ≡ ḡ(Pe). (F5)

For Pe < 4, g0(ρ) is a monotonic function of ρ. On the
other hand, it has a maximum and minimum at ρs

l and ρs
h,

respectively, for Pe > 4 (see Fig. 11). For Pe = 4, there is an
inflection point at ρ = 3/4, where both g′

0(ρ) and g′′
0(ρ) are

zero. For Pe > 4, any line g0(ρ) = const ∈ (g0(ρs
l ), g0(ρs

h)),
intersects the g0(ρ) vs ρ curve at three points, and therefore,
there exists an infinite number of solutions for (F5). Hence,
we need another relation for fixing the coexistence densities,
which we discuss below.

2. Second relation

Consider the following integral across the liquid-gas inter-
face in a phase-separated state

I =
∫ xl

xg

dx g(ρ)∂xR(ρ), (F6)

where R(ρ) is some function of ρ, and xg and xl are any two
points inside the gas and liquid phases, respectively. Since
g(ρ) = ḡ is constant, the above integral yields

I = ḡ[R(ρl ) − R(ρg)]. (F7)

On the other hand, substituting the expression of g(ρ) from
(F2) in the integral gives

I =
∫ xl

xg

dx g0(ρ)∂xR(ρ)

+
∫ xl

xg

dx
[

(ρ)R′(ρ)(∂xρ)2 − κR′(ρ) ∂2

x ρ
]
∂xρ. (F8)

FIG. 11. The binodal curves are given by the pair of conditions
g0(ρg) = g0(ρl ) and h0(ρg) = h0(ρl ), where the expressions of g0(ρ )
and h0(ρ ) are given by (F3) and (F16), respectively. Here, g0(ρ ) and
h0(ρ ) are plotted as a function of ρ on the left and right figures,
respectively. For Pe < 4, both are monotonic functions of ρ. On the
other hand, for Pe, both g0(ρ ) and h0(ρ ) have a minimum and a
maximum. For Pe = 4, there is an inflection point at ρ = 3/4, where
the first and the second derivatives of both g0 and h0 vanish.

Now we choose R(ρ) such that the second integral is zero.
Consider the relation

∂x[A(ρ)(∂xρ)2] = [A′(ρ)(∂xρ)2 + 2A(ρ)∂2
x ρ
]
∂xρ. (F9)

Choosing 2A(ρ) = −κR′(ρ) and κR′′(ρ) = −2
(ρ)R′(ρ),
the above relation gives

−∂x

[
κ

2
R′(ρ)(∂xρ)2

]
=[
(ρ)R′(ρ)(∂xρ)2 − κR′(ρ)∂2

x ρ
]
∂xρ.

(F10)

Since ∂xρ = 0 in the liquid and the gas phases, the integral
over the above expression across the interface is zero. Hence,
defining g0(ρ) = dφ(R)/dR, from (F8) we get

I = φ(Rl ) − φ(Rg), (F11)

where Rl = R(ρl ) and Rg = R(ρg). Combining the two ex-
pressions of I , (F7) and (F11), we arrive at the relation

h0(Rg) = h0(Rl ) where h0(R) = Rφ′(R) − φ(R). (F12)
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FIG. 12. Metastability: Numerical evolution of the noiseless hydrodynamic equation (A26) for regions outside the spinodal curve but
inside the binodal curve demonstrates that a homogeneous solution is linearly stable, but nonlinear instabilities could drive the system to an
inhomogeneous MIPS state. The two panels correspond to two initial states with the same initial Gaussian total density profile ρ(x, 0) but
different initial polarization fields m(x, 0) = A sin 2πx/L with amplitude A = 0.02 for panel (a) and A = 0.2 for panel (b). The parameters
Pe = 10 and ρ0 = 0.4 are for a region between the spinodal and binodal curves. The small inhomogeneity of m(x, 0) in panel (a) drives the
system towards a uniform final state, whereas larger inhomogeneity in panel (b) leads to an inhomogeneous MIPS state.

For the particular form of 
(ρ) given above, the above
differential equation of R(ρ) can be solved exactly to give (up
to an additive and a multiplicative constant)

R(ρ) = 1

3

1

(1 − ρ)3
. (F13)

Inverting the above equation, we can express ρ(R) = 1 −
(3R)−1/3, which in turn gives

φ′(R) = Pe[1 − (3R)−1/3](3R)−1/3 + 2

3Pe
ln (3R). (F14)

Now, integrating with respect to R gives (up to an additive
constant, which does not show up in the relation)

φ(R) = Pe

[
(3R)1/3

2
− 1

]
(3R)1/3 + 2R

3Pe
[ln (3R) − 1].

(F15)

Therefore, h0[R(ρ)] can be expressed in terms of ρ explic-
itly as

h0(ρ) = 2

9 Pe

1

(1 − ρ)3
+ Pe

6

3 − 4ρ

(1 − ρ)2
(F16)

and the second coexistence relation can now be written as

h0(ρg) = h0(ρl ). (F17)

The qualitative behavior of h0 is similar to that of g0(ρ)
(see Fig. 11). For Pe < 4, h0(ρ) is a monotonic function of ρ,
whereas for Pe > 4, it has a maximum and a minimum at ρs

l
and ρs

h, respectively. For Pe = 4, there is an inflection point at
ρ = 3/4, where both h′

0(ρ) and h′′
0 (ρ) are zero.

Interestingly, the two solutions of h′
0(ρ) = 0 are the same

as that of g′
0(ρ) = 0 and are given by ρs

l and ρs
h, respectively

[see (E9)]. This follows from using φ′(R) = g0(ρ), writing
h0(ρ) = R(ρ)g0(ρ) − φ[R(ρ)] and taking a derivative with
respect to ρ

h′
0(ρ) = R(ρ)g′

0(ρ) + R′(ρ)g0(ρ) − R′(ρ)φ′(R)

= R(ρ)g′
0(ρ). (F18)

The binodal curves are obtained by numerically solving
the relations g0(ρg) = g0(ρl ) and h0(ρg) = h0(ρl ), where the
expressions of g0(ρ) and h0(ρ) are given by (F3) and (F16),
respectively.

Remark. In the intermediate region between the spinodal
and binodal curves, the uniform homogeneous solution of
the noiseless hydrodynamics is linearly stable, although there
are two additional solutions corresponding to the two binodal
densities ρl and ρg. In practice, these solutions are selected
depending on the initial state, as shown in Fig. 12.

APPENDIX G: THE TWO-POINT CORRELATIONS
IN THE STATIONARY-STATE HOMOGENEOUS PHASE

In this appendix, we present the derivation of the two-point
correlations of the hydrodynamic fields in the stationary state
of the homogeneous phase of our quasi-1D model. This serves
as an indirect check of our fluctuating hydrodynamic descrip-
tion, reported in Eq. (1) of the main text. Our result for the
correlations is valid up to the leading order in 1/�d and for this
purpose, we use the Gaussian noise approximation, ignoring
any subleading terms.

The analysis follows a standard approach [32,67,68] for
correlations using fluctuating hydrodynamics. We begin our
derivation by adding small fluctuations, δρ(x, t ) and δm(x, t ),
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which are of at most O(1/
√

�d ) around the stationary-state ho-
mogeneous fields, ρ(x, t ) = ρ0 and m(x, t ) = 0, respectively.
The definition of the two-point correlations of the fluctuating
fields then readily follows:

Cρρ (x, x′) = 〈δρ(x, t ) δρ(x′, t )〉, (G1a)

Cρm(x, x′) = 〈δρ(x, t ) δm(x′, t )〉, and (G1b)

Cmm(x, x′) = 〈δm(x, t )δm(x′, t )〉. (G1c)

Putting these perturbed total density and polarization fields
in Eq. (1) of the main text and keeping only the terms which
are at most linear in δρ and δm, we obtain

∂t

(
δρ(x, t )

δm(x, t )

)
= Dx

(
δρ(x, t )

δm(x, t )

)
+ F(x, t ) (G2a)

where the deterministic, Dx, and fluctuating, F(x, t ), compo-
nents are respectively given as

Dx =
(

∂2
x −Pe(1 − ρ0)∂x

−Pe(1 − 2ρ0)∂x (1 − ρ0)∂2
x − 2

)
, (G2b)

F(x, t ) =
√

2ρ0

�d

( √
1 − ρ0 ∂xηρ√

1 − ρ0 ∂xηm + √
2 η f

)
, (G2c)

where ηρ (x, t ), ηm(x, t ), and η f (x, t ) are delta-correlated
Gaussian white noises with unit self-covariance and zero cross
covariance.

In the large hydrodynamic system size limit L/�d → ∞,
we define the continuous-Fourier-transformed fluctuating hy-
drodynamic fields as(

δρ̃(k, t )

δm̃(k, t )

)
= 1

2π

∫ ∞

−∞
dx

(
δρ(x, t )

δm(x, t )

)
e−ikx (G3)

and subsequently rewrite the fluctuating hydrodynamic equa-
tions in the Fourier space

∂t

(
δρ̃(k, t )

δm̃(k, t )

)
= D̃k

(
δρ̃(k, t )

δm̃(k, t )

)
+ F̃(k, t ) (G4a)

with the deterministic and fluctuating components in the
Fourier space respectively given by

D̃k =
(

−k2 −i Pe(1 − ρ0)k

−i Pe(1 − 2ρ0)k −(1 − ρ0)k2 − 2

)
, (G4b)

F̃(k, t ) =
√

2ρ0

�d

(
i
√

1 − ρ0 k η̃1(k, t )√
(1 − ρ0) k2 + 2 η̃2(k, t )

)
, (G4c)

where η̃1(k, t ) and η̃2(k, t ) are Gaussian noises with mean and
covariance

〈ηα (x, t )〉 = 0 and (G4d)

〈ηα (x, t ) ηα′ (x′, t ′)〉 = δα,α′δ(x − x′)δ(t − t ′), (G4e)

where α, α′ = {1, 2}.
The differential equations in (G4a) can now be readily

solved, which leads to the solutions of the fluctuation fields
in Fourier space in terms of D̃k and F̃(k, t ) as(

δρ̃(k, t )

δm̃(k, t )

)
=
∫ t

−∞
dt ′eDk (t−t ′ )F(k, t ′). (G5)

The two-point correlations of the fluctuating hydro-
dynamic fields in the Fourier space is then obtained
using the Fourier-transformed definitions of (G1), which
are given by Cρρ (k, k′) = 〈δρ(k, t )δρ(k′, t )〉, Cmm(k, k′) =
〈δm(k, t )δm(k′, t )〉, and Cρm(k, k′) = 〈δρ(k, t )δm(k′, t )〉. For
instance, the correlation between the total density fields of two
points in Fourier space is given by

C̃ρρ (k, k′) = ρ0(1 − ρ0){(1 − ρ0)(2 − ρ0)k4 + [4(1 − ρ0) + Pe2(1 − ρ0)2 + χ2]k2 + 2[2 + Pe2(1 − ρ0)]}
{(1 − ρ0)(2 − ρ0)k4 + [2(1 − ρ0) + (2 − ρ0)χ2]k2 + 2χ2}�d

δ(k + k′), (G6)

where the parameter

χ =
√

2 − Pe2(1 − ρ0)(2ρ0 − 1) (G7)

determines the onset of linear instability of the stationary-state homogeneous fields under small perturbations, i.e., the spinodal
region.

The k = (k′ =)0 mode relates to the spatial integral of the fluctuations of the total density field,
∫

dx δρ(x, t ). Although
the total number of particles in the two-lane system as a whole is conserved, the number of particles in each of the lanes is
allowed to fluctuate due to the lane-crossing dynamics. This particle number fluctuation in the two lanes of the system can be
assumed to be independent of each other in the long-time limit, which implies that the 2 × C̃ρρ (k, k′) must vanish when k =
(k′ =)0. We take this into account by including an additional k = (k′ =)0 term proportional to the infinitesimal intermode width
�d/L, such that the correlation in (G6) is now given as

C̃ρρ (k, k′) =
[

ρ0(1 − ρ0){(1 − ρ0)(2 − ρ0)k4 + [4(1 − ρ0) + Pe2(1 − ρ0)2 + χ2]k2 + 2[2 + Pe2(1 − ρ0)]}
{(1 − ρ0)(2 − ρ0)k4 + [2(1 − ρ0) + (2 − ρ0)χ2]k2 + 2χ2}�d

−ρ0(1 − ρ0)[2 + Pe2(1 − ρ0)]

2χ2L
δ(k)

]
δ(k + k′). (G8)
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FIG. 13. Correlations in the homogeneous phase in the quasi-1D model: An excellent agreement between the hydrodynamic predictions in
(G11), indicated by solid lines, and their results from a Monte Carlo simulation, indicated by plot markers. The results are for the homogeneous
phase with ρ0 = 0.25, Pe = 2. For the simulation, the microscopic correlations Cρρ (i, i′) = 〈nini′ 〉 − 〈ni〉〈ni′ 〉, Cρm(i, i′) = 〈niMi′ 〉 − 〈ni〉〈Mi′ 〉,
and Cmm(i, i′) = 〈MiMi′ 〉 − 〈Mi〉〈Mi′ 〉, where i and i′ denote the lattice sites, ni = {0, 1} and Mi = {0,±1} denote the total occupation and
polarization of the ith site, and 〈·〉 denotes the averaging over time after reaching the stationary state. Using the translational symmetry, due to
periodic boundary conditions, spatial averaging is conducted to further refine the averaging. For comparing with the fluctuating hydrodynamics
results, we use the rescaling as x − x′ = (i − i′)/�d. Evidently, the Cρρ (x) and Cmm(x) are symmetric in x, while the Cρm(x) is antisymmetric
in x.

Similarly, the correlations of total density with polarization and polarization with polarization are respectively given as

C̃ρm(k, k′) = −2 i Peρ2
0 (1 − ρ0)[(1 − ρ0)k2 + 2]k

{(1 − ρ0)(2 − ρ0)k4 + [2(1 − ρ0) + (2 − ρ0)χ2]k2 + 2χ2}�d
δ(k + k′), (G9)

C̃mm(k, k′) = ρ0{(1 − ρ0)(2 − ρ0)k4 + [2(2 − ρ0) + Pe2(1 − ρ0) (1 − 2ρ0)2 + (1 − ρ0)χ2]k2 + 2χ2}
{(1 − ρ0)(2 − ρ0)k4 + [2(1 − ρ0) + (2 − ρ0)χ2]k2 + 2χ2}�d

δ(k + k′). (G10)

In the above two expressions of the correlations involving the polarization fields, we do not have any additional k = (k′ =)0
term, as the spatially-integrated fluctuating polarization fields

∫
dx δm(x, t ) do not vanish.

Finally, we take the inverse Fourier transformation of the expressions in (G8) and (G9), which gives the two-point correlations
for the fluctuating hydrodynamic fields in the stationary-state homogeneous phase. These are respectively given by

Cρρ (x, x′) = Pe2ρ2
0 (1 − ρ0)2

[2 − Pe2(1 − ρ0)(2 − ρ0)(2ρ0 − 1)]�d

⎡⎣√ 2

2 − ρ0
e−|x−x′|/ξ1 +

√
1 − ρ0

χ2 − 2

χ
e−|x−x′|/ξ2

⎤⎦
+ ρ0 (1 − ρ0)

�d
δ(x − x′) − ρ0(1 − ρ0)[2 + Pe2(1 − ρ0)]

2χ2L
, (G11a)

Cρm(x, x′) = sgn(x − x′)
Peρ2

0 (1 − ρ0)

[2 − Pe2(1 − ρ0)(2 − ρ0)(2ρ0 − 1)]�d

[
2

2 − ρ0
e−|x−x′|/ξ1 + (χ2 − 2)e−|x−x′|/ξ2

]
, (G11b)

Cmm(x, x′) = Pe2ρ2
0 (1 − ρ0)(1 − 2ρ0)

[2 − Pe2(1 − ρ0)(2 − ρ0)(2ρ0 − 1)]�d

⎛⎝√ 2

2 − ρ0
e−|x−x′|/ξ1 − χ√

1 − ρ0
e−|x−x′|/ξ2

⎞⎠+ ρ0

�d
δ(x − x′), (G11c)

where the two “correlation lengths” corresponding to the
length scales of the exponentially decaying long-range cor-
relations are

ξ1 =
√

1 − ρ0

2
and ξ2 =

√
1 − ρ0

χ
. (G12)

Two important observations are in order at this point. First,
all three correlations show a divergence when 2 − Pe2(1 −
ρ0)(2 − ρ0)(2ρ0 − 1) −→ 0. In fact, our results for the cor-
relations are not valid in the region 2 − Pe2(1 − ρ0)(2 −
ρ0)(2ρ0 − 1) � 0. Second, ξ1 > ξ2 in the region 2 − Pe2(1 −
ρ0)(2 − ρ0)(2ρ0 − 1) > 0. Consequently, the first exponen-
tial term in each of the correlations dominates over the

second exponential term when the two points in space are
far-separated, i.e., x − x′ � 0.

There is an excellent agreement, shown in Fig. 13, between
the hydrodynamic results for the correlations in (G11) and
corresponding results from a direct Monte Carlo simulation.

Remark. For the strictly 1D model, one would arrive
at the same two-point correlations in the stationary-state
homogeneous phase owing to the similar fluctuating hydro-
dynamic equations in the two geometries. Only the additional
shift corresponding to the zero momentum mode in the
strictly 1D model would be twice that in the quasi-1D model.
However, due to a breakdown of hydrodynamics, the ex-
act correlation functions obtained from the Monte Carlo
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FIG. 14. Correlations in the homogeneous phase in the strictly 1D model: Similar comparison of correlations in the single-lane model for
parameters identical to Fig. 13. The significant deviation between the hydrodynamic and the Monte Carlo results indicate the breakdown of
the former in the strict 1D geometry.

simulations show (see Fig. 14) a clear mismatch with the
analytical expressions.

APPENDIX H: DETAILS OF THE NUMERICAL
SIMULATIONS

For the microscopic dynamics we use the usual Monte
Carlo method. We consider a periodic lattice with two lanes
with L sites in each lane. We choose time step dt = 0.01 to
convert the rates to probability for the Monte Carlo simula-
tions. The lane-crossing rate 1/τ× is taken as 10, 20, or 40,
depending on the simulation.

To solve the hydrodynamic equations we employed the
standard Fourier pseudospectral method [49], with nonlinear
terms computed in real space using the 2

3 dealiasing rule [49].
Time integration was performed in Fourier space utilizing
the standard Runge-Kutta fourth-order (RK4) method and the
Integrating factor Runge-Kutta fourth-order (IFRK4) method,
with a time step (dt) of 10−3 or 10−4, depending on the
system’s resolution. Some relevant codes for this project can
be found in [69].

APPENDIX I: SUPPLEMENTAL VIDEOS

Here we provide a brief description along with snapshots
of the Supplemental Material videos [54] (Fig. 15).

(1) Video-01.mp4: The video shows the time evolution of
the coarse-grained density profiles for the quasi-1D two-lane
ladder model for parameters outside the binodal. We show the
densities only on one lane. Markers represent Monte Carlo
simulation and solid lines represent numerical solutions of the
hydrodynamics.

(2) Video-02.mp4: The video shows the time evolution for
the quasi-1D two-lane ladder model for parameters inside the
spinodal. We show the densities only on one lane. Markers
represent Monte Carlo simulation and solid lines represent
numerical solutions of the hydrodynamics. There is visible ev-
idence for the formation of density inhomogeneity, indicating
MIPS.

(3) Video-03.mp4: The video shows the space-time tra-
jectories (kymographs) of particles on the quasi-1D two-lane
ladder model for parameters outside the binodal. Particles
starting from lane 1 are tracked over time.

(4) Video-04.mp4: The video shows the space-time trajec-
tories (kymographs) of the particles on a quasi-1D two-lane

ladder model for parameters inside the spinodal. Particles
starting from lane 1 are tracked over time. The clustering of
trajectories indicates MIPS.

FIG. 15. Snapshots of the supplemental videos.
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(5) Video-05.mp4: The video shows the space-time tra-
jectories (kymographs) for the strictly 1D single-lane model.
The parameters are at low density but moderate Pe, still being
outside the binodal. We can clearly see the formation of motile
microclusters, which merge and break over time, but without
coarsening.

(6) Video-06.mp4: The video shows the Monte Carlo evo-
lution of two-species particles on a 2D periodic lattice forming
MIPS.

(7) Video-07.mp4: The video shows the Monte Carlo
evolution of four-species particles on a 2D periodic lattice
forming MIPS.

(8) Video-08.mp4: A visualization of the dynamics of
the two-lane ladder model. The video shows the dynam-
ics of two particles represented by two different colors,
over time, as they diffuse, switch between lanes, and
tumble. We represent the two lanes as two concentric
circles.
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