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Abstract

A comprehensive treatment of the quantification of randomness certified device-independently by
using the Hardy and Cabello-Liang-Li (CLL) nonlocality relations is provided in the two parties-two
measurements per party-two outcomes per measurement (2-2-2) scenario. For the Hardy nonlocality,
itis revealed that for a given amount of nonlocality signified by a particular non-zero value of the
Hardy parameter, the amount of Hardy-certifiable randomness is not unique, unlike the way the
amount of certifiable randomness is related to the CHSH nonlocality. This is because any specified
non-maximal value of Hardy nonlocality parameter characterises a set of quantum extremal
distributions. Then this leads to a range of certifiable amounts of randomness corresponding to a
given Hardy parameter. On the other hand, for a given amount of CLL-nonlocality, the certifiable
randomness is unique, similar to that for the CHSH nonlocality. Furthermore, the tightness of our
analytical treatment evaluating the respective guaranteed bounds for the Hardy and CLL relations is
demonstrated by their exact agreement with the Semi-Definite-Programming based computed
bounds. Interestingly, the analytically evaluated maximum achievable bounds of both Hardy and
CLL-certified randomness have been found to be realisable for non-maximal values of the Hardy and
CLL nonlocality parameters. In particular, we have shown that even close to the maximum 2 bits of
CLL-certified randomness can be realised from non-maximally entangled pure two-qubit states
corresponding to small values of the CLL nonlocal parameter. This, therefore, clearly illustrates the
quantitative incommensurability between randomness, nonlocality and entanglement.

1. Introduction

Certification and quantification of reliable randomness as a resource for myriad applications in diverse areas is a
cutting-edge topic of much interest. In this context, a remarkable realisation has been that violation of the CHSH
inequality [1] for the entangled states, apart from signifying nonlocality, also provides statistically verifiable device-
independent (DI) certification of randomness, i.e., randomness is then guaranteed even for an imperfect ora
tampered random number generating device [2—4]. Nonlocality and DI certified randomness emerging as a
concomitant feature of the CHSH inequality is intriguing and has inspired probing deeper into the nature of the
relationship between them. In particular, the question arises as to whether the aforesaid DI certified randomness,
nonlocality and entanglement are quantitatively commensurate in the sense that greater/smaller amounts of
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nonlocality and entanglement necessarily imply larger /smaller amounts of randomness. In this regard, it has been
shown that the CHSH-certified guaranteed bound of randomness is monotonically related to nonlocality [3]. In
contrast, using a tailor-made tilted-Bell inequality, it has been shown [5] that close to the theoretical maximum of 2
bits amount of randomness can be certified from a maximally entangled two-qubit state having the CHSH
violation tending to zero. This result of achieving close to 2 bits of certifiable randomness from maximally
entangled two-qubit state has recently been made [6] more robust by using different forms of tilted-Bell inequality
having a wide range of CHSH values. Such results bring out the incommensurability between randomness and
nonlocality in the two parties-two measurements per party-two outcomes per measurement (2-2-2) scenario. On
the other hand, the incommensurability between randomness and entanglement has also been shown [5] by
achieving maximum amount of certifiable randomness from a pure non-maximally entangled state, but by going
beyond the 2-2-2 scenario. Thus, beyond the 2-2-2 scenario, a line of study has been developed for demonstrating
maximum amount of certifiable randomness by using different methods, such as increasing the number of
measurement settings [7-9], introducing higher outcome POVM [10].

Against the above backdrop, the question that remains yet uninvestigated is whether it is possible to achieve
close to 2 bits of certifiable randomness from a pure non-maximally entangled two-qubit state in the 2-2-2
scenario, which would enable showing in this simplest context, the incommensurability between randomness,
nonlocality and entanglement in a single setup. To this end, in the present work, we have invoked different forms
oflocal realist inequality other than the CHSH or tilted-CHSH inequality, introduced by Hardy [11] and
Cabello, Liang and Li (CLL) [12, 13], as means for generating DI certified randomness. In particular, we have
come up with a strategy for achieving close to 2 bits of certified randomness from pure non-maximally entangled
states in the 2-2-2 scenario using the CLL relations, thereby evidencing the incompatibility between
randomness, nonlocality and entanglement in a single setup. Moreover, in this process of quantifying the
certified randomness, we have found that, unlike the CHSH or tilted-Bell inequality cases, a given amount of
Hardy-nonlocality corresponds to a set of quantum extremal distributions, and thus, the amount of certified
randomness corresponding to a given amount of nonlocality is not unique. In other words, there exists a range of
Hardy-certified randomness for a given value of the Hardy nonlocality parameter.

To set the stage for our treatment, we begin (section 2) by outlining the logical basis for regarding the validity
of the Hardy and CLL relations as certifying DI certified randomness. For this purpose, the incompatibility of
Hardy and CLL relations with the statistical condition of ‘predictability’ is shown by invoking the fundamental
physical principle of ‘no signalling’ at the statistical (operational) level. As a consequence, the violation of in-
principle ‘predictability’ implying DI certified randomness is guaranteed by the empirical validity of the Hardy/
CLL relations. A similar demonstration for the CHSH inequality was provided earlier [14]. It is worth stressing
that the certification of DI certified randomness in this way is independent of quantum theory as well as of who
uses randomness. In contrast, the estimation of the amount of certified randomness depends on the theory as
well as on the information available about the random number generator used and its trustworthiness.

Next, in section 3, by suitably quantifying the amounts of Hardy/CLL-certified randomness in terms of the
guaranteed and the maximum achievable bounds, both the bounds are analytically evaluated for both quantum
theory and no-signalling theory (section 4). Then, we compare the analytically obtained quantum bound with the
bound that has been numerically evaluated by employing the technique of Semi Definite Programming (SDP)

[3, 15, 16]. The implications of these results and future directions of studies are discussed in the final section 6.

2. Certification of DI certified randomness using Hardy and Cabello-Liang-Li relations

First, we recall that derivation of the CHSH inequality from the assumption of predictability and the
fundamental physical principle of no-signalling at the operational /statistical level [ 14] provides a compelling
justification for regarding the violation of CHSH inequality as falsifying predictability, thereby certifying DI
certified randomness. We will now indicate the way similar arguments also hold good for the Hardy and CLL
relations.

To put it precisely, in the context of the EPR-Bohm setup involving two spatially separated parties, say, Alice
and Bob, the assumptions of predictability and the no-signalling condition used here at the operational level are
as follows:

() Predictability: Given any state preparation procedure k, if the outcomes a and b of the measurements A,
and B, of Alice and Bob respectively are predictable with certainty. This means that the predicted probability
of joint measurement outcomes is given by

P(a, blAy, By, k) € {0, 1} V a, b, Ay, By, & (D
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(b) No-signalling condition: The observable probability of the occurrence of any measurement outcome in any
one of the two wings of the setup is independent of the choice of the measurement setting in the other wing,
ie.,

P(ﬁlle, By) K/) == P(alAX) K/) v El, Ax; By) R (2)
P(b|~’4x7 By) K/) = P(blBya K) v b) Axa By) R (3)

The first step in the argument is that the above stated conditions embodied in equations (1)—(3) lead to the
following condition of factorisability of the joint probabilities of measurement outcomes at the operational /

statistical level [14]
P(a, b|Ay, By, k) = P(a|l Ay, k) P(b|B,, k) ¥V a,b, Ay, By, & 4)
Then the key point is that the simultaneous validity of the Hardy relations in the 2-2-2 scenario given by
P(+1, +1|A;, By, £) = Praray > 0 5)
P(—1, +1| A, By, k) =0 (6)
P(+1, —1|A;, By, k) =0 7)
P(+1, +1| Ay, By, k) =0 ©))

is incompatible with the factorisability condition given by equation appendix (4) (shown in A). Similarly, the
simultaneous validity of the CLL relations given by

7)CLL = P(+11 +1|-A1) Bl) K/) - P(+1) +1|A2) BZ) K/) >0 (9)
P(—1, +1|Ay B, k) =0 (10)
P(+1, —1|A;, By, k) =0 1D

is also found to be incompatible with the factorisability condition equation (4) (shown in appendix A and
appendix B). Hence, the measurement outcome statistics satisfying the Hardy or CLL relations would signify the
untenability of the assumption of predictability based on which equation (4) is obtained, thereby providing an
empirically validated certification of DI certified randomness. Thus, the logical basis for DI certification of
randomness by invoking the Hardy or CLL relations is similar to that justifying the use of the CHSH inequality
for the same purpose.

Next, before proceeding to discuss the specifics of the quantitative evaluations of the bounds of the Hardy-
and CLL-certified DI certified randomness, we briefly recall in the following section the relevant basics of this
quantification issue.

3. Quantification of DI certified randomness in terms of min.-Entropy

In Information Theory, the quantity min-Entropy characterises the minimum unpredictability involved in the
probability distribution [17]. In our treatment, we consider min-Entropy as the quantifier of certified
randomness to facilitate a meaningful comparison of our results with those of the earlier relevant works where
min-Entropy is considered as a quantifier of randomness.

For a given amount of nonlocality, the amount of certified randomness (R, ) corresponding to x ™ choice of
Alice’s measurement and y*" choice of Bob’s measurement, optimising over all observed behaviour
Pops = {P(a, bl Ay, By, k)},is given by

a,b,Fps

Ry = —logz[ max _P(a, blA,, B, H)] (12)

Here we note that the quantity R, defined in equation (12) has explicit dependence on the measurement
choices x and y. Thus, there are two possible ways for evaluating the amount of DI certified randomness
corresponding to a given amount of nonlocality - (i) one can minimise R, over all x, y and obtain the minimum
amount of DI certified randomness which we call the guaranteed amount (R,), and (ii) one can maximise R,
over all x, y and obtain the maximum achievable amount of DI certified randomness (R ;).

Note that while it has earlier been shown [3] that the guaranteed bound of certified randomness is
monotonically related to the CHSH nonlocality the maximum achievable bound is incommensurate with the
CHSH nonlocality [5]. Here, we consider both the guaranteed and upper bounds in order to investigate whether
the respective features of monotonicity as well as the quantitative incommensurability persist even for the Hardy
and CLL nonlocality.
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4. Results: The Guaranteed amount of DI certified randomness based on the Hardy/
Cabello-Liang-Li relations

Here we evaluate the quantity R, which has the following precise operational meaning: For an arbitrarily
prepared system and any combination of the pairs of measurement settings, if the statistics of joint measurement
outcomes violate the Bell inequality or satisfy the 2-outcome Hardy/CLL relations, at least R, bits amount of DI
certified randomness is ensured for a given amount of nonlocality as signified by the non-zero values of Hardy or
CLL parameter. This bound has particular importance in the context of cryptographic applications for ensuring
the security of a random string under any adversarial guessing, irrespective of whether an adversary has access to
information regarding the settings of the measurements performed by the user [18, 19], and/or has control over
the preparation procedure. It is using such a measure that one can guarantee a RNG to satisfy Shannon’s version
of Kerckhoffs’s principle [20] which is a central tenet of modern cryptography viz. the requirement thata
cryptographic system should be designed assuming that ‘the enemy knows the system’.

Therefore, for a given amount of nonlocality, the minimum value of R, defined in equation (12)
corresponds to the guaranteed bound of DI certified randomness, R, given as follows

Re= Jr‘lnin Ry

0By

= —logz[max max P(a, bl Ay, B), n)]

AwBy {a,b, Py}
such that
PHardy > 0 [or Perr > 0] (13)

A significance of the above expression given by equation (13) lies in determining the upper bound on the
probability of guessing the most probable pair of outcomes, which is given by 2178, a quantity of key importance
from the point of view of adversarial guessing [17,21-23].

Now, in order to evaluate R by considering all possible observed behaviours, %, we first need to make an
assumption of the theory which governs the realisation of such observed behaviours. To this end, we consider
the following cases: (A) No-signalling theory [2] in which the set of behaviours necessarily obey the no-signalling
conditions (as given by the equations (2) and (3)), denoted as N'S. (B) Quantum theory, denoted as Q.

4.1. R, in NS theory

Given that the procedure for certifying DI certified randomness discussed in section (2) hinges only on the no-
signalling condition, it is natural to evaluate the guaranteed amount of certified randomness (corresponding to a
given amount of nonlocality) against any adversarial guessing attack which is constrained only by the no-
signalling principle.

For this purpose, we consider the observed behaviour, 2, € AN'S. An important point to be noted is thata
no-signalling set forms a polytope constituting a finite set of nonlocal and local deterministic vertices [24, 25]. In
the 2-2-2 scenario, the NS polytope is eight dimensional and it has eight nonlocal and sixteen local
deterministic vertices. In terms of bitvariables X = x — 1, y =y — 1, a= (1 — a)/2, b= —b)/2,al
these vertices can be represented succinctly as follows:

PR(@, bI%, §) = —6(@ ® b =% @ aX ® BF © ), (14)

N | —

LDM0(d, bR, 7) = 6(d, % @ o) §(b, Biff @ Ba), (15)

where ¢ is Dirac’s delta function, @denotes bit addition, «, 5,y € {0, 1},and o, s, By, 55 € {0, 1}. By
exploiting the symmetries under (local) reversible relabelling of measurements and outcomes, it is sufficient to
consider only those nonlocal no-signalling behaviours that can be expressed as a convex combination of one
Popescu-Rohrlich box (PR Box) violating a CHSH inequality maximally, and 8 local deterministic (LD)
distributions which saturate the local bound of the CHSH inequality [26]. We consider the CHSH inequality in
its standard form given by

B =(AB) + (AiBy) + (AB) — (ABy) < 2,

where (A.B,) = Z ab P(a, bl AB,). (16)
a,b

Therefore, without loss of generality, we consider nonlocal no-signalling bghaviours Pps € NS which are
expressed as a convex mixture of the one nonlocal vertex Zpg = PR0(4, b|%, ) satisfying B(Zpr) = 4,and

4
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eightlocal deterministic vertices 2, such that B(Z;p,) = 2. Then,

8
Pyps = qy PR + Y, 4; P 1D (17)
i=1
Hereqy>0,q;>0Vi={1,.8}andq, + >V ,q; = L
Note that the form of Hardy and CLL correlations we consider are also of the form %, given by
equation (17). It then follows that the corresponding Hardy and CLL nonlocality parameters are given by
Priaray = Perr = %' Now, the maximum probability P*(Pys) 1s given as follows

40

P*(J’bs)— L+ (1—gq)=1- :

(18)

Which, in turn, gives the NS-bounds of guaranteed randomness for both the cases of Hardy and CLL relations as
follows

(Rg)Hardy = _logz (1 - PHardy) (19)
(Roifs = —log, (1 — Perr) (20)

4.2. R, in quantum theory
Here we consider the observed behaviour, %,,; = {P(a, bl Ay, B,, p,3)} € Q and the joint probabilities
P(a bl Ay By, pap) = TrlpsMapx ® Np), ], where M, and Ny, are elements of POVMs A, = {M,,} and

B, = {Ny),} respectively, satisfying My, Ny, > 0and ) M, = 1, ), Ny, = 1. Now, without loss of generality,
by applying Naimarks dilation theorem [27], one can consider the measurements M, and Ny, as projectors.
Thus, from now on we write My = I, and Ny, = I, with (I )* = T, and (II;),)* = II;),. Note that
while the evaluation of the DI bound of R, should be independent of the dimension of states and corresponding
measurement operators, in the 2-2-2 scenario, by applying Jordan’s lemma, we can always find a basis such that
density matrix corresponding to the state is in block diagonal form with maxim block size 2 x 2 and the
measurement operators has a decomposition such that each partacts only on 2 x 2 block of the density matrix.
This in turn reduces the problem of dimension-independent evaluation of R, to evaluating the optimal value of
Ry over all possible pure two-qubit states.

Let us first consider the following general bipartite pure state shared between Alice and Bob:

[1) = c0ol00) + c01l01) + ol 10) + 1| 11) (21)

wherec;; > 0and Y ;c(0,1|c;|” = 1.]0) and | 1) are the eigenstate of the observable o, = |0) (0] — |1) (1| with
eigenvalues +1 and — 1 respectively. The observables for Alice and Bob are given as follows

Ar=10) (0] — [1)(1]5 Ay = |uo) (uol — |u) (wl;

By = 0)(0] — [1)(1]; By = [vo) (vol — |v1) {nils (22)
where |u) = c053|0) + € sin3|1>' |u) = —sin3|0> + e cosg|l> [vo) = cos = |O> + i€ sm[|1>
[v) = —sm[ |0) + e’ cos[ [1);0 < o, B < mand 0 < ¢, € < 2. Itis important to note here that without loss of

generality, we fix observable A1 B, = g, and we keep the other two observables A, and 5, as well as the state
[1)) in most general form [28].

4.2.1. R, in quantum theory by using the Hardy relations

It has been shown [28] that in order to satisfy the constraints on joint probabilities given by equation (5-8), the
state [1)) and observables must satisfy (¢)|u; ® 0) = (|0 @ v;) = (1|up ® vo) = 0. Then the three independent
state parameters appearing in equation (21) are expressed in terms of the two measurement parameters o and (3.
Thus, the pure non-maximally entangled two-qubit states exhibiting Hardy nonlocality are of the following
form

1

) = (tan%luovﬁ + tan§|uw0> + |u1V1>) (23)

\/1 + tanz% + tanzg

Thus, the joint probability distributions exhlbltmg Hardy-nonlocality are expressed as functions of two
variables, say s; and s, with s; = sin? & 5= sin? —, satisfying 0 < s1, s, < 1. Note that the quantum maximum

5 51
value of (Prardy)max = fz occurswhen s; = s, = il

Now, for a given amount of Hardy-nonlocality, in order to evaluate the guaranteed randomness (), we
need to find the maximum joint probability. For this purpose, we write the joint probability distributions,

5
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denoted by 2y, in terms of s and s, as follows:

| | b [ o[ En ] o]
_ _ 1— 2 1— 2
A B, a s1l)(_1Slj§)slsz ( 1—Sls:ssl;2 ( 1_32551;2 1= 515
= (1=51)s152 (1-51)%s2 1-s7 (24)
@H =B, 1=s15 0 1-515) 1-515)
A8 | GERm [GEm ] oo | B
(I-s2)s1 (I-s1)s2 (I=sp)(I-s2)
ﬂsz 0 1-s152 1-s152 1-s152

w. Note that it has been shown [28] that the behaviour 2y given by equation (24)
292
provides self-testing of pure non-maximally entangled states of the form given by equation (23), along with the
corresponding measurement settings for all (s, s,) € (0, 1) x (0, 1).
Since any distribution which leads to self-testing is an extremal point of the set of quantum correlations, any
55 — 11
2
extremal distributions, all of which are useful for generating DI certified randomness. Thus, one obtains a range

for the DI certified randomness even if Hardy’s nonlocal parameter Pyy,q, has a specific value. Note that in order
to generate such Hardy-certified DI randomness, the nonlocal parameter is not required to be maximum, unlike
the Bell inequality based DI randomness.

Itis straightforward to show that the maximum joint probability, %, corresponding to the behaviour given
by equation (24) is given by,

with PHurdy =

given value of Hardy’s nonlocal parameter in the quantum range P4, € (0,

] corresponds to a set of

) 1—51

P, = max [(1 — §15), 11 — Vs, 5o € {0, 1} (25)

>
— 5152 1-— 5182

Therefore, the quantum mechanically evaluated Hardy-certified R, is given by R?“’d” = —log,[P}]. We have
illustrated (figure 1) the variation of analytically obtained values of R?“rdy corresponding to different values of
Hardy-nonlocality parameter. Further, this evaluation is done by employing the SDP technique [3, 15, 16]. We,
then, compare such SDP computed bound with the analytically obtained bound. It is observed that the SDP
computed bound provides the lower bound of analytically obtained R?”””y (see figure 1).

4.2.2. R in quantum theory by using the CLL relations

Similar to the Hardy relations, here we characterise the joint probability distributions exhibiting CLL
nonlocality. The constraints on joint probabilities given by equation (9—11) imply that

(¥|u; ® 0) = (1|0 ® v;) = 0. This, in turn, specifies two of the independent state parameters appearing in
equation (21) in terms of the two measurement parameters o and 8. Then, the form of pure non-maximally
entangled two-qubit states exhibiting CLL nonlocality has the following form (up to multiplication by some
global phase) [29]

) = iéJl - c(l + taHZ% + tan? g) 140 vo)

+ Jc (tan% |uov1) + tang luvo) + |u1v1>) (26)

1
1+ tan?2 + tan? 2
state with ¢ = 0.3068 and § = 7, when Alice and Bob measure in the same direction given by o = 8 = 1.6136
radian.

Now, in order to evaluate the analytical bound of guaranteed randomness (RELL), we need to find the

maximum joint probability. The behaviour exhibiting CLL nonlocality is given as follows:

where 0 < ¢ < . The maximum value of Py given by (PCLL)"QW = 0.1078 occurs for the particular
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T T T T T T T T T T T T T T T T T
2.0}+| B Maximum Achievable bound of randomness (Ryqx) ]
Quantum bound of guaranteed randomness (Rg) - Analytical
— Quantum bound of guaranteed randomness (Rg) - SDP
| = — NS bound of guaranteed randomness (Rg)
1.5 1
a
(9]
£
S1.0¢ 1
c
e
ks
1S
>
9]
&
05F i
0.0F i

0.00 0.02 0.04 0.06 0.08
Hardy Nonlocality (Pyqray)

Figure 1. The yellow region represents the variations of guaranteed bounds of DI certified randomness as functions of Hardy-
nonlocality signified by the Hardy parameter Pyqr4, evaluated analytically in quantum theory. The blue ad green dashed-lines
represent the SDP computed quantum bound of guaranteed randomness and analytically obtained NS bound of guaranteed
randomness respectively. The red region represents the maximum achievable bound of randomness as a function of Hardy-
nonlocality. Note that for each non-zero values of Hardy parameter (Ppqrqy), there exists a set of extremal quantum behaviours and
each such Py, corresponds to aset of Ry and R max. Thus, analytically obtained guaranteed and maximum bounds are represented
by regions over varying amounts of nonlocality as quantified by Pp;,.4,. On the other hand, the SDP computed bound is found to be the
lower bound of the guaranteed randomness.

| | +d | +-> | v | o |

A1 B p yp xp I —=xp
—YpP— P

AB, || p(1+y) 0 I1—c(l+x)|c(l+x)

PerL = -p(1 +y) @7
AB || pl+x) | 1 —c(1+y) 0 c(l+y)
—-p(1 +x)
ABy || 1 —cx cx cy c
—cy—c

172ccosé4/xy{%f(l +x+9} +cQ+x+y—xp)

@+ DO+
bYPCLL:P -1+ C(l —|—x+y)
Now, in order to find the maximum joint probability, P, corresponding to the considered behaviour

given by equation (27), we proceed as follows. Let P*(A;, B;) = max,;P(a, b|l.A;, B;) be the maximum joint
probability corresponding to the choice of each pair of measurement settings (i, j). Now, for all P;; > 0, due to
symmetry, it can be seen that P*(A;, B)) = P*(A,, B,) and P¥(A,, B,) = P*(A,, By). Moreover, itis
straightforward to see that P*(A;, B,) > P*(A,, B)). Therefore, the maximum probability corresponding to
the behaviour given by equation (27) is given by

P = max [p(A + ), 1 — c(1 +x) — p(1 + ), c(1 + x)] (28)

X,,6,0

where p = ,x = tan’ 7, y = tan’ g The CLL parameter is given
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Figure 2. These curves represent the variation of CLL-certified randomness with CLL-nonlocality. The yellow curve represents the
variations of guaranteed bounds of DI certified randomness as functions of CLL-nonlocality signified by the CLL parameter Pry;
evaluated analytically in quantum theory. Blue and green dashed-lines represent the SDP computed quantum bound of guaranteed
randomness and analytically obtained NS bound of guaranteed randomness respectively. Note that the SDP computed quantum
bound is found to be the same as that obtained analytically. The red curve represents the maximum achievable bound of randomness
as a function of CLL-nonlocality. It is seen that close to 2 bits of certified randomness can be achieved for small amount of nonlocality,
thereby demonstrating the incommensurability between randomness and nonlocality.

Thus, the quantum mechanically evaluated bound of CLL-certified R, is given by RgLL = —log,[P& ]
The variation of such guaranteed bound with CLL nonlocality has been illustrated in figure 2, along with the
bound of guaranteed randomness computed using the SDP technique. Here we note that, unlike the Hardy case,
the guaranteed bound RgCLL is found to be unique for each non-zero value of Pry;.

5. Results: Maximum amount of DI certified randomness based on the Hardy/Cabello-
Liang-Lirelations

Here we evaluate the maximum achievable bounds of DI certified randomness that can be certified by using the
Hardy and CLL relations. For a given amount of nonlocality, the maximum value of R, defined in
equation (12) corresponds to the maximum achievable bound of DI certified randomness, R 4, is given as
follows

Rmax = E’laX( ny )

Xy
= —log,| min max P(a, b|Ay, By, p)
{AxB,} {a,b,p}

such that
Praray > 0 [or Perp > 0] (29)

Now, for any behaviour, the maximum randomness corresponds to the distributions of equally likely events.
In the two party-two output scenario, there are four possible events corresponding to each pair of measurement
settings. Thus, maximum of 2 bits of randomness can be possible to certify in such scenario.

5.1. Maximum amount of DI certified randomness based on the Hardy relations
Hardy relations imply that for each of these three measurement pairs (A;, B8,), (A,, By) and (A, B,), the
occurrence of one particular event (i.e., a pair of outcomes) is ruled out (equations (6—8)). Thus, corresponding
to each of these three pairs of measurement settings, maximal randomness occurs when the remaining three
events occur with equal probability %

First, considering the pair of measurement settings (A;, 13,) or (A,, B)), itis straightforward to obtain that
the joint probabilities will be é when s; = % and s, = %. For such values of s; and s, the value of the Hardy

8
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parameter is Pggy (51 = 5= 7) = — =~ 0.0667 which is less than the maximum value of

55 — 11
2

settings (A;, BB,) or (A, By)is —log, [ %] ~ 1.5850 bits corresponding to non-maximal violation of Hardy

~ 0.0902. Thus, the maximum amount of randomness that can be certified for the pair of measurement

nonlocality.
Next, for the pair of measurement settings (A,, 13,), the joint probabilities will be % whens; = s, = % For

such values of s; and s, the value of he Hardy parameter is Pygq, (51 = 5, = %) = % ~ 0.0833 which
is again less than the maximum value.

Now, interestingly, for the remaining pair of measurement settings (A;, B)), since
0 < P(+1, +1[4;, By < 221
less than 3 These events (+1, — 1), (—1,4+ 1)and (-1, — 1) will occur with same probability if
P(+1, —1|A;, B) = P(—1, +1]|A;, B) = P(—1, —1|A;, B)). This then fixes the values of the parameters
s; = 5, = 0.8295. The corresponding Hardy parameter is Pga,q,(s1 = 5, = 0.8295) = 0.0641 and the amount of

certified randomness is —log,[0.3119] ~ 1.6807 bits. Note that this is the maximum achievable amount of
randomness that can be device-independently certified using the Hardy relations (see figure 1).

L there is a possibility that other three events can occur with equal probability

5.2. Maximum amount of DI certified randomness based on the CLL relations

CLL relations has three constraints on joint probability distributions, out of which two constraints are

P(+1, —1|A;, By) = 0and P(—1, +1|A4,, B)) = 0. The other constraint is the CLL nonlocality parameter,
which unlike the Hardy nonlocality parameter, is given by the difference between two joint probabilities,

0 < P(+1, +1]A4;, B) — P(+1, +1|.A;, B;) < 0.1078. This, in turn, gives rise to the possibility of having
P(a, blA;, Bi—) — i Ya, b,i = j.Letusfirstanalyse the case when P(a, b|A,, B) — i. In order to have

such probability distribution corresponding to the choice of measurements (A;, 3)), p = i and x = y = 1. This,

in turn, fixes the value of the parameter ¢ = T 62 5 ifcos§ >0 = 0<6< % Moreover,

0 < P £0.1078 = i < ¢ < 0.2859. Now in this domain, the only solution that satisfies both P;; > 0
and p = " L when ¢ — Z‘ Thus, close to 2 bits of randomness can be certified with P-;; — 0.

Next, we analyse the case when P (a, b|A,, B;) — 1. Here, c = 1 andx=y=1. This, in turn, fixes the value
of the parameter p = %(3 — €08 6),if0 < 6 < 2. Moreover, 0< PCLL 0.1078 = - ;< p < 0.3578. Now
in this domain, 6 € (0, 1.4328) U (4.8504, 6.2832) (all the angles are in radian). Note that in such valueof ¢ = X’
thejoint probability P(—1, +1|A4;, By) = P(+1, —1|A;, B) = % — 2p, thus in turn fixes the range of
0<p< i. Therefore, in this case also close to 2 bits of randomness can be certified with P-;; — 0 when

p— i and ¢ — i. Thus itis indeed possible to achieve close to 2 bits of certified randomness with arbitrary
small amount of CLL certified nonlocality.

Now, from the behaviour given by equation (27), it follows that P*(A;, Bi.) > PH(A;, B;_1). Thus, the
maximum amount of randomness given as follows:

Rinax = —logz[max [1 —c(Q+ x4+ y),cx cp, c]] (30)

X,)56,0

The variation of the maximum amount with different non-zero values of Pc;; has been illustrated in figure 2.

6. Concluding remarks

As the basis for this work, we have first provided justification of the way the Hardy and Cabello-Liang-Li relations can
enable the DI certification of randomness, based on only the no-signalling condition at the statistical level.

Then, focusing on the quantitative evaluation of DI certified randomness, for a given amount of Hardy
nonlocality, we find that the amount of DI certified randomness is not unique. This implies a range of DI
certified randomness for a given amount of Hardy nonlocality. The underlying reason is that, for a given non-
zero value of the Hardy nonlocality parameter, all the intersection points between the hyperplanes formed by the
Hardy relations and the quantum mechanical joint-probability space form a set of quantum extremal
distributions, giving rise to a range of DI certified randomness. It is to be noted here that for the Hardy relations,
the extremality of such distributions is ensured by the self-testing argument [28]. In contrast, for the CLL
relations, we find that the amount of DI certified randomness is unique, similar to the earlier results for the
CHSH nonlocality. The variations of the obtained DI certified randomness with the amounts of Hardy and CLL-
nonlocality are illustrated in figures (1) and (2) respectively. Note that the occurrence of a range of DI certified
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randomness for a given amount of Hardy nonlocality is in sharp contrast to the results of the DI randomness
studies based on CHSH or tilted-Bell inequalities. Therein only the maximum violations of the relevant
inequalities have been proved to be quantum extremal, and, thus, a given amount of CHSH value corresponds to
aunique amount of randomness certified by Bell inequalities. Furthermore, for both the Hardy and CLL
relations, the matching of the lower bounds of the analytically obtained guaranteed amount with the respective
SDP computed bounds signify the tightness of our analytical treatment.

Now, considering the maximum achievable bound of DI certified randomness, it is analytically shown that
both for small amounts of Hardy- and CLL-nonlocality, larger amounts of randomness are realised (see red
coloured regions in figures 1 and 2). A particularly significant result is that in the simplest 2-2-2 scenario, it is
possible to realise close to the maximum amount of 2 bits of CLL-certified randomness for a range of pure non-
maximally entangled states, even for small amounts of CLL-nonlocality. Therefore, this demonstrates the
incommensurability between the maximum achievable bound of randomness, nonlocality and entanglement in
asingle setup.

It will be interesting to extend this line of study by using other forms of local realist inequalities, such as
different forms of the higher settings Bell inequality [30—40], or the generalised variants of the Hardy relations
[41,42]. Another possible direction of study could be to go beyond the 2-2-2 scenario using the recently
suggested measure of nonlocality which has been invoked to argue for ensuring the quantitative compatibility
between entanglement and nonlocality for arbitrary dimensional system [43, 44]. Moreover, our analytical
treatment shows that the CLL-certified guaranteed bound matches with the bounds computed through SDP
technique. This suggests that CLL-nonlocal points are extremal correlations of the quantum set. Even though
any extremal point ought to be self-testable, establishing this in a general context would be an interesting work to
pursue. In addition, for the purpose of the future work it should be interesting to investigate whether more
randomness can be certified using the Hardy relations by introducing the biases in the choice of pair of
measurement settings. For this study, one can employ the methodologies of [45—47].

To conclude, the upshot of the results of this work is the reinforcement of the realisation of a fundamental
feature of the quantum world which is linked with randomness. While the certification of DI certified
randomness necessarily requires nonlocality, the nature of the quantitative relationship between them is more
nuanced than what has been discussed earlier.
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Appendix A. Certification of DI certified randomness using the 2-outcome Hardy
relations

Let us consider the two-outcome Hardy relations characterised by the simultaneous validity of the following
four conditions on joint probabilities

P(+1, +11A4y, By, k) = Pharay > 0 (A.1)
P(—1, +1|A4; By, k) = 0 (A.2)
P(+1, —1|A;, By, 5) = 0 (A.3)
P(+1, +1|Ay, By, k) = 0 (A4)

Now, applying the factorisability condition given in the text by equation (4) to the above mentioned Hardy
relations, we obtain

10
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P(+1|Ay, k) P(+1|By, £) = Phigray > 0 (A.5)
P(—1|A, k) P(+1|By, k) = 0 (A.6)
P(+1] A5, k) P(—1|Bs, k) = 0 (A7)
P(+1]As, K) P(+1]Bs, k) = 0 (A.8)

Next, we show that the simultaneous validity of the above four equations (A.5)—(A.8) is inconsistent with the
factorisability condition. Specifically, we show the inconsistency of equation (A.5) with equations (A.6)—(A.8).
For this purpose, we rewrite equations (A.6) and (A.7) respectively as follows

P(+1|By, k) = P(+1|By, k) P(+1] Ay, k) (A.9)
P(+1]A;, k) = P(+1| Ay, k) P(+1]B,, k) (A.10)
Multiplying the above two equations leads to the following

P(+1| A, &) P(+1]By, k)
= P(+1|Ap, 6)P(+1|By, k)P(+1| Ay, k)P(+1|By, k) (A.11)
Finally, using equation (A.8) in equation (A.11), we obtain
P(+1|A;, k) P(4+1|By, k) =0 (A.12)
which contradicts equation (A.5), i.e., the condition that Py,4, > 0. Hence, the simultaneous validity of all the
conditions imposed on the four joint probabilities given by equations (A.1)— (A.4)) is inconsistent with the

factorisability condition given by equation (4) in the text. This implies violation of the condition of predictability.
Thus, the Hardy relations can be employed for certifying DI certified randomness.

Appendix B. Certification of DI certified randomness using the Cabello-Liang-Li relations

Here we consider a variant of the Hardy relations, namely, the CLL relations which have also been used for
showing [12, 13] quantum nonlocality independent of the Bell type inequalities. In the following, we will show
that the simultaneous validity of all the CLL relations contradicts the factorisability condition given by

equation (4).
The CLL relations can be written as follows
Perr = P(+1, +1]A;, By, k) — P(+1, +1J Ay, By, 5) > 0 (B.1)
P(—1, +1|A4y By, k) = 0 (B.2)
P(+1, —1| A, By, k) = 0 (B.3)
Now, applying the factorisability condition given by equation (4), equations (B.2) and (B.3) can be rewritten
respectively as
P(+1|By, k) = P(+1|B}, k) P(+1] Ay, k) (B.4)
P(+1] A}, k) = P(+1| Ay, k) P(+1|By, k) (B.5)

It then follows from the above two equations (B.4) and (B.5)

P(+1|A;, &) P(+1|By, k) — P(+1]| Ay, &) P(+1|By, K)
= P(+1|A2’ "f) P("’llBZ’ H) {_1 + P(+1|Al’ H) P(+1|Bl> K',)}
<0
= P < 0. (B.6)

thereby contradicting equation (B.1). Hence, any joint probability distribution of the measurement outcomes
satisfying all the CLL relations given by equations (B.1)—(B.3) would be inconsistent with the factorisability
condition (equation (4) in the text). This implies violation of the condition of predictability. Thus, the CLL
relations can be employed for certifying DI certified randomness, similar to the use of the Hardy relations.

Appendix C. Computation of guaranteed bounds of DI certified randomness in quantum
theory

For computing the guaranteed bound of DI certified randomness for both quantum mechanically and using the
no signalling (NS) principle, we proceed as follows.

Let us consider that Sis any convex subset of the set of joint conditional probability distributions
P = {P(a, blx, y): a, b € £1} and x, y € {1, 2}}. We further assume that all the elements in S satisfy the
NS condition. Then the guaranteed amount of randomness, say Ry, that can be certified, subject to a given
nonlocality condition, is given by
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2€S

Rgs = min [logz(fl}i);P(a, b|x, )/))]

2 € S\a,bx,y

= —logz[maX(max P(a, blx, }’))]

subject to
relevant constraints on P(a, b|x, y) (C.1)

This optimisation problem can readily be solved by applying the semi-definite-programming (SDP)
technique as this is a case of the convex optimisation problem.

Note that the phrase ‘relevant constraints on P(a, b|x, )’ used in equation (C.1) is explained as follows: First,
in order to evaluate the NS bound of R, we consider the subset S € { P(a, b|x, y)} satisfying either the Hardy or
CLL relations. Secondly, for obtaining the quantum mechanically computed lower bound of R, we apply the
specific quantum theoretic-constraints® on the subset S.

Now, for solving the optimisation problem, given by equation (C.1), using the SDP technique [15, 16], we
choose our convex set S as different levels of the NPA-Hierarchy, denoted here by Q' where k € {0, 1, 1+ab, 2,
3, ...}. All these different levels are convex, and form a sequence of outer approximations of the set of quantum
behaviours Q, i.e., Q¥2QW O ...Q%... D Q. Note that the zeroth level approximation Q® is the set of all NS
behaviours. Also, note that in the 2-2-2 scenario, the convergence of Q Bis very fast so that at the level 1+ab (an
intermediate level which lies between the levels 1 and 2), QU+ ab) ~Q. Thus, in order to compute the guaranteed
quantum bound of DI certified randomness from the Hardy relations, the following SDP sub-problem is solved:

max P(a, b|x, y);

subject to (C.2a)

P € QUta), (C.2b)
P(+1, +111, 1) = Pramy, (C.2¢0)
P(—1, +1]2,1) =0, (C.2d)
P(+1,-1]1,2)=0, (C.2e)
P(+1,4+1]2,2) = 0. (C.2f)

Next, for computing the guaranteed NS bound of certified DI certified randomness from the Hardy
relations, the following SDP sub-problem is solved:

max P(a, blx, y);

subject to (C.3a)

? e Q" (C.3b)

P(+1, +1| 1, 1) = Pharay, (C.3¢0)
P(—1,+1]2, 1) =0, (C.3d)
P(+1,—-1]1,2) =0, (C.3e)
P(+1,+1]2,2)=0. (C.31)

Similarly, in order to compute the guaranteed bounds on DI certified randomness from the CLL relations,
the following SDP sub-problems are solved:
quantum guaranteed bound of DI certified randomness:

max P(a, blx, y);

subject to (C.4a)

P e QUtab), (C.4b)

P(+11 +1|]-) 1)_P(+17 +1|2) 2):,IJCLb (C4C)
P(—1,+1]|2,1)=0, (C.4d)
P(+1,-1]1,2)=0. (C.4e)

NS guaranteed bound of DI certified randomness:

max P(a, b|x, y);subject to (C.5a)

8 @ P(a, blx, y, p) = Tr [Maja, ® My, pl, (i) p EHs ® Hp of dimension d,dp and (iii) each of the measurements A, of Alice
corresponds to a positive-operator-valued-measure (POVM): A, = {M,).4,} o With M, 4, > Oforallaand 3°, M 4, = I4,. Similarly,
each measurement setting BB, of Bob corresponds to a positive-operator-valued-measure (POVM): B, = { M, B} b with My, B, 20 forallb
and Zh MblBy = ]I,IB.

12



I0OP Publishing Phys. Scr. 99 (2024) 035012 S Sasmal et al

? e Q" (C.5b)

P(+1,+1|1,1) — P(+1, +12, 2) = Paws, (C.5¢)
P(—1,41]2,1) =0, (C.5d)
P(+1,—-11,2) =0. (C.5e)

After solving these sub-problems, the computation of R, readily follows: For any given fixed value of P4,
(Perr) we find the maximum values of P(a, b|x, y) for all 16 possible choices froma, b € + 1} and x, y € {1,2}.
We then select the maximum from the resulting 16 values, denoted by Pﬂ;mdy (P&, ). Finally, the quantum
mechanically computed guaranteed bounds of DI certified randomness are given by

Rg(Hardy) = —logz(”f)ﬁmdy), (C.6)
RYCLL) = —log,(P&p). (C.7)

Similarly, the NS guaranteed bounds of DI certified randomness have also been computed.
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