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Preface

The study of light and of light-matter interaction are two of the most fundamental topics of

interest in science that have enriched our knowledge and understanding of the various phenomena

in the universe. This understanding has led the generation of controlled quantum states both

for light (photons) as well as for matter (atomic systems). The generation and manipulation of

quantum states have become a vibrant topic of interest due to their promise towards quantum

computation and quantum information processing. Generation of non-classical states of light has

been realised in different systems [1]. One of the simpler methods is of generation of heralded

single photon states in paramateric down conversion in a nonlinear crystal. Over the past few

years the experimental techniques for photon addition and substraction on coherent and thermal

light states have been demonstrated. This opens up the possibility of generating non-classical

states with desired features. In the first part of this thesis, the manipulation of coherent light by

acousto-optic interaction to generate classical state is demonstrated. This method for generating

tunable classical light states with desired coherence properties and photon number distribution can

be used in conjunction with photon addition techniques to generate tunable non-classical states.

The polarization rotation of the classical incoherent light generated this way, over the polarization

sphere (Poincare sphere), shows the geometric phase effects in a polarized Hanbury-Brown-Twiss

(HBT) setup and can be used to modulate the bunching properties of light.

In atomic systems, single isolated particles have usually been the focus for the exploration of

quantum features. The unprecedented control over the manipulation of the external as well as

internal states of atomic systems have been possible only by coherent laser light. In this thesis,

the coherent light manipulation of atoms is concerned towards single atom trapping in an optical

ix
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dipole trap. The basic requirement for this is the cold atom reservoir which is a magneto-optical-

trap (MOT). Aiming towards the single atom trap and the study of the coherence properties of

the photons emitted from the atom, a construction of MOT of 87Rb, and the characterization

of its different parameters are presented. A photon coincidence circuit is built for second order

photon correlation measurement of the emitted light from the laser cooled and trapped atoms.

This thesis is divided into two parts:

1) Manipulation of coherent light.

2) Manipulation of atoms using coherent light.

The first two chapters of the thesis are related to part 1 and later two chapters to part 2. The

chapter-wise break of the thesis is as follows

Chapter-1: Manipulation of Coherent Light

This chapter presents an interesting method of creating tunable classical states of the light by

manipulation of the input coherent laser light. Acousto-optic interaction is used to modulate

the phase and the intensity of the continuous coherent light to generate classical light states

with predetermined photon number distributions and coherence properties. The efficacy of the

method shown here is that, this can be used to generate any desired classical state, as an example

a particular classical non-Gaussian state is generated here. Theoretical calculations are given to

analyze the non-classical behaviour of single photon addition on the non-Gaussian classical state

generated in the experiment.

Chapter-2: Classical Light Analogue of the non-local Aharnov-Bohm Effect

This chapter demonstrates an interesting analogue of the quantum mechanical multiparticle

Aharnov-Bohm effect using classical phase incoherent light in a polarized Hanbury-Brown-Twiss

interferometer [2]. The cyclic change in the polarization for a coherent light accumulates an

additional phase due to the geometry of the path over the polarization sphere and is known as

Pancharatnam’s geometric phase. For the case of incoherent classical light, this additional phase

acquired can be extracted in the second order cross correlation between the detectors of the HBT

interferometer. A possible application of this effect, as a two photon wavefront deflector in a
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phase gradient plate is proposed.

Further the cascaded version of these kind of polarized interferometer can be used to generate

light with a zero delayed second order correlation value, G2(0) > 2 by only means of phase

fluctuation. In a two stage cascaded interferometric system, modulation of G2(0) is shown with

a comparison between the experimental results and the theoretical predicted values.

Chapter-3: Coherent Light Manipulation of Atoms

This chapter describes the basic theoretical and experimental aspects of laser cooling and trapping

techniques. The Magneto-Optical-Trap (MOT), which is a workhorse in the experiments with

ultra-cold atoms, is built for 87Rb aiming towards a single atom dipole trap.

A detailed description of the MOT that is constrcuted and the characterization of the cold

ensemble of 87Rb are presented. This involves the design of a vacuum chamber and its assembling

to achieve an ultra-high vacuum, setting up the laser system with hyperfine resolving saturation

absorption spectroscopy, and the optical alignment for MOT and detection system. The various

parameters like the number of atoms, density, loading and decay rates, and temperature of the

vapour loaded MOT are presented.

Chapter-4: Towards Single Atom dipole Trap and Photon Correlation Measurement

This chapter is divided into two parts. The first part of the chapter gives a brief literature survey

about the single atom dipole trapping due to collisional blockade [3] mechanism followed by a

description of the progress in the experiment towards single atom trapping and its detection until

the writing of the thesis.

The second part of the chapter is related to the photon correlation measurement using a second

order correlation function. The second order correlation function is an important parameter to

study the coherence properties of the light sources, as important information about the light

source can be obtained from this. Light states with non-classical characteristics can be identified

in a coincidence measurement on two detectors of HBT interferometer. The anti-bunching

behaviour of the light emitted from a single atom can also be observed in the HBT experiment.

In this part of the chapter, a description of the photon coincidence unit that is designed and
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built, is given. This FPGA (Field Programmable Gate Array) based coincidence detection unit is

developed for photon correlation measurements and has a coincidence timing resolution of 5 ns.
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1
Chapter 1

1.1 Manipulation of Coherent Light

Introduction

Understanding light-matter interactions and mechanisms of light generation are of vital impor-

tance in elucidating many physical processes. While for most processes, a combination of a

statistical approach along with Maxwell’s classical theory of electromagnetism suffices, several

optical processes demand a quantum mechanical approach to the electromagnetic field [4–6]. The

quantum theory of light makes a clear distinction between different sources of radiation such as

coherent, thermal, and single photon sources [7]. Radiation from the former two sources may be

explained classically, while light from the latter can only be explained quantum mechanically. In

other words, the former two states are deemed classical, and the latter non-classical. Due to their

quantum nature, non-classical sources of light display several counter-intuitive features evoking

5



6 Chapter 1

considerable interest in them. Non-classical sources of light have been generated experimentally

by several techniques [1] and their possible applications in different fields, especially quantum

information, are well explored [8]. However, recent years have witnessed an emergence of interest

in classical sources of light [2, 9–14]. These have been used in intriguing applications like ghost

imaging [9–12], and interferometry based experiments as in Refs. [2, 13], and have also formed

an ingredient in the creation of non-classical states of light [14–16].

In this chapter a method of creating tunable classical incoherent light sources by manipulating

coherent continuous laser light is demonstrated and some of its possible applications in quantum

optics are discussed. The tunable classical incoherent light generated this way can be tailored to

mimic light from a thermal source or can be made to emit light with desired features. Utilizing

the fact that an acousto-optic modulator (AOM) may be effectively used to introduce phase and

intensity fluctuations to light rapidly and accurately [17–19], we create incoherent light having

the desired coherence times and intensity statistics, or photon-number distributions, from the

input coherent light.

The motivations for creating such sources are several. This technique offers an alternative to the

current standard method of using a rotating ground glass plate [20, 21] to generate pseudo-thermal

light. Further, the electronic control of fluctuations provides a robust and flexible procedure for

producing tailored classical light sources with predetermined photon emission rates. Several

interesting applications may be possible with this. For example, it is known that non-classical

states can be generated by combining classical light, both coherent and thermal, with single

photons (Fock state) in photon addition experiments [14]-[16] ,[22]-[23]. The ability to tailor

classical states of light to have Gaussian or non-Gaussian state with tailored photon number

distributions, as demonstrated in this chapter, can be used in photon addition experiments to

generate the non-classical states of light with tailored characteristics. In addition, classical non-

Gaussian states with tailored photon number distributions (PND) may, in turn, be used to produce

states with tailored non-Gaussian entanglement. This is of importance in the quantum information

theoretic context, where recent findings suggest non-Gaussian entanglement to be advantageous

over Gaussian entanglement [24–26].
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1.2 Theoretical Background

In this section a brief description of some fundamental concepts like light sources and the theory

of optical coherence, quantum state representation of different type of light states, and some

quantum mechanical operations on single photon states are presented.

1.2.1 Light sources and Coherence

A majority of light sources emit electromagnetic radiation due to de-excitation from an excited

energy state (say Ei) to a lower energy state (say Ek) in a molecular or atomic system. The finite

life time of the excited state (Γ) of the radiating atom, which is a consequence of Heisenberg

uncertainty principle ∆E∆t ∼ }, gives a Lorentzian line shape with a width (FWHM=Γ) around

the central transition frequency ωik = Ei−Ek
} , in the frequency spectrum [27],

I = I0 L(ω − ωik), (1.1)

where

L(ω − ωik) =
Γ 2

[(ω − ωik)2 + Γ 2]
(1.2)

This is known as natural broadening.

In a collection of many such radiators, the de-excitation process can be stimulated or sponta-

neous. Lasers are the examples where a coherent light with very narrow spectral bandwidth, is

emitted by stimulated emission of radiation by a group of atoms or molecules, confined within a

resonant cavity and radiating synchronously in a well ordered and highly dependent fashion. In

contrast to lasers, there are another natural classes of light sources classified as thermal light or

chaotic light sources where a large collection of atoms or molecules, excited to high energy states

by thermal, electrical, or any another means, randomly and independently de-excites and results

in chaotic radiation. Light from a high pressure gas discharge lamp, incandescent bulbs, and sun

are the examples of a thermal light source. Thermal light has a broad frequency spectrum. There

are two additional broadening mechanism which can be attributed for the large spectral width in

thermal light sources.

1) Collisional Broadening:- The radiating atoms in a thermal light source, like a gas discharge

lamp, move randomly and collide with each other after a random time interval of free flight. The
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time interval of these free flights are distributed exponentially about a mean free time interval

τc, which depends on the temperature of the system,

p(τi) = exp(−τ/τi).

The magnitude of the collisional broadening depends on the frequency of the collisions which is

inverse of the mean time interval τc. These collisions cause an abrupt change in the phase of the

wave train emitted by the atoms.

E = E0 exp(−iω0t+ iφ(t))

where φ(t) = φn for t0 < t < t0 + τi. For a collection of identical atoms, the overall effect

is reflected in the emission line shape of the source as a broadened Lorentzian line shape. The

expression for L(ω − ωik) given in Eq. 1.2, modifies as follows

L′(ω − ωik) =
Γ
′2

[(ω − ωik)2 + Γ ′2]
,

where Γ
′
= Γ + 2/τc.

2) Doppler Broadening:- Due to thermal motion of the atoms, there is a corresponding Doppler

shift in the frequency spectrum of the emitted light. This broadens the spectrum by imprinting

the effect of Maxwellian distribution of velocity component of the gas in the emitted frequency

spectrum and depends on the temperature T. The overall line shape is a Gaussian [27],

I(ω) = I0 exp

[
−(ω − ωik)2

0.36(∆ωd)2

]
,

where

∆ωd =
(2ωik

√
2RTln2/M)

c

is the full width at half maximum of the resultant line shape.

The combined effect of all these broadening mechanisms in the frequency spectrum and their

interference, governs the coherence properties of these light sources where coherence of light

beam refers to the stability of the phase of a light beam over time and space. In general there are

two types of coherence parameters for a light beam : temporal coherence and spatial coherence.
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While considering the temporal coherence of a light beam, the concern is about the ability of

the light beam to interfere with a delayed version of itself, without any spatial shift. This kind

of division of a light beam is called amplitude splitting and is used in Michelson (see Fig. 1.1) or

Mach-Zehnder interferometer. On the other hand, the spatial coherence is the ability of a light

beam to interfere with a spatially shifted version of itself, without having any relative time delay

between them. This type of division of light beam is called wavefront splitting and is used for

example in Young’s double slit kind of experiment (Fig. 1.2).

Figure 1.1: Measurement of temporal coherence for a light source by using Michelson interferom-
eter. BS is the 50:50 beam splitter, M1 and M2 are two mirrors. If the path difference between the
two arms, ∆ l is small enough to yield the interference fringes at the output port and if the time delay
between the two arms ∆ t and the bandwidth of light ∆ ν satisfies ∆ l = c∆ t ∼ c

∆ ν , then ∆ l is a
measure of longitudinal coherence length with ∆ t as coherence time.

Coherence Function

The degree of coherence of the light field can be quantified in more precise way in terms of

the coherence function. Two different types of correlation function in two different types of

interferometric setups can be used to study the coherence properties of a radiation field.
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1)First order coherence function [28] :-

In its most generalized form the first order coherence function is the correlation of field ampli-

tudes at two different space and time points.

g(1)(r1, t1 : r2, t2) =
〈E∗(r1, t1)E(r2, t2)〉

(〈(|E(r1, t1)|)2〉〈(|E(r2, t2)|)2〉)1/2
,

where 〈...〉 represents the average over a long time interval T , here as well as for further discus-

sions, that is,

〈E∗(r1, t1)E(r2, t2)〉 =
1

T

w

T
E∗(r1, t1)E(r2, t2)dt.

The first order coherence function is a measure of the sharpness of the interference fringes and is

therefore related to the visibility of the fringes formed on the plane of observation (screen) of a

Young’s double slit interferometer, when the two slits are illuminated with radiation fields. From

the laws of interference the resultant irradiance at any point on the screen can be written as

IR = I1 + I2 + 2
√
I1I2Re [γ12(τ)] , (1.3)

where τ = t1 − t2, I1 and I2 are the time averaged illumination at observation point due to two

pinholes respectively and,

γ12(τ) =
〈E1(t+ τ)E∗2(t)〉

(〈|E1(t)|2〉〈|E2(t)|2〉)1/2
= g(1)(τ), (1.4)

is called the complex degree of coherence. The extreme values, |γ12(τ)| = 1 and 0 describes

interference of two mutually completely coherent and completely incoherent waves respectively.

For 0 < |γ12(τ)| < 1 we have partial coherence. The first order coherence function can be related

with the visibility of the fringes at a given point p, V (p), as follows

V (p) =
Imax − Imin
Imax + Imin

=
2
√
I1(p)

√
I2(p)

I1(p) + I2(p)
|γ12(τ)| (1.5)

where Imax and Imin refers to maximum and minimum intensity at point p as the phase of γ12(τ)

oscillates between 0 and 2π. For the case of equal irradiance through the two pinholes of the

interferometer, at point p,

V (p) = |γ12(τ)| (1.6)
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Figure 1.2: The transverse spatial coherence of an extended source can be measured by Young’s
double slit experiment. Fringes form on the screen when ∆θ∆s ≤ λ̄, which in turn defines the coherence
area for limiting condition, ∆A ∼ (R∆θ)2 ∼ R2λ̄2

s . Here ∆θ is the angular separation between the slits,
R is the distance between the slits and source, ∆s is the dimension of the slit with area S = (∆s)2

and λ̄ is the wavelength of light. The square root of the coherence area gives the transverse coherence
length.

2)Second order coherence function:- Second order coherence function or intensity correlation

function is the fourth order correlation function of the electric field amplitudes at two different

space time points. The formal expression can be written as follows

G(2)(r1, t1 : r2, t2) =
〈E∗(r1, t1)E∗(r2, t2)E(r2, t2)E(r1, t1)〉

(〈(|E(r1, t1)|)2〉〈(|E(r1, t1)|)2〉)

G(2)(r1, t1 : r2, t2) =
〈I(r1, t1)I(r2, t2)〉

(〈(I(r1, t1))〉〈(I(r2, t2))〉)
(1.7)

In classical coherence theory, second order coherence function measures the correlation be-

tween the intensity fluctuations at two different space time points rather than the correlation

between the fields. The setup used to measure the second order coherence function is known

as Hanbury-Brown and Twiss (HBT) interferometer. When exploited for measuring intensity-

intensity correlation for photons, G(2) can reveal the quantum nature of light sources, which

may not be seen in Young’s double slit interference experiment (Section 1.2.7). Due to its wide

applicability in quantum optics, a brief description is given for HBT interferometry in the next

section 1.2.2.
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1.2.2 HBT Interferometry

In 1950 Hanbury-Brown and Twiss developed a new technique, based on the intensity-intensity

correlation of two detectors located at two different space time points, to reveal information about

the spatial as well as temporal coherence properties of the light sources in stellar interferometry.

Classically this was explained in terms of superposition of waves because the wavefield incident

on the detectors is a classical superposition of many independent realizations of Gaussian random

processes. Due to this, the intensity fluctuations of the two detectors are correlated, if the

observation is within coherence time and detectors are located within coherence volume, are

correlated. This technique of intensity interferometry provides the possibility of measuring the

magnitude of the normalized coherence function by means of correlation between the intensity

fluctuation at two different points instead of correlation between the fields. The correlation

between the intensity fluctuations recorded by the two detectors, for a thermal source, is related

to the first order and the second order coherence function as follows,

|g(1)(r1, r2, τ)|2 =
〈∆I(r1, t)∆I(r2, t+ τ)〉
〈I(r1, t)〉〈I(r2, t)〉

= G(2)(r1, r2, τ)− 1 (1.8)

The HBT experiment is used to analyse the coherence properties of light sources. In its simplest

form, HBT interferometer has a 50:50 beam splitter dividing the light beam into two parts which

are analysed by two photomultiplier tubes or photon counting detectors (Fig. 1.3). The correlation

between the currents of the two detectors as a function of delay between them quantifies the

second order coherence function of the source given in Eq. 1.7. The function G2(τ) can also

be used to find the photon statistics of different kinds of light sources and to classify them

according to second order correlation function (section 1.2.7) which may not be possible in a

Young’s double slit experiment. In fact HBT experiment is one of the first experiments which has

laid down the basic foundation of quantum optics. It has reached a wide range of applications. A

few of which are, the measurement of two identical particle correlation in particle physics[30, 31],

determination of collisional volume in heavy ion collision experiment [32], conformation of the

presence of a single atom/ion in a single particle traps [33, 34]. It also finds applications in

experiments related to condensed matter systems and in ultra-cold atom experiments[35–38].
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Figure 1.3: The schematic of the original HBT experimental setup. Spectrally filtered light at
435.8 nm from a Hg lamp is divided by a half-silvered mirror and incident on two photomultiplier tubes
PMT-1 and PMT-2. The signals from PMTs are amplified and filtered using AC-coupled amplifiers to
get fluctuation signals ∆ i1(t) and ∆ i2(t+τ). These signals are fed to an electronic multiplier-integrator
circuit to generate output which is proportional to 〈∆ i1(t)∆ i2(t+ τ) 〉. The translation of PMT-1 can
be used to investigate spatial coherence of the light source.[29]

1.2.3 Quantum representation of the light states

There are different formalisms to represent the quantum mechanical state of a light field. The

most frequently used representations in quantum optics are in terms of field quadratures, density

operators or Wigner functions.

Density Operator

In this representation the quantum state of light |ψ〉 is described in terms of its density operator

which, for an ensemble of quantum states, is defined as follows

ρ̂ =
∑
i

pi |ψi〉〈ψi|, (1.9)

where Σi pi = 1 and pi is the probability of ith state |ψi〉 in the complete system. A pure state

in this representation is a state |ψ〉 with only one contribution pi = 1, all others being zero

(pj 6=i = 0). Some of the properties of the density matrix can be seen by expanding density
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operator in some basis {|φk〉| as follows

ρ̂ =
∑
j,k

ρjk |φj〉〈φk|, ρjk = 〈φj|ρ̂|φk〉 (1.10)

where ρjk is the (j, k)th element of the density matrix ρ. Now some of the properties of the

operator ρ̂ follows directly from this.

tr{ρ̂} = 1 (1.11)

This follows from the normalization condition of Eq. 1.9. If the state is pure then tr{ρ̂2} = 1.

Once the density operator of the quantum state is known, the expectation value of any ob-

servable can be written as

〈Â〉 =
∑
i

pi 〈ψi|Â|ψi〉 = tr [ρ̂Â] (1.12)

Field Quadratures

In this approach, a single mode of the electromagnetic field is quantized in terms of the anni-

hilation operator â and the creation operator â†. For a multi-mode field, each mode (degree of

freedom) is described in terms of an independent harmonic oscillator with its own set of creation

and annihilation operators and the field itself is a collection of such harmonic oscillators. The

Hamiltonian for the single mode of the field is given by

Ĥ = }ω
(
â†â+

1

2

)
, [â, â†] = 1 (1.13)

The observables in quantum mechanics are Hermitian operators. For electromagnetic fields,

Hermitian operators defined in terms of non-Hermitian operators â and â† are

q̂ =
â+ â†
√

2
, p̂ =

â− â†

i
√

2
(1.14)

with a setting } = 1. p̂ and q̂ are known as field quadrature operators and are analogous to

position and momentum operator of a quantum harmonic oscillator. Now the Hamiltonian in

terms of field quadrature operator reads as follows

Ĥ =
1

2
ω
(
q̂2 + p̂2

)
, [q̂, p̂] = i. (1.15)
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The generalized quadrature operator is written as

q̂θ =
1√
2

(
âe−iθ + â†eiθ

)
= q̂ cos θ + p̂ sin θ. (1.16)

The generalized quadrature spans out the operators from p̂ to q̂ or anything in between, for

θ going between 0 and 2π. The eigen state basis of the generalized quadrature operator is

orthogonal and complete. If |qθ〉 is the eigen state such that q̂θ|qθ〉 = qθ|qθ〉 then

〈qθ|qθ′ 〉 = δ(qθ − qθ′ ),
w
|qθ〉〈qθ|dqθ = 1. (1.17)

The field quadratures obey the uncertainty principle, that is,

∆q̂∆p̂ ≥ 1

2
(1.18)

A quantum states following the equality of the uncertainty principle is called a minimum uncer-

tainty state.

Wigner function

Wigner function was introduced by Eugene Wigner in 1932 as a link between the wavefunction in

Schrodinger equation for a quantum state and the phase-space probability distribution function.

This quasi-probability distribution function is a real valued function which represents a quantum

state in quadrature phase-space. The most important point related to Wigner function is its neg-

ativity being a strong indication of a non-classical state [39]. The Wigner function representation

in terms of quadrature variables q and p is given by [28]

W (q, p) =
1

2π

w ∞
−∞

eipζ〈q − ζ/2|ρ̂|q + ζ/2〉dζ, (1.19)

Normalization for probability distribution is taken care by
w w ∞

−∞
W (q, p)dpdq = 1, with |W (q, p)| ≤ 1

π
(1.20)

It can be seen that Wigner function contains the full information about the state and has a one to

one relation to the density matrix. The true probability distribution which is called the marginal

distribution for a set of quadratures q and p can be written as follows

pr(q) =
w ∞
−∞

W (q, p)dp = 〈q|ρ̂|q〉 (1.21)

pr(p) =
w ∞
−∞

W (q, p)dp = 〈p|ρ̂|p〉 (1.22)

(1.23)
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For generalized quadrature qθ, the marginal probability distribution is

pr(qθ) =
w ∞
−∞

W (q cos θ − p sin θ, q cos θ + p sin θ)dp (1.24)

The expectation value of an operator Â can be evaluated from its Wigner function

〈Â〉 = 2π
w w ∞

−∞
W (q, p)WA(q, p)dqdp, (1.25)

where Wigner function of the operator Â is defined as

WA(q, p) =
1

2π

w ∞
−∞

eipζ〈q − ζ/2|Â|q + ζ/2〉dζ (1.26)

1.2.4 Different States of Light

Fock or Number State

The Hamiltonian in Eq. 1.13 has eigen values }ωk(nk + 1
2
) where nk is an integer. Eigen states

|nk〉 are called number or Fock states and are the eigenstates of the number operator Nk = a†
kak

a†
kak|nk〉 = nk|nk〉 (1.27)

where ak and a†
k represents the annihilation and the creation operators of a photon with wave

vector k. The operation of the creation and the annihilation operators to the number states is

given as follows

ak|nk〉 = n
1/2
k |nk − 1〉, a†

k|nk〉 = (nk + 1)1/2|nk + 1〉. (1.28)

The state vector for the higher excited states may be obtained from the vacuum by successive

application of the creation operator

|nk〉 =
(a†
k)
nk

(nk!)1/2
|0〉, nk = 0, 1, 2..... (1.29)

The number states are orthogonal and form a complete set of basis vectors for a Hilbert space

〈nk|nk〉 = 1,
∞∑

nk=0

|nk〉〈nk| = 1. (1.30)

The Wigner function of the number state |n〉 is given by [28]

Wn(q, p) =
1

π
e−q

2−p2

(−1)nL(0)
n

[
2(q2 + p2)

]
. (1.31)

where L
(0)
n [x] is the ordinary Laguerre polynomial evaluated at x. This has a non-Gaussian form

except for vacuum state |0〉.
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Coherent State

These are the states of the quantized radiation field which have properties similar to those of

a classical electromagnetic field in the limit of large amplitudes. That is the reason these are

considered as one of the ”most classical” quantized states of the radiation field. The light

emerging out of a laser is an example of a coherent state.

The coherent state is represented by |α〉 and it is the eigen state of the annihilation operator

of a harmonic oscillator. If â is the annihilation operator

â|α〉 = α|α〉, and 〈α|â† = 〈α|α∗ (1.32)

where α is any complex number. The product of uncertainty in the amplitude and the phase for

a coherent state is the minimum allowed by the uncertainty principle. This has a variance of 1/2

(setting } = 1) which is independent of phase and amplitude. The coherent state is therefore a

state with minimum uncertainty and its variance is often referred as the standard quantum limit.

It can be expanded in the number state basis as follows

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (1.33)

It can be seen from the above form that coherent states form an over complete basis set, therefore

they are non-orthogonal but complete,

〈α|α〉 = exp
(
−|α|2

)∑
n

α∗nαn

n!
= 1, but (1.34)

〈α|β〉 = exp

(
−1

2
|α|2 − 1

2
|β|2 + α∗β

)
(1.35)

The Wigner function of the coherent state is written as [28]

Wα(q, p) =
1

π
e−(q−q0)2−(p−p0)2

, (1.36)

It is clearly a Gaussian form. Therefore the coherent state is classified as Gaussian state.

Thermal State

The classical state of light obtained from a black body radiation at temperature T is termed as

a thermal state. It is an example of mixed state and its density matrix can be represented as a
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statistical-mixture of coherent states or weighted sum of number states given as follows

ρ̂ =
w ∞
−∞
P(α)|α〉〈α| d2α =

∞∑
n=0

p(n) |n〉〈n| (1.37)

where P(α) is Glauber-Sudarshan’s P function [28]. p(n) for the thermal state reads as follows

p(n) = exp (−β n }ω) {1− exp (−β }ω )} (1.38)

where β = 1/kBT . The average photon number of a thermal field is given by

n̄ = 〈n̂〉 = tr[ρ̂th â
† â] = (exp{β }ω} − 1)−1 , (1.39)

also called as Bose-Einstein distribution. The P(α) for the thermal state in terms of the average

photon number can be written as,

P(|α|) ≡ Pth(|α|) =
1

n̄π
exp(−|α|2/n̄). (1.40)

The Wigner function of the thermal state is [28]

Wth =
1

2

1

2〈n̂〉+ 1
exp

(
− q2 + p2

2〈n̂〉+ 1

)
(1.41)

The thermal state is a Gaussian state as its Wigner function has a Gaussian form.

Squeezed State

These are the states within the class of the states with minimum uncertainty and in general

may have less noise in one of the quadrature compared to the coherent state. To satisfy the

condition of minimum uncertainty state the noise in the other quadrature is greater than that

of a coherent state. Coherent state can be considered a specific case of this class of state with

equal uncertainty in both quadratures.

Single-mode squeezing

Single mode squeezed state may be generated by using unitary squeeze operator defined as

S(ε) = exp

(
1

2
ε∗a2 − 1

2
εa†2

)
(1.42)
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where ε = re2iφ. The squeeze operator obeys the following relations

S†(ε) = S−1(ε) = S(−ε) (1.43)

The action of the squeezed operator on creation and annihilation operator as defined earlier is,

S†(ε) â S(ε) = â cosh r − â†eiφ sinh r, (1.44)

and similar for its Hermitian adjoint. The squeeze operator has the following transformation

properties

S†(ε) (Q̂1 + iP̂1)S(ε) = Q1e
−r + P1e

r, (1.45)

where Q1 + iP1 = (q1 + ip1)e−iφ is a rotated complex amplitude. It can be seen from here

that the squeeze operator attenuates one component of the complex amplitude and amplifies

the other. r = |ε| determines the attenuation or amplification and called as squeeze factor. A

squeezed state |α, ε〉 is written as a displacement of a squeezed vacuum state,

|α, ε〉 = D̂(α)S(ε)|0〉 (1.46)

where displacement operator is defined as follows

D̂(α)|0〉 = eαâ
†−α∗â|0〉 = |α〉. (1.47)

A squeezed state has the following expectation value and uncertainty in quadrature components

∆Q1 = e−r, ∆P1 = er, (1.48)

〈N〉 = sinh2 r, (1.49)

〈q1 + ip1〉 = 〈Q1 + iP1〉eiφ = 2α (1.50)

It can be noted from above that increasing the squeezing amplitude r will increase the mean

photon number. Even squeezing the vacuum will have a non-zero mean photon number.

1.2.5 Gaussian and non-Gaussian Quantum states

Quantum states are sometime classified according to their Gaussian and non-Gaussian nature of

the Wigner function in quadrature space. Coherent states, squeezed states and thermal states
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are the examples of states with Gaussian Wigner function. The distinct feature of these states is

that being Gaussian states they can be characterized by their covariance matrices with the first

and second order moments of canonical quadrature variables.

Gaussian states are important in describing the basic nature of the quantum mechanical phe-

nomenon in quantum optics and quantum information science, in the discrete variable approach.

Non-Gaussian resources are necessary to implement a universal quantum computation, based on

continuous variable schemes. This motivates towards the generation of non-Gaussian non-classical

states.

1.2.6 Photon Added thermal state

As a theoretical proposal, Agarwal and Tara in 1991-92 defined new types of non-classical states

by photon addition on a classical field like a thermal state [22] or a coherent state [40]. This was

shown analytically that repeated application of photon addition operation on a radiation state ρ̂

can generate states with non-classical feature. As an example the calculation for a single photon

added thermal state is presented below. This technique is used later in the section 1.5.1.

The single photon addition operation on a thermal state, given by Eq. 1.40 can be written as

follows

ρ̂1
th =

1

N1

â† ρ̂th â (1.51)

Here the superscript 1 indicates that we have added one photon, and N1 is an appropriate

normalization constant. The Glauber-Sudarshan’s diagonal weight functions [5] of the single

photon-added thermal (SPATS) state can be calculated as follows [22]. The density matrix for

SPATS is

ρ̂1
th ∝

w
e−|α|

2/n̄a†|α〉〈α| a d2α (1.52)

using the property (see Appendix:-A)

a†(|α〉e|α|2/2) =
∂

∂α
(|α〉e|α|2/2), (1.53)

The density matrix reads as

ρ̂1
th ∝

w
e−|α|

2(1+ 1
n̄

) ∂

∂α
(|α〉e|α|2/2)

∂

∂α∗
(〈α|e|α|2/2) d2α (1.54)
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Now integrating by parts and using the boundary condition for |α〉, we get,

ρ̂1
th ∝

w [
e|α|

2 ∂2

∂α∂α∗
e−|α|

2(1+ 1
n̄

)

]
|α〉〈α| d2α. (1.55)

Comparing Eq. 1.55 to the Eq. 1.37, the distribution function P(α) for SPATS can be written as

P1
th(|α|) ∝ (|α|2(1 + n̄)− n̄) exp[−|α|2/n̄], (1.56)

After Normalization, the final expression for Glauber-Sudarshan diagonal weight function for

SPATS is

P1
th(|α|) =

1

π n̄3
(|α|2(1 + n̄)− n̄) exp[−|α|2/n̄], (1.57)

Mandel Parameter

Non-classicality for a quantum state of light can be quantified in terms of the degree of squeezing

[22] or quantifying its sub-Poissonian character. The sub-Poissonian character can be examined

by the Mandel parameter Q which can be defined in terms of creation and annihilation operator

for a single mode field as follows

Q =
〈â†2â2〉 − 〈â†â〉2

〈â†â〉
(1.58)

where [22, 41],

〈â†nân〉 =
w
P(|α|)|α|2nd2α . (1.59)

In our case of single photon added states, we evaluate 〈â†nân〉 for state ρ̂1
th with the following

standard procedure.

〈â†2â2〉 =
w
P(|α|)|α|4d2α (1.60)

From Eq. 1.59, and converting the equation into polar co-ordinates with |α| = |reiθ| = r

〈â†2â2〉 =
1

πn̄3

[
2π
(

(1 + n̄)
w ∞

0
r7e−

r2

n̄ dr − n̄
w ∞

0
r5e−

r2

n̄ dr
)]

(1.61)

where the factor 2π comes from the integration over θ. Substituting the values of definite

integrals, Finally Eq. 1.61 takes the following form

〈â†2â2〉 =
[
6n̄2 + 4n̄

]
(1.62)
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Similarly one can calculate 〈â†â〉 to get,

〈â†â〉 = (2n̄+ 1). (1.63)

The Mandel parameter from Eq. 1.58 can be written as

Q =
2n̄2 − 1

2n̄+ 1
(1.64)

1.2.7 Light source characterization at the photon level

One of the methods of characterizing the quantum state of a light source, is a photon coinci-

dence measurement (intensity correlation measurement) using a Hanbury Brown-Twiss intensity

interferometer. The second order coherence function is written in terms of the photon creation

and annihilation operator [28]

G(2)(τ) =
〈a†(0)a†(τ)a(τ)a(0)〉
〈a†(0)a(0)〉

. (1.65)

Here the light source is assumed to be time-invariant (stationary). In terms of photon number

operator n(t) = a†(t)a(t), the expression for G(2)(τ) can also be written as follows

G(2)(τ) =
〈: n(τ)n(0) :〉
〈n(0)〉2

, (1.66)

where : denotes normal ordering of the operators.

G(2)(τ) is an important parameter as it can give the information about photon number distri-

bution indirectly. G(2)(τ) = 1 refers to poissonian, while G(2)(τ) > 1 and G(2)(τ) < 1 refers to

a superpoissonian and subpoissonian light sources respectively. The bunching and antibunching

behaviour of photons generated from a thermal light source and a single photon source can be

observed by G(2)(τ) values at zero time delay between the two detectors. G(2)(0) = 2 represents

bunching of photons which is the characteristic of a thermal light source while G(2)(0) = 0 is a sig-

nature for antibunched photon indicating a single photon source. It should be noted that for very

long time differences between the two detectors, there is no correlation i.e. G(2)(τ → ∞) = 1.
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The zero time delay correlation values for different states of light is given below:-

G2(0) = 1, for coherent laser light (1.67)

G2(0) = 2, for thermal light (1.68)

G2(0) = 1− 1

n
, for number state (1.69)

G2(0) = 3 +
1

〈n〉
, for single mode squeezed vacuum state (1.70)

where 〈n〉 = sinh2 r with r defined as squeezing parameter.

1.3 Tunable classical light sources

1.3.1 Pseudo Thermal light using ground glass plate

Figure 1.4: The coherent light from a narrow linewidth laser incident on a rotating ground glass
plate which has randomly distributed scatters on its surface. It scatters light mimicking a chaotic light
source with many independent radiators.

Generating Gaussian light sources with coherence characteristics similar to that of a thermal

radiation but with a tunable coherence was first introduced by Martienssen and Spiller[20]. This

is the most conventional method to create a pseudo-thermal light by diffusing a coherent laser

light through a rotating diffuser, for example a ground glass plate (Fig. 1.4). The moving diffuser

introduces extremely complex and irregular deformation of the incident wavefront. At a distant

point P , the light can be considered as consisting of many independent contributions from

different ”correlation areas” on the diffuser and due to large ensemble of possible diffusers varying
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in time due to rotation of the ground glass plate. The resultant intensity at point P fluctuates

randomly in time, obeying negative exponential statistics as for a polarized thermal light. The

complex field may be regarded as resulting from a random phaser sum with complex Gaussian

statistics.

In their original work Martienssen and Spiller used a rotating diffuser plate in front of a thermal

light source with short coherence time to generate a pseudo thermal light with longer and tailored

coherence time. Later on Arecchi [21] demonstrated the complete characterization of the pseudo

thermal light generated by scattering of coherent photons from a rotating ground glass (diffuser)

plate.

1.3.2 Generation of tunable classical light sources using

Acousto-Optic-Modulator

Acousto-Optic-Modulator

Figure 1.5: Acousto-Optic-Modulator diffracts the incident beam into different orders which are
phase and frequency shifted with respect to the zeroth order diffracted beam. The shift in the phase
and frequency is governed by the phase and frequency of rf electrical signal which is fed to the piezo
electric transducer.

Acousto-Optic-Modulators (AOM), also known as Bragg cell, are the devices used to modulate

the phase, frequency or the intensity of the light via acousto-optic interactions. As shown in the

Fig. 1.5 a radio frequency (rf) electrical signal generates the acoustic waves in the transducer
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attached to the crystal, which in turn modifies the refractive index of the crystal corresponding

to the acoustic wave. This sets a moving diffraction grating inside the crystal. The light passing

through such a moving grating gets diffracted in different orders with a modulation in its phase,

frequency and intensity according to the rf signal. Thus sound waves control the properties of

the diffracted light through the AOM crystal.

Figure 1.6: Light reflected from different layers of the inhomogeneous medium interferes resulting
in intensity maxima and minima according to Bragg’s condition.

In the Bragg’s diffraction regime, the optical wave gets partially reflected from the stratified

parallel planes set by the acoustic plane wave due to refractive index variation (Fig. 1.6). At one

particular incidence angle θ, only one diffraction order is produced satisfying the Bragg’s condition

of constructive interference,

sin θ =
λ

2Λ
(1.71)

where Λ is the wavelength of acoustic wave and λ is the wavelength of light in the medium.

The Bragg’s condition in a crystal of sufficiently large dimension (L) compared to wavelength

of sound waves (Λ) and for small incidence angle (θ) of incident wave vector of optical wave (k),

the Eq. 1.71 in terms of wave vectors is

kr = k ± q, (1.72)
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Figure 1.7: Figure shows the equivalence between Bragg’s diffraction condition, 2k sin θ = q and
the vector relation kr = k + q

.

where kr is the wave vector of the diffracted optical wave and q is the wave vector for the

sound wave (Fig. 1.7). The frequency of the output diffracted optical wave is Doppler shifted due

to reflection from the moving grating. If Ω is the frequency of sound and ω of the input optical

wave, then the frequency of reflected optical wave is

ωr = ω ± Ω (1.73)

The intensity of the light diffracted through the AOM crystal depends on the rf power fed to the

AOM and expressed in terms reflectance

R = 2π2n2L2 Λ2

λ4
0

MIs (1.74)

n is the refractive index of the medium, λ0 is the wavelength of the light, Is is the intensity of

the acoustic wave which is proportional to rf power and M is the material parameter.
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1.3.3 Incoherent Light Generation by controlled phase randomization

in a Mach-Zehnder setup

Experimental Setup

Figure 1.8: Schematic of the experiment. AMP - amplifier, AOM - acousto-optic modulator, BS -
beam splitter, D1,D2 - detectors, M1 - M3 - mirrors, SMF - single mode fiber, VFG - versatile function
generator, VNDF - variable neutral density filter.

The schematic of the experiment is given in Fig. 1.8. Coherent cw laser light from an external

cavity diode laser (Toptica, 767 nm, linewidth < 5 MHz) was fiber coupled through a single mode

polarization maintaining fiber. The light was then passed through a variable neutral density filter

(VNDF) ( to control the intensity of the beam) onto beam splitter BS1 where it was amplitude

divided into two parts. These two beams traversed along the two arms of a Mach-Zehnder

interferometer (MZI), which had an AOM in each of the two arms, arranged such that the

first order diffracted light proceeded further on, while the undiffracted light was blocked. After

traversing the two arms of the interferometer, the beams were combined at BS2, that is, the

diffracted light beams of the two arms of the MZI interfered at BS2. Light emerging from one
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of the exit ports of BS2 was directed into an input of a 50:50 fiber-splitter, and then onto two

detectors, D1 and D2.

The two AOMs were driven by individual Versatile Function Generators (VFG, Toptica) which

operated at 80 MHz radio frequency (rf); they were both referenced to a common 10 MHz clock.

Using a LabVIEW interface we could tailor any distribution of phase and intensity fluctuations

in the rf electrical signal being fed to the AOM on time scales ranging from few hundreds

of nanoseconds to seconds. These fluctuations were transferred to the diffracted light by the

acousto-optic interaction thus providing fine electronic control over the phase and intensity of

the light. Measurements at the two detectors were used to determine the second order correlation

(intensity-intensity correlation) function. For the case of continuous light intensity measurements,

the laser was operated at a power of around 30 mW and D1 and D2 were two fast photodiodes

(Thorlabs PD10A-EC). For the case of photon coincidence detection, the laser light was strongly

attenuated and photodiodes D1 and D2 were avalanche photo-diode (APD) based single photon

counting modules ( SPCM-AQR-15 Perkin Elmer) where an incident photon results in a TTL

pulse with a detection efficiency of 65 % at 767 nm 1. The outputs of D1 and D2 were stored in a

PC using data acquisition systems. In the case of classical detectors, a digital storage oscilloscope

was employed, while for photon counting, two counters on a data acquisition card (NI M-series

PCI-6259) were used.

1.3.4 Generation of Incoherent Light by only phase modulation in an

MZI setup

In this Section, we describe the creation of incoherent sources of light by imparting phase jumps

to light by means of the AOMs in the MZI (Fig. 1.8). The use of a Mach-Zehnder interferometer

was motivated by the facts that, i) phase changes imparted to light can be discerned only in an

interferometric setup, and ii) it enables the creation of a source with intensity fluctuations even

though only phase jumps are imparted to light.

1SPCM-AQR-15 is an avalanche photodiode based single photon counting module with a dead time of 50 ns.
The quantum efficiency of the detector is 90 % at 767 nm. The dark count rate is less than 50 counts per
second(cps)
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Theory

The action of the MZI shown in the Fig.1.8 may be mathematically represented by the transfor-

mation matrix M = B.Φ.B where B ( the operation of a beam splitter) and Φ (the action of

the two AOMs) are given by

B =
1√
2


1 1

−1 1

 and Φ =


eiφ1(t) 0

0 eiφ2(t)

 (1.75)

Here φ1(t) and φ2(t) are the phase shifts imparted to light at AOMs 1 and 2, respectively. Thus,

in terms of the scalar wave field, E1 which enters at one of the ports of BS1 (and with no input

at its other port), the output at BS2 is given by
E1′

E2′

 = M.


E1

0

 (1.76)

where 1, 2 represent the input ports of BS1 and 1’, 2’ the output ports of BS2. It is clear that

the second order intensity self-correlation at the output ports is given by

G2
ii(τ) =

〈E?
i (t)Ei(t)E

?
i (t+ τ)Ei(t+ τ)〉t

〈E?
i (t)Ei(t)〉t 〈E?

i (t+ τ)Ei(t+ τ)〉t
(1.77)

where i takes values 1’, 2’. In terms of field operators G2
ii(τ) is given by

〈ψ|Ai†(t)Ai†(t+ τ)Ai(t+ τ)Ai(t) |ψ〉t
〈ψ|Ai†(t+ τ)Ai(t+ τ) |ψ〉t 〈ψ|Ai†(t)Ai(t) |ψ〉t

(1.78)

where 
Â1′

Â2′

 = M.


â1

â2

 , (1.79)

with |ψ〉 being the input state, â1, â2 the annihilation operators of the input modes, and Â1′ , Â2′

those of the output modes, and M is as defined earlier. In our setup, |ψ〉 = |E1〉 ⊗ |0〉, where
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|E1〉 is a coherent state. Simplification of Eqs. 1.77 and 1.78, for the case of complete phase

noise, (i.e., uniformly distributed noise, with phase spanning the entire circle) both yield

G2
ii(τ) = 1 + 〈cos(δφ(t)) cos(δφ(t+ τ))〉t (1.80)

where δφ = φ1(t) − φ2(t). Note that we have adjusted the MZI to match the dynamical paths

in both arms and, therefore, the phase difference is the difference in the phases imparted at the

two AOMs.

The temporal coherence of light, emerging out of the port 2’, was determined by intensity

correlation technique in a standard correlation setup developed by Hanbury-Brown and Twiss

[29]. Equation (1.80) can be easily cast into the form

G2
2′2′(τ) = 1 + 0.5ξ(τ), (1.81)

where ξ(τ) represents the probability of temporal overlap of δφ(t) and δφ(t+ τ). In general, for

complete phase noise given to AOM 1 and 2 and phase jumps occurring at time intervals t given

by independent distributions P1(t) and P2(t) respectively, we have

ξ(τ) =

r∞
τ

(t− τ)P1(t)d(t)
r∞

0
tP1(t)d(t)

.

r∞
τ

(t− τ)P2(t)d(t)
r∞

0
tP2(t)d(t)

(1.82)

For the special case where one of the phases, say φ2(t), is held constant Eq. 1.82 reduces to

ξ(τ) =

r∞
τ

(t− τ)P1(t)d(t)
r∞

0
tP1(t)d(t)

(1.83)

Experimental Results

We now present our experimental results. Initially, random phase jumps were imparted to AOM1

only and at regular intervals, that is, P1(t) = δ(t− τc). For this case, we see from Eq. 1.83 and

Eq. 1.81,

G2
2′2′(τ) = 1 + 0.5

(
1− τ

τc

)
for τ ≤ τc

= 1 for τ ≥ τc (1.84)

Thus it is clear from here that, on imparting phase noise one expects photon-bunching with a

zero-delay second-order correlation value 1.5, that falls to 1 for long delays. In the experiment,
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Figure 1.9: Intensity-intensity correlation function, G2
2′2′(τ) of the light exiting port 2’ of BS2 in

Fig. 1.8, as function of τ for (a) constant dwell time noise to rf of one AOM, and with classical light
detection; (b) exponential distribution of dwell times of noise in both AOMs, and with classical light
detection; (c) same as (a), but in photon counting regime; (d) same as (b), but in photon counting
regime.

at constant time intervals, τc, the rf electrical signal to AOM1 was given a random phase jump,

distributed uniformly in the interval (−π, π). The experimentally determined values of G2
2′2′(τ)

are shown as discrete points in Fig. 1.9 (a) for three different values of coherence time, τc. The

continuous curves are G2
2′2′(τ) as obtained from Eq. 1.84.

Next, AOMs 1 and 2 were driven with rf voltages with independent, random phase jumps

uniformly distributed in the interval (−π, π), and at time intervals that had independent expo-

nentially falling distributions, P (t) = [exp(−t/τc)]/τc, with 1 ms ≤ t ≤ 100 ms and with a

mean, ∼ τc. The results for this case are presented in Fig. 1.9(b), for three values of τc. As in

the previous case, the agreement between theory and experiment is very good.

The above measurements, which utilized classical detection of intensities with photodetectors,

were repeated in the photon counting regime using APD based single-photon counting modules

(SPCM). The laser light was strongly attenuated, so that, on an average, every 30µs, there was

a 10% probability of detecting a photon. Thus, there was, on an average, less than one photon

in the interferometer at any instant of time. The output pulses from D1 and D2 (APD based

SPCMs) were fed to two counters operating at a time bin of 30µs, that was shorter than the mean

interval between phase jumps that ranged from 1 ms to 100 ms. The values of G2(τ) obtained
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from the experiments for the two cases (phase jumps to one AOM only at constant intervals and

phase jumps to both AOMs with exponential distribution of interval between jumps) are shown

in Figs. 1.9(c) and 1.9(d), along with theoretically expected values. The agreement is fair. In

order to obtain sufficient statistics at single photon detection level, data had to be acquired over

long durations. Mechanical instability of the interferometer and dark counts are believed to have

contributed to the deviation from the theoretical curves in the photon counting regime.

From the above, it is amply clear that classical light sources exhibiting bunching and with

the desired temporal coherence characteristics may be created from continuous coherent laser

light. The results also confirm the equivalence between classical intensity-intensity correlation

and coincidence detection for G2(τ) measurement for classical states of light. In the present

experiment, the phase fluctuations are on the milliseconds time scales due to restriction of the data

acquisition card. The setup allows for a temporal variation from 50 ns (currently limited to 500 ns

by USB 2.0 communication) to few seconds depending upon the stability of the interferometer.

This provides an easy way of creating bunched light with long coherence times. Further the

bunching can be enhanced and higher values of G2
2′2′(0) can be obtained by using engineered

partial phase noise in this interferometric setup [18].

1.4 Tailoring Photon Number Distribution by Intensity

Modulation of Light

In this Section, we demonstrate the creation of classical incoherent states with desired photon

number distributions (PND), starting from an input coherent state. This was achieved by modu-

lating the diffraction efficiency of a single AOM by the addition of calibrated amplitude noise with

the desired characteristics to the input rf electrical signal. This, in effect, modulates the trans-

mittivity of the coherent state through the AOM according to the chosen probability distribution

function, thereby providing a source of classical light with a tailored photon number distribution.
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1.4.1 Theory

Consider the coherent state |α〉 being diffracted by an AOM where the transmittivity into the

diffracted order (amplitude of the coherent state) is modulated in time, in the from of P(|α|).

The modulated coherent state and its expansion in terms of number (Fock) states can be written

as

ρ̂ =
w |α0|

0
P(|α|)|α〉〈α| d2|α| =

∞∑
n=0

p(n)|n〉〈n|, with

p(n) =
w |α0|

0
d2|α| P(|α|) e−|α|2 |α|

2n

n!
. (1.85)

where p(n) is the photon number distribution function and |α0〉 is the diffracted coherent state

at maximal transmittivity, and {|n〉} is the Fock basis. The ensemble in Eq. (1.85) is practically

realized by appropriately modulating the transmittivity of the input coherent state over a sufficient

amount of time. The upper limit of ρ̂ can be taken as infinity if |α0| is chosen to be much larger

than the mean |α|.

We experimentally generate light sources with two specific PNDs as examples. The first is the

thermal state with an average of n̄ photons, namely, ρ̂th(n̄) [5] with

P(|α|) ≡ Pth(|α|) =
1

n̄π
exp(−|α|2/n̄), (1.86)

for which the probabilities

pth(n) = (1− e−λ)e−λn with e−λ = n̄/(n̄ + 1), (1.87)

define the PND. The second is the state ρ̂ζ corresponding to

P(|α|) ≡ Pζ(|α|) = ζ2|α|2 exp[−ζ|α|2], (1.88)

with an average number of photons n̄ and a PND specified by the probabilities

pζ(n) =

(
ζ

ζ + 1

)2
n+ 1

(ζ + 1)n
. with ζ =

2

n̄
. (1.89)

Note that the state ρ̂ζ is manifestly non-Gaussian.

The temporal coherence characteristics of the incoherent light with tailored PNDs, as generated

above, is described by the second-order correlation function G2(τ), given by

G2(τ) = 1 + (G2(0)− 1)ξ(τ) (1.90)



34 Chapter 1

where ξ(τ) is as given in Eq. (1.83). G2(0) = 2 for Pth(|α|), G2(0) = 1.5 for Pζ(|α|) and

G2(0) = 1 for a coherent state.

Figure 1.10: Calibration curve for AOM transmittivity in the first order diffracted beam w.r.t. RF
power fed to the AOM. I in the y-axis is normalized transmittance i.e. ratio of transmitted intensity at
a given RF power to maximum transmitted intensity at maximum RF power, (I = I/Imax). X along
the x-axis is normalized RF power i.e. X = P/Pmax

1.4.2 Experimental Results

For this part of the experiment AOM1 of Fig. 1.8 was switched off and BS2 was removed. Thus,

only the light emerging from AOM2 could reach the detectors, which in this case were APD based

SPCMs, as described previously. The input laser beam was attenuated using neutral density filters

to produce at most 94000 counts per second (cps) on the APD, suitable for measurement in the

photon counting regime 2. The transmittivity of the AOM2 is calibrated for different rf power

fed to the AOM. Fig. 1.10 shows the calibration curve for normalized transmittance of the AOM

(for the 1st order) w.r.t. normalized input rf power.

For the photon number distribution measurement in this section a time bin of 450µs is set

for the counter. The size of the time bin, which determines the average photon number, was

so chosen for the PND measurements to clearly bring out the distinction between coherent and

2It may be noted that at these count rates the probability of two or more photons generating a single avalanche
signal (including the dead time) is negligible, and thus we could reconstruct theoretically expected PNDs for
strongly attenuated continuous laser light
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incoherent states of various parameters. Once chosen, this time bin was fixed for all PND

determinations. All measurements lasted for a period of at least 30 minutes, and multiple runs

were carried out to obtain good statistics.

Initially, no noise was added to the rf signal and the maximum rf power was fed to the AOM; the

+1st order diffracted light in this situation constitutes the maximally transmitted coherent state

|α0〉. The PND for this light, as obtained from our measurements, is as shown in Fig. 1.11(a).

Figure 1.11: Photon number distributions, p(n) vs n, as determined from the experiment, with a
time bin of 450µs, for (a) maximally diffracted laser light, in absence of input fluctuations; (b) light
obtained with Gaussian amplitude noise (Eq. 1.86) applied to the rf, for different values of λ; (c) light
obtained with non-Gaussian amplitude noise (Eq. 1.88) applied to the rf, for different ζ. Insets show the
corresponding G2(τ) as function of τ .

It has a Poissonian distribution with a mean photon number of 42 with an estimated average

dark counts 2.25×10−2 per time bin, which is three orders of magnitude smaller than the average

photon number in any of our experimental observations. The second-order correlation function,

G2(τ) for this case is shown in the inset; it is clearly that of a coherent state with G2(τ) = 1 for all

τ . This was calculated directly from the recorded time series of the counter operating at 30µs.
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Using the calibration of the AOM transmittivity into the +1st order versus the rf power, and

the experimentally determined value of n̄ for the maximally transmitted coherent state |α0〉, we

generate, by appropriate modulation of rf power, light with the desired photon number distribution

function. The rf power was fluctuated at random time intervals in the range 1 to 100 ms with a

mean time of ∼ 10 ms, with the distribution of time intervals falling exponentially.

Then the rf power fed to the AOM was varied such that the transmitted coherent state |α〉

was modulated to realize Pth(|α|) of Eq. 1.86, for three different values of n̄ ( 1.91, 3.85 and

5.67) 3. The emergent light was found to have the PNDs as shown in Fig. 1.11(b). These

are in good agreement with the theoretically expected curves given by Eq. 1.87 for pth(n). The

second-order correlation function for this case is shown in the inset. The zero-delay second-order

correlation has a value 2, as expected for thermal light. This shows that temporal modulation of

intensity of coherent light leads to the bunching of photons. On similar lines, the rf power fed to

the AOM was varied such that the transmitted coherent state |α〉 was modulated to realize the

non-Gaussian function Pζ(|α|) of Eq. 1.88 for three different values of n̄ (2.60, 4.88 and 7.41) 4.

The PNDs obtained for the emergent light are shown in Fig. 1.11(c), along with the theoretically

expected curves given by Eq. 1.89 for pζ(n) . The second order correlation function is shown

in the inset. The zero-delay second-order correlation has a value 1.5, as expected for this case.

The good agreement between theory and experiment for all measurements, both Gaussian and

non-Gaussian, underlines the reliability and efficacy of this method in generating tailored classical

light sources with desired PND and temporal coherence characteristics. Generation of classical

non-Gaussian states with desired PND in a predetermined manner promises to be useful in various

contexts as discussed in the next section.

1.5 Application of classical non-Gaussian state in quantum

optics

As our method offers complete flexibility of providing phase and/or intensity fluctuations with

different desired probability distributions and on different time scales, the AOMs can be used

3e−λ = n̄
n̄+1

4ζ = 2
n̄
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to generate classical incoherent light having properties quite different from the existing light

sources, opening up new fields for exploration. For example it is a simple matter to produce light

with temporal incoherence but spatial coherence. This is a crucial requirement in experiments

involving photon addition/subtraction to incoherent light[15] and this AOM-based technique is

likely to find immediate application here. Another feature, likely to prove useful, is the ability

to control the mean photon number with ease, even during the course of a measurement, by

electronic means. This has been illustrated in Fig. 1.11(b) and 1.11(c), where we have changed

the parameters λ and ξ to alter the mean photon number.

Figure 1.12: The distribution function P(|α|) for photon added thermal state, ρ1
th, (Fig. a)) and

photon added classical non-Gaussian state, ρ1
ζ (Fig. b)) given by Eq. 1.88. The plots for three different

values of average photon number are given for each case. Note the qualitative difference between the
two states for same average photon number.

1.5.1 Non-classical behaviour of photon added classical non-Gaussian

state

A significant application of the tailored classical non-Gaussian states generated by this method is in

the creation of tailored non-classical non-Gaussian states, for example when used in conjunction

with the photon addition technique. As shown for thermal state in the section 1.2.6, we now

consider the photon-addition on the non-Gaussian classical state given by Eq. 1.88. The photon

added state can be represented by ρ̂1
ζ = 1

N2
â† ρ̂ζ â, where the superscript 1 indicates that we have

added one photon, and N2 is an appropriate normalization constant. The non-classical properties
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of the photon added non-Gaussian state can be analysed in terms of Glauber-Sudarshan’s diagonal

weight functions [5]. The diagonal weight function of this state can be calculated by using the

technique described in section 1.2.6. The single photon addition operation on the non-Gaussian

state, given by Eq. 1.88 can be written as follows

ρ̂1
ζ =

1

N2

â† ρ̂ζ â (1.91)

Here the superscript 1 indicates that we have added one photon, and N2 is an appropriate

normalizations. The density matrix of photon added non-gaussian state is

ρ̂1
ζ ∝

w
a†
[
ζ2|α|2e−ζ|α|2|α〉〈α|

]
a d2α (1.92)

using the property (see Appendix:-A)

a†(|α〉e|α|2/2) =
∂

∂α
(|α〉e|α|2/2), (1.93)

density matrix reads as

ρ̂1
ζ ∝

w
ζ2|α|2e−ζ|α|2 ∂

∂α
(|α〉e|α|2/2)

∂

∂α∗
(〈α|e|α|2/2) d2α (1.94)

Now integrating by parts and using the boundary condition for |α〉

ρ̂1
ζ ∝

w [
e|α|

2 ∂2

∂α∂α∗
ζ2|α|2e−ζ|α|2

]
|α〉〈α| d2α. (1.95)

Comparing Eq. 1.95 to the Eq. 1.37, the distribution function P(α) for single photon added non-

Gaussian state is

P1
ζ (|α|) ∝

[
n̄2 − 3n̄(n̄+ 2)|α|2 + (n̄+ 2)2|α|4

]
e−

2
n̄
|α|2 (1.96)

After normalization, the final expression for Glauber-Sudarshan diagonal weight function is

P1
ζ (|α|) =

4

π n̄4(1 + n̄)

[
n̄2 − 3n̄(n̄+ 2)|α|2 + (n̄+ 2)2|α|4

]
e−

2
n̄
|α|2 , (1.97)

Therefore the diagonal weight function for photon added thermal and photon added non-

Gaussian states are as follows

P1
th(|α|) =

1

π n̄3
(|α|2(1 + n̄)− n̄) exp[−|α|2/n̄],

P1
ζ (|α|) =

4

π n̄4 (1 + n̄)
(n̄2 − 3n̄(n̄+ 2)|α|2 + (n̄+ 2)2|α|4)×

exp[−2|α|2/n̄], (1.98)



1.5 Application of classical non-Gaussian state in quantum optics 39

with ζ = 2
n̄

for the latter. As is well known, any state with a point wise non-positive diago-

nal weight function is nonclassical (quantum). Clearly, both the weight functions in Eq. (1.98)

correspond to the nonclassical states, and this is made manifest in Figs. (1.12). Further the

nonclassicality (quantumness) of the states ρ̂1
th and ρ̂1

ζ are qualitatively different. To make this

observation quantitative, we now evaluate the Mandel parameter Q for these states with re-

spect to the mean number of photons. The Mandel parameter Q of a state ρ̂ is defined as

Q = (Tr(ρ̂ â†2â2)− (Tr(ρ̂ â†â))2)/Tr(ρ̂ â†â) [41].

Mandel parameter for ρ̂1
ζ

For single photon added non-Gaussian state, ρ̂1
ζ , Q can be calculated as follows.

〈â†2â2〉 =
w
P(|α|)|α|4d2α (1.99)

From Eq. 1.99, and converting the equation into polar co-ordinates with |α| = |reiθ| = r

〈â†2â2〉 =
4

πn̄(1 + n̄)
[2π(n̄2

w ∞
0
r5e−

2r2

n̄ dr − 3n̄(n̄+ 2)
w ∞

0
r7e−

2r2

n̄ dr (1.100)

+(n̄+ 2)2
w ∞

0
r9e−

2r2

n̄ dr)]

where the factor 2π comes from the integration over θ. Using the value of definite integration,

w ∞
0
re−

2r2

n̄ dr =
n̄

4
(1.101)

and taking the partial derivative of this with respect to n̄ all other integrals can be evaluated, to

obtain

〈â†2â2〉 =

(
n̄

n̄+ 1

)[
3n̄2 +

15

2
n̄+ 4

]
(1.102)

Similarly one can calculate 〈â†â〉 to get,

〈â†â〉 =
1

1 + n̄

[
3

2
n̄2 + 3n̄+ 1

]
(1.103)

The Mandel parameter from Eq. 1.58 can be written as

Q =
0.75n̄4 + 1.5n̄3 − 0.5n̄2 − 2n̄+ 1

(1 + n̄)(1.5n̄2 + 3n̄+ 1)
(1.104)
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As any state with Q < 0 is definitely non-classical (quantum), it is clear from Fig. (1.13) that

both ρ̂1
ζ and ρ̂1

th show non-classical behaviour for certain range of values n̄. More interestingly,

there are physical situations in which Q of ρ̂1
ζ is < 0 while Q of ρ̂1

th > 0 for the same mean no. of

photons. This suggests tailoring the non-Gaussianity of a classical state can have a direct bearing

on the quantum features that may emerge when such a state is subject to further quantum

processing.

Figure 1.13: The figure shows the difference in the non-classicality behaviour (Q < 0) for the two
different photon added states, one with thermal ρ1

th and other with non-Gaussian state ρ1
ζ . For the

same mean photon number ρ1
ζ shows more negativity compared to state ρ1

th. Even more interestingly

for mean photon numbers where ρ1
th is classical (Q > 0), ρ1

ζ still continues to be non-classical even upto
average photon number n̄ = 1.

1.5.2 Generation of non-Gaussian Entanglement

Here we show how the tailored PNDs of the kind generated above may be used for producing

novel forms of entanglement.

As is well known, a beamsplitter preserves non-Gaussianity [42], and non-classicality [5, 43]. It

also generates entanglement of input non-classical states [44]. These features of the beamsplitter
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Figure 1.14: Two possible scenarios for the generation of tailored (a) entangled non-classical
non-Gaussian state by mixing tunable classical non-Gaussian state with non-classical squeezed state
or (b)entangled non-classical non-Gaussian state by mixing tunable single photon added non-Gaussian
state with a classical Gaussian state on a beam splitter.

may be utilized to create non-Gaussian entangled states [24] of the form

ρ̂nG
out = Ubs (ρ̂G ⊗ ρ̂nG)U †

bs, (1.105)

by appropriately choosing a Gaussian state ρ̂G and a tailored non-Gaussian state ρ̂nG. Here Ubs

is the beamsplitter unitary.

Consider the situation shown in the Fig. 1.14 where a single-mode squeezed state ρ̂sq enters

one port of a 50:50 beamsplitter and a tailored non-Gaussian state ρ̂nG enters the other. Note

that here we may also tailor the non-classicality of ρ̂nG through processes such as photon-addition

Fig. 1.14 (b). Let V = diag 1
2
(eµ, e−µ) denote the variance matrix of the squeezed state with

squeezing parameter µ, and ρ̂nG the tailored non-Gaussian state with average photon number n̄.

The resultant state at the output of the beamsplitter is definitely entangled when 2n̄ + 1 < eµ

[45], while also remaining non-Gaussian. Clearly, this a realization of a non-Gaussian entangled

state. The method is effective even if the initial non-classicality were to purely reside in ρ̂nG. For

instance, say µ = 0 (ρ̂G is the ground state), and ρ̂nG is a photon-added tailored non-Gaussian
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PND, the resulting ρ̂nGout is definitely non-Gaussian entangled [46]. In other words, we may choose

the initial non-classicality to reside either in ρ̂G or in ρ̂nG, or in both of them, while simultaneously

tuning the non-Gaussianity of ρ̂nG, to generate the desired non-Gaussian entanglement.

1.6 Conclusion

To conclude, we have experimentally demonstrated a method for the creation of incoherent

classical light using AOMs where the temporal characteristics, coherence time, photon number

distribution function and the mean photon number are electronically tuned. Pseudo-thermal

light and non-Gaussian classical light have been created from coherent laser light, as illustrative

examples. Possible applications of such tailored light sources, like the generation of tailored

non-Gaussian non-classical state as well as tailored non-Gaussian entanglement, have been dis-

cussed. The present proof-of-principle experiments, which display fluctuations on the millisec-

onds timescales, may be easily augmented with currently available technology to higher speeds

(nanosecond timescales) and may be combined with techniques of photon addition, to create

novel forms of non-classical light.



2
Chapter 2

2.1 Classical Light Analogue of the non-local

Aharonov-Bohm effect :

This chapter is devoted for the experimental demonstration of non-local geometric phase also

known as Pancharatnam phase for classical incoherent light in the intensity-intensity correlations.

Existence of nonlocal Pancharatnam phase in two-photon interferometry was proposed by Mehta

et. al. [47], for a pair of bunched or correlated photons in a Hanbury-Brown-Twiss experiment.

When light from two thermal light sources with different circular polarization states is allowed to

fall on two detectors which have polarizers in front of them, they show a geometric phase effect

for correlated photons only in the cross correlation measurement of the two detectors but a null

effect for local measurements on individual detectors[13]. Interestingly we demonstrate this effect

with tailored classical phase-incoherent light. This effect for a classical incoherent light can be

43
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thought of as a classical light analogue of the non-local Aharonov-Bohm effect [2].

In the experiment two independent phase incoherent light sources are generated by impart-

ing phase noise to continuous coherent light, using acousto-optic interaction. The two-photon

Pancharatnam phase was observed and modulated in a Mach-Zehnder interferometer.

2.1.1 Introduction

Two classic interference experiments are Young’s double-slit experiment and the Hanbury Brown

and Twiss (HB-T) experiment. The former measures the amplitude-amplitude correlation and

demonstrates the interference of a photon with itself. The latter experiment measures the

intensity-intensity correlation and is a demonstration of the interference of a pair of photons

with itself. While the HB-T intensity-interferometry experiment was historically important in

leading to our present understanding of quantum optics and coherence, one does not need to

invoke quantum mechanics to understand it; it can quite simply be understood entirely in terms

of classical electric field fluctuations. In recent times, with the development of different types of

light sources and detection techniques, intensity-interferometry has, once again, become a topic

of great interest. It has led to many tantalizing ideas and interesting applications[48–52]. There

has been enormous debate [53–56] on the similarities and differences between bi-photon interfer-

ometry and two-photon interferometry. Bi-photon interferometry [57–59] uses entangled photon

pairs that are related due to a conservation principle, for example, product photons in parametric

down-conversion. Two-photon interferometry [60], on the other hand, involves photons that are

statistically correlated, as from a thermal source; the experiment presented in this chapter be-

longs to this category. Intensity-interferometry with classical light is regaining importance with

the demonstration of ghost imaging with thermal light [9, 55, 61].

A classical HB-T experiment consists of two slits, each illuminated by an independent, incoher-

ent light source. Two detectors measure the intensity of light falling on them; at each detector,

the intensity has contributions from both slits. The cross correlation of the intensities at the two

detectors varies in a sinusoidal fashion as a function of separation between the detectors. In the

conventional HB-T experiment, the appearance of these fringes was a purely dynamical effect,

arising from the change in the path difference of the two detectors from the two slits. Recently
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Figure 2.1: The Poincaré sphere. Figure shows four points on the Poincaré sphere representing
two circular polarization states (R,L) and two linear polarization states of the two polarizers in front of
the two detectors (3, 4). The geometric phase is given by half the solid angle subtended at the center,
by the geodesic polygon R-4-L-3-R.

it was shown theoretically [62] that even with fixed detectors, one can have such fringes if the

sources and detectors are polarized and the polarization is varied. This effect is purely a geometric

or Pancharatnam phase effect [63, 64] and arises due to the closed trajectory of polarized light on

the Poincaré sphere. While such geometric phase effects are well known in amplitude interferom-

etry, their counterparts in intensity interferometry have been less studied. The geometric phase is

given by half the solid angle subtended by a closed path traced out by polarizing elements on the

Poincaré sphere (see Fig. 2.1). Unlike the dynamical phase shift that is restricted by the spatial

and temporal coherence of the sources, the geometric phase, is achromatic and unbounded, as

later discussed in the chapter.

In this chapter, the following points are conveyed. We have used a classical phase incoherent

light with exactly tailored characteristics. This is achieved by creating radio-frequency electrical

signals of the desired features and imprinting this onto light via acousto-optic interaction. We

show that a small modification to the HB-T intensity interferometry experiment leads to an

optical analogue of the multiparticle Aharonov-Bohm effect [65]. This manifests as a non-local

geometric phase in the intensity-intensity correlations of classical incoherent light, that is not seen

in the lower order correlation. Finally, we show that this non-local two-photon cross-correlation
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can be modulated via the geometric phase. This suggests a way of deflecting the cross-correlated

photon pairs.

The Aharonov-Bohm effect for a pair of electrons has been considered theoretically by Samuels-

son et al [65] and experimentally observed by Neder et al[66]. The experiment was essentially

quantum in nature, as electrons, being fermions, do not admit the limit of large particle numbers.

A pair of electrons together enclosed an Aharonov-Bohm flux due to an applied magnetic field,

which was then used to modulate the two particle cross correlation via coupling to the orbital

degree of freedom of electrons while the spin remained frozen. The effects of the flux were

absent in the individual currents and in their self correlations while the cross correlation between

electron currents revealed the dependence on the Aharonov-Bohm flux. In contrast to fermions,

bosons permit macroscopic occupancy of a single state, admitting a classical limit and permitting

a classical field theory description. The experiment that we report here uses classical light and

is the classical bosonic analogue of the two-particle Aharonov Bohm effect. Here role of the

Aharonov-Bohm flux is played by the geometric phase induced by polarization changes. As in

the quantum case, the effect of the geometric phase is not seen in the individual intensities, nor

the self-correlated intensities, but is seen only in the cross-correlation of intensities. Apart from

the sign differences owing to the different statistics of the particles involved, the two effects are

conceptually similar.

2.2 Aharonov-Bohm effect

Aharonov-Bohm effect which deals with fundamental properties of the electromagnetic field in

quantum domain and the significance of the electromagnetic potentials in the quantum theory,

was first theoretically suggested by Aharonov and Bohm in 1959 [67]. According to this there is

a change in the phase of the wavefunction of a charge particle in a region where electromagnetic

fields are absent but the electromagnetic potentials are non-zero. The effect of this phase change

can be seen by a shift in the interference pattern of the coherent electron beam passing through

the double-slit experiment or a Mach-Zehnder interferometer as shown in the Fig 2.2. During the

traverse of the electron through the interferometer, electromagnetic potentials are non-zero but

fields are absent.
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The two most simple forms of the AB-effect are the magnetic AB-effect and the electric AB-

effect. For the case of magnetic AB effect, a coherent electron beam passes through the two

different paths in a region where there is no field and only a non-zero vector potential is present.

The two beams acquire different phases in their wavefunction. This effect is observed in the

interference of these two beams, which shows a fringe shift in their interference pattern Fig 2.2.

The wave function of the electron can be written as

Ψ = |Ψ| exp(
i

}
−→p · −→r ) (2.1)

Here −→p , which is momentum of the charge particle, in the presence of electromagnetic field is

−→p = −→p − e
−→
A (2.2)

The change in phase over the trajectories is given by

∆δ =
e

}

z

2→1

−→
A · −→r

=
e

}
Φ, (2.3)

where Φ =
r −→
B .
−→
ds. Therefore the fringe shift is

∆x =
Lλ

d
∆δ

The electric AB effect can be observed in a Mach-Zehnder interferometer, where the two arms

of the interferometer carry the electrons through conducting cylinders (Fig 2.2) that shield the

electron from electric field (Faraday Cage). First experimental demonstration of this effect was

shown by Chambers et. al.[68] . Potentials V1 and V2 are applied to the two conductors in a time

delayed arrangement such that the electron is in a time varying potential without being in a field.

This is because electric field lines doesn’t penetrate far from the edges of the tube, and nonzero

potentials are applied only when electron is deep inside the cylinders (Fig 2.2). The Hamiltonian

of the electron when its is inside the cage is

H = H0 + V (t) (2.4)

H0 is the Hamiltonian when V (t) = 0 and H is the total Hamiltonian when time dependent

potentials are applied to the cylinders given by V (t) = eφ(t).
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Figure 2.2: Schematic of the experiment to demonstrate AB-effect for coherent electron beam in
a time-dependent vector potential due to solenoid and time-dependent scalar potential due to metallic
cylinder. Two different but equivalent experimental geometries are shown for both the cases. A, B, C,
D, E are suitable devices to split or divert the beams as required.

If the wavefunction of the electron is Ψ(x, t), when potentials are zero, then

Ψ(x, t) = Ψ0
1(x, t) + Ψ0

2(x, t)

In the presence of time dependent potentials the wave function evolve as

Ψ(x, t) = Ψ0
1(x, t)e−

iξ1
} + Ψ0

2(x, t)e−
iξ2
} (2.5)

where ξ1 = e
r
φ1 dt and ξ2 = e

r
φ2 dt. It is obvious that interference at any point on the screen

will depend on the phase difference ∝ ξ1−ξ2
} .

This remarkable effect of electromagnetic potentials in a field free region, substantiated the

reassessment of the importance of the electromagnetic field potentials in quantum physics, which

in the case of classical mechanics was considered as a mathematical construct for more phys-

ical quantities E and B. Even though AB effect is purely a quantum mechanical phenomenon

because the effect of phase shift is seen for a quantum wave, there are well known similar shift

in the interference pattern of classical wave when an additional phase shift, in one of the slit is

introduced, in a double slit interference setup.
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The non-local nature of the AB effect :- The AB effect is seen for the electron even

though it experiences no local classical Maxwell field parameter, because the Hamiltonian

H =
1

2m
(−→p +

e

c

−→
A )2 − eV

contains the gauge field V and
−→
A which have non-zero values at some point of the closed circuit

[69]. Ignoring the spin degree of the electron, the equation of motion for the observable is

−̇→r = −→v , m−̇→v = 0

This is of a free particle, containing no electromagnetic fields. So it is clear that in quantum

mechanics the equation of motion alone doesn’t determine the dynamics. Also in this case, elec-

tron doesn’t experience force , exchanges no momentum, energy or angular momentum with the

electromagnetic field. Thus the AB effect doesnot arise due to some local effect on electron’s

wave function but entirely a non-local effect arising due to presence of potentials in a closed

trajectory.

Topological Effect:- The effect is topological because it depends upon the topology of the

path with reference to the enclosed magnetic flux. If the electron is confined to a multiply

connected region with non-zero field potentials, the shift in the fringe is the signature of the

AB-effect. But there is no way to relate the phase shift to a particular place or the arm of

the interferometer and the phase shift between two Feynman amplitudes depends only upon the

difference between the topological winding numbers n of their paths [69],

δφ = (δn)
eΦ

}C
(2.6)

2.2.1 Multiparticle Aharonov-Bohm effect

In the previous section, the AB effect was described for a single quantum particle i.e. a coherent

beam of electron was considered at the input. For input single particle states, which on the

average are statistically uncorrelated and exhibit no direct interference, the AB effect couldn’t

be observed . Buttiker however had shown that a two-particle state can still be sensitive to a
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Figure 2.3: First figure shows direct interference when electron wave transmitted from source to
sink is split into partial waves encircling the flux. Second figure shows the exchange interference when
electron waves from two sources are transmitted from sources to sink without encircling the flux but
with an overlap in regions O1 and O2.

magnetic flux and can exhibit two-particle AB effect even though single particle correlations are

absent [70]. Consider an experimental set up as shown in the Fig 2.3, at the input the single

particle wave function

ψ1(r1) = eik1x1χ1(y1)

ψ2(r1) = eik2x1χ2(y1) (2.7)

where χ1(y) and χ2(y) are the wave functions of the transverse motion which are quantized. At

the output the wave function is

ψ1(r2) = eik1x2χ1(y2)eiφ1eiΘ1

ψ2(r2) = eik2x2χ2(y2)eiφ2eiΘ2 (2.8)

where phase factor φ1,2 takes care for the extra path traveled along the arcs and

Θ1,2 =
e

}c

w r2

r1
ds1,2.A (2.9)
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is the phase due to AB flux. From above expressions it is clear that |ψ1|2 and |ψ2|2 are independent

of the flux. However two particle wave function

ψ(r1, r2) = ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)

= eiφ0 [χ1(y1)χ2(y2)− χ1(y2)χ2(y1)eiφ] (2.10)

where

φ0 = k1x1 + k2x2 + φ2 + Θ2 (2.11)

φ = (k1 − k2)(x2 − x1) + (φ1 − φ2) + Θ (2.12)

It can be seen from here that single particle wave functions |Ψ1,2|2 are independent of flux Θ1,2

but two particle wave function depends on the flux through φ. The measure of correlation not

contained in single particle correlation i.e. ∆W = |Ψ(r1, r2)|2 − |Ψ1,2|2 is given by

∆W (r1 , r2) = −2χ1 (y1)χ2 (y2)χ1 (y2)χ2 (y1) cos φ (2.13)

which depends on the flux due to exchange effect because in the two particle state one cannot

distinguish between the charge carries which passes either upper or lower arc.

Further if the two sources are statistical mixture instead of well defined k1 and k2 , then it can

be shown that the exchange interaction terms still survives under statistical averaging. Therefore

in an HBT kind of detection system, the cross correlation between the two detectors shows

modulation of the correlation function in the presence of magnetic flux. But the self correlations

of the detector on either path doesnot show any correlation.

An analogue of the multi-particle AB-effect can be observed for bunched photons or incoherent

light coming out of two independent sources with no first order correlation but with a modulation

in the second order correlation value with a change in the geometry of the closed path over the

Poincaré sphere, in a polarized HBT intensity-intensity interferometry [47]. This arises due to

the extra geometric phase acquired by the correlated pair of photons over the closed cycle. Here

the geometric phase induced by polarization changes plays the role of AB flux.

2.2.2 Geometric Phase and AB-effect

Berry phase or the geometric phase is the change in the phase of quantum state vector when

the system after undergoing a sequence of adiabatic changes in the state vector space, comes
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back to the original state. The phase acquired in the process depends on the geometry of the

path and is therefore a geometric phase. AB-effect observed for charge particles like electrons

is a special case of more general concept of Berry’s phase [71]. Similar to the geometric phase,

the phase acquired by light when it undergoes a sequence of changes in its polarization over the

Poincaré sphere, was suggested in 1955 by Pancharatnam [63]. If a light beam is made to go

through a closed cycle on the Poincaré sphere, which is the space of polarization states of light,

it acquires a geometric phase which depends on the geometry of the closed cycle.

2.3 Interference Experiments: Polarization Interferometry

and Pancharatnam phase

In a prominent work published by Pancharatnam in 1955 [63], he showed the non-trivial phase

acquired by the light, in addition to dynamical phase from the accumulated path lengths, if it

made to go through a cyclic changes in the state of its polarization. The amount of this extra

phase shift depends upon the geometry of the cyclic path over the Poincaré sphere as shown

in Fig. 2.1. Remarkably this was the earliest example of geometric phase in the context of light

which was later developed by Berry [71, 72] in the context of quantum states. Pancharatnam’s

work is now seen as an early precursor to geometric phase in quantum mechanics [47].

For a completely polarized light, the state of the polarization is specified by the form of the

ellipse traced by the tip of the displacement vector and can be represented in terms of the angular

co-ordinates of a point over the three dimensional sphere known as Poincaré sphere. However a

given state of polarization on the Poincaré sphere doesn’t specify the phase of the vibration i.e.

all states related by a phase factor maps to the same point on the sphere. Therefore phase is

an extra quantity to be fixed to the points on the sphere. The specification of relative phase of

the two coherent light beams, when they are in the two different state of elliptical polarization,

is very crucial to predict the resultant interference of the two Beams. Pancharatnam developed

a very powerful method based on axioms and theorems of spherical trigonometry and basic wave

theory of light to calculate any kind of complicated interference of light beams.

Firstly the total phase difference between two coherent light beams, which are in different state
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of polarization, is given by Pancharatnam connection. This phase difference is the total phase

change applied to one of the beam to maximize the intensity of their superposition. If |a〉 and

|b〉 are two different state of polarization then

φT = arg〈a|b〉

Further he showed, if a state A is in phase with state B, and B is in phase with a third state C,

then C need not be in phase with A. In fact if C is in phase with state A’ represented by the same

point A on the sphere then the phase factor accumulated after this cycle of polarization states,

is the phase difference between A and A’ and is given by [63]

∆φ = exp(−1

2
Ωabc)

where Ωabc represents the solid angle subtended by the closed path on the sphere and depends

on the geometry of the closed cyclic path.

2.4 Classical Light Analogue of the non-local

Aharonov-Bohm effect:-

In this section a detailed description of our work [2] is presented.

2.4.1 Experimental setup

The experiment employs two phase-incoherent sources S1 and S2 in a Mach-Zehnder setup with

birefringent elements and two polarized detectors D3 and D4 (see Fig. 2.4).

A variation of the relative polarization angle of the detectors introduces a geometric phase equal

to half the solid angle enclosed by the two interfering paths on the Poincaré sphere (see Fig. 2.1).

Light from a diode laser at 767nm was incident on a non-polarizing beam-splitter depicted as

BS1 in Fig. 2.4, and the two emergent beams were passed through two acousto-optic-modulators

(AOM) shown in Fig. 2.4 as AOM1 and AOM2 and fed by two radio frequency sources (RF1

and RF2) respectively. The first order diffracted beams emerging from the two AOMs were

passed through two quarter-wave plates (Q1, Q2), to render one beam right circularly polarized
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Figure 2.4: Figure shows a schematic diagram of the experimental setup. Two sources S1 and S2
illuminate two detectors D3 and D4 as explained in the text. BS1 and BS2 are non-polarizing beam
splitters, Q1 and Q2 quarter wave plates, P3 and P4 linear polarizers and BD beam dumps

(R) and the other left-circularly polarized (L). The two beams were then combined at a non-

polarizing beam splitter (BS2). At each exit face of the final beam splitter, a polarizer (P3, P4)

was kept, followed by a detector (D3, D4). The undiffracted beam terminated in a beam dump

(BD) as shown in Fig. 2.4. By keeping one of the polarizers (e.g., P3 ) fixed and changing the

orientation of the other polarizer (P4), the relative angle between the polarizers, φ34 could be

varied continuously from 0◦ to 360◦. This results in a corresponding variation in the geometric

phase. As we show below, this also causes a modulation of the intensity cross-correlation of

the light reaching the two detectors. In order to measure this, the intensities of light reaching

detectors D3 and D4, for each orientation of P4 was recorded for a certain length of time on a

digital storage oscilloscope and cross correlated offline.

In striking contrast to the other interference experiments which require a source of coherent

light, the two-photon intensity-interferometry needs incoherent sources as HB-T correlations

vanish for a laser light source. One could use a thermal source such as a mercury vapor lamp.
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However, the coherence time of natural thermal light sources is too short for bunching effects to

be easily discernible by most present day solid-state photo-detectors. Two-photon interferometry

experiments therefore usually simulate thermal light by passing laser light through a rotating

ground-glass plate. This introduces, random intensity and phase fluctuations that occur at a

time scale detectable by present day solid-state detectors. We employed a different technique of

simulating incoherent light that utilizes acousto-optic interaction.

In an AOM, radio-frequency (RF) electrical signal is applied to create a travelling acoustic-wave

grating that can diffract light. The frequency, intensity, and phase of light can be manipulated

through the acousto-optic interaction by suitably tailoring the RF input to the AOM. In this

experiment, however, only phase fluctuations were introduced. As demonstrated recently [73],

an incoherent source may be created by electronically introducing random phase jumps to the

RF and imprinting these onto laser light source. The phase evolves undisturbed for a time T ,

and then is changed by a random amount δ. The phase jump δ is uniformly randomly distributed

over the circle and T has the distribution of a truncated exponential:

P (T ) =
1

Tc
e−

T
Tc , (2.14)

where 1 µs < T < 100 µs, and Tc = 10 µs. Tc represents the timescale over which the coherence

of the light beam is lost. Such a distribution (in untruncated form) has been discussed [74] in

connection with the emission of a single atom interrupted by collisions. Each AOM in the setup

was independently phase modulated in this manner to derive two independent phase-incoherent

sources from the same laser light.

2.4.2 Theory

Let Eα
j represent the electric fields associated with the electromagnetic waves emitted by sources

1 and 2. Here j = 1, 2 and the index α runs over the two polarization states. Light emitted by a

source and received by a detector suffers propagation phases. These effects are captured by the

functions uij, which represent the total dynamical phase in going from the source j (j = 1, 2) to
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the detector i (i = 3, 4). With this notation, we express Eα
i and its Hermitean conjugate Ēα

i as

Eα
i = Pαβ

i [ εiP
βγ
L Eγ

2 ui2 + P βγ
R Eγ

1 ui1 ]

Ēα
i = [ ūi2 Ē

γ
2 P

γβ
L εi + ūi1 Ē

γ
1 P

γβ
R ] P βα

i , (2.15)

where the overbar stands for complex conjugation; εi is a pure phase ε3 = 1, ε4 = −1 due to the

geometry of the Mach-Zehnder setup. Note that 2× 2 Hermitean projection matrices P satisfy

P 2 = P and P̄αβ = P βα.

The cross correlation is given by :

G2
34(τ) =

〈 I3(τ)I4(0) 〉
〈 I3 〉〈 I4 〉

, (2.16)

where I3(τ) and I4(0) are the intensities measured at D3 at time τ and at D4 at time 0

respectively and the average 〈. . .〉 is a time average over the integration time Tint:

〈 f 〉 =
1

Tint

w Tint

0
f(t)dt (2.17)

We calculate our final expression for the expected value of the second order correlation

(Eq. 2.16) after computing the intensities (Ii = ĒiEi) by squaring the electric fields. We obtain,

for the intensity cross correlation at the two detectors (D3, D4)as described in ref.[47] :

G2
34(τ = 0) = 1− 1

2
cos

(
φD +

Ω

2

)
, (2.18)

and for the intensity self correlation :

G2
ii(τ = 0) = 1 +

1

2
cos (φD) , (2.19)

where φD represents the dynamical phase (which, in our Mach-Zehnder interferometer has been

adjusted to zero) and Ω
2

is the geometric phase. Ω is the solid angle traced by a geodesic curve on

a closed path over the Poincare sphere [63]. The negative sign for the second term (in Eq. 2.18)

is due to the Mach-Zehnder configuration. Note that the geometric phase appears only in the

intensity cross correlation (Eq. 2.18), and is absent both in the intensity self correlation (Eq. 2.19)

and the lower order correlation (G1
ii; i = 3, 4) at each detector. This implies that this geometric

phase is a purely nonlocal effect.
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Figure 2.5: Figure shows the experimentally determined cross correlation, G2
34, as a function of φ34

the relative angle between the polarizers P3 and P4, and as function of time delay τ . Clearly, the cross
correlation G2

34 is modulated by the geometric phase.

2.4.3 Experimental Results

The main results of our experiment are displayed in the three-dimensional plot of Fig. 2.5, which

shows the quantity of interest, G2
34, as a function of the time delay, τ , and the relative angle,

φ34, between the linear polarizers P3 and P4 in front of the two detectors D3 and D4 respectively.

For zero delay (τ = 0) between the two detectors, the cross correlation G2
34 was found to vary

sinusoidally from ∼ 0.5 to ∼ 1.5 as φ34 is varied. Clearly, this is due to the geometric phase. For

larger values of τ the amplitude of the sinusoidal variation is found to be progressively diminished,

till finally, for for τ > TC , G2
34 remains nearly constant at 1, i.e., correlations that are maximum

for zero delay gradually decrease, and are absent for delays larger than the coherence time. At the

regions of constructive interference (e.g. φ34 = 90◦), the value of G2
34 starts from 1.5 for τ = 0

as is expected for a source with pure phase fluctuations [75]. Note that in regions of destructive

interference, the cross correlation starts from 0.5, a value lower than that for a coherent source.
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Figure 2.6: Figure shows the self correlation G2
44 as a function of φ34 the relative angle between the

polarization angles of the two detectors, and of the time delay τ . Note that the self correlation (G2
44 is

plotted) is independent of φ34 . Thus the geometric phase effect of Fig. 2.5 is a purely nonlocal effect.

This has been discussed in various contexts earlier [76].

In order to illustrate that it is a purely nonlocal effect we also plot in Fig. 2.6 the second order

self correlation. In contrast to the cross-correlation, the self-correlation remains unaltered as the

relative angle between the polarizers is varied. This may be easily understood by visualizing the

trajectory on the Poincaré sphere - it is the arc connecting the three points R, 4, L (G2
44) ( or

R, 3, L (G2
33)). Two of the three points are antipodal (R and L are orthogonal states) and hence

we do not expect a non-zero solid angle or geometric phase [63]. The first order correlation (G1
33)

is also independent of variation of angle between polarizers in front of the two detectors.

2.4.4 Discussion

The experiment and the theoretical analysis presented here are purely classical. Interestingly, the

earlier quantum mechanical treatment [62] too, predicted similar results, which have very recently

been confirmed by intensity-interferometry using photon-counting techniques [77]. The classical
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approach has the advantage that the physical ideas are easy to grasp. In fact, Hanbury Brown

and Twiss were originally motivated by their classical experience with radio waves to propose

the corresponding optical experiment. The quantum interpretation of this classically simple

experiment led to profound changes in our understanding of quantum optics and coherence.

In addition to being completely in the classical domain, our experiment has another novelty. In

the case of thermal or pseudo thermal light (i.e., one with both phase and intensity fluctuations),

G2 varies between 1 and 2. In contrast, for pure phase modulation, one expects a variation from

0.5 to 1.5. Baym, in his review article [75] that examines the HB-T effect in a wide variety of

physical contexts ranging from nuclear physics to astronomy, had reached this conclusion in his

discussion of the case of pure phase fluctuations. However, this has hitherto not been verified, as

pure ”phase-only” fluctuating sources have not been available. In our experiment, such a source

has now been realized by tailoring fluctuations in light by the acousto-optic technique, and the

result of Baym verified.

Two salient features of the geometric phase measured in our experiment are its purely non-local

nature and its absence in the lower order correlation, in contrast to earlier works on geometric

phase and intensity interferometry[78]. This suggests the possible application of the nonlocal

Aharonov-Bohm effect as a two-photon deflector. We refer again to Fig. 2.4, where we now

replace the polarizer P4 by a ”graded polarizer” - one where the axis of polarization changes in

orientation gradually as one moves across the polarizer. In intensity interferometry this would

introduce a geometric phase gradient. As is well known, a phase gradient in a wave is equivalent to

a deflection or a change of wave vector. In the present experiment, the phase change appears only

in the intensity cross correlations. Thus, we are able to generate a “two-photon deflector” which

only affects pairs of HB-T correlated photons while leaving the remaining photons unaffected.

Such a device may have applications in creating sources of correlated photons.

This section ends with a few classical remarks which may have interesting quantum interpre-

tations.

Let us note that the geometric phase is unbounded. As one turns the polarizer P4, the

geometric phase keeps accumulating without bound and the visibility of the interference pattern

remains undiminished. This is in sharp contrast to the dynamical phase: as one increases the

dynamical phase, by separating the detectors, the interference pattern is washed out when their
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spatial (temporal) separation exceeds the coherence length (time). This difference is due to

the fact that the geometric phase is achromatic and affects all frequencies equally. Thus the

geometric phase effects are less susceptible to decoherence than the corresponding dynamical

effects. This illustrates a point often made in the quantum computation literature that geometric

and topological effects are robust against decoherence. This is crucial to the development of

quantum computers.

At the level of classical information theory, our experiment can be interpreted as a way of

delocalizing information. Consider the experimental setup above and make the following minor

changes: We choose P3 and P4 to be orthogonal linear polarizations represented by antipodal

points on the equator of the Poincaré sphere. We take the sources to be elliptically polarized and

lying on the great circle orthogonal to the line joining the antipodal points 3 and 4. If the angle φ

between the elliptical polarizations of the two sources is varied in time φ(t), one would find that

there is a corresponding modulation in the cross-correlations of the intensities detected at D3 and

D4. The signal φ(t) can be viewed as carrying information. However, the two beams emerging

from the experiment are of fixed linear polarization, and beam by itself appears thermal in its self

correlation. It is only by looking at their cross correlations that one can recover the originally

impressed signal φ(t). Thus, in this example, information is stored in a completely delocalized

manner. In quantum information theory, one presumes that it would be similarly possible to have

apparently thermal beams carrying information entirely in their quantum cross correlations.

To summarize, we have demonstrated the existence of a non-local geometric phase in the

intensity-intensity correlations of classical incoherent light, that is not seen in the lower order

correlation. This two-photon Pancharatnam phase is the classical optical analogue of the multi-

particle Aharonov-Bohm effect[66]. As the trajectory of light over the Poincaré sphere introduces a

phase shift observable only in the intensity-intensity correlation, it provides a means of deflecting

the two-photon wavefront, while having no effect on single photons. The experiments were

performed using sources that had pure phase fluctuations. We expect that the results presented

here will be of interest for applications in the realm of classical and quantum communication and

cryptography.



2.5 G2(τ = 0) correlation modulation in cascaded polarized Interferometers61

2.5 G2(τ = 0) correlation modulation in cascaded polarized

Interferometers

In this section the effect of cascading two or more interferometers of the type described in the

section 2.4 is examined. The cascading of such interferometers can be used to modulate the

zero delayed second order correlation function and values G2(0) > 2 can be obtained for phase

incoherent light. Theoretically G2(0) > 2 value is expected for even a two stage interferometer

and this can be modulated between a minimum value of G2(0) = 0.75 to a maximum value of

G2(0) = 2.25. A numerical simulation of zero delayed second order correlation function and its

comparison with the experimental results for a two stage polarised interferometer is presented in

the following sections. The mathematical analysis of this can be done in terms of Jones matrices.

The Jones vectors (matrices) are useful tools to describe the polarization of light. The x- and

y-components of the light with propagation along z-direction, is represented in terms of Jones

vector, 
Ex(t)

Ey(t)

 = E0 e
i(kz−ωt).


E0xe

iφx

E0ye
iφy

 , (2.20)

where 
E0xe

iφx

E0ye
iφy

 , (2.21)

is the Jones vector. It is clear that it represents relative amplitude and phase of the x- and y-

component of electric field. The effect of different optical elements in the path of the propagation

of the beam can be easily described by operation of the matrices corresponding to optical element

on the Jones vector of the input field. The matrices corresponding to the three important optical

elements relevant for this discussion are given.
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The operation of the linear polarizer with the axis of transmission horizontal is,

L =


1 0

0 0

 (2.22)

and the operation of the quarter wave plate with fast axis horizontal is,

Q =


1 0

0 i

 . (2.23)

If the axis of the optical element is rotated about an angle Θ. Then the Jones matrix for the

rotated element, M(Θ) can be derived from that of the unrotated element M , by the following

transformation

M(Θ) = R(Θ) M R(−Θ) where R(Θ) =


cos Θ − sin Θ

sin Θ cos Θ

 (2.24)

For the purpose of this discussion an AOM may be thought of as a simple phase shifter and its

operation can be represented as,

Φaom =


eiΦ 0

0 eiΦ

 (2.25)

2.5.1 Experimental Setup

As shown in the Fig. 2.7, a cascade of two Mach-Zehnder interferometers are used in the ex-

periment. Each interferometer has an AOM along each of the arm. Two of the AOMs, AOM1

and AOM3, are driven by computer controlled VFG’s operating at 80 MHz. Controlled random

phase jumps, uniformly distributed between (−π, π), can be introduced to them through labview
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Figure 2.7: Figure shows the experimental setup of the two cascaded polarized interferometers.
VFG1 and VFG2 are versatile function generator which generates rf signal. The phase, power and
frequency of which can be computer controlled. Q1 − Q4 are the quarter wave plates, P1 − P4 are
polarizers. BS1-BS3 are non-polarizing beam splitters.

interface . Other two AOMs, AOM2 and AOM4, are driven by fixed 80 MHz rf source. All the

rf sources are referenced to a single external 10 MHz reference clock. Thus the phase incoherent

light is generated by randomizing the phase of light passing through AOM1 and AOM3. Q1-Q4

are the four quarter wave plates to set opposite circular polarizations for the input incoherent light

at each arm of the two cascaded interferometers. P1-P4 are the four polarizers which project

the output beams in two different linear polarization states at the two output ports of the beam

splitters.

Random phase noise is introduced to AOM1 and AOM3 which creates intensity fluctuations

at the two output ports of the beam splitter BS2 and BS3. The relative angle between polarizers

P1 and P2 is denoted by θ and that of P3 and P4 by φ. In the experiment θ is varied by ro-

tating polarizer P1 while polarizer P2 is kept fixed. To maintain circular polarization the quarter

wave plate Q3 is rotated in the appropriate direction through same angle of rotation θ. At the final
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output port polarizer P3 is rotated while keeping P4 constant to change the value of φ.

A comparison between the experimental and theoretical results for cross correlation and self

correlation between the detectors is presented in the next section. The theoretical values are

obtained by evaluating Jones matrix after polarizer P3 and P4, at the output port of the beam

splitter BS3. From this, intensities at the detectors and hence the cross and self correlation is

obtained.

Starting with horizontal polarized light with equal intensities at BS1 and applying matrix

operation for different optical elements on it (as described in the previous section), final intensities

at the two detectors are obtained. For each point corresponding to (θ, φ), this value is evaluated

for a large ensemble of random phase values distributed between (−π, π) corresponding to phase

jumps, Φ (Eq. 2.25), imparted to the light by AOM1 and AOM3. The results obtained are as

follows.

2.5.2 Results

The second order cross correlation between the detectors D1 and D2 is shown in the Fig 2.8.

Both theoretical and experimental plots are shown along with their contour plots. Theoretically

obtained maximum and minimum value of G2(0) are 2.25 and 0.75. The maximum value of G2(0)

obtained in the experiment is 2.1. It can be seen from here that the G2(0) can be modulated by

varying θ and/or φ

The self correlation for individual detectors D1 and D2 are shown in the Fig. 2.9 and Fig. 2.10

respectively. The average value of intensities at individual detectors doesn’t contain any infor-

mation regarding the polarization changes of the light and remains almost constant as shown in

the Fig. 2.11 and Fig. 2.12. Small changes are due to the imperfection in the retarder plates as

well as instability of the interferometer due to external drifts.

2.5.3 Conclusion

The cascaded version of the polarized interferometer, as shown in the experiment, can be utilized

to modulate the zero delayed second order correlation function of the light emerging through the

output ports. Indeed superbunched light with G2(0) > 2 may be generated. Enhanced bunching
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Figure 2.8: Figure shows the comparison between the theoretical and the experimental cross cor-
relation values for the detectors D1 and D2 as functions of θ and φ. The corresponding contour plots
are also shown.

and its tunability is likely to be useful in the experiments where correlated photon pairs are

used. In fact the tunability of G2(0) discussed here and the tunability of the temporal coherence

discussed in Chapter 1, provides an interesting way to generate tailored bunched light sources.
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Figure 2.9: Figure shows the comparison between the theoretical and the experimental self cor-
relation values for the detector D1 as functions of θ and φ. The corresponding contour plots are also
shown.
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Figure 2.10: Figure shows the comparison between the theoretical and the experimental self cor-
relation values for the detector D2 as functions of θ and φ. The corresponding contour plots are also
shown.



68 Chapter 2

Figure 2.11: Figure shows the comparison between the theoretical and the experimental values for
the average intensity at detector D1 as functions of θ and φ. The corresponding contour plots are also
shown.



2.5 G2(τ = 0) correlation modulation in cascaded polarized Interferometers69

Figure 2.12: Figure shows the comparison between the theoretical and the experimental values for
the average intensity at detector D2 as functions of θ and φ. The corresponding contour plots are also
shown.
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3
Chapter 3

3.1 Coherent Light Manipulation of Atoms

Introduction:

The invention of laser has transformed experimental physics in an unprecedented manner. The

first working laser was demonstrated by T. H. Maimam in 1960 [79], based on the theoretical idea

of C. H. Townes, A. L. Schawlow [80] and G. Gould. Since then the lasers have become a device

which have found applications in almost every branch of experimental science, in industries and

even in the gadgets used in our everyday life. The invention of tunable diode lasers have made

magnificent advancement in atomic and molecular physics. Due to their tunability and narrow

linewidth, the spectroscopic investigation of matter, the study of light-atom interaction and the

manipulation and interrogation of atoms and molecules has advanced at an outstanding pace.

Laser is a very peculiar device which has a quantum mechanical working principle, but the

71
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emitted photons exhibit completely classical behaviour. It produces a stream of nearly collimated

and monochromatic photons with a longer coherence time (few microseconds). This makes the

device a very useful tool for precision spectroscopy and precision measurements. The narrow

linewidth and the tunability of semiconductor diode lasers have made the manipulation of neutral

atoms possible, because of their use in laser cooling and trapping techniques. This has provided

a way of controlling the external as well as the internal degrees of freedom of the atoms using

coherent photons.

The idea of cooling of neutral atoms from the room temperature atomic vapour by using

near-resonant coherent laser radiation was proposed in 1975 by T. Hansch and A. Shawlow [81].

The first experimental demonstration of this method which is also known as Doppler cooling,

was demonstrated in 1985 by S. Chu [82]. This remarkable experimental demonstration showed

the effect of radiation force exerted by a near resonant light on a neutral atom, to cool it down

to microkelvin temperature. Further in 1986 S. Chu et. al. [83] reported the trapping of the

precooled neutral atoms using only optical fields. This was based on the idea proposed by Ashkin

et. al.[84] for trapping and manipulating neutral atom using continuous coherent radiation. Later

in 1987 E. Raab et. al. [85], based on the suggestion of J. Dalibard used an inhomogeneous

magnetic field and circularly polarized near resonant coherent laser beams, to cool as well as

trap the atoms in the space. This method of cooling and trapping of neutral atoms is known as

Magneto-Optical-Trap (MOT). MOT has become a very popular tool for atom trapping because

it captures atoms directly from a dilute atomic vapour at room temperature and cools them down

to a temperature of few tens to hundreds of microkelvin with a 3D confinement in the space as

well. MOT can be used as a cold atom reservoir to transfer the atoms into other traps.

The method of manipulating atoms using coherent light coming out of a narrow bandwidth

single mode diode laser is the main concern in this chapter. In the first part of the chapter a

relevant theoretical background for different methods to control the external degrees of freedom

(centre of mass motion) of the atom is given. The later part of the chapter gives the details

about the construction and the characterisation of 87Rb MOT.
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3.2 Laser Cooling of Atoms by Spontaneous Scattering of

Coherent Photons

Consider a two level system at rest and in its ground state (Fig. 3.1 (a)). It interacts with a

photon with angular frequency ωL = ω0 . Here ω0 is the atomic transition frequency, ω0 = E2−E1

} .

Then the atom can absorb a photon by making a transition to excited energy state E1 (Fig. 3.1

Figure 3.1: An atom in the ground state (E1) absorbs a resonant photon and makes a transition
to the excited state (E2) as shown in the Fig (a). Atom in the excited state can either emit a photon
spontaneously by making a transition back to the state E1 (Fig. (b)) or in the presence of another
photon it can de-excite to state E2 by the process of stimulated emission (Fig. (c)).

(a)). The excited atom can either spontaneously emit a photon and decay to the ground state E1

( Fig. 3.1 (b)) or in the presence of another photon it can decays to energy state E1 by emitting

two coherent photons with same phase and frequency (Fig. 3.1 (c)). The later process is known

as stimulated emission.

If ∆ = ωL−ω0 is the detuning of the the incident light beam frequency w.r.t. atomic transition,
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Γ−1 is the radiative lifetime of the excited state, then the rate of the spontaneous scattering of

photon from the atom is given by.

Rsc =
Γ

2

(
I/Is

1 + I/Is + [2∆
Γ

]2

)
, (3.1)

where I is the intensity of the incident beam, and Is is the saturation intensity of the transition.

In the process of an absorption-spontaneous emission cycle, the mean momentum transferred to

the atom is equal to the momentum of the absorbed photon. This is because the scattering of

the photons due to spontaneous emission is isotropic in space thus mean value of the momentum

transfer due to this is zero. If the wave vector of the incident plane wave is k, then the change in

the kinetic energy of the atom due to the recoil by incident photon’s momentum and is given by

Erec =
p2

2m
=

}2k2

2m
(3.2)

Now consider a one dimensional case where the atom is moving with a velocity v as shown

in the Fig. 3.2, in a laser field with wave vector k. In the presence of two counter-propagating

laser beams which are slightly red detuned from the atomic transition i.e. ∆ = ωL − ωA < 0, a

Doppler cooling mechanism for a moving atom works as follows:-

If the atom absorbs a photon with momentum }k and emits a photon with momentum }k′ then

the conservation of total momentum for atom-photon system can be written as follows

mv + }k = mv′ + }k′, (3.3)

For averaging over many cycles of these transitions gives 〈}k′〉 = 0. The recoil momentum

opposite to atomic motion is }k. Therefore the frictional force opposing the atomic motion can

be written as multiplication of momentum transfer per cycle to the net spontaneous emission

rate. Considering the opposite Doppler shifts of the two counter propagating beams, the resultant

force, at low intensity limit, on the atom can be written as

F (v) = Fz+ + Fz−, where Fz± = ±}kRsc (3.4)
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This force is always opposite to the velocity of the atom. Due to this frictional force, the atomic

motion is damped in both directions. This gives rise to cooling of atoms. Such an arrangement

of counter propagating beams is called optical molasses. For small velocities, k.v << Γ, Eq. 3.4

for net force can be written as

F (v) u
8}k2∆I/Isat

Γ
(

1 + I/Isat + 4
(

∆
Γ

)2
)2 .v u −βv (3.5)

where β corresponds to a friction coefficient. It is clear from the equation that friction occurs

only for negative detuning. For negative detuning the atomic motion gets damped and thus the

atoms get cooled.

Figure 3.2: Radiation force versus velocity of the atom at three different detunings. Continuous
curves represents the total scattering force F (v), the dashed curves represent Fz+ and Fz−

3.2.1 Doppler Cooling in 3D

Based on the above analysis it is clear that using three pairs of counter propagating laser beams,

which are red detuned with respect to the atomic transition, a three dimensional cooling can

be achieved. In the presence of red detuned laser beam, an atom is more likely to absorb a

photon when it moves towards the laser source because the ’Doppler shifted’ frequency is closer

to resonance in atomic reference frame. Then each of the photons absorbed by the atom gives

a recoil in the direction of laser beam and opposite to atomic motion. Hence the atom slows

down. The minimum temperature achieved by Doppler cooling is limited by the spontaneous

emission and the absorption cycles [86]. These cycles, due to the stochastic nature of spontaneous

emission process, cause a random walk of the atom in momentum space, similar to Brownian
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motion. This causes heating of the atom. The minimum temperature for Doppler cooling then

can be determined by a balance condition between cooling and heating rates and is given by

kBTmin = }Γ/2. (3.6)

In our experimental setup we use Rubidium atom which has a Doppler limit of approximately 150

µK.

The atoms can only be cooled by optical molasses, but they cannot be trapped in space as that

would require a position dependent force as well, along with the velocity dependent force. For

this one requires a Magneto-Optical-Traps (MOT) setup which is described in the section 3.5.

3.3 Sub-Doppler Cooling

In a very precise temperature measurement experiment of laser cooled gas of sodium atoms, Paul

et.al. showed that the temperature obtained in an optical molasses could be much lower than

predicted by the Doppler cooling limit [87]. This was thought to be arising due to some cooling

mechanisms other than the Doppler scattering force which might be operating. Later in a detailed

theoretical analysis, this is attributed to the multilevel structure of the real atoms, in contrast to

simple two level model of the atom which was assumed for simplification. The existence of light

polarization gradients in space and the AC stark shifts (light shifts), along with the multi-level

structure of atom gives the explanation for temperature less than the Doppler limit [88, 89].

3.3.1 Sisyphus Cooling

Sisyphus cooling an example of Sub-Doppler cooling mechanism was proposed by J. Dalibard

and C. Cohen-Tannoudji [88] in 1989. Consider the case of an atom with excited state |Je〉 and

ground state |Jg〉, with a number of Zeeman sublevels, which are degenerate in the absence of

magnetic field. A specific example is shown in the Fig. 3.3 with ground state |Jg = 1/2〉 and

excited state |Je = 3/2〉. The polarization of light decides the population among the ground

state sublevels in this case mJ = ±1/2. The probabilities for different excited state to decay to

different ground state sublevels is shown in the Fig. 3.3 (a).
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Figure 3.3: Fig. (a) shows the magnetic substates. Lower two (mJ = +1/2 and mJ = −1/2) are
for ground state, |Jg = 1/2〉 and upper four (mJ = −3/2, mJ = −1/2, mJ = +1/2, mJ = +3/2) are
for excited state |Je = 3/2〉. Fig (b) shows resultant polarization of the two counter propagating beam
with wavelength λL. Fig (c) Light shift in the ground state energy as a function of z. The size of the
solid circles represents the population of the two substates.

Now consider two counter-propagating laser beams with orthogonal linear polarization and

wavelength λL . The spatial variation of the polarization of the total radiation field is shown in

the Fig. 3.3 b) which changes from linear to circular over a distance of λL/8. The polarization

dependent light shifts of the ground state sublevels due to the electric field of light , varies spatially

as shown. At the point in space where polarization is σ+, light shift of |Jg = 1/2,mJ = +1/2〉

is three times more compared to |Jg = 1/2,mJ = −1/2〉 and vice versa for the points of σ−

polarization. It is clear that at σ+ points the population of |Jg = 1/2,mJ = +1/2〉 becomes

larger and the other way round at σ− polarization points. The population of the two ground

state sublevels are equal at the points where the polarization is linear. The time taken by optical

pumping to produce the final population distribution is τp.

If an atom moves from left to right in such as radiation field, as described above, and with a

maximum population at |Jg = 1/2,mJ = −1/2〉 and if the velocity of the atom is v, such that

vτp = λL/4, the atom can move to the top of the potential well without making a transition
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to a different substate. This is possible when some of the kinetic energy of the atom must

Figure 3.4: This figure shows the Sisyphus effect for an atom moving in a polarisation gradient
laser field shown in Fig 3.3. The atom during its motion climbs out a potential valley and falls down to
the bottom of the next valley by emitting a photon and therefore causing the cooling of the atom.

be transferred to potential energy. Therefore at the top of the potential well, atom makes a

transition to the bottom of the next valley with highest probability. This process continues when

the atom makes a transition from top to bottom by climbing the hill and then falling to the

bottom by emitting photon (Fig. 3.4). This way atom gets cooled and this cooling mechanism is

called Sisyphus Effect.

The above discussion considers the most favourable case, where vτp = λL/4. But the cooling

mechanism works over a range of velocities of the order λL/τp. Note that the optical pumping

rate τp is proportional to the laser intensity I, therefore the range of velocities for which Sisyphus

Effect work is also proportional to intensity. This is the difference between the Doppler cooling

and Sisyphus cooling. In Doppler cooling the capture velocity is independent of intensity.
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3.4 Magneto-Optical-Trap

Realization of magneto-optical-trap (MOT) for neutral atoms exploits the inelastic scattering

of incident photons from a laser beam by the atom. In a MOT an inhomogeneous magnetic

field generated by a pair of anti-Helmholtz coils and the three pairs of counter propagating laser

beams (which are red detuned from a particular cyclic hyperfine transition) in x, y and z direction,

provides a position dependent force due to momentum transfer from atom to light. This position

and velocity dependent radiation pressure force on the atom, cools it down due to Doppler effect

and also traps them in space.

Figure 3.5: Fig. (a) shows the shift in the Zeeman sublevels in the presence of a magnetic quadrupole
field. For two oppositely circular polarised light which are red detuned and counter propagating each
other, as shown in the figure, the atom scatters photons preferentially from that beam which pushes
the atom towards z = 0 position. Fig. (b) shows the basic three dimensional schematic of the MOT.
Here mg corresponds to |J = 0,mJ〉 while me to |J = 1,mJ〉

In a one dimensional case this can be understood as follows. Consider an atom moving in

one dimension along +z direction in the presence of a pair of counter propagating laser beams

which are slightly red detuned with respect to the atomic resonance transition and have opposite

circular polarization as shown in the Fig. 3.5. In the presence of the inhomogeneous magnetic

field created by the anti-Helmholtz coil, the atomic hyperfine levels exhibits Zeeman splitting of
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the levels shown for a simple case J = 0 ground state and J = 1 excited state. The magnetic

field B splits the excited state due to the linear Zeeman splitting and the shift in the energy for

state |J,mJ〉 is given by

∆E = mJ gJ µB B (3.7)

where gJ is the Lande’s g-factor and µB is the Bohr’s magnetron and B is the inhomogeneous

magnetic field in one dimension and can be written as,

B(z) =
dB

dz
z. (3.8)

Assuming the field gradient dB
dz
> 0 and gJ > 0 the |J = 1,mJ = −1〉 level shifts downwards on

the right side of the zero magnetic field point and therefore gets closer to the resonance for a red

detuned beam (Fig. 3.5). As the atom moves towards the right side it sees the incoming photons

more and more in resonance with mJ = −1 for incoming σ− polarized beam and vice versa for

atomic motion in −z direction. This in turn exerts a radiation pressure on the atom towards

z = 0. Therefore the radiation pressure force is always opposite to the direction of motion and

directed to a fixed point in the space. This way one gets a cooling and trapping of atoms due to

radiation pressure. The total force on the atom can be expressed as, F = F+ + F−, where

F± = ±}kΓ

2

I/Isat

1 + I/Isat + 4
(

∆±
Γ

)2 (3.9)

here ∆± is the detuning of the two beams seen by the atom in the presence of inhomogeneous

magnetic field and is given by

∆± = ∆∓ k.v ± µ′B/} (3.10)

where µ
′

is the effective magnetic moment of the excited state.

When the Doppler and Zeeman shifts are small compared to the detuning ∆, the force can be

expanded in v and z, then Eq. 3.5 reads as follows

F (v) = −βv − κz (3.11)
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where the damping coefficient β has the same definition as in Eq. 3.1 and spring constant is

defined as

κ =
µ
′
A

}k
β (3.12)

Eq. 3.11 is that for a damped harmonic oscillator with damping coefficient equal to β
M

and the

oscillating frequency equal to
√

κ
M

, where M is the mass.

The one dimensional scheme for MOT can be extended to three dimension in the presence of

a spherical quadrupole field by using a pair of anti-Helmholtz coil. The field in three dimension

has the following form

B(x) =
dB

dz

(
−x

2
,−y

2
, z
)

(3.13)

along with two circularly polarized beam with right-handed helicity in z-direction and four circularly

polarized beams with left-handed helicity along x- and y-direction.

3.5 Dipole Trap:- A Far-Off Resonant Trap

Once the atoms are cooled (typically below 1 mK temperature), by laser cooling techniques, these

pre-cooled atoms can be trapped using a far-off resonant trap. This trap works on a completely

different principle as compared to the radiation pressure trap. Here the trapping force, which

is a dipole force, acts along the gradient of the intensity and its direction is determined by the

detuning of the trapping laser with respect to resonance transition of the atom.

3.5.1 Classical Picture

For an intuitive understanding of the working principle of the dipole trap, one can consider the

interaction of the neutral atoms with off resonant beam in classical picture where light from the

laser is treated as continuous classical wave and the atom as a classical oscillating dipole in the

presence of the electric field oscillation [90]. For a classical system of neutral atom, the electric

field induces an electric dipole moment in the atom due to its polarizability. If the oscillating

electric field of the light is

E(r, t) = êE0(r) exp(−iωt) + c.c., (3.14)
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where ê defines the polarization, E0(r) is the amplitude and ω is the frequency of the field. The

induced dipole moment at any instant, at the location of the atom is

p(r, t) = p0(r) exp(−iωt) + c.c. (3.15)

where the induced dipole moment p0 is linearly proportional to E0(r) with the complex polariz-

ability of the atom as the proportionality factor,

p0 = α(ω)E0. (3.16)

The complex polarizability of the atom is given by

α(ω) =
e2

me

1

ω0
2 − ω2 − iωΓ

(3.17)

This induced dipole interacts with the driving field itself which has an interaction energy

W = −p.E (3.18)

Due to very high frequency of the optical field ( 1014 Hz), atomic motion can only experience

a time averaged effect of W . Therefore the potential that the atom experience due to the

interaction with the field is,

Udip(r) = 〈W 〉t = − 1

2ε0c
Re(α)I(r) (3.19)

The dipole force is given by the gradient of the Udip

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r) (3.20)

where I(r) = cε0|E2|
2

. It is clear that dipole force acts along the gradient of the light intensity

unlike the radiation force which acts in the laser propagation direction.

Dependence of the dipole force on the detuning :- Fig. 3.6 shows the dispersion relation

of α(ω). It is clear from the Eq. 3.20, that for a dipole force, the direction of the force depends

upon the detuning with respect to the atomic resonance frequency. As α(ω) changes sign at

ω = ω0, there are two different behaviour of the dipole force around resonance frequency. For

external field frequency smaller than atomic resonance frequency (detuning ∆ = (ω−ω0) ≤ 0 ),
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Figure 3.6: The dipole force is proportional to Re(α), having a dispersive profile with a change of
sign at resonance. But the scattering rate depends on Im(α) with a Lorentzian profile.

the induced dipole oscillations are in phase with the external field oscillation and the atom feels

force towards the high intensity region and gets pulled towards that region. In contrast to this,

if the external field frequency is higher than resonance frequency (∆ = (ω − ω0) ≥ 0), dipole

oscillations are out of phase w.r.t. external field oscillation and the atom gets repelled from the

high intensity region.

3.5.2 Scattering Rate

In this picture of damped harmonic oscillator, energy absorbed by the atom is

Pabs = 〈p̂.E〉t =
ω

ε0c
Im(α)I(r) (3.21)

This energy is radiated as dipole radiation. The energy radiated is proportional to the intensity

of the trapping field and to the imaginary part of polarizability. In classical picture this radiation

is emitted continuously, but in quantum mechanical picture the radiated energy corresponds to

the scattering rate of the photons given by

Rsc =
Pabs
}ω

=
1

}ε0c
Im(α)I(r) (3.22)

From the classical analysis, Fdip ∝ 1
∆

and Rsc ∝ 1
∆2 . It is clear that the classical physics already

predicts the correct dependence. In the next section the quantum-mechanical treatment is given.

In the present experimental scenario where the detuning ∆ is much larger than the natural

linewidth of the atomic transition, ∆ ≥ Γ, the expression for the trap depth and the scattering
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rate are as follows

Udip = −3πc2

2

I

Γ

(
1

ω0 − ω
+

1

ω0 + ω

)
(3.23)

Rsc =
3πc2Γ2ω3

2}ω0
6

(
1

ω0 − ω
+

1

ω0 + ω

)
I (3.24)

For the case of detuning less than optical frequency of the trapping radiation, ∆ << ω, the

above expression can be approximated by the following

Udip =
3πc2

2

I

ω0
3

Γ

∆
(3.25)

Rsc =

(
3πc2I

2}ω0
3

)
Γ2

∆2
=

Γ

}∆
Udip (3.26)

3.5.3 Dipole Force Direction

For the case of ∆ << ω0, From the Eq. 3.25,The dipole force is

Fdip = −
(

3πc2Γ

2ω0
3

)
∇I
∆

(3.27)

The direction of dipole force along the intensity gradient depends upon the sign of the detuning.

For red detuned trapping laser,∆ < 0, the force is along the highest intensity region i.e. atom

gets pulled towards high electric field region. While for the other case, when the laser frequency

is above resonance frequency, ∆ > 0, the atom gets pushed away from the high intensity region.

It is also straight forward to see that for large detuning, a condition for very low scattering rate

of photons can be achieved at the cost of increased intensity at the trapping region.

3.5.4 Dipole Trap for Multilevel Atom in Classical Picture

In a practical experimental situation where one needs to trap a multilevel atom (Rubidium in

this case), the classical model of damped oscillating dipole still produces correct dependencies of

force and scattering rate on field parameters i.e. intensity and detuning. To take into account for

multilevel resonance transition approximately, one has to apply Eq. 3.23 and Eq. 3.24 separately

for each individual transition weighted by the oscillator strength of the transition.
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For the case of this work the trapping laser was operated at 852 nm and the neutral atoms

were Rubidium atoms. Therefore only D1 and D2 lines contribute to the dipole trapping force

significantly. The full expression for dipole potential and the scattering rate in this case are

U = −3πc2I

2
[ζD1

ΓD1

ωD1
3

(
1

ωD1 − ω
+

1

ωD1 + ω

)
+ ζD2

ΓD2

ωD2
3

(
1

ωD2 − ω
+

1

ωD2 + ω

)
(3.28)

+ζD3
ΓD3

ωD3
3
(

1

ωD3 − ω
+

1

ωD3 + ω
)]

Rsc =
3πc2I

2}
[ζD1

ΓD1
2ω3

ωD1
6

(
1

ωD1 − ω
+

1

ωD1 + ω

)
+ ζD2

ΓD2
2ω3

ωD2
6

(
1

ωD2 − ω
+

1

ωD2 + ω

)
(3.29)

+ζD3
ΓD3

3ω3

ωD3
6

(
1

ωD3 − ω
+

1

ωD3 + ω

)
]

where ζ represents the dipole oscillator strength for the respective transition and related with

decay rate of the transition is as follows [90]

Γ =
e2ω3

2πε0mec3

gg
ge
ζ (3.30)

where ge and gg are the degeneracies of the excited and ground state respectively.

3.5.5 Semiclassical Picture

Semiclassical treatment of atom-photon interaction involves quantization of atomic system and

its interaction with the classical radiation field. In contrast to classical theory, here the decay

rate represents the spontaneous emission rate from the excited state and is given as follows

Γ =
ω3

3πε0}c3
|〈e|d̂|g〉|

2
, (3.31)

where d̂ is the dipole operator and 〈e|d̂|g〉 denotes the dipole matrix element of the two level

atom between the ground state |g〉 and the excited state |e〉. [90]

The semiclassical picture yields the expression for dipole potential and the scattering rate in

terms of saturation intensity along with other parameters as follows

Udip =
}Γ

8

Γ

δ

I(r)

Is
, (3.32)

Γsc =
Γ

8

(
Γ

δ

)2
I(r)

Is
(3.33)
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where the saturation intensity Is is defined as follows

Is =
ω0

6

36π2ε0c5
|〈e|d̂|g〉|

2
(3.34)

and

1

δ
=

1

ω − ω0

+
1

ω + ω0

. (3.35)

For detuning much less compared to optical frequency of the trapping radiation i.e. ∆ << ω0,

δ can be replaced by detuning ,∆ (rotating wave approximation).

3.5.6 Semiclassical Picture for multi-level atoms

Multilevel atom case can be considered within semiclassical picture by including the contributions

of all coupled excited states. The interaction of the atom with the time dependent electric field

of the form Eq. 3.14, is described by time dependent perturbation theory. The energy shift in the

atomic levels due to light-atom interaction for a given state with eigen energy Ei is given by [91]

∆E(Ei) = −1

4

∑
n′,J ′,F ′,m′

1

}∆′if
|〈nJIFm|d̂.E|n′J ′IF ′m′〉|

2
, (3.36)

where n, J, F,m and n, J ′, F ′,m′ are the quantum numbers for ground and excited states re-

spectively and the summation goes over all the atomic states Ef except initial state Ei. ∆
′

if is

defined as the effective detuning in terms of atomic transition frequency ω0 and frequency of the

electric field of light.

1

}∆′if
:=

1

}(ω0 − ω)
+

1

}(ω0 + ω)
, (3.37)

Expanding the term d̂.E in Eq. 3.36 in terms of the spherical tensors and then applying the

standard procedure of Wigner-Eckart theorem [91], the new expression reads as follows

∆E = −1

4

∑
n′,J ′,F ′,m′

1

}∆′if
|E|2


F 1 F ′

−m −µ m′

 |〈nJIF ||d||n′J ′IF ′〉|2 (3.38)

Here the brackets represent the 3-J-symbols, µ is the polarization of light which can have +1,−1

or 0 value depending whether the polarization is right circular σ+, left circular σ− or linear
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respectively. |〈nJIF ||d||n′J ′IF ′〉| represents the reduced matrix elements. By introducing 6-J-

symbols, the hyperfine coupling can be separated and this gives

|〈nJIF ||d||n′J ′IF ′〉| = (2F + 1)(2F ′ + 1)(−1)J+I+F ′+1


J F I

F ′ J ′ 1


〈nJ ||d||n′J ′〉(3.39)

The remaining elements of the matrix 〈nJ ||d||n′J ′〉 is given in terms of the oscillator strength

fif for the transition nJ → n′J ′

fif =
2me

3}e2

ωif
2J + 1

|〈nJ ||d||n′J ′〉|2 (3.40)

Substituting values from above two equations into the Eq. 3.38 which yields a final expression

for energy level shift depending only on the transition frequency and the oscillator strengths as

follows:-

∆E(n, J, F,m, µ) = − 3e2I

8πc2mε0
(2J + 1)(2F + 1)

∑
n′,J ′,F ′,m′

(2F ′ + 1)
2πc

ωif

fif
∆′if

F 1 F ′

−m −µ m′


2

J F I

F ′ J ′ 1



2

(3.41)

3.5.7 Quantum Mechanical Picture

The full quantum mechanical picture of the dipole force considers the dressed state picture of

the atom-photon interaction [92]. Here both the atom and the field are quantized. The quantized

atom when interacts with a quantized monochromatic single mode light field, then the resulting

eigenstates of this new atom-photon system are called as dressed states. The eigen energies of

these new eigenstates are a function of laser intensity and detuning. The dipole potentials are

explained in terms of light shifts (AC Stark shift) which are related to the intensity at observation

point. The transition rates and lifetime are assigned to the dressed states by coupling them to

the empty modes of the electromagnetic field similar to the case of atomic levels alone.
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Hamiltonian

Considering the two-level atom at rest and interacting with the light field of the trapping laser.

The Hamiltonian for the combined system is

Ĥ = ĤA + ĤL + V̂ (3.42)

ĤA is the Hamiltonian for two level (|g〉 ground state and |e〉 excited state) atomic system with

}ω0 energy difference between the two energy levels.

ĤA = }ω0|e〉〈e|. (3.43)

For simplification, the effect of dipole trapping laser on the atom is modelled as a two level

atomic system placed inside a large, lossless ring resonator. The dipole trap laser beam in this

picture contains n photons of energy }ω and the atom sees a continuous stream of new photons

provided n is fairly constant. The Hamiltonian of the light field is

ĤL = }ω(â†â+
1

2
), (3.44)

where â† and â are the creation and annihilation operators of the photons in the mode.

Two Level Atomic system with trapping light field

First a simple case of two level atom is considered in full quantum mechanical view point. The

energy eigenstates of ĤA + ĤL are denoted by |g, n+ 1〉 and |e, n〉. Within one manifold E(n)

the energy levels are separated by }∆, where ∆ = ω − ω0, whereas corresponding levels of two

successive manifolds are one photon energy }ω apart.

Coupling

Now the interaction part is introduced in the Hamiltonian Ĥ, which is V̂ and expressed as

operator d̂ times the laser field operator Ê at the location of the atom,

V̂ = −d̂.Ê(r) (3.45)
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Figure 3.7: In the presence of a strong, red detuned Gaussian laser beam, the atom interacts with
the radiation field which causes shift in the levels of the atom, in the dressed state picture. This creates
a position dependent dipole potential.

The electric field operator in terms of ε(r) (mode distribution) of the laser beam is,

Ê(r) = ε(r) â+ ε∗(r)â† (3.46)

which satisfy the normalization condition

ε0
w

V
(ε(r)2 + ε∗(r)2) = }ωo. (3.47)

The dipole moment operator for the atom is

d̂ = d|e〉〈g|+ d∗|g〉〈e| (3.48)

The full coupling Hamiltonian reads as

V̂ = −[d.ε â|e〉〈g|+ d . ε∗â†|e〉〈g|+ d∗.ε â|g〉〈e|+ d∗.ε∗â†|g〉〈e|] (3.49)

Coupling of the states |g, n〉 and |e, n − 1〉 enters into the Eq. 3.49 through first and last term.

These states are separated by ∆. The other two terms of the equation couples the states |g, n〉
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and |e, n+1〉, having separation ω0 +ω >> ∆. This larger separation in the second case reduces

the coupling and the corresponding terms can be neglected on the account of rotating wave

approximation.

The states within same manifold only couples by

〈e, n− 1|V̂ |g, n〉 = −d.ε
√
n (3.50)

From Eq. 3.50 it is clear that coupling strength depends on the number of photons. For a coherent

laser light field, |αeiωt〉 state, the average number of photons are 〈n〉 = |α|2, and can be taken as

constant for high intensity such that the Poissonian uncertainty is 1 << ∆n << 〈n〉. Therefore

the Rabi frequency ΩR can be written

ΩR =
2 . d.ε

√
n

}
, (3.51)

and the expectation value of electric field operator, for the coherent laser field is,

E = 〈αeiωt|Ê|αeiωt〉 =
(
εeiωt + ε∗e−iωt

)√
n. (3.52)

Thus for the case of linear polarisation and for assuming d and ε real,

}ΩR = 2.d.ε
√
n (3.53)

Modified Eigen State

The total Hamiltonian for a two level system, in the basis of |g, n〉 , |e, n − 1〉, under rotating

wave approximation (RWA) reads now as follows

Ĥ = }


nω 1

2
ΩR

1
2
ΩR nω −∆

 (3.54)

The eigenvalues of Ĥ gives the modified eigen states of the light-atom system

E1 = }
(
nω − ∆

2
− 1

2

√
ΩR

2 + ∆2

)
(3.55)

E2 = }
(
nω − ∆

2
+

1

2

√
ΩR

2 + ∆2

)
(3.56)
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It becomes clear from the above two equations that as the atom is moved in the laser beam,

there is a light shift for both the excited as well as the ground state. For red detuned laser beam

(∆ < 0) , the lower state, which couples to the atom’s ground state is lowered in the energy

by a shift of ∆Ug = −1
2

(
∆ +

√
ΩR

2 + ∆2
)

and the upper state is up shifted by same amount.

In an inhomogeneous light field this corresponds to a spatially varying shift of potential energy,

and its gradient gives dipole force. For the intensities lower than the saturation intensity, atom

remains in the ground state most of the time. Therefore the light shift (AC Stark shift) in the

ground state is the relevant potential for the motion of the atom. For far detuned trapping laser

beam (|∆| >> ΩR), a first order approximation of ΩR
∆

gives following expressions of energy shift

∆U = ±ΩR
2

4∆
(3.57)

The new eigen states due to coupling between |g, n〉 and |e, n− 1〉 are,

|1, n〉 =

(
1− ΩR

2

8∆2

)
|g, n〉+

ΩR

2∆
|e, n− 1〉 (3.58)

|2, n〉 = −ΩR

2∆
|g, n〉+

(
1− ΩR

2

8∆2

)
|e, n− 1〉. (3.59)

Scattering Rates

The spontaneous decay rate for a transition from excited states |e〉 i.e. |1, n〉, |2, n〉 to ground

states |g〉 i.e. |1, n− 1〉, |2, n− 1〉 can be derived from full atomic dipole moment corresponding

to these states

Γ =
ω3

3πε0}c3
(|〈e|deg|b〉|)2 (3.60)

In the far detuning regime |∆| >> ΩR and considering only the lowest orders of ΩR/∆, the

decay rates can be written as follows

Γ11 = Γ22 =
ΩR

2

4∆2
Γ (3.61)

Γ12 =
ΓR

4

16∆4
(3.62)
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Γ21 = Γ (3.63)

It can be seen that atom stays mostly in the state |1, n〉 due to Γ21 >> Γ12 and therefore the

scattering rate Rs is dominated by Γ11.

3.6 Single Atom Dipole Trap

The loading process of a dipole trap, in the presence of MOT beams, suffers dominantly from

light assisted two body collisional losses [93] as compared to single particle collisional losses (from

the background vapour inside the vacuum apparatus). The number of atoms loaded during the

loading process is related to these two dominant loss process by the following rate equation

dN

dt
= R− γN − β ′N(N − 1) (3.64)

where R is loading rate, γ is the single particle loss coefficient which occurs due to collision

between a hot background atom to the cold atom in the MOT and β
′

is the coefficient for two

body losses due to collision between two cold atoms in the presence of MOT light beams. Since

the equation relates the atom number change to loading rate and loss processes, it is clear that

β
′

is inversely proportional to volume of the trap i.e. β
′
= β

V
. As described in the reference [93],

the volume V can be determined by the trapping beam waist and the temperature of atoms.

V = πw0
2zRln

(
1

1− η

)√
η

1− η
(3.65)

where η = kBT
|U | . For 87Rb the value of β reported in the far-off-resonance dipole trap is 3 ×

10−10...10−9cm3/s [93] .

For microscopic dipole trap (w0 ≤ 4µ) the two body collisional losses locks the atom number

to one in the presence of cooling beams [3, 94]. This collisional blockade mechanism was exper-

imentally demonstrated for the first time by Schlosser et. al. [3]. The requirement of the small

microscopic dipole trap for single atom trapping demands the focusing lens with high numerical

aperture (NA) to obtain very small beam waist of trapping beam. A more detailed discussion

related towards single atom trapping in our set up is given in chapter 4.
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3.7 Experimental Setup For Laser Cooling and Trapping

The most important requirement related to manipulation of individual quantum system (atomic

system), is to first prepare an isolated atomic system with a control over its external degree

of freedom i.e. center of mass motion and a precise addressability of the internal degrees of

freedom (internal energy levels). This is achieved by first cooling an ensemble of atoms to

microkelvin temperature range, using the standard technique of Magneto-Optical-Trap (MOT)

and then superposing a microscopic dipole trap in the region of the MOT . In our case, this is

done by first isolating Rubidium atoms from the environment inside a ultra-high vacuum system

and then cooling and trapping them using the techniques of laser cooling and trapping. This

section describes the various modules of the experimental setup which is developed for aiming

towards single atom dipole trap of Rubidium-87.

3.7.1 Vacuum System

We have used a custom made non-magnetic stainless steel chamber as shown in the Fig. 3.8.

The chamber is in the shape of do-decagon with 12 viewports along the circumference and

Figure 3.8: The custom made vacuum system to accommodate the high NA lens inside the vacuum.

two viewports at the top and bottom flanges. The top and bottom flanges have a U-shape

so that the distance between the anti-Helmholtz coils can be reduced by placing them inside
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the U-shaped depressions. This allows to design coils without any need of water cooling which

happens due to resistive heating in the coils. To accommodate the high NA lens, for single

atom trap and fluorescence detection, a lens mount was built and assembled with the vacuum

system, as shown in the Fig. 3.8. The vacuum chamber is connected to a titanium sublimation

pump from Varian (916-0061) and to an ion pump (Varian-Diode 9191213, pumping capacity

40 l/s) using a T-connector as shown in the Fig. 3.9. The Rubidium and the Potassium getter

sources from SEAS are connected through high current insulation feedthroughs at one of the

port. An ionization gauge (Varian-UHV-24) is also installed inside the chamber through one of

the viewport to measure the vacuum level inside it.

After standard cleaning procedure for vacuum components, the whole vacuum system was

evacuated initially with a turbo-molecular pump (Alcatel ATP-400, pumping capacity 400 l/s)

through an auxiliary all metal bakeable valve and baked for one week for a maximum temperature

of 2000C. Baking is required because the metal surface of the vacuum chamber and other

components adsorbs and trap gases and water vapour from the atmosphere and therefore needs

to be removed by heating the vacuum system while pumping during the process of baking.

Electrical heating tapes were used with a current controlled unit to increase the temperature

Figure 3.9: Complete Vacuum assembly used for achieving ultra-high vacuum inside the vacuum
system.

in steps with uniform heating at various part of the chamber. The heating rate was kept low
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enough (100 C/hr) to avoid unwanted heterogeneous expansion due to temperature gradient, the

temperature of the various parts of the vacuum system was also maintained so that not to allow

any spatial temperature gradient which is more than 200 C. During this first baking the high NA

lens were not mounted in the lens holder. After the first bakeout a pressure of 10−11 mbar. was

achieved. The chamber was then opened to mount the lenses with proper alignment. The whole

system was then baked again for a maximum temperature 1500 C. After this bakeout the final

pressure attained inside the chamber was 2.5× 10−11 mbar. The ion pump was started after the

final bakeout to maintain the UHV (ultra high vacuum), while the sublimation pump was used

few times to reduce excess Rubidium levels. The all metal gate valve was closed by applying the

specified torque and the turbo pump was detached.

3.7.2 Laser Systems and Saturation Absorption Spectroscopy Setup

The hyperfine energy levels for Rubidium-87 D1 and D2 lines are shown in the Fig. 3.10. For

Magneto-Optical-Trapping of Rubidium atoms one needs radiation pressure force pointing towards

a fixed point in space.

Figure 3.10: Hyperfine transition of Rb87 used for cooling and trapping in the MOT

This requires selection of a cyclic transition to realize a practical two level system. For laser

cooling and trapping of 87Rb we use two diode lasers one for cyclic transition F = 2→ F ′ = 3 to
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cool the atom through radiation pressure force, this is called cooling laser. Another laser is used

to repump the atom back to the cyclic cooling transition, which are leaked to other transitions due

to various effects such as Doppler broadening, laser linewidth etc. This is called repumper laser.

For dipole trapping a far-off resonant laser which is red detuned with respected to D1 and D2

transition of Rubidium, at a wavelength of 852 nm is used. All the lasers used in the experiment

are commercially available External Cavity Diode lasers (DL100, Toptica Photonics) with a very

Figure 3.11: Saturation absorption spectroscopy setup used in the experiment

narrow linewidth approximately 1 MHz. For some cases, where a higher power of dipole trapping

beam is required, some part of the dipole trapping laser is injected to a commercially available

tapered amplifier chip of BOOSTA (from Toptica photonics). A brief description about the

different laser systems with their spectroscopy setups is presented in the following sections.

Saturation Absorption Spectroscopy (SAS) is an excellent technique to resolve the hyper-

fine levels, which are few 10 to 100 MHz apart, and are not resolvable otherwise in a conventional

absorption of a single probe beam through the vapor of the atoms. This is due to the Doppler
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broadening of the transitions, which is of the order of few GHz and results in a broad Doppler

profile.

Figure 3.12: Saturation Absorption Signal for Rb87 cooling and repumper hyperfine transition.

The hyperfine levels are resolved in SAS by detecting the absorption of a weak probe on a

photodiode in the presence of a counter propagating strong pump field. Both the pump and the

probe, are derived from the same laser beam. As the laser frequency is scanned through the

hyperfine transitions, the pump and probe addresses the same velocity class of atoms when

1) the laser frequency matches with one of the resonance frequency (ωi) of the atomic transition

2) cross over frequencies (ω1 + ω2) i.e. a transition frequency which is midway between two

resonance transition frequencies ω1 and ω2.

Due to the presence of a strong pump beam, the probe beam sees an enhanced transmission.

This is due to saturation of the transition by pump beam for the case when both beams addresses

the same transition. This is called a Lamb dip. Now the hyperfine peaks are observed on top of

the Doppler broadened profile.

Fig 3.11 shows the SAS setup used. A small part (power 1 mW) of the main laser beam is

used for SAS. This beam is partially reflected by two glass plates to get two weak beams, one is
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used as reference beam and other is used as probe. Both the beam passes through the vapour

cell and incident on two balanced photodiodes. The reference beam contains only the Doppler

broadened profile of the thermal atomic vapour of 87Rb. Probe beam which counter propagate

against the pump beam has hyperfine level dips on top of the Doppler broadened profile. The

difference of the two photodiode signal gives a Doppler free hyperfine spectrum.

Cooling Laser

Cooling laser is tuned across the hyperfine transitions F = 2→ F ′ = 3, 2, 1. For MOT operation

this laser is locked at the F = 2 → F ′ = 3 hyperfine transition peak of the SAS signal. This

is a closed transition for a 87Rb atom which is at rest and excited by an narrow linewidth laser

beam because an excited atom to F ′ = 3 cannot de-excite to the other hyperfine ground state

(F = 1 → F ′ = 3 transition is forbidden). Fig. 3.12 shows a Doppler free SAS signal for 87Rb.

The full beam alignment for cooling laser is shown in the Fig. 3.13 The laser beam, after sending

a small part to the SAS setup, is double passed through a 100-40 MHz AOM-1 (Isomet) at its 1st

order diffracted beam. This allows to change the detuning of the cooling beam without affecting

the beam alignment. This double-passed beam is fiber coupled and then guided to the MOT

chamber using single mode polarization maintaining fiber. The waist of the beam at the output

collimator is around 2.0 mm. A small waist is must to avoid the clipping of the beam from the

high NA lens inside the chamber. This reduces the background scattering. The total power at

the output coupler is around 20 mW.

The 0th order diffracted beam of the AOM-1 is also double-passed through another 100-40

MHz AOM-2 (Brimrose). This beam is also fiber coupled using a single mode fiber and used as

a probe beam. This is send along one of the cooling beam and along the axis where camera is

installed. AOMs used along the beam paths are used as fast switch to switch on/off the beams.

Additionally mechanical shutters are also used which were made out of the computer hard disks.

These mechanical shutters are obtained from the hard disks of the computers and an electronic

circuit is built to control these shutters using TTL pulses generated from the Labview. For MOT

operation cooling laser is locked at second crossover of the cooling SAS signal, AOM-1 is operated

at 94 MHz while AOM-2 is operated at 105 MHz.
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Figure 3.13: The full optical layout for the cooling and the repumper lasers along with their
respective saturation absorption spectroscopy setups

3.7.3 Repumper Laser

The repumper laser for 87Rb trapping is tuned to address the hyperfine transitions F = 1 →

F ′ = 2, 1, 0. SAS signal for 87Rb repumper transitions is shown in the Fig. 3.12 The full optical

alignment of repumper laser beam is shown in the Fig. 3.13. A small portion of the beam (1

mW) is used for SAS. The remaining power is passed through a 80-40 MHz AOM-3 (Brimrose).

The first order diffracted beam is fiber coupled using single mode fiber and send to the MOT
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chamber. The zeroth order beam of AOM-3 is single passed through another 80-40 MHz AOM-4

(Isomet) and fiber coupled in a single mode fiber along with cooling probe beam. The laser is

locked at first crossover peak for the MOT operation.

3.7.4 Anti-Helmholtz Coil

The MOT of neutral atom needs spatially varying inhomogeneous magnetic field with a spherical

quadrupole magnetic field lines. This is achieved by a pair of anti-Helmholtz coils i.e. coils with

opposite current flow. These coils are made up of 18 gauge insulated copper wire. The frame for

the coil has a inner radius of 4 cm and outer radius of 8.3 cm, so that it fits inside the depression

on top and bottom of the flanges. There are 23 layers of copper windings with 23 windings in

each layers. The resistance of each of the coils is 3Ω and inductance is 30 mH. These coils can

generate a magnetic field gradient of 10 Gauss/cm-A at the center of the chamber, where MOT

is formed. The coils doesnot require water cooling when operated at a current upto 3.5 amperes.

The switching of current in the coils is done by a transistor-based switching circuit. The rise

and fall time of the currents in the coil is around 1 ms and 200 µs respectively.

3.7.5 Compensation Coils

Three pairs of Helmholtz coils are used along the three perpendicular axis to compensate the

earth’s magnetic field as well as residual fields at the MOT position. These are made up of the

standard ribbon cables strips having 10 adjacent wires (Fig. 3.14) Using end to end connectors,

the different wires are connected in series to get a coil with 10 turns. One pair of the coil can

also be used for a bias field so as to define the quantization axis. Each pair of coil generates

around 1 Gauss magnetic field at the center of the chamber at a current of 1 ampere.

3.7.6 Setup for Magneto Optical Trap

Fig. 3.15 shows the full MOT beam alignment layout on the vacuum chamber which is used for

Magneto-Optical-Trapping of the 87Rb atoms. The beams in the x-y plane are at 56◦ instead of

the standard orthogonal geometry of the beams. This is due to the presence of the lens mount

inside the chamber which has to accommodate the lenses with small working distance (which is
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Figure 3.14:

only about 5.5 mm). The beam size is kept around 2mm to avoid scattering at the lens mount. A

third beam is sent along z- direction, perpendicular to the plane of the x-y beams. Anti-Helmholtz

coils are also placed along this direction.

The laser beams from cooling and repumper output couplers are combined on a polarizing

beam splitter. One part of this is sent for z-axis MOT beam. Another part is further divided

into two beams using a half wave plate and polarizing beam splitter, to be used as the MOT x

and y beams. Three quarter wave plates are kept in the path of the beams before they enter the

chamber. Their axis are set such that they generate circularly polarized light with same helicity

with respect to magnetic field lines. The MOT beams are retro-reflected on the other side of

the chamber. A quarter wave plate is also inserted at each retro reflected beam to make them

opposite circular polarization with respect to input beam.

3.7.7 Computer Control and Automation

The cold ensemble of atoms produced in the MOT should be characterized for its temperature,

atom numbers, density etc. This enables the use of this system further for efficiently loading

atoms in other types of traps or for other various experiments with the MOT. Measurement of
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Figure 3.15: The Schematic for optical beam alignment in the MOT

parameter like temperature of the MOT relies on measuring the momentum distribution of the

atoms in the MOT. The usual method for that is to allow the MOT to ballistically expand in the

absence of cooling and trapping forces for a given time.This requires a precise control over the

MOT loading on/off time, MOT coils switching, camera triggering and MOT beams as well as

probe beam on/off timing with all of them synchronized with a given timing reference.

In our experiment the various timing sequences, analog as well as digital, are generated using

PCI based card from National Instruments (NI) and interfaced with the experiment using Labview

program. Usually Labview based programs to generate electronic sequences are not real time and

have rather very low timing resolution (not even few millisecond). The M-Series PCI cards

have on board memory option with FPGA (Field Programmable Gate Array) based platform. We

exploit this by first generating a timing sequence waveform for various digital and analog channels

available on the cards PCI-6251/6259 based on the clock frequency of either an external function

generator or the clock frequencies which are available on the card itself. Once the timing sequence

is generated, it is dumped onto the respective output channels by giving a clock trigger to the card.

This method generates well synchronized timing sequences with a minimum time interval decided

by the frequency of the clock and synchronization accuracy better that 10 nanosecond. Generally

we use a clock frequency of 10 KHz which gives a minimum time interval of 100 microsecond
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and a maximum time interval of 3 minutes without a loss of synchronization accuracy of 10 nano

second. For lower time intervals, higher clock frequencies are used. As one goes for higher clock

frequencies the maximum time interval which can be generated is limited by the on-board memory

of the card. Initially card PCI-6251 was used for the automation of the experiment. This card

has only two analog output channels. To get more analog outputs we have used another card

PCI-6259 installed in a separate PC. The two cards installed in two different PCs are synchronized

with each other using same clock frequency for both the cards which is generated by PCI-6251.

We have a total 6 analog outputs and more than 10 digital outputs which are synchronized.

For switching the MOT coils on and off, transistor based switching circuits are used (Appendix:-

D). Digital switching or analog ramping of the MOT beam parameters (frequency and intensity)

is done by feeding the output of the digital or analog channels (PCI 6251 card) to modulation or

frequency port of the AOM driver. The Camera used for quantitative measurement is EMCCD

from Princeton Instruments. The PCI controller card for the camera system is installed in a

separate PC and one of the digital line from M-series PCI cards is used to control the exposure

time as well as the imaging time sequences.

3.8 Characterization of the MOT

Getting the MOT

The MOT beams used in our setup have a waist of 2 mm; this small beam size is chosen to

avoid clipping and therefore scattering from the lens mount. Due to this small beam size and

the inclined geometry of the beams along the xy-plane, the beam alignment is very crucial to

load atoms efficiently in the MOT directly from the room temperature rubidium vapor. First the

beam heights on the xy-plane is adjusted to keep the two beams perfectly on the same horizontal

plane. This is done by passing the maximum light through a 500 µm pinhole (which is kept at

the height of the focus of the high NA lens) on both sides of the chamber. The angle between

the beams along the xy-plane is around 56◦, therefore the beams do not pass exactly through

the center of the viewport but are adjusted to minimize the clipping from the lens mount. The

final alignment of the MOT beams is done by looking at the fluorescence of the atoms along
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these beams from two or more different viewing angles. A constant current of 2.7 A. is passed

through the getter for 15 minutes to get enough Rb atoms inside the chamber and to get a clear

visible fluorescence tracks along the beam directions. The beams then are adjusted slightly to

maximize the intersection volume at the center of the chamber. For increasing the accuracy, the

same procedure is repeated by reducing the beam size iris size by placing irises concentric to the

beams. The retro-beams are aligned by looking their reflection on the irises at the input side of

the chamber. Provision for placing two lenses of focal lengths f1 = 5cm and f2 = 25cm is made

to get expanded beam along the z-direction. This is useful because the probe beam is send along

the z-axis and the MOT dynamics during ballistic expansion can be observed for longer duration.

After the MOT beam alignment, the cooling and repumper lasers are locked on appropriate

peaks (described in section 3.7.2) of the SAS signals. The cooling beam is kept red detuned

about 2 to 4 Γ w.r.t. cooling transition F = 2 → F ′ = 3, where Γ is linewidth of the excited

state cooling transition. Repumper is locked exactly on resonance to the F = 1 → F ′ = 2

transition. Initially the MOT coils are operated by two independent power supplies so as to

adjust the minimum magnetic field point if it doesn’t intersect with the intersection point of the

MOT beams. The current in the coils is kept around 2.2 Amperes. which creates a high magnetic

field gradient of around 22 Gauss/cm. The getter is operated at 2.5 Amperes. A surveillance

type CCD camera is place along the lens mount axis as shown in the Fig 3.15. A bright spot

at the center of the chamber appears due to florescence of atoms trapped in the MOT. It was

observed that the equal current is required for both the MOT coils. The MOT coils are then

driven by same power supply. Now the current magnitude and the direction in the three pairs

of the compensation coils is adjusted such that the MOT position doesn’t shift with changing

current in the MOT coils. In this condition ballistic expansion of the MOT happens with no shift

in its center except due to free fall under the gravity which is small. For these observations an

imaging system with a magnification of 1 is built and the CCD camera was replaced by a low

noise and temperate stabilized EMCCD camera from Princeton Instruments is used details of

which are given in the Appendix:-B.
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Imaging system for the MOT

The characterization of the various MOT parameters like density, atom number, temperature

etc. requires collection of the fluorescence light from the trapped atoms and suppressing the

background scattered light. This is achieved by spatial filtering of the MOT florescence by

placing an iris at the focus of the objective lens in the imaging system. Here the objective lens

was from Nikkor (NIKKOR-55-200-1:4-5.6G). The iris of this objective lens is fully opened. The

light collected from this lens is focused on a pinhole 500 µm. The image of this pinhole is focused

on the PI-Acton camera as well as on the Femto-watt detector from New Focus with a gain of

2×1010.

3.8.1 Fluorescence Detection of Trapped Atoms

The fluorescence collected from the trapped atoms through the imaging system is detected on

the EMCCD camera as well as on the Femtowatt photo diode. The quantitative estimation of

the atom numbers in the MOT is done by converting the Femto-watt detector signal level into

corresponding photon numbers from the MOT. Then by knowing the scattering rate of a single

Rb atom and the collection efficiency of the imaging system, one can estimate the total number

of atoms present in the MOT. First the MOT is loaded from the atomic vapour. The loading

curve during the MOT loading process, shows an exponential rise towards a saturation value

analogous to the curve for charging of a capacitor, this is discussed in the next section. When

the MOT signal reaches to its saturation value, the MOT is in an steady state. The total number

of atom in the trap in this condition is calculated as follows.

The total number of photons scattered from an atom inside the trap is given by

Rsc =
γ

2
(

I/Is

1 + I/Is + [2(∆+kvx
γ

]2
) (3.66)

The spontaneously scattered photons are isotropically distributed in the full 4π solid angle. There-

fore the total number of photons scattered from the cold atom ensemble can be deduced by

collecting the photons in a given solid angle subtended by the imaging system with respect to the

MOT. If the radius of the lens aperture which collects light from the MOT is r and distance from

the center MOT is d, detector sensitivity is K volt/Watt and the Tt is the total transmissivity
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of all the optical elements present between the MOT and the Femtowatt detector and V is the

signal voltage at the photodiode. Then the number of atoms in the MOT is calculated from the

following expression

N =
4V d2

Kr2Rsc}ωTt
(3.67)

The total number of atoms estimated in the MOT is 2× 104.

3.8.2 Loading and Decay of the MOT

The dynamics of the MOT is governed by three important factors in the trapping process. The

capture rate of the atoms in the trap, the loss rate of the atoms from the trap due to collision

from the background atoms of the thermal vapor and two and three body collisions loss inside

the MOT due to light assisted collisions. Equilibrium between the loading process and loss

Figure 3.16: loading and decay of the vapor loaded MOT in our setup

mechanism decides the number of atoms in the MOT when it saturates. In a vapor loaded

MOT under low pressure condition, only the atoms lying in the low energy tail of the Maxwell-

Boltzmann distribution are cooled and trapped. Except under certain conditions, inter-collisions

between the trapped atoms can be ignored in this type of MOT. The dominant loss mechanism

is then mainly due to the collision with the room temperature background gas. The number of
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atoms in the MOT increases with the following form

N(t) = N0(1− e−t/τ ) (3.68)

where τ is the time constant for the atom number saturation in the MOT. This also represents the

average time for an atom to remain in the trap before it gets kicked out by a thermal background

atom. The time constant τ can be expressed in terms of the cross section, density and velocities

for Rb and background components as follows [95]

1

τ
= nRbσRbvRb + nbσbvb (3.69)

Fig. 3.16 shows the photodiode signal in time during the loading process of the MOT. The

curve fitting into this data gives a loading time of around 0.8s and decay time of 13s. The

getter current was 2.8 A for this particular data. The decay curve is obtained by switching off the

Rubidium source at t = 0 but the MOT is always on. The decay in that case is mostly governed

by collision from the background atoms.

3.8.3 Number of Atoms and Density of the MOT using Absorption

Imaging and Fluorescence imaging using EMCCD

The density of the MOT is calculated from the images taken using EMCCD camera. The size

of the MOT is estimated by fitting a Gaussian to the MOT image as shown in the Fig. 3.17. As

the magnification of the imaging system is known, the density of the MOT is calculated from

the number of atoms obtained in the MOT by fluorescence detection technique. Assuming the

distribution of atom in 3D is given by Gaussian density distribution given by

n(x, y, z) = n0 exp

(
− x2

σx2
− y2

σy2
− z2

σz2

)
(3.70)

where σx, σy, σz are the 1/e radii of the cloud in respective direction and the peak density n0 is

given by

n0 =
N

π3/2σxσyσz
(3.71)

The density in our MOT is estimated around ∼ 8× 108cm−3.
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Figure 3.17: The fluoresence image of a cold cloud of 87Rb atom in the MOT.

3.9 Temperature Measurement of the MOT

Temperature is a physical quantity for the state of a thermodynamical system which is closed and

is in equilibrium with its surroundings. The average kinetic energy of the particles in the system

is related to the system temperature as follows

〈E〉 =
3

2
kBT (3.72)

The atoms in the MOT are not in thermal equilibrium with its surroundings because there is vac-

uum inside the chamber. The exchange of energy happens due to momentum transfer from atom

to photons. As the photons are not a form of heat energy, the temperature of the MOT atoms

can be determined by measuring position, velocity or energy distribution of the cold ensemble

of atoms. The three different techniques in general used for MOT temperature measurement is

discussed in the following section.
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3.9.1 Trap Oscillation Method

This is a non-destructive and online temperature measurement technique for the MOT. The

analysis presented here is based on reference [96]. In the trap oscillation method an oscillating

bias field is applied so that the magnetic field minimum of the spherical quadrupole field oscillates

with the external bias field. The MOT atoms follow this oscillatory motion with a phase lag.

Therefore the system can be described by a classical damped harmonic oscillator.

Figure 3.18: (a) Experimental setup for trap oscillation method of temperature measurement of
the atoms in the MOT. (b) the measured values of phase difference between the applied oscillation to
magnetic field and the oscillation of the MOT.

The equation of motion for a damped harmonic oscillator can be written as

F (t) = −κx(t)− αv(t) + f(t) (3.73)

where κ is the spring constant for the harmonic motion, α is the damping coefficient and f(t) is

the external driving force

f(t) = f0 cosω(t). (3.74)

Trail solution

x(t) = a0 cos(ωt− φ), (3.75)
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gives

a0 =
f0√

(κ−mω2)2 + α2ω2

(3.76)

and

tanφ(ω) =
αω

κ−mω2
. (3.77)

Measuring the phase or amplitude as a function of the frequency gives the values of the

constants α and κ. As the analysis till now assumes linear approximation i.e. harmonic force

linearly depends on the displacement, the displacement of the MOT from the center should be

small.

At thermal equilibrium the relation

kBT = κ〈x2〉 = m〈v2〉 (3.78)

yields the temperature of the MOT once κ is known.

Figure 3.19: Temperature vs. detuning, measured by the trap oscillation method.

Fig. 3.18 (a) shows a schematic of the experimental setup used for the trap oscillation method.

A modulating signal is generated from the function generator and amplified using a power amplifier

circuit. This modulating signal is applied to a pair of Helmholtz coils along one of the axis. This

periodically shifts zero point of the magnetic field. The change in the MOT position is detected
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by Femto-watt detector signal. The phase difference between the input modulating signal from

the function generator and the Femto-watt detector signal is measured using Lock-in amplifier

(SRS-850). Fig. 3.18 (b) shows a plot between phase (w.r.t. external signal) of the photodiode

signal, looking at the MOT fluorescence, vs. the frequency of the trap oscillation. The value

of the frequency for which the phase difference is 900 is 57 Hz. From this the value of the κ

is calculated using Eq. 3.77 and the value of the temperature is determined from Eq. 3.78. The

temperature of the MOT measured using this method is 260µK. The effect of the detuning (∆)

of the cooling laser on the temperature of the MOT is studied as shown in the Fig. 3.19. The

detuning (∆) is measured with respect to cooling transition F = 2→ F ′ = 3 and is red detuned.

3.9.2 Release and Recapture Method

Figure 3.20: Photodiode signal during MOT release and recapture process

Release and recapture is an easy method for MOT temperature measurement. This method

was first used by Chu. et. al [82] to estimate the temperature of the optical molasses in a

Doppler cooling process. The method is now used for determining the temperature of the cold

ensemble of atoms in MOT or dipole trap. The advantage of this method is that it doesn’t
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require any imaging of cloud instead the recorded fluorescence signal on a photodiode during the

whole process is enough to deduce the temperature of the cold atomic sample.

In the release-recapture method the trapping potential is switched off non-adiabatically and

the cold ensemble is allowed to expand freely for a short time interval. The trapping potential is

then switched on and recaptures the remaining atoms which are present in the trap volume. The

hotter atoms leave the trapping volume with a higher velocity. The off time in which a substantial

fraction of the trapped atoms leave the trapping region, can be used to estimate the temperature

of the atoms in the MOT. The precise determination of the temperature by this method requires

a good estimation of the trapping volume and the numeric modelling of the expansion process

with known energy distribution.

In our setup we start with 2×104 atoms in the MOT which is collected on Femtowatt detector

using the imaging system. The MOT was then switched off for variable times by switching off

the MOT beams using AOMs and magnetic field using switching circuit. The fluorescence from

the remaining atoms in the trap is then recorded (Fig. 3.20).

Figure 3.21: Temperature estimation by MOT release and recapture method

During the free ballistic expansion of the cloud the gaussian profile changes to different gaussian
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profile which depends on the initial temperature of the MOT.

σ2(t) = σ2(0) +
kBT

m
t2 (3.79)

where σ(0) is the initial size of the cloud , σ(t) is the size of cloud after expansion for time t, kB

is the Boltzmann’s constant and m is the mass of the atom. The fraction of the atoms remained

in the trap are given by

N(t)

N(0)
=

(
1 +

kBT

mσ2(0)
t2
)− 1

2

r r0
0

exp

(
− x2

2
“
σ2(0)+

kBT

m
t2

”
)
dx

r r0
0

exp
(
− x2

2σ2(0)

)
dx

(3.80)

where N(0) is the initial number of atoms in the trap, N(t) is the remaining number of atoms

in the trap when it is switched back on after a time t off for the potential. r0 is the radius of the

detection region. In the experiment r0 = 0.5 mm, σ(0) = 400µm and the ratio N(t)
N(0)

is obtained

from the ratio of the voltages for the Femtowatt detector output. For various off-time intervals

this ratio is compared with the theoretical curves for off-time versus fraction of atoms (Eq. 3.80).

This is shown in the Fig. 3.21.

3.9.3 Ballistic expansion method

In this method, the cold ensemble of atoms in the MOT, is allowed to expand freely for variable

time intervals after switching of the trapping fields. The expanded cloud is imaged using MOT

beams itself but with a short exposure time of 100 µs. The initial and final sizes of the cloud

are used to deduce the temperature from the Eq. 3.79. Fig 3.22 shows the expansion of the cold

cloud for different expansion times. The temperature estimated by this method is around 255µ

K.

3.10 Conclusion

This chapter gives a discussion of the necessary theoretical concepts regarding the laser cooling

and trapping of neutral atoms. A description of the experimental set-up for the MOT is given.

The various parameter of the MOT has been observed in the set-up to understand the trap

characteristics. Atom numbers, temperature and the loading, decay characteristics of the MOT
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Figure 3.22: Images of the cold atom cloud before and after different expansion times.

Figure 3.23: Full layout of the laser system with optics alignment.

for one particular set of parameters is presented. The final aim of this experimental set-up is to

load an ensemble of cold atoms of 87Rb which is fast, efficient and deterministic for single atom

dipole trap loading.
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4.1 Towards a Single Atom Trap

4.1.1 Introduction

The behaviour of the individual atom, which are the basic constituent of the matter, is governed

by the laws of quantum mechanics. In general an individual atom cannot be in isolation and it

interacts with other atoms to produce the matter around us, whose properties can be described

in classical physics frame work. Therefore to study the precise dynamics and the interaction

between the atoms at quantum level requires to prepare isolated controlled quantum systems.

This is the reason that manipulation of individual quantum systems is one of the most vibrant

fields of modern experimental physics. This facilitates a platform to study a whole range of

quantum mechanical phenomena which appears to be bizarre and very much counter-intuitive in

115
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the classical mechanics framework. Some of the applications of the individual quantum systems

are in quantum information processing as well as in the studies of fundamental laws in quantum

domain.

The first direct observation of an individual microscopic particle was reported by Wilson in his

cloud chamber [97]. Based on the idea of Dehmelt [98], Neuhauser et. al. [99] demonstrated

trapping of single or few Ba+ ions in an ion trap, which uses electromagnetic potentials to

overcome the thermal energies of the ions and traps them. However for neutral atoms, magnetic

dipole or induced electric dipole are too shallow to trap atoms directly from the thermal vapour.

But the pre-cooled atoms from a MOT can be loaded into a very steep dipole trap to trap a

single atom, at specific loading rates [94, 100].

The first observation of a single Cesium atom in a MOT was reported by Z. Hu et.al. [101]

in 1994. In 1996 Haubrich et al. demonstrated the trapping of individual neutral Cesium atoms

in a MOT with a very high magnetic field gradient, and also loaded the single atom from the

MOT to a magnetic trap for tens of seconds [102]. Later the same group showed a controlled

quantum system of individual neutral atom by deterministically loading a single atom from the

MOT to the dipole trap [100] and also performed sub-micrometer position control of the single

atom trapped this way [100, 103]. The collisional blockade based subpoissonian loading of single

atom in a dipole trap was demonstrated in the group of Philippe Grangier [3, 94].

Recent experiments on individual neutral atoms, trapped in a dipole trap, have shown very

impressive advancement in terms of their application in quantum computation as logic gates

[104–106] as well as in quantum walk implementation [107]. Thanks to the high resolution

imaging systems based on a high numerical aperture lens, which can trap and detect the internal

states of the atom at its focal plane [108–112].

4.2 Single atom dipole trap based on collisional blockade

Trapping single neutral atoms from an ultra-cold atom reservoir has been demonstrated and

exploited by several groups [94, 100, 105, 113]. The interest in this chapter is single atom dipole

traps based on the collisional blockade mechanism [3]. Collisional blockade, which locks the

average atom number to 0.5 in a microscopic dipole trap at specific loading rates in the presence
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of MOT light beams [3, 114], arises due to very high two body loss rates in the microscopic dipole

trap. The loading rate of the dipole trap is given by Eq. 3.64. Schlosser et. al. demonstrated

three different regimes for the dipole trap loadings [3]. 1) Weak Loading:- for small loading rates,

average number is < N >∼ R/γ and collisional terms within trap are negligible while in 2) Strong

Figure 4.1: Potential generated by a focused red detuned gaussian laser beam. This negative
potential due to the dipole trap beam, traps the atom with temperature less than the potential depth.

loading regime that becomes dominant and the average number of atoms are < N >∼
√
R/β ′

and 3) intermediate regimes, where collisional blockade can be observed for γ � β
′
. In the

intermediate regime two atoms collision loss rate is very high i.e. as soon as the two atoms enter

the trap, collisional loss kicks out both the atoms from the trap. Therefore either there can be

one atom or no atom inside the trap.

These microscopic dipole traps are created by focussing a Gaussian laser beam to a diffraction

limited spot using high numerical aperture (NA) lens. Therefore the single atom dipole trap

requires focussing of the trapping beam on the cold atom reservoir i.e. MOT using High NA lens.

Initial single atom dipole trap based on collisional blockade, used the diffraction limited high NA

lens which were specially designed to give the diffraction limited performance without significant

aberrations in the beam at the focus. Sortais et. al. [108] showed the complete characterization

of commercially available high NA lens (NA=0.5) with a focal length of 8 mm to trap and detect

the single trapped atom. It has become a very robust technique to trap and manipulate individual

atoms in a tightly focused dipole trap. In our experiment the scheme towards the single atom
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dipole trap is similar to that given in the references [108, 109]. An aspheric lens from Thorlabs

C240TME-B (NA=0.5, f=8mm) has been used, to tightly focus the dipole beam and collect the

fluorescence from the trapped Rubidium atoms.

Consider a Gaussian laser beam of power P, focused to a minimum waist w0, with the spatial

intensity distribution as,

I(z, r) =
2P

πw2(z)
e−2r2/w2(z), (4.1)

where

w(z) = w0

√
1 +

(
z

z0

)2

and z0 =
πw2

0

λ
, (4.2)

w(z) is the beam radius with beam waist w0 and z0 is the Rayleigh range. The parameters we

use for dipole trap are the following

λ = 852 nm (4.3)

w0 = 1 µm (4.4)

z0 = 3.6 µm (4.5)

P = 10mW (4.6)

(4.7)

The trap depth and the scattering rate for 87Rb for above parameters can be calculated from

Eq. 3.25 and Eq. 3.26,

U0 = −3mK.kb (4.8)

Rs = 87s−1 (4.9)

Assuming harmonic oscillation of the atom, the radial and transverse oscillation frequencies of

the atom at the center of the dipole trap can be given by,

Ωz = 2π

√
2U0

mλ2
(4.10)

Ωr =

√
4U0

mw2
0

. (4.11)
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For the above mentioned parameters, Ωz/2π = 33 kHz and Ωr/2π = 171 kHz.

It is clear from the above discussion that precooled atoms with average thermal kinetic energy

less than the dipole trap depth can be trapped in a dipole trap. The single atom trapping can be

achieved in a microscopic dipole trap based on a collisional blockade mechanism. The requirement

for this is a tightly focussed far-off red detuned laser beam. This is achieved by placing a high

NA lens very near to the trap. This helps in following two ways:-

1) As discussed in section 3.6 of chapter 3, when a far-off red detuned beam (dipole trapping

beam) is tightly focussed (waist ≤ 4 micron) at the centre of the cold atom reservoir (MOT),

one can trap a single atom at specific loading rates. The collisional blockade mechanism [3], in

the presence of the dipole trap, locks the atom number to one.

2) One of the conventional technique of florescence imaging used for cold atoms detections,

requires collection of the photons emitted from the sample on a sensitive photodiode. For a

single atom, this florescence signal is very small and requires collection of emitted photons within

maximum solid angle. Placing the high numerical aperture lenses near the trap, maximizes the

solid angle over which the fluorescence is collected.

4.3 Single atom dipole trap setup

4.3.1 High Numerical Aperture Lens inside the Vacuum Chamber

The cold atom experiment built for single atom trapping in our lab, consists of a vapour loaded

MOT of 87Rb. Two high NA lens (Thorlabs C240TME-B), are placed inside the vacuum system,

symmetrically on the two sides of the MOT. The working distance between the lens is ∼ 1.1

cm. MOT is formed between these two lenses as described in chapter 3. The lens collects

the fluorescence from the atoms and couples this light to a Single Photon Counting Module

(SPCM) from Perkin Elmer and to an EMCCD camera through an imaging system described

below (Fig. 4.2).

The pair of lenses have a numerical aperture of 0.5 with an effective solid angle for fluorescence

collection of 0.7 percent . These are diffraction limited lens for a range of wavelength from 630-

900 nm.
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The high NA lens inside the vacuum has a diffraction limited performance for a point source

at the focus with a 0.25 mm thick glass plate inserted between the lens and the object. In

the absence of the glass plate this needs a convergence of 0.20 for the beam falling on the

aspheric lens. Additionally the focal points for 850 nm and 780 nm differ by ∼ 31 µm due to

the difference in the refractive index of the lens material at different wavelengths . To make the

trapping beam focus coinciding with 780 nm in the absence of the thin glass window, requires an

overall convergence of 0.40 for a beam waist of 4 mm on the aspheric lens. For this the distance

between the output coupler lens and the fiber holder is adjusted to get the required convergence.

Fine adjustment is done by a piezoelectric driven translation stage under the coupler lens mount.

4.3.2 Trapping laser setup

The laser used for the dipole trap is an External Cavity Diode laser (Toptica) at the wavelength

of 852 nm. The maximum output of the laser without and with fiber coupling is 130 mW and

100 mW respectively. The fiber output is splitted in two parts. One part is fed to the a tapered

amplifier Boosta and the other part is send for single atom trapping. This trapping beam is

collimated by a 60 mm focal length lens of a fiber collimator (60FC-T-4-M-60 from Kirchhoff-

Schafter). This collimation lens is fixed on a high precision xyz-translation stage and can be

adjusted with respect to the fiber. To change the convergence of the output beam, the distance

between the collimating lens and the fiber holder can be adjusted. The trapping beam then

transmits through the dichroic plate, kept at 450 to the incident beam. This separates the 780

nm fluorescence signal coming from the trapped atom and the 852 nm trapping beam. The

dichroic plate has a 99% transmission (98% reflection) and 89% reflection (90% transmission)

for 780 nm (852 nm) at 450 incidence angle.

The output of the Boosta is used for many atom dipole trap. The two beams are combined

on a polarising beam splitter (PBS) as shown in the Fig. 4.2.

4.3.3 Imaging System

Detection of a single atom in the trap requires a carefully designed imaging system. This is due

to the following reasons:-
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Figure 4.2: Figure shows the complete layout of the various optical elements used for the dipole
trapping and detection of the rubidium atoms in the trap.

1) The fluorescence coming from the single 87Rb atom is at subfemtowatt level. Further taking

into account for all optical losses in various optical components, there are only few thousands of

photons capable of reaching the detector. One has to minimize the losses as much as possible

and at the same time have the maximum collection efficiency for the photons at 780 nm.

2) The careful alignment of all the optical components used in the imaging system is necessary

to reduce the aberration at the image plane to improve signal to noise ratio. Additionally, to

detect the single trapped 87Rb atom in the presence of MOT requires a precisely aligned confocal
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Figure 4.3: Complete optical layout around the vacuum chamber.

imaging system with respect to the trapped atom so that the background fluorescence coming

from the MOT and the MOT light beams scattered from the lens mounts inside the chamber,

can be maximally eliminated to get a good signal to noise ratio for atom detection.

Fig. 4.2 shows the schematic of the imaging system. The high NA lens inside the chamber

works as an objective lens. The fluorescence collected by this lens is reflected by the dichroic

plate and then focused on a 50 micrometer pinhole, using a doublet lens of 25 cm. The image of

this pinhole is projected on the EMCCD camera using another doublet lens of 25 cm. A polarising

beam splitter (PBS) in between, splits half of the signal for single photon detection on single

photon counting module (SPCM). The fluorescence from the atoms is coupled to the SPCM using

single mode polarization maintaining fiber. The fiber provides an easy way for spatial filtering of

the light coming out of the trapped atom, from the stray light. The pinhole and the lens L2 are

placed on a translation stage so as to adjust the focus of the image on the camera. 780 nm band

pass filters with 10 nm band pass is inserted in front of the single photon counting detector as
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well as the camera.

4.3.4 Detector and Counting Module Integration

There are two detectors which we use for observing photons emitted from the trapped atoms,

EMCCD (Andor-ixon) and Single photon counting module (SPCM). EMCCD specification is

given in the Appendix:-B.

SPCM is an integrated single photon counting module from Perkin Elmer. This contains an

APD (Avalanche Photo Diode) with quenched circuit and a well stabilized temperature controller.

The APD has a quantum efficiency of 90% at 780 nm with an overall detection efficiency of 60%.

Each detected photon event generates a standard TTL pulse at the output port. The dark count

rates of the module is 50 counts per second (cps) as specified in the manual. Due to low dark

count rates and high quantum efficiency, these devices have been used for various quantum optics

experiments at single photon counting regime.

For monitoring the number of scattered photons from the single trapped atom as well as the

MOT, SPCM is integrated with a M-series data acquisition (DAQ) card M-6259 from National

Instruments. This card can count the TTL pulses resulting from the photon events in the detector

(SPCM), in user specified time bins (minimum 10 microseconds). To see the presence or absence

of a single atom in the trap, we operate the counter in the DAQ card at 10 ms time bin. The

number of counts in the specified time bin is continuously displayed on the computer screen so

as to control the sequence and optimize the experimental parameters. All the voltage sequences

to control and automate the experiment is acquired and sent using Labview based programs.

To find out the spatial and the temporal correlation of photons emitted from the single atom

or the MOT, we use two SPCMs in a Hanbury-Brown-Twiss kind of set up (Section 4.4) and the

time series of photon counts is recorded with FPGA based coincidence counting unit which is

described later in this chapter.

4.3.5 Alignment Procedure

The single atom dipole trapping beam from the diode laser is guided through a single mode

polarization maintaining fiber and collimated using a high precision adjustable collimator (60
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mm triplet lens) as shown in the Fig. 4.2. Both the fiber tip holder and the collimating lens of

the collimator are mounted on separate and stable stand-alone mounts. The output fiber (lens)

mount has x-, y- and z-translation.

Firstly the beam was perfectly aligned at the optical axis of the collimation lens. This is

ensured by minimizing any lateral shift in the focal point position with the change in the distance

between the fiber tip and the collimation. After the collimator the beam is aligned very accurately

along the optical axis of the aspheric lens. The total distance between the collimation lens and

the high NA (aspheric) lens inside the chamber is between 35 to 40 cm. A laser beam at 780

nm counter-propagates exactly to the trapping beam and used for the alignment of the imaging

system.

After fixing all alignments very accurately, the convergence of the trapping beam (852 nm) is

adjusted so as to have a convergence such that the trapping beam focus matches with the focal

point of 780 nm beam, and also to overcome the shift in the focal plane due to the absence

of the glass plate along with which the lens is supposed to be diffraction limited at the focus

[108]. The trapping beam after passing through the second high NA lens is coupled to another

fiber which has the same specification as for the fiber used to guide the trapping beam from the

laser using another similar collimation lens. A beam at 780 nm is sent in the opposite direction

to align the imaging system as well as the SPCM for fluorescence collection from the trapped

atom. Detection efficiency of the overall imaging system is also calibrated using this beam. The

various losses introduced by the different optical elements in the florescence signal after a 7.6 %

collection of the signal from the solid angle subtended by the high NA lens are listed below.

4.3.6 Detection Efficiency Calibration

The previous table gives a list of losses due to different optical components in the path of the

fluorescence light before it reaches SPCM and EMCCD camera. From this one can approximately

estimate the number of counts expected from the SPCM in the presence of single trapped atom.

The scattering rate of the atom from the MOT beam is approximately 1 × 106 per second and

the overall efficiency of our detection system is around 0.7 %. The number of expected counts

in the presence of the single trapped atom is around 700 counts/ 100 ms.
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Table 4.1: Loss data budget due to different optical elements

Optical Element Percentage loss

High NA lens 4 %

Viewport 5 %

Gold coated mirrors 7 %

Dielectric mirrors 4%

PBS 50 %

Pinhole 50 %

Band pass filter 40 %

Fiber Coupling 40 %

Detector 40 %

4.3.7 Towards Single Atom Trap

First the MOT is loaded from the thermal vapour of 87Rb. The getter current is kept just above

the threshold so that the background pressure does not rise significantly. The magnetic field

gradient is kept low, around 5-10 Gauss/cm. The MOT is loaded in the presence of the dipole

beam, the fluorescence from the trapping region is collected and number of photons per 100

ms time bin are continuously displayed on the computer screen. The background count, which

includes the counts due to the scattered light at the lens mount, dark counts of the SPCM, and

the photon counts due to MOT, are 500 cps. In the presence of a single trapped atom, the

discrete jumps upto 7000 cps are expected when a single atom is loaded in the dipole trap.

Till the time of writing this thesis the single atom dipole trap setup has been completed. Few

attempts which could be made to see the single atom signal in the presence of MOT beams, could

not be unambiguously observed. Scattering from lens mount in the presence of MOT beams is

one of the obstacle. The triggered measurement of the single trapped atom (in the dipole trap),

using separate probe beam, is in progress.

Photon correlation measurement on the fluorescence light collected from the MOT is presented

in the next section. Fig. 4.4 shows the MOT loading and decay characteristic, observed by
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Figure 4.4: This figure shows the loading and decay of the MOT observed through high NA lens
on single photon counting module. Getter current and field gradient is kept much higher in this case
compared to the case of single atom operation regime.

counting number of photons in the SPCM for every 30 ms.

4.4 Coincidence Detection and Photon Correlation

Measurement

Introduction:-

Fast and accurate coincidence detection of two or more input electrical signals within precise

time window, has widespread applications in different branches of experimental physics. The co-

incidence counting schemes are routinely exploited in the study of quantum physics phenomenon

dealing with the most fascinating and counter-intuitive properties of non-locality and entangle-

ment of quantum particles. In these experiments two or more particles created from the same

source following some conservation law and thus inexorably related to each other are used to trig-

ger the quantum measurement. The other most important application of coincidence counting

is in finding correlation between two detector signals in a Hanbury-Brown-Twiss (HBT) kind of
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setup. This allows the study of a whole range of phenomenon, like bunching/anti-bunching prop-

erties of particles and photons, precision spectroscopy, life time measurement of atomic states,

single molecule fluorescence spectroscopy etc. The basic principle of an HBT setup involves coin-

cidence detection between the output pulses of two detectors, which are located at two different

space time points. By varying the time delay, τ between the two detectors, one constructs the

second order correlation function g2(τ). This is an important parameter for specifying the pho-

ton/particle statistics in various experiments involving light matter interactions. The light-matter

interaction at the microscopic level can be studied by the correlation properties of the scattered

photons.

In this section a design and characterization of FPGA based correlation detection module and

its application for g2(τ) measurement using a HBT experiment is presented. The g2(τ) = 1,

for all time delays τ , is obtained for a continuous laser beam while g2(0) = 2 is obtained for

light coming from the MOT, as expected from a thermal source. The interest in the photon

correlation measurements is to study the various parameters of the laser cooled atoms and to

detect the non-classical single photon states generated by using these systems.

The correlator which is built around a Virtex-5 field programmable gate array (FPGA) unit

is a compact, multichannel recording module, which records the time-of-arrival of photons from

two Avalanche Photo Diodes (APDs), and carries out coincidence-counting, offline. The module,

accepts pulses from APDs in transistor-transistor logic (TTL) format, and time-tags them with

a timing resolution of 5 ns. To optimize the overall data rate from the module, the FPGA

implements an efficient time tagging scheme, wherein, tagging is carried out only when an output

pulse from any or both APDs is registered. The time-tagged data is transferred to a PC through a

standard Gigabit Ethernet interface, without any dead-time in data acquisition. Analysis tools, for

a Linux platform, have been developed to measure the multi-fold coincidence, with the coincidence

time-window ranging from a minimum of 5 ns to integral multiples of 5 ns.

4.4.1 Photon Statistics and Correlation Measurement

Photon statistics and the photon correlation functions [4] are the crucial parameters to charac-

terize the light sources. The photon correlation function which can be described in terms of the
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intensity-intensity correlation (g2(τ)) in a HBT experiment can also provide the information about

the photon number distribution for a weak light source. More importantly the non-classical states

of the light are characterized by g2(0) ≤ 1. g2(τ), was first used by Hanbury Brown and Twiss

in 1950 [29]) for classical states of light coming from a thermal light source. In that experiment

the detectors and the integrated electronics were used in an analog mode and the time resolution

was insufficient to observe the actual expected value of g2(τ) at τ = 0 but a smeared-out version

of the actual curve was obtained. g2(τ) function has also been used to observe Single-atom

dynamics in a trap by photon correlations measurements [115].

Figure 4.5: Fig. (a) shows an HBT experiment to measure the intensity cross correlation between
the two input light fields (EI and EII) incident on a 50:50 beam splitter (BS). If one of the input port
of the BS is vacuum (Fig. (b), it can measure g2(τ) function for input light field |ψ1〉 at other port.

In quantum detection theory developed by Glauber [4], g2(τ) is the property of the radiation

field and the measured quantity in a HBT experiment is the normally ordered correlation function

[116]

g2(τ) =
〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉

|〈E(−)(t)E(+)(t)〉|2
(4.12)

where the quantity at the numerator can also be written as

〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉 = 〈: I(t) I(t+ τ) :〉 ∝ 〈: n(t)n(t+ τ) :〉 (4.13)

Here E(+) and E(−) represents the positive and negative frequency part of the scattered electric

field at the detector, and 〈...〉 denotes statistical averaging. The Eq. 4.12 can be written in a
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form more formally used in theoretical analysis by using the definition of photon number operator

as follows

g2(τ) =
〈â†

1(t)â†
2(t+ τ)â2(t+ τ)â1(t)〉

〈â†
1(t)â1(t)〉〈â†

2(t+ τ)â2(t+ τ)〉
(4.14)

where n(t) = â†(t)â(t). For zero time delay between the detectors, the Eq. 4.14 simplifies to the

following form

g2(0) =
〈â†

1â
†
2â2â1〉

〈â†
1â1〉〈â†

2â2〉
(4.15)

The value of g2(0) distinguishes between a classical or quantum state of radiation. One can learn

whether a light source is bunched or anti-bunched.

Now considering the HBT experiment shown in the Fig 4.5(a), the g2(0) for an arbitrary input

state can be calculated by relating the creation and annihilation operator at the output port of

the beam splitter to the input fields. The input-output fields , (EI , EII) and (E1, E2) respectively

has the following relationship at the ports of the beam splitter.

E1 = (EI − EII)/
√

2 (4.16)

E2 = (EI + EII)/
√

2 (4.17)

The relationships between the creation and annihilation operators at the input-output port follows

from this

â1 = (âI − âII)/
√

2 (4.18)

â2 = (âI + âII)/
√

2 (4.19)

and similar for creation operators by taking Hermitian conjugate of the equation.

As shown in the Fig 4.5(b), the light |ψ1〉 enters at port 1 while other port 2 has vacuum state

|02〉. The input state can therefore be written as follows

|Ψ〉 = |ψ1, 02〉 (4.20)

Now using the Eq. 4.18 and Eq. 4.15, the final expression for g2(0) is

g2(0) =
n̂(n̂− 1)

n̂2
, (4.21)
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where 〈....〉 are the expectation values now evaluated at the input state port 1.

For the input photon number state |n〉,

g2(0) =
n(n− 1)

n2
. (4.22)

A highly non-classical value of g2(0) = 0 is expected for a single photon source which emits

photon number state with n = 1. The source is anti-bunched in this case which means that

the probability of measuring a second photon after one photon is already detected is very small.

Such sources are single quantum emitters and often called non-classical because in classical

electromagnetic theory the auto-correlation of the intensity must attain its maximum value at

τ = 0.

For a classical ”random Gaussian field” where the emitted light field is a resultant sum of many

independent radiators, the intensity correlation function g2(τ) is related to the field correlation

function by [116]

g2(τ) = 1 + |g1(τ)|2, (4.23)

where the field correlation function or the first order coherence function g1(τ) is given by

g1(τ) =
〈E(−)(t)E(+)(t+ τ)〉

〈|E(t)|2〉
(4.24)

g1(τ) is related to the power spectrum of the field by Wiener-Khintchine theorem [28]. Therefore

for a field with a Lorentzian spectrum

g2(τ) = 1 + e−γτ , (4.25)

and for a field with Gaussian spectrum

g2(τ) = 1 + e−γ
2τ2

, (4.26)

where γ is the spectral linewidth which is inverse of the coherence time, τc of the source. It can

be seen here that for τ � τc, g
2(τ)→ 1. The increased value of the g2(τ) for τ < τc for chaotic

light compared to the coherent light is due to increased intensity fluctuations in the chaotic light

field. In a HBT experiment with photon counting detectors it tells that there is a high probability

to detect a photon in the second detector soon after the detection of the photon at the first
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detector. Due to this property of photons to arrive in bunches, a chaotic light source is sometime

also called as bunched light source. Light coming from a thermal light source like incandescent

lamp, fluorescence from the Magneto-Optical-Trap or Optical molasses, light from the sun etc.

are few examples of chaotic or thermal light sources.

In the photon correlation measurement, the modified version of the HBT experiment often

uses single photon sensitive avalanche photodiodes for the photon detection. Which generates an

electrical pulse whenever a photon is detected. After detecting each photon, there is a minimum

time required to stop the avalanche process and prepare for the next detection event. During this

time the detector experiences a ”dead” time. The detector used in this work are commercially

available single photon counting modules SPCM-AQR-15 from Perkin Elmer. These have a dead

time of 50 ns and a dark count rate of around 50 per second. The output of the detector are

standard TTL pulses with a rise time of ≈ 2ns and width of ≈ 16ns. In the standard HBT

experiment as shown in the Fig. 1.3, the photons from a weak source incident on a 50:50 beam

splitter and after splitting impinges on these two detectors. The output pulses are analyzed for

photon coincidence with a lowest possible coincidence time window of 5 ns from the recorded

time series of the two detectors. The HBT experiment circumvents the dead time of APDs. In

the setup g2(τ) measurement relies on the coincidence detection between the two detectors at

various time delay.

4.4.2 Operating principle of the coincidence detection unit

The coincidence detection unit which is developed and used here is based on FPGA electronics

and carries out coincidence detection between output pulses from the avalanche photodiodes

(APD) based single photon counting modules (SPCMs). The unit works like a multichannel

recording module, which records the time-of-arrival of photons from upto four detectors. Apart

from recording the number of photons that arrived from each of the four SPCMs and counting

the multi-fold coincidences, one of the primary requirements of this unit was to continuously

record the time-of-arrival of photons from each of the four SPCMs. A straightforward way of

achieving this would have been to record, at every sampling interval of 5 ns, an n-bit pattern

consisting of any of the 16 possible states from the four possible detectors, along with a k-bit (k
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n) time-tag. At such a high sampling rate, even for n = 8, it would result in a huge data rate

of 200 megabytes per second (MBps) if there is no preprocessing in the FPGA hardware. While

recording data at such a high data rate is one challenging aspect, other practical issues arising

from this scheme are data archival and processing-time, especially, considering that the useful

Figure 4.6: Block schematic of Coincidence unit

data could be less than 1 percent of the acquired data. Instead of recording an n-bit data pattern

at every sampling instant, if data is recorded only when there is an event in any SPCM, it would

result in a substantial reduction of data rate. A schematic diagram illustrating the basic operating

principle of this unit firmware residing inside the Virtex-5 (XCV5LX50T) FPGA is shown Fig. 4.6.

The pulse-shaping and discrimination logic section and the time-tagging circuit operate on a

200 MHz master clock signal. The master clock is generated inside the FPGA, using the 125

MHz reference signal coming from an on-board crystal oscillator. The coincidence detection unit

accepts signals in TTL standard from four SPCMs, and translates them to low voltage differential

signal (LVDS) format. The operating voltages of modern FPGAs prevent them from directly

accepting signals in TTL standard. A glitch, generated in the unit’s hardware, being common to

all four inputs would result in a false coincidence from all four detectors. In order to reduce such

false coincidences being registered, the SPCM signals are first passed through a pulse-shaping

and discrimination logic section. Unlike in a typical coincidence detection circuit based on logic

gate and multiplexers, in our system, pulse widths do not matter because the time-tagging circuit

is edge-sensitive. The time-tagging circuit is designed around a 5-bit counter, running on the
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200 MHz master clock, and a 16-bit register. The 5-bit counter wraps around once every 160 ns.

Figure 4.7: 16-bit register in the time-tagging circuit

The 16-bit register is used to register events in any/all of the four SPCMs, and each wraparound

of the 5-bit counter. Fig. 4.7 shows the arrangement of the 16-bit register, in which, the SPCM

events are registered in bits b5 to b8 and wraparound event is stored in the most significant

bit, b15, and 5-bit counter value is stored in the five least significant bits. The overflow bit,

OvF, stays high for one master clock period, every time a wraparound event occurs. Between

two OvF pulses, if there are no SPCM events to be registered, data rate from the coincidence

unit would be limited to 12.5 MBps. The time-tagged data is transferred out of FPGA using

the standard Gigabit Ethernet (GigE) interface, whose theoretical data throughput rate is 125

Mbps. The Virtex-5 FPGA used in the coincidence detection unit contains embedded Tri-mode

(10/100/1000 Mbps) Ethernet Media Access Controller (TEMAC) blocks, and GTP transceivers

capable of serial transmission up to 3.75 Gbps. The TEMAC is capable of supporting gigabit

Ethernet transmission over fiber, by connecting to a GTP transceiver. Instead of an optical SFP

(small form-factor pluggable) module interfacing with the GTP transceiver, the coincdence unit

uses a GigE SFP copper transceiver module to interface with a PC. The Ethernet firmware used

in this unit has features to include some maker patterns and a 32-bit packet counter along with

data that is sent as a UDP (user datagram protocol) packet. A marker pattern, for example,

helps the data processing software in skipping certain packet header information and identifying

the start of actual data. The 32-bit packet counter value can be used to identify missing UDP

packets, if any.
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Figure 4.8: Vertex-5 based FPGA board used for Coincidence unit

4.4.3 g2(τ) measurements

In a HBT experiment using two photon counters, the g2(τ) is evaluated in terms of number of

coincidence counts at both detectors, individual counts on each detector, averaging time T and

the coincidence time window tc. For photon counting detection the g2(τ) can be written in terms

of probabilities of coincidence counts and counts of individual detectors as follows

g2(τ) = P12/P1P2, (4.27)

where P12 is probability of coincidence counts at both detectors and P1 and P2 are the probabilities

at individual detectors. In the experiment the total coincidence counts N12 and individual counts

N1, N2 are recorded for a total time T using a coincidence time window of ∆t. The probabilities
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then can be written as

P1 = (
N1

T
)∆t (4.28)

P2 = (
N2

T
)∆t (4.29)

P12 = (
N12

T
)∆t (4.30)

Finally the g2(τ) can be written in terms of experimentally observed parameters as follows

g2(τ) =
N12

N1N2

(
T

∆t
) (4.31)

The time delay between the detectors, τ , is introduced offline by shifting the one of the recorded

time series of the two detectors.

For a coherent laser beam

First as a test bench for the coincidence detection module, a highly attenuated light from a narrow

linewidth continuous diode laser was analysed for g2(τ) for various coincidence time windows and

Figure 4.9: Figure shows the measured plot of second order correlation function g2(τ) for attenuated
laser beam.

delays ranging from tens of nanosecond to hundreds of millisecond and found to produce g2(τ) = 1

for all time delays as expected. The Fig. 4.9 shows the result for g2(τ) measurement for laser.

As one goes for lower coincidence time windows the event of photon occurrence in a time bin
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reduces with increased fluctuation due to poissonian process of the detection itself and it requires

longer observation time. For a minimum coincidence time window of 5 ns, it was observed that

8 hours of data is required to average out the random statistical fluctuations .

For chaotic light scattered from laser cooled atoms

The light coming from a thermal light source shows a bunching effect with second order correlation

value 2 at zero time delay between the detectors. As the delay between the detectors, τ is

increased, g(2)(τ) → 1 for long time delays. Using our coincidence unit we have observed

the bunching behaviour of the light emitted from laser cooled atoms in a magneto-optical-trap

(Fig. 4.10). For such a light source the coherence time is of the order of few tens of nanoseconds.

Therefore to get g(2)(0) = 2, it is require to have a coincidence detection unit with coincidence

detection window in few nanoseconds and with least dead time and data loss effects. It is clear

from the results that the this device is very efficient for coincidence detection in nanoseconds time

scales (multiples of 5 ns). Fig. 4.10 shows rapid damped oscillation around τ = 0. This regime

Figure 4.10: Figure shows the measured plot of second order correlation function g2(τ) for the
MOT fluorescence.

can be further explored to study the effect between the coherent Rayleigh scattering component
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and the incoherent resonance fluorescence triplet from the cold atom sample.

Comparison of g2(τ) for tailored light sources

Figure 4.11: Figure shows a comparision of the second order correlation function g2(τ) using
Labview vs. FPGA.

In this part the unit is tested for longer coincidence time window in the time scales of mil-

liseconds. We have used tailored light sources with known coherence properties (Chapter 1) and

compared experimentally obtained g2(τ) function values using Labview based counters against

our coincidence detection unit. The results are shown in the Fig. 4.11. It shows that the unit

works efficiently for millisecond time scales as well.

4.5 Conclusion

In this chapter the complete optical layout of the dipole trap setup and the imaging system with

its efficiency and expected signal from the single atom trap is presented. A photon correlation

measurement experiment to study second order correlation of different kind of light sources, is also

presented. A full description of an FPGA based correlator is given which is built for coincidence
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detection between two or more detectors. Finally measured g2(τ) function for an attenuated

coherent laser beam and for the fluorescence light coming from the MOT are given.

Setting up this kind of experiments aim towards study of the dynamics and various parameters

of the trapped atom using photon correlation measurements. The non-classical states with

tunable properties, as described in Chapter 1, may be generated and their interaction with a

single trapped atom can be studied using high numerical aperture lens which can create a strong

coupling between the photon and the atom.
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5.1 Conclusion and Future Prospects

A single atom that is cooled and trapped is an important controlled quantum system that enables a

variety of applications and studies like, single photon generation, quantum information processing,

study of controlled interaction between the atoms, study of atom-photon interaction in free space

as well as in controlled environment. At the heart of all these is the atom-photon interaction

at single atom and single photon level, and is the fundamental process behind the light-matter

interaction.

This thesis sets a basic platform towards studying interaction between non-classical states of

light and a single atom. The first part of the thesis that essentially deals with manipulation of

coherent light motivates towards generation of tailored non-classical states of light using photon

addition techniques on tailored classical states. These non-classical states in themselves, have

139
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application in quantum information processing. At the same time a study between such photon

states and a single trapped atom presents a lot of interesting problems.

Usually non-classical light generation suffers from large linewidths due to underlying non-linearities;

and hence are expected to have limited direct application in atom-photon interactions. This lim-

itation may be overcome by combining the technique with a cavity setup.

In the second part of the thesis a cold atom experiment setup with a single atom trap and photon

correlation measurement setup are developed. While the single atom trap setup is completed and

attempt to look for the signal of the trapped single atom is made, an unambiguous measurement

could not be obtained till the time of writing this thesis. One of the obstacle has been the light

scattered from the lens mount. A new lens mount was designed and built during the course of

setting up this experiment. This can be used to greatly suppress the scattering of the MOT

beams.

The existing MOT which is in a retro-reflected configuration, can be changed to a MOT with

six independent beams. This provides an easy way of shifting the MOT position.

5.2 Future Prospects

A well stabilized and well controllable single trapped atom will provide the following possible

experimental explorations-

1) Single photon generation:-

The fluorescence coming out of a single trapped atom shows anti-bunching behaviour indicating

non-classical behaviour of the emitted photons. A single atom system can be used as a triggered

single photon source.

2) Atom-photon interaction:-

The interaction between non-classical states of light and the single atom is useful in applications

related to quantum meteorology. There, the quantum projection noise during an atom-photon

interaction by a coherent laser, can be reduced by using non-classical states of light instead of a

coherent state.

3) Controlled interaction between neutral atoms:-

A very well engineered neutral atom trap has application in studying the controlled interaction
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between the atoms. Using a high numerical aperture lens multiple traps can be obtained and

manipulated by changing the trapping beam parameters and sending multiple trapping beams

with small inclination to one another.
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Photon creation and annihilation operation on a coherent

state

Coherent state in the number state basis is

|α〉 = exp

(
−|α|

2

2

)
Σ∞n=0

αn√
n!
|n〉 (6.1)

As described in the section 1.2.4 of this thesis, the operation of the photon creation operator â†

and the photon annihilation operator â, on a coherent state can be evaluated as follows.

The action of the annihilation operator on the coherent state is

â|α〉 = exp

(
−|α|

2

2

)
Σ∞n=1

αn−1

√
n− 1!

|n− 1〉 = α|α〉 (6.2)
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The action of the creation operator on the coherent state has an important property

â†|α〉 exp

(
|α|2

2

)
=

∂

∂α
(|α〉e|α|2/2) (6.3)

This can be proved as follows.

â†|α〉 = exp

(
−|α|

2

2

)
Σ∞n=0

αn
√
n+ 1√
n!

|n+ 1〉 (6.4)

which can be written as follows

â†|α〉 exp

(
|α|2

2

)
= Σ∞n=1

αn−1
√
n√

(n− 1)!
|n+ 1〉 (6.5)

Now evaluating the following partial differential w.r.t. α we get

∂

∂α
(|α〉e|α|2/2) = Σ∞n=1

αn−1
√
n√

(n− 1)!
|n+ 1〉 (6.6)

Hence it follows that

â†|α〉 exp

(
|α|2

2

)
=

∂

∂α
(|α〉e|α|2/2) (6.7)
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Detectors used in the experiment

As described in the section 3.8 of this thesis, we have used two EMCCD cameras and avalanche

photodiode based photon counting modules for the detection of fluorescence from laser cooled

and trapped rubidium atoms. A brief specification regarding these detectors is presented below.

PI-ACTON EMCCD Camera

We are using an EMCCD camera, PhotonMax:512B, from Princeton Instruments, where EMCCD

stands for electron multiplication charge coupled device. This camera has an extended serial

register behind each pixel of a low noise cooled CCD. Electrons from pixel to pixel are accelerated

in the serial register and causes gain by emission of secondary electrons on a silicon chip by impact
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ionization. The multiplication gain can be controlled by controlling the clock voltages for the

serial registers.

This camera has a pixel size of 16 µm × 16 µm with a resolution of 512×512. This camera

is used for fluoresence imaging in the diagnosis of magneto-optical-trap.

Andor ixon EMCCD Camera

This is also an EMCCD camera which is used for single atom fluorescence imaging of Rubidium

atom. This camera is from Andor company.

Pixel size of 32 µm × 32µm with a resolution of 512×512.

Single photon counting module

In the Chapter 1 and Chapter 4 of this thesis we have used avalanche photo diode (APD) based

single photon counting modules (SPCMs) for weak light detection.The SPCM-AQR from Perkin

Elmer is a self-contained module which detects single photons of light over the wavelength

range from 400 nm to 1060 nm. This device uses a silicon avalanche photodiode. Its quantum

efficiency exceeds 90 percent and the overall detection efficiency exceeds 70 percent at 650 nm.

The photodiode is both thermoelectrically cooled and temperature controlled, ensuring stabilized

performance despite changes in the ambient temperature. The SPCM-AQR module can count to

speeds exceeding 10 million counts per second (Mc/s) for the SPCM-AQR-15. There is a ”dead

time” of 50 ns between pulses and single photon arrival can be measured with an accuracy of

350 ps FWHM. The dark counts are 50 cps.

This information is taken from Perkin ELmer website.
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Properties of Rubidium

As described in the Chapter 3 of this thesis, we have laser cooled and trapped the Rubidium atoms

which are alkali atoms. In general alkali atoms have relatively simpler energy level structure and

their strong D-lines are accessible using tunable didoe lasers. The hyperfine structure of D-lines

provides closed transition which is required for laser cooling.

Rubidium has two stable isotopes 85Rb (72.2 %) and 87Rb (27.8 %). Some of the important

physical and chemical properties of Rubidium are listed below.
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Electronic Structure

Ground state electronic configuration of the rubidium atom is 1s2 2s22p6 3s23p63d10 4s24p6 5s1

or equivalently [Kr]5s1. In general for laser cooling of rubidium atoms, the relevant transition of

the outer most single valence electron is 5 S→ 5 P. Due to spin-orbit (LS) coupling the 5 P state

splits into D-line doublet with transition wavelengths of 794 nm of D1 line (5S 1
2
→ 5P 1

2
) and

780 nm of D2 line (5S 1
2
→ 5P 3

2
). The electrons total magnetic moment including spin, interacts

with the total nuclear magnetic moment to create additional hyperfine splitting.

Table 8.1: Rubidium Data Sheet

Element 85Rb 87Rb

Melting Point 39.310C 39.310C

Boiling Point 343 K 343 K

Isospin I 5/2 7/2

Relative abundance 72.17% 27.83%

Saturation Intensity Is 1.64 mW/cm2 1.64 mW/cm2

Doppler Limit vD 11.85 cm/s (143.41 µK) 11.81 cm/s (146 µK)

Recoil Limit vr 0.602 cm/s (0.370 µK) 0.588 cm/s (0.36195 µK)

D2 Transition 85Rb 87Rb

Wavelength λ 780.2 nm 780.037 nm

Decay time τ 26.63 ns 26.24 ns
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Switching Circuit for the MOT experiment

The fast magnetic field switching with least transient response is required for MOT diagnostics.

We have used IGBT based switching circuit for MOT coils. IGBT based system includes driver

circuitry for IGBT, snubber circuit for protection purposes, and freewheeling circuitry for back

emf suppressions.

Structure and operation of IGBT module

The IGBT, Insulated Gate Bipolar Transistor, is a switching transistor that is controlled by voltage

applied to the gate terminal. Device operation and structure are similar to those of an Insulated

Gate Field Effect Transistor, more commonly known as a MOSFET. The principal difference
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between the two device types is that the IGBT uses conductivity modulation to reduce on-state

conduction losses.

The npn BJT is a three junction device that requires a continuous current flowing into the

base region to supply enough charges to allow the junctions to conduct current. Because the

MOSFET and the IGBT are voltage-controlled devices, they only require voltage on the gate to

maintain conduction through the device. The IGBT has one junction more than the MOSFET,

and this junction allows higher blocking voltage and conductivity modulation during conduction.

This additional junction in the IGBT does limit switching frequency.

IGBT CM-200DU-12F:

Mitsubishi IGBT modules are designed to be rugged, low loss and easy to use. They give low on-

state saturation voltages while maintaining the high switching speed needed for 20 KHz operation.

Each module consists of two IGBTs in a half bridge configuration with each transistor having

a reverse-connected super-fast recovery free wheel diode. Specifications: Ic 200A, Vces-600v,

Dual IGBT module and 250v Trench Gate

M57962L IGBT driver:

This is a Hybrid Gate Driver from Mitsubishi designed to convert logic level control signals ( 0

to 5V) into optimal IGBT gate driver ( -12v to +15v). Input signals are isolated from the IGBT

drive using high speed optocouplers with 15,000 V/ms common mode noise immunity. Mitsubishi

IGBT drivers are designed to provide the pulse currents necessary for high performance switching

applications and to maintain sufficient off bias to guarantee ruggedness. They also provide short-

circuit protection. Depending on the gate input, when the gate is at +15v, IGBT is switched on

and current flows through the Magnetic coil and IGBT. When gate is at 12v, IGBT is switched

off. Also a clamp diode which is a fast recovery diode is connected across the coil, to maintain

current flow in the magnetic coils when IGBT is switched off.



151

Snubber Circuit:

It is required for the following purposes:-

(i)Turn-off surge voltage: Turn-off surge voltage is the transient voltage that occurs when

the current through the IGBT is interrupted at turn-off. A voltage (VS) equal to Lb x di/dt

appears across Lb (Bus Inductance) in opposition to increasing current in the bus. The polarity

of this voltage is such that it adds to the DC bus voltage and appears across the IGBT as a surge

voltage. In extreme cases, the surge voltage can exceed the IGBTs VCES rating and cause it to

fail. In a real application the parasitic inductance (Ls) is distributed throughout the power circuit

but the effect is the same.

(ii)Free-Wheel Diode Recovery Surge: A surge voltage similar to the turn-off surge can occur

when the free-wheel diode recovers. The parasitic bus inductance (Lb) develops a surge voltage

equal to Lb x di/dt in op-position to the decreasing current. In this case, the di/dt is related

to the recovery characteristic of the free-wheel diode. Some fast recovery diodes can develop

extremely high recovery di/dt when they are hard recovered by the rapid turn on of the lower

IGBT. This condition referred to as snappy recovery, can cause very high transient voltages.

IGBT DriverM57962LTTL I/PTo IGBT GateFault

Snubber circuits are usually used to control turn-off and free-wheel diode recovery surge voltages.

In some applications snubber circuits are used to reduce switching losses in the power device. In

our setup we use a RCD snubber across IGBTs.
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Figure 9.1: Figure shows the circuit diagram of the switching circuit which is used to on and off
the MOT coils.
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