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Synopsis

Brownian motion, which describes the typical movement of a colloidal particle in a fluid, is one

of the most popular and well-understood stochastic processes. It has been successfully used

to model diffusion in equilibrium media in different branches of natural science. However,

many real-world systems are intrinsically out of equilibrium due to their ability to generate,

absorb and dissipate energy, caused by some internal mechanical and dynamical processes.

One popular class of such systems is ‘active matter,’ which refers to a collection of particles

that have the ability to generate dissipative, persistent motion by extracting energy from their

surroundings at an individual level[1, 2]. Numerous examples of such active systems can be

found in nature, ranging from bacterial motion to cellular and tissue motility, granular matter,

schools of fish, flocks of birds, etc. They exhibit many novel emergent collective behavior like

motility-induced phase separation, clustering, and the absence of well-defined pressure [3, 4].

In recent years, high-accuracy single-particle tracking experiments have shown that, though

the active particles move randomly, their motion is quite distinct from a typical Brownian

motion [5]. For example, an E. coli bacterium runs in straight lines for some time, then

turns abruptly to some other direction and runs in straight line along that direction, while

an artificially created Janus particle moves along a fluctuating body axis with a constant

velocity. These unusual, persistent dynamics lead to rich statistical properties even at the

single-particle level [6, 7]. Thus the study of active particles, both as building blocks of active

matter and as nonequilibrium stochastic processes, has attracted considerable interest in the

statistical physics community, experimentalists, and theorists alike.

In this thesis, we investigate how the nonequilibrium nature of the active particle motion

is manifested in their different physical observables. We start with minimal stochastic models

that mimic the different active particle motions and study their statistical properties ana-

lytically. Due to their small size (typically a few micrometers), the effects of inertia on the

movement of active particles are negligible and mathematically their motion is well-described

by an overdamped Langevin equation ẋ(t) = v(t)− ∂V (x)
∂x , which looks very similar to the de-

scription of overdamped Brownian motion ẋ(t) = η(t)− ∂V (x)
∂x [V (x) is the external potential].
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However, unlike delta-correlated Gaussian white noise η(t) of the Brownian motion, the active

velocity v(t) has a stochastic dynamics of its own and is correlated in time. The correlation

time serves as a measure of the activity. This stochastic dynamics of the velocity v(t) leads

to a violation of the fluctuation-dissipation theorem. Evidently, the single-particle equation

of motion renders a picture out of equilibrium. One of the main objectives of this thesis is

the analysis of simple dynamical models of active particles and infer possible differences with

passive (Brownian) systems.

Since free Brownian motion [in the absence of any external potential V (x)] has no intrinsic

time-scale, the description remains same at all times—the position distribution is Gaussian,

and the fluctuations can be characterized by the second moment only, which follows a diffusive

scaling. For active particles, the presence of the characteristic time-scale(s) leads to many

different behaviors. In particular, at times shorter than the characteristic time-scale(s), the

effect of activity is maximal—the position fluctuations are generically non-Gaussian (except

special cases like active Ornstein-Uhlenbeck processes), and the corresponding distributions

have non-trivial functional forms and shapes. At large times, much larger than the correlation

time, the effects of the noise correlations almost die down, and discretizing the Langevin

equation into uncorrelated intervals, one can heuristically show that the typical fluctuations

are expected to be Gaussian with a diffusive scaling. The effect of activity, however, is not

entirely lost, and its most prominent signatures are encoded in the large deviation function

associated with the x ∼ O(t) fluctuations. Unfortunately, these correspond to the rare events

that are hard to access experimentally, where one is often limited to the events of x ∼ O(
√
t)

fluctuations. So characterizing the higher-order non-Gaussian corrections at the scale x ∼
√
t

becomes very important.

Putting a Brownian particle in a confining (trapping) potential V (x) introduces a char-

acteristic time-scale in the system, which is related to the strength of the potential. If we

wait till times larger than this characteristic time-scale, the particle equilibrates to the fa-

mous Boltzmann distribution ∝ exp [−V (x)/(KBT )]. Though an active particle also reaches

a stationary state in the long time limit, the distribution in general is non-Boltzmann. In

fact, there is no general prescription to obtain the stationary distribution. It depends on

the particular forms of the confining potential and stochastic dynamics of the active veloc-
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ity. Moreover, even for specific forms of V (x) and v(t) dynamics, the stationary state is

determined by a competition of the active and trapping time-scales. Naturally, exploring the

stationary-state behavior of various active motions in confining potentials is of significant

interest.

An essential observable for active particles is the time it takes to search for a particular

target, such as a food source, a weak spot of the host, or toxins. From our everyday experi-

ence, a natural tendency to optimize the search time is to return to the starting point after a

period of unsuccessful search and restart the search. This strategy is implemented in dynam-

ical processes by ‘stochastic resetting,’ where a dynamic process is intermittently stopped

and restarted from the initial starting position [8]. In addition to optimizing searching times,

resetting leads to a host of interesting features like attaining a nonequilibrium stationary

state at long times, dynamical transition in relaxation to the stationary states, unusual ther-

modynamic properties, universal extreme value statistics, etc. even for a standard Brownian

particle. A natural question is how active particles react when they have additional resetting

dynamics.

One of the primary objectives of nonequilibrium statistical physics is to understand energy

transport in low dimensional systems connected to equilibrium/nonequilibrium reservoirs [9].

Though most works in this field have used equilibrium reservoirs, nonequilibrium reservoirs

are being explored more recently due to their rich behavior. Collections of active particles,

which have their own energy depot, serve as paradigmatic examples of nonequilibrium reser-

voirs. So an obvious question is what happens to the transport properties of an extended

system when it is connected to two such ‘active reservoirs’.

This thesis attempts to address the issues discussed above to a reasonable extent. It is

organized as follows. In chapter 1, we introduce active particle systems and discuss their

importance both as building blocks of many naturally occurring complex systems and as a

class of new and interesting stochastic processes. In this context, we also briefly review some

results of ordinary Brownian motion, which will often be referred to in the remaining part of

the thesis, for comparisons with similar counterparts of active systems.

In chapter 2, which consists of our work in [10], we study a set of run-and-tumble particle

dynamics in two spatial dimensions. The particle “runs” in straight lines with a constant
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speed along an internal spin/orientation direction, which also changes stochastically, resulting

in the “tumbles”. The orientation vector in two-dimensions can be fully specified by an angle

θ, which can take discrete or continuous values. We consider two different classes of RTPs

where θ assumes (i) n discrete directions in space and (ii) continuous values in the range

[0, 2π]. We compute the exact marginal position distributions for n = 3, 4 and the continuous

case. We find that strong signatures of activity are seen in the short-time regime in the

form of spatial anisotropy and/or ballistic nature of the motion. We also show that, in the

long-time regime, while the typical fluctuations in position are characterized by Gaussian

distributions for all the models, the atypical fluctuations still contain signatures of activity,

which we characterize by explicitly calculating the large deviation functions.

Chapter 3 talks about the work in [11]. Here we study a minimal model, direction revers-

ing active Brownian particle (DRABP), which mimics the motion of a class of bacteria like

Myxococcus xanthus and Pseudomonas putida. The internal orientation vector has two inde-

pendent stochastic dynamics here—it undergoes a rotational diffusion like an active Brownian

particle (ABP) and intermittent reversal events, which changes the internal orientation angle

by π. We show that, for such a motion in two dimensions, the presence of the two time scales

set by the rotational diffusion constant DR and the reversal rate γ gives rise to four distinct

dynamical regimes: (I) t � min(γ−1, D−1
R ), (II) γ−1 � t � D−1

R , (III) D−1
R � t � γ−1,

and (IV) t � max(γ−1, D−1
R ), showing distinct behaviors. We characterize these behaviors

by analytically computing the position distribution and persistence exponents. The posi-

tion distribution shows a crossover from a strongly non-diffusive and anisotropic behavior

at short-times to a diffusive isotropic behavior via an intermediate regime (II) or (III). In

regime (II), we show that, the position distribution along the direction orthogonal to the

initial orientation is a function of the scaled variable z ∝ x⊥/t with a non-trivial scaling

function, f(z) = (2π3)−1/2Γ(1/4 + iz)Γ(1/4 − iz). Furthermore, by computing the exact

first-passage time distribution, we show that a novel persistence exponent α = 1 emerges due

to the direction reversal in this regime.

In chapter 4, we discuss our work in [12], where we develop a general framework for

studying the long-time behavior of a class of active particle dynamics and illustrate it using

the most common and widely used models, namely, run-and-tumble particle, active Ornstein-
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Uhlenbeck particle, active Brownian particle, and direction reversing active Brownian parti-

cle. Treating the ratio of the correlation-time of the active noise to the observation time as

the small parameter, we show that the position distribution generically satisfies the diffusion

equation at the leading order. We further show that the sub-leading contributions, at each

order, satisfy an inhomogeneous diffusion equation, where the source term depends on the

previous order solutions. We explicitly obtain a few sub-leading contributions to the Gaus-

sian position distribution. As a part of our framework, we also prescribe a way to find the

position moments recursively and compute the first few explicitly for each model.

Chapter 5 discusses our work in [13], where we study the direction reversing active Brow-

nian particle in the presence of a harmonic trap of strength µ. The presence of the trap

ensures that the position of the particle eventually reaches a steady-state where it is bounded

within a circular region of radius ∝ µ−1, centered at the minimum of the trap. Due to the

interplay between the rotational diffusion constant DR, reversal rate γ, and the trap strength

µ, the steady-state distribution shows four different types of shapes, which we refer to as

active-I & II, and passive-I & II phases. In the active-I phase, the weight of the distribution

is concentrated along an annular region close to the circular boundary, whereas in active-II,

an additional central diverging peak appears giving rise to a Mexican hat-like shape of the

distribution. The passive-I is marked by a single Boltzmann-like centrally peaked distribu-

tion in the large DR limit. On the other hand, while the passive-II phase also shows a single

central peak, it is distinguished from passive-I by a non-Boltzmann like divergence near the

origin. We characterize these phases by calculating the exact analytical forms of the distribu-

tions in various limiting cases. In particular, we show that for DR � γ, the shape transition

of the two-dimensional position distribution from active-II to passive-II occurs at µ = γ. We

compliment these analytical results with numerical simulations beyond the limiting cases and

obtain a qualitative phase diagram in the (DR, γ, µ
−1) space.

In chapter 6, which contains our work in [14], we study the effect of stochastic resetting

on an active particle, namely, the continuous run and tumble particle in two spatial dimen-

sions. We consider a resetting protocol which affects both the position and orientation of

the RTP: with a constant rate the particle undergoes a positional resetting to a fixed point

in space and orientation randomization. We compute the radial and x-marginal stationary
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state distributions and show that while the former approaches a constant value as r → 0, the

latter diverges logarithmically as x→ 0. On the other hand, both the marginal distributions

decay exponentially with the same exponent far away from the origin. We also study the

temporal relaxation of the RTP and show that the position distribution undergoes a dynam-

ical transition to a stationary state. We also study the first passage properties of the RTP

in the presence of the resetting and show that the optimization of the resetting rate can

minimize the mean first passage time. We also give a brief discussion on the stationary states

for resetting to the initial position with fixed orientation.

As discussed before, how the transport properties of an extended system is affected by

coupling to active reservoirs is a significant, yet virtually unexplored question. In chapter 7,

which is also the work in [15] and [16], we address this issue in the context of energy transport

between two active reservoirs connected by a chain of harmonic oscillators. The couplings to

the reservoirs, which exert correlated stochastic forces on the boundary oscillators, lead to

fascinating behavior of the energy current and kinetic temperature profile, which we compute

exactly in the thermodynamic limit. We show that the stationary active current (i) changes

non-monotonically as the activity of the reservoirs are changed, leading to a negative differ-

ential conductivity (NDC), and (ii) exhibits an unexpected direction reversal at some finite

value of the activity drive. For the example of a dichotomous active force, we find the physical

origin of the NDC using nonequilibrium response formalism. It turns out that the kinetic

temperature profile remains uniform at the bulk, and can be expressed in a form similar to

the thermally driven case. We show that despite this apparent similarity, no effective thermal

picture can be consistently built in general. However, such a picture emerges in the small

activity limit, where many of the well-known results are recovered.

Finally, we conclude in chapter 8 with a discussion on the significance of the results

obtained in the thesis and possible open questions that it leads to.
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Chapter 1

Introduction

“How can the events in space and time which take place within the spatial boundary of a

living organism be accounted for by physics and chemistry?” Since this comment made by

Erwin Schrödinger in his famous book ‘What is life?’ [17], a huge number of physicists,

chemists, mathematicians and even computer scientists have devoted their careers in trying

to develop the physics behind biological systems. He further wrote “The obvious inability of

present-day physics and chemistry to account for such events is no reason at all for doubting

that they can be accounted for by those sciences”, as he believed that the statistical nature

of the interactions between the atoms and molecules, the fundamental constituents of all

living systems, must be responsible for the different observed phenomena. ‘Active matter’

is a recent, emerging field in the domain of nonequilibrium statistical physics, which takes

the same philosophical approach to understand the emergent physical observables of living

systems. In this thesis, we attempt to try to understand the physics of ‘active particles’—the

constituent elements of active matter, by studying simplistic physical models.

1.1 History, motivation, and scope

In 1827, the eminent botanist Robert Brown observed that pollen grains of size of the order

of microns (µm), suspended in water, undergo a continuous random jittery motion [18].

Initially, he suspected that this strange motion was because the pollen grains were alive.

But to his surprise, when he repeated the same experiment with life-less inorganic matter,

the observations were no different. This forced him to rule out the hypothesis that this

unusual movement had anything related to life. The physical explanation of this strange

motion, termed as Brownian motion, came much later from Albert Einstein, who showed

that the random motion of the micron-sized object was due to bombardment of the huge

number of water molecules of the medium in which it was suspended [19, 20] and thus,
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anything that impacted the movement of the water molecules, would impact the movement

of the pollen grains—higher temperature, smaller particle size, higher number of particles,

low viscosity of the medium increased the rate of the Brownian motion. Interestingly, since

its discovery and subsequent explanation in the early 1900s, Brownian motion has emerged

as one of the simplest stochastic models and found its applications in different branches of

physics, mathematics, chemistry, biology, economics, computer science, and a host of other

disciplines [21, 22, 23, 24, 25].

The motion of similar-sized living objects, which was also one of the initial hypotheses to

explain Brownian motion, is also random, albeit quite different fundamentally[26]. Unlike the

‘passive’ Brownian particles, they can generate and dissipate energy by extracting resources

from the environment and use this energy to propel themselves along preferred directions,

mostly their body axis (also commonly called internal orientation vector). These random,

yet persistent motion are called ‘active’ motion, and the entities executing such motion are

called ‘active particles’ [2, 1, 3, 4, 27]. This ‘activity’ is a fundamental property of living

organisms and is observed and investigated in a huge number of living objects: microor-

ganisms like bacteria [28, 28], protozoa [29], self-organizing bio-polymers like microtubules

and actin [30, 31], sperm cells [31], algae [31], fish schools [32, 33], bird flocks [34, 35] in-

clude some popular examples. Similar motion is also observed in many non-living systems:

artificially synthesized Janus particles [36, 37], micro and nano-bots used for targeted drug

delivery [38], vibrated granular medium [39], active water droplets [38], semiflexible rods in

rotating magnetic fields [40, 41], etc. Due to the ability to generate and dissipate energy

on their own, these entities undergoing active motion are inherently nonequilibrium. This

leads to a lot of non-trivial behaviors with or without interaction, which are never seen in

passive systems. Collections of active particles, popularly called active matter, exhibit nu-

merous interesting collective phenomena like pattern formation [42], motility-induced phase

separation [43], clustering [44], absence of equation of state for mechanical pressure [45], etc.

These interesting emergent phenomena, occurring solely due to the nonequilibrium nature

of the individual constituents, have motivated statistical physicists to take up the challenge

of studying the physics of active matter. Notably, while huge progress has been made over

the last two decades on the experimental front, the physics remains incompletely understood
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for most active systems as the underlying processes are nonequilibrium in nature and unlike

equilibrium systems, there is no general framework to describe and understand the systems

out of equilibrium.

The collective phenomena witnessed in active matter are often studied using phenomeno-

logical hydrodynamic equations for different fields like (density, momentum, energy, etc.)

developed on the basis of symmetries, conservation laws, and nature of interactions followed

by such systems [3, 46, 47, 4, 48, 49]. Though such phenomenological models have been greatly

successful in understanding the emergent collective phenomena like pattern formation, motil-

ity induced phase separation, etc., they do not take into account the dynamical behavior

of individual active particles. In fact, single particle tracking experiments have established

that single active particles can extract and dissipate energy from their environment, and as a

result, even in the absence of interactions among each other, they exhibit a lot of interesting

non-trivial properties. This has led to another popular technique of studying active matter,

namely, developing minimal stochastic models that mimic the dynamics of the different real

world active systems and trying to understand their statistical properties. These models take

into account a minimal number of degrees of freedom that are required to capture the essential

features of the real systems and help in understanding the building blocks of active matter

better [50, 51, 6, 52, 53, 54, 55, 56, 57, 58, 59, 60, 10, 61, 62, 14, 63, 11, 64, 65, 13, 66, 12, 67].

Moreover, these dynamical models have often been coarse-grained to reproduce or improve

the phenomenological hydrodynamic models [51, 68, 69]. The microscopic modeling of ac-

tive dynamics has also been found useful in other branches of physics like astrophysics and

quantum mechanics—for example, explaining the suprathermal tails occurring in the velocity

distribution of astrophysical plasmas [70] and diffraction of Dirac electrons [71].

Though all active particles show persistent motion, the exact dynamics vary widely in

different classes of active systems seen in real world. The goal of this thesis is to understand

how these different dynamics lead to different observable properties by studying minimal

stochastic models which mimic the dynamics of the different classes of active particles found

in nature. We study the statistical properties of these simple models analytically and try to

infer possible differences of the active systems from the passive (Brownian) systems, which

are used to model equilibrium dynamics. Understanding these differences not only helps us
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characterize the signatures of different nonequilibrium dynamics better but also allows us

to study other interesting questions, like nonequilibrium energy transport, in the context of

active systems.

Before going on to the active motion, we first briefly review the passive Brownian motion

and its statistical properties.

1.2 Brownian motion

1.2.1 Stochastic modeling: Langevin equation

How does one mathematically model the random jittery motion of pollen grains in water

observed by Robert Brown? Imagine a particle (Brownian particle) of mass m immersed in

a fluid in thermal equilibrium, at temperature T in one dimension (generalization to higher

dimensions is trivial). The Newton’s equation of motion for the particle is,

mv̇(t) = Fint(t) + fext(x, t), (1.1)

where v(t) is the instantaneous velocity of the Brownian particle, fext(x, t) denotes the ex-

ternal force on the system, and Fint(t) denotes the forces due to the interaction with the

fluid molecules. For starters, let us consider that no external force is acting on the Brownian

particle, fext(x, t) = 0. Now, if we know the position and velocities if the fluid molecules are

known in time, then Fint(t) should, in principle, be completely deterministic. However, it is

quite impractical to look for an exact form of Fint(t) as it involves a large number O(1023)

of molecules. Instead, Fint(t) is modelled as a force which has two parts: (i) A dissipative

component proportional to the instantaneous velocity of the particle, which arises due to the

movement of the particle relative to the fluid molecules, and (ii) A fluctuating component,

uncorrelated in time, which arises due to the collision with the fluid molecules. The uncorre-

lated nature of the fluctuating force is due to the fact that there is a separation of time-scales

between the molecules of the fluid and the Brownian particle— the fluid molecules are much

faster than the Brownian particle. As a result, the Brownian particle undergoes a large num-

ber of collisions in a short time interval, causing any memory between the forces at different

times to be lost.
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The effective equation of motion of the Brownian particle can thus be written as,

mv̇(t) = Γη(t)− νv(t), (1.2)

where the first and second terms on the right-hand side (rhs) denote the fluctuating and

dissipative terms, respectively. Here, Γ > 0 denotes the strength of the fluctuating force and

ν > 0 denotes the damping coefficient; η(t) denotes a delta-correlated Gaussian white noise,

defined by,

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). (1.3)

Equation (1.2) is the famous Langevin equation [72]. Note that ignoring any of the two

terms on the rhs would lead to unphysical consequences (the velocity decays to zero/ keeps

increasing with time). Since the fluid medium is in thermal equilibrium, the particle should

also relax to the same thermal equilibrium. In other words, the average kinetic energy of the

Brownian particle should be proportional to T , following the equipartition theorem,

1

2
m〈v2(t)〉 =

1

2
kBT as t→∞. (1.4)

On the other hand, from the Langevin equation (1.2), the instantaneous velocity can be

written as,

v(t) = v(0)e−νt/m +
Γ

m
e−νt/m

∫ t

0
ds eνs/mη(s), (1.5)

which leads to,

〈v2(t)〉 = v(0)2e−2νt/m +
Γ2

2mν

(
1− e−2νt/m

)
. (1.6)

Taking the t → ∞ limit of the above equation and comparing with Eq. (1.4), we get the

famous Einstein-Sutherland relation [73, 74, 19, 20],

Γ =
√

2νkBT . (1.7)
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Thus, the strength of the fluctuating force is determined by the temperature of the fluid and

the friction coefficient. This relation connecting the fluctuating part to the dissipation is

also called the Fluctuation Dissipation theorem (FDT) and is a signature of the underlying

equilibrium dynamics [75, 76].

Mean-squared displacement can also be calculated using Eq. (1.5) and the noise correla-

tions Eq. (1.3). Assuming the particle starts at the origin,

〈x2(t)〉 =


kBT
m t2 t� m/ν

2DT t t� m/ν,

(1.8)

with the diffusion coefficient DT = kBT
ν . Clearly, from Eq. (1.6), τv = m/ν corresponds to

the time-scale for velocity relaxation. For a colloidal particle [of size O(10−6m)] in water at

room temperature, τv is O(10−9s). Thus, for most of the practical purposes, in the limit of

τv � 1, the inertial term can be neglected to get the overdamped Langevin equation for the

Brownian particle,

ẋ = −1

ν
V ′(x) +

√
2DT η(t), (1.9)

which describes the net observable motion very well. In the absence of any external potential

V (x) = 0, the mean squared displacement for this overdamped motion can be easily calculated

from the above equation, using the autocorrelations of η(t) and one can immediately see the

diffusive growth 〈x2(t)〉 = 2DT t. Note that, though Eq. (1.2) is a one-dimensional stochastic

differential equation, the generalization to higher dimensions is straightforward, as the motion

along different directions is independent.

1.2.2 Fokker-Planck equations

Equation (1.9) is a stochastic differential equation, where different realizations of {η(t)} lead

to different final values of the position x(t). Another equivalent description of Brownian

motion is the Fokker-Planck equation, which is a deterministic partial differential equation

governing the time evolution of the probability density P (x, t) [77, 78]. The Fokker-Planck

24



CHAPTER 1. INTRODUCTION

equation corresponding to the process in Eq. (1.9) is given by,

∂P (x, t)

∂t
= − ∂

∂x

[
−1

ν
V ′(x)P (x, t)−DT

∂P (x, t)

∂x

]
. (1.10)

The above equation can also be viewed as a continuity equation, with the quantity in the

square brackets acting like a current J(x, t)—the first term is the drift current due to the

external potential, while the second term denotes the diffusive current. When there is no

external potential, i.e., V (x) = 0, this reduces to the famous diffusion equation,

∂P (x, t)

∂t
= DT

∂2P (x, t)

∂x2
. (1.11)

This can be easily solved by taking a Fourier transform with respect to space and the prop-

agator G(x, t|x0, 0), i.e., the probability that a Brownian particle starting from x0 at t = 0

reaches x at time t, is given by,

G(x, t|x0, 0) =
1√

4πDT t
exp

[
−(x− x0)2

4DT t

]
. (1.12)

This implies that the position distribution of a passive Brownian motion is always a Gaussian

and is fully specified by its mean x0 and variance 2DT t.

In the presence of an external confining potential V (x), the particle reaches a stationary

state, where the position distribution does not change in time, i.e., the lhs of Eq. (1.10) is

zero. Moreover, since in such a case, there should not be any net current in the system, i.e.,

J(x) = 0, the stationary distribution reduces to the equilibrium Boltzmann distribution,

P (x, t→∞) = Peq(x) = Z−1
0 exp

[
−V (x)

kBT

]
, (1.13)

where Z0 =
∫∞
−∞ dx exp

[
−V (x)
kBT

]
is the normalization constant.

1.2.3 Path integral formalism

A third way of analytical treatment of Brownian motion is the path integral formalism [79,

80, 81]. Since the function η(t) in Eq. (1.9) is a Gaussian white noise, the joint probability
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distribution of a particular realization
[
{η(s)}, for s ∈ [0, t]

]
can be written as,

Prob[{η(t)}] ∝ exp

[
−1

2

∫ t

0
ds η2(s)

]
, (1.14)

where Prob[·] denotes the path weight of a particular trajectory. Using the Langevin equa-

tion (1.9), we have,

Prob[{η(t)}] ∝ exp

[
− 1

4DT

∫ t

0
ds

(
dx

ds

)2
]
, (1.15)

The propagator for the process is the contribution from all such possible trajectories, which

is given by the Feynman path integral,

G(x, t|x0, 0) =

∫ x(t)=x

x(0)=0
Dx exp

[
− 1

4DT

∫ t

0
ds

(
dx

ds

)2
]
. (1.16)

Identifying DT as ~2/(2m), the path integral in the above equation can be mapped to the

propagator of a quantum free particle in imaginary time (t→ it/~),

G(x, t|x0, 0) = 〈x|e−Ht|x〉, (1.17)

with the Hamiltonian H = − ~2
2m

∂2

∂x2
. Remembering the eigenfunctions ψk(x) = 〈k|x〉 =

1√
2π
eikx and eigenvalues Ek = ~2k2/(2m) = DTk

2 of this Hamiltonian [82], the propagator

can be written as,

G(x, t|x0, 0) =
1

2π

∫ ∞
−∞

dk e−ikxe−DT k
2teikx0 . (1.18)

Upon doing the k-integral we get the propagator Eq. (1.12).

This formalism, popularly called Feynman-Kac formalism, is of great use in understanding

the statistical properties of Brownian functionals defined as, B =
∫ t

0 ds u [x(s)], and will be

used quite often in this thesis. Here x(s) is a Brownian motion, and u(x) is an arbitrary

specified function. Each realization of a Brownian trajectory leads to a different value of

B, and thus the probability distribution of B is an obvious quantity of interest. Beyond

the scope of this thesis, Brownian functionals emerge in a wide variety of problems from
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various fields, including first-passage properties of Brownian motion, fluctuating interfaces,

stock-market, weather analysis, economic models, etc [81, 83, 84, 85, 86].

1.3 Modeling active motion

Active motion, though random like passive Brownian motion, exhibits directed self-propulsion

along their body axis. The dynamics of this self-propulsion also vary largely in different classes

of active particles— a wild type E. coli moves more or less in a straight line along its body axis,

interrupted by intermittent ‘tumbles’ changing the direction of the motion randomly; a non-

mutant variety of E. coli or a Janus colloid moves by slow, continuous, albeit random changes

in orientation of the body axis; the motion of microorganisms like Myxococcus xanthus and P.

citronelis in addition to the slow continuous change, exhibits complete intermittent directional

reversals. A few experimentally observed trajectories of different active particles are shown in

fig. 1.1. Minimalistic models of active particles, designed to mimic these dynamics, consider

them to be overdamped 1, point particles having an internal orientation vector n̂, representing

the body axis. The directed motion is modeled by adding a stochastic propulsion velocity

u(t), always pointing in the direction of n̂, to the Langevin equation (1.9) of a passive

Brownian particle,

ẋ =
√

2DTη(t) + u(t). (1.19)

Different stochastic models of u(t) are used to mimic the various dynamics of active particle

dynamics seen in the real world. These different dynamical models, however, share one

common property— the are temporally correlated, 〈ui(t)uj(t′)〉 = Fij(|t − t′|). Usually, the

autocorrelation function are found to be exponentially decaying Fij(t) ∝ exp
[
− t/τa

]
, which

implies that active particles typically remember their orientation for a finite time τa, during

which the particle moves along the chosen preferred orientation. The correlation time τa is a

direct measure of the activity of the system—larger τa implies larger activity.

1Active particles like bacteria are of the same size as the colloidal particles and in usual fluid media, the
velocity relaxation time τv = m/ν is very small. Thus, the overdamped description works very well. However,
for large-sized active particles [like mini-robots, macroscopic swimmers like beetles flying at water interfaces]
or those suspended in very dilute media [like gas instead of fluid] inertial effects do become important and one
has to consider underdamped equations similar to Eq. (1.2) [87].
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(a) (b)
(c)

Figure 1.1: Trajectories of active particles obtained from single particle tracking experiments.
(a) Planar projection of three-dimensional plots of an E. coli bacteria [28]. (b) Tracks of P.
citronellolis observed in a dark field with a stroboscopic lamp operating at different [ A, B, and
C] frequencies [88]. (c) The trajectory of a Platinum coated polystyrene Janus particle [89].

It is important to understand the relative contribution of the two terms on the rhs of

Eq. (1.19) to the motion of the particle. Experimental observations suggest that the thermal

fluctuations are negligible compared to the active fluctuations. For example, a micron-sized

E. coli bacteria typically travels ∼ 30−40 µm when alive, which reduces to ∼ 0.3−1 µm when

it is dead (driven by only thermal fluctuations of the fluid medium at room temperature).

Thus, we ignore the effects of the former in this thesis and consider overdamped Langevin

equations of the form,

ẋ = u(t), (1.20)

to describe the motion of active particles. The simplicity of these models lies in the fact

that the complex activity is modeled only by the stochastic propulsion velocity u(t), and

by modeling the dynamics of u(t) one can replicate the various different swimming patterns

observed in different real world bacteria and synthetic microswimmers. For example, the

run-and-tumble dynamics model the motion of a typical wild type E. coli that moves in

almost straight lines, interrupted by intermittent tumblings; an active Brownian motion is

used to describe the dynamics of artificially synthesized Janus particles; a direction reversing

active Brownian particle mimics the motion of M. xanthus, P. citronelis etc., which follow

an active Brownian-like motion interrupted by intermittent tumbling events [see Fig. 1.2 for
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run-and-tumble motion
active Brownian motion

direction-reversing active Brownian motion
standard Brownian motion

Figure 1.2: (a) Comparison of simulated trajectories of active particles (colored lines) and
standard Brownian motion (black line) in two dimensions for the same duration, starting
from the origin. (b) A zoomed trajectory of a two-dimensional run and tumble particle: the
shaded circle denotes the active particle, with the red arrow pointing towards the internal
orientation vector n̂.

some typical trajectories of active particles corresponding to different u(t) dynamics]. Clearly,

the addition of the fluctuating propulsion velocity in Eq. (1.19) leads to a violation of the

fluctuation-dissipation theorem. This highlights the nonequilibrium nature of these models.

It is important to note that for Brownian motion of dimensions higher than one, the dy-

namics in all the other directions evolve independently, making the generalization to higher

dimensions trivial. This, however, is not true for active particles as they move persistently

along a preferred direction, making the different components correlated. In this thesis, we

will mainly consider two-dimensional active particles, where the internal orientation is spec-

ified by the angle θ, which the body axis makes with the positive x-axis. In single parti-

cle tracking experiments, one usually looks at the projected motion of active particles in

two-dimensions [28]. Thus, studying two-dimensional motions are also relevant from the

experimental point of view.

Let us briefly discuss one of the simplest models of active particles to get a flavor of the

differences with the passive Brownian motion.
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Forward trajectory

Time-reversed trajectory

Figure 1.3: Trajectory of an RTP in one-dimension at T = 0: the marked circles on each
run phase denotes the instantaneous orientation of the RTP—the ‘+’ and ‘−’ signs imply
v(t) = ±v0, respectively. The upper plot shows the forward trajectory, while the bottom one
shows the corresponding time-reversed trajectory.

1.3.1 Run-and-tumble particles in one dimension

The run-and-tumble particle (RTP) in one dimension is perhaps the simplest active particle

model, described by the Langevin equation,

ẋ = u(t). (1.21)

Here u(t) = v0σ(t) is the stochastic propulsion velocity with σ(t) being a dichotomous random

variable that switches stochastically between +1 and −1 at a rate γ via intermittent tumbling

events [51, 55, 90, 59]. A typical trajectory of a one-dimensional RTP with four tumbling

events, starting from x = 0 at t = 0 to x = xt at time t is shown in fig. 1.3 (upper panel).

Let us first discuss very briefly about the time-reversibility of the process before proceeding

further. A stochastic process is called time-reversible if the weight of the forward trajectory

is the same as the weight of the time-reversed trajectory. The lower panel of fig. 1.3 shows

the time reversed trajectory, corresponding to the upper panel, which starts from x = xt at

t = 0 and ends at x = 0 at time t. The path weight of the forward trajectory is finite and can

be calculated. However, the time-reversed trajectory has zero path weight, since the RTP in
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a state u(t) = v0 (or u(t) = −v0) cannot move toward the negative (or positive) x axis. Note

that, if T 6= 0, then the path weight of the time-reversed trajectory is not zero, as the RTP

can still take the reversed path if the thermal fluctuations are strong enough. However, the

path weights of the forward and backward trajectories are still different. This inequivalence is

a typical trait of nonequilibrium systems. It is worth mentioning that, for a one-dimensional

RTP, however, one can look at the full trajectory ({x(s)}, {u(s)}; 0 < s < t). In this case,

assuming that the propulsion velocity for the time-reversed trajectory ureversed(t−s) = −u(s),

leads to a generalized reversibility [91]. This generalized reversibility is very specific to the

one-dimensional RTP with two orientation states and does not hold in general for other

models, even one-dimensional RTPs with higher orientational states[91, 10].

The mean and autocorrelation of the propulsion velocity for this process is given by,

〈v(t)〉 = u(0) e−t/τa and 〈v(t)v(t′)〉 = v2
0 e
−|t−t′|/τa , (1.22)

where the characteristic active time-scale τa = (2γ−1). The mean displacement of such a

particle, starting with velocity v0, is given by,

〈∆x(t)〉 = v0τa

(
1− e−t/τa

)
. (1.23)

Thus, it implies that, on an average, the RTP moves along its initial orientation, unlike

Brownian motion, where the average displacement is always zero. The characteristic time-

scale τa separates the observable time range into (i) a short-time regime (t � τa), and

(ii) a long-time regime (t � τa), which show very different behaviors. The mean squared

displacement, for example, shows a crossover from and ballistic behavior at early times to a

diffusive behavior at very late times,

〈(∆x)2〉 ≈


v2

0t
2 t� τa

2DRT t t� τa with DRT =
v20
2γ .

(1.24)

The short-time ballistic behavior is a common trait of the active nature of the dynamics

and can be understood very easily—at times much less than τa, there are very few tumbling

events as a result of which, the particle shows a ballistic growth with a speed v0 along its

31



CHAPTER 1. INTRODUCTION

initial orientation.

These different behaviors are also seen if one looks at the time evolution of the position

distribution of the particle. The Fokker-Planck equations for the joint distribution Pσ(x, t),

which denotes the probability that the particle is at position x, with σ(t) = σ at time t, is

given by,

∂Pσ(x, t)

∂t
= −v0σ

∂Pσ(x, t)

∂x
− αPσ(x, t) + αP−σ(x, t), (1.25)

where σ can take values ±1. Interestingly, the had been known since the late 1800s as the

Telegraphers equation, used to describe the voltage and current on an electrical transmission

line with distance and time and the exact result for the initial conditions Pσ(x, 0) = δ(x)/2,

is given by [55],

P (x, t) =
e−γt

2
[δ(x− v0t) + δ(x+ v0t)]

+
e−γt

2

[
I0(γt

√
1− (x/v0t)2) +

I1(γt
√

1− (x/v0t)2)√
1− (x/v0t)2

]
Θ(v0t− |x|), (1.26)

which is quite complex and physically rich compared to the simple Gaussian distribution of

Brownian motion. The δ-functions correspond to the trajectories where there has been no

tumbling events up to time t, while the remainder comes from the trajectories with at least

one flipping. Figure 1.4(a) shows how the position distribution evolves: at short-times there

are very few tumbles, and the particle propels itself ballistically, leading to the boundary

peaks; as time increases, the number of tumbles also increases and the central region starts

populating more and more, leading to a change in shape from a bimodal to a unimodal

distribution about the initial orientation [see 1.4(a)]; at very large times, the distribution

coincides with a Gaussian distribution with variance 2DRT t. [LDF]

Unlike Brownian particles, the stationary distribution of an active particle in the presence

of confining potentials does not relax to the traditional Boltzmann form Eq. (1.13). In fact, for

the one-dimensional RTP, in the presence of potentials of the form V (x) = h|x|p (with p > 0),

the stationary position distribution Pss(x) has a rich behavior in the (p, h) plane [90, 59].

For p > 1, Pss(x) always has finite supports on the one dimensional line, and a there exists

a critical line that separates a passive-like phase (Pss(x) → 0 at the boundaries) from an
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Figure 1.4: Position distribution of an RTP at T = 0: (a) without any confining potential
Eq. (1.26) at different times with α = 1, (b) in presence of a harmonic trap V (x) = x2/2 [59].

active-like phase (Pss(x) diverges at the boundaries). A plot of the stationary distributions

of a one-dimensional RTP in a harmonic confinement (i.e., p = 2) is shown in fig. 1.4(b).

The emergence of such interesting physical properties in one of the simplest active pro-

cesses, where the propulsion velocity is a two-state Markov jump process with equal transition

rates, naturally leads to the question: what happens if the u(t) dynamics is more complicated

so as to mimic the actual physical scenarios? This is the central issue we try to address in

this thesis.

1.4 Outline of the thesis

In this thesis, we investigate how the nonequilibrium dynamics of individual active particles

are manifested in the different physical quantities, like the position fluctuations, first-passage

properties, and try to understand the observable differences with passive particles. The con-

tents of this thesis can be broadly divided into three categories as described below.

I. Behavior of free active particles: This category, which includes the contents of the

Chapters 2, 3 and 4, deal with active particle dynamics with no external potential. We

already saw for a simple model of a one-dimensional run and tumble particle that the position

fluctuations have significant differences from passive Brownian particles.

A natural question is, what the effects of the different microscopic dynamics are on the

position fluctuations of the different active particles? In this context, we study a set of run-
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and-tumble dynamics in two dimensions in Chapter 2 (based on [10]). We find that there

are qualitative features, like maximal probability of obtaining the active particles away from

the origin at early-times, typical diffusive Gaussian behavior in the long-time regime, which

hold true for any microscopic dynamics. However, the specific forms of these behaviors, for

example, the shape of the boundary of the probability distributions at short-times, effective

diffusion constant or large-deviation functions at long times, depend explicitly on the micro-

scopic dynamics. In Chapter 3, based on [11], we study an active particle model called the

‘direction reversing active Brownian motion’, which models the dynamics of a wide range

of microorganisms like Myxococcus xanthus, Pseudomonas putida, which are seen in nature.

It is one of the first active particle models, studied analytically, that had two active time-

scales— one set by the active Brownian-like motion and the other by the rate of direction

reversal. The behavior of the active particles is governed by a competition between the two

time-scales and gives rise to some interesting new features in the position fluctuations and

the first-passage properties.

For all these models, we find that at large times, irrespective of the nature of the active

particle dynamics at the microscopic level, the typical position fluctuations at long times

are always Gaussian with diffusive scaling. The effect of activity, however, is not entirely

lost, and its most prominent signatures are encoded in the x ∼ O(t) fluctuations, which

are characterized by the large deviation functions [56, 10]. Though in some models like the

run-and-tumble particles the exact forms of the large deviation functions can be extracted,

it is very difficult to get the same for more complicated models like a direction reversing

active Brownian particle. Moreover, these x ∼ O(t) fluctuations correspond to the rare

events that are hard to access experimentally, where one is often limited to the events of

x ∼ O(
√
t) fluctuations. So characterizing the higher-order non-Gaussian corrections at the

scale x ∼
√
t becomes very important. We investigate this issue in Chapter 4 (based on

[12]) and find that active particles show a universal behavior even beyond the leading order

Gaussian distribution—the subleading corrections to the long-time Gaussian distribution

always follow an inhomogeneous diffusion equation, where the source term depends on the

previous order corrections, irrespective of the different microscopic dynamics like RTP, AOUP,

ABP, DRABP, etc.
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II. Stationary states of active particles due to external forcing: In Chapters 5 and 6, we

discuss two ways in which the position fluctuations of an active particle can reach a stationary

state. As we saw for a passive Brownian particle, one of the easiest and most common ways

is by trapping the particle in a confining potential V (x). An active particle, subjected to

such confining potentials, also relax to a stationary state at long times, but unlike a passive

Brownian particle, the stationary state distribution is, in general, non-Boltzmann. Moreover,

there is no general prescription to obtain the stationary states. We study the stationary state

of a DRABP trapped in a harmonic potential and show that the stationary state position

distribution is determined by a competition between the trapping time-scale and the two

active time scales. In particular, we find new stationary phases which are qualitatively

different than the usual ones seen in active particle systems [13].

Another way in which a stochastic process reaches a stationary state is if the process is

stopped and restarted intermittently. This is popularly called stochastic resetting and has

gained immense popularity in recent years in the context of search processes. For a standard

Brownian particle, stochastic resetting leads to a host of interesting features like attaining

a nonequilibrium stationary state at long times, non-trivial relaxation dynamics, optimizing

search times, unusual thermodynamic properties, universal extreme value statistics, etc. In

Chapter 6, we discuss the effects of stochastic resetting on a two-dimensional RTP. This is

based on the work in [14], which was one of the earliest ones to investigate the effect of

resetting on active particles.

III. Transport properties of active reservoirs: Energy transport in low dimensional systems

connected to thermal reservoirs [92, 93] has been a topic of paramount interest. Collections

of active particles, which have their own energy depot, serve as paradigmatic examples of

nonequilibrium reservoirs. So an obvious question is what happens to the transport properties

of an extended system when it is connected to two such ‘active reservoirs’. We try to address

this question in the final part of the thesis. In the first part of Chapter 7 (based on Ref. [15]),

we first propose a simple model for active reservoirs and study the dynamical fluctuations of a

Hamiltonian probe immersed in it. Having a description of an active reservoir, we proceed to

investigate the obvious question— what happens to the transport properties of an extended

system when it is connected to two such ‘active reservoirs’. This part of the chapter is based
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on Ref. [16] which was the first work to address the question of activity driven transport

in extended systems. Finally, we conclude the thesis with some general remarks and future

directions in Chapter 8.

36



Chapter 2

Run-and-tumble particles in two dimensions

An archetype of bacterial motion is exhibited by the well-studied model organisms Escherichia

coli and Salmonella typhi. They have flagella on the surface of their body, which rotate

alternating in a anti-clockwise and clockwise manner. When rotating in the anticlockwise

manner, the flagella all work together to form a bundle and propel the bacterium along their

body axis, causing ’runs’ in almost straight lines. During clockwise rotation the bundle breaks

up, causing the bacteria to ’tumble’ which causes it to rotate randomly. A sequence of these

two patterns are termed as ‘run-and-tumble’ motion. The ‘run’ durations are usually much

larger than the ‘tumble’ durations, eg., in E. coli a typical run phase is ∼ 1 s, while tumbles

typically happen at the order of ∼ 0.1 s

To understand the above dynamics in two dimensions, we model the bacteria by a point

particle with an internal orientation vector, representing the body axis, denoted by n̂ =

(cos θ, sin θ). The dynamics is modeled by Eq. (1.20) with the stochastic propulsion velocity

u(t) = v0n̂(t), where θ(t) evolves stochastically—θ(t) remains unchanged during the run

phase and then changes to a new value during a tumble phase. In this chapter, we consider two

scenarios— (I) n-state model: θ(t) changes by fixed amount during tumbles (II) continuous

model: θ(t) changes to any value ∈ [0, 2π]. Since the typical tumble durations are much

smaller than the run durations, we model the tumblings as instantaneous events.

We introduce the models in the Sec. 2.1. We then study the models in Secs. 2.2, 2.3, and

2.4; we finally summarize the results in Sec. 2.4.

2.1 Models

Let us begin by introducing the different tumble dynamics, i.e., how the orientation changes

due to a tumbling event.

I. n-state model: In this case, θ can have n possible discrete values θ = 0, 2π/n, 4π/n, · · · (n−
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1)2π/n and evolves following a jump process – the orientation of the particle changes by an

amount ±2π/n (i.e., the spin rotates either clockwise or anti-clockwise) with rate γ/2. The

θ-dynamics is independent of the position degree of freedom, and is nothing but a symmetric

continuous time random walk on a one dimensional ring with n sites with jump rate γ/2. It is

straightforward to calculate (see Appendix 9.1 for the details) the corresponding propagator

P (θ, t|θ0, 0), i.e., the probability that the orientation is θ at time t, starting from θ0 at time

t = 0, and it is given by,

P (θ, t|θ0, 0) =
1

n

n−1∑
k=0

eik(θ−θ0)e−γt
(

1−cos 2πk
n

)
. (2.1)

Note that the n→∞ limit, with a rescaling γ ∝ n2, yields the active Brownian motion. On

the other hand, for any finite n, at large-times t → ∞ each of the θ-values become equally

likely. Here, we study the specific cases: the 3 state model (where θ can take value 0, 2π/3

and 4π/3) and 4 state model (where θ can take value 0, π/2, π and 3π/2).

II. Continuous model: In this case, θ can take any real value in the range [0, 2π]. At any

time t, with rate γ, θ → θ′, where θ′ is chosen uniformly from [0, 2π]. In this case also, we

can immediately write down the propagator,

P (θ, t|θ0, 0) = e−γtδ(θ − θ0) + (1− e−γt) 1

2π
. (2.2)

Here the first term corresponds to the scenario where θ has not flipped up to time t and the

second term corresponds to at least one flip. Note that, this continuous model is not the

n→∞ limit of the discrete model introduced before.

Figure 2.1 (upper panel) shows schematic representations of all the three dynamics. A

set of corresponding typical trajectories are shown in Fig. 2.1 (lower panel).

In all the cases described above, components of the stochastic propulsion velocity u(t) =

{ux(t), uy(t)} = v0{σx(t), σy(t)} [σx(t) and σy(t) are the effective noise along the x and y

direction of the RTP] have an exponentially decaying autocorrelation,

〈σi(s)σ(s′)〉 ∼ e−a0γ|s−s′|, (2.3)
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Figure 2.1: Schematic representation of the three different RTP dynamics considered (Upper
Panel) and the corresponding trajectories (Lower Panel). (a) and (d) correspond to the 3-
state model while (b) and (e) correspond to the 4-state model and (c) and (f) correspond to
the continuous model.

where a0 is some numerical constant depending on the specific dynamics of the model. For

any finite γ, the correlation decays exponentially which means that the noise is strongly

correlated at short times (|s − s′| � γ−1). This gives rise to strong memory effects in

the short-time regime t � γ−1 and the signatures of activity are very much apparent. On

the other hand, at long-times, the memory effects vanish and a typical Gaussian behaviour

is expected. The change in nature of the motion of these two-dimensional run-and-tumble

particles is illustrated in Fig. 2.2 where we show the time evolution of the position probability

distribution in the x − y plane, obtained from numerical simulations. The left most panel

corresponds to a time t� γ−1. Clearly, in this regime the shape of the probability distribution

is very different in all the three models. However, there is one common feature, namely, the

distribution attains its maximum value along some curve which is away from the origin

implying the particle is likely to be away from the origin. This feature is similar to what has

been observed in other active particle models, like active Brownian Particles etc [55, 56]. As

time increases, the distribution changes its shape, the peak shifts towards the origin, and at

long times t� γ−1 a single-peaked Gaussian-like distribution is observed.
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Figure 2.2: Plot of the two-dimensional position distribution P (x, y; t), obtained from nu-
merical simulations, of n = 3 ( (a) , (b) , (c) ) ; n = 4 ( (d) , (e) , (f) ) ; and continuous ( (g)
, (h) , (i) ) models for γ = 0.1 The left, middle and right panels correspond to t� γ−1 ( (a)
, (d) , (g) ) ; t ∼ γ−1 ( (b) , (e) , (h) ) ; and t � γ−1 (c, f, i) respectively. The lighter grey
shade indicates lower values of P (x, y; t) while darker shades indicate progressively higher
values. Here we have used v0 = 1.
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2.2 Three-state (n = 3) dynamics

In this Section we consider the case where the internal orientational degree of freedom θ can

take three discrete values θ = 0, 2π/3, 4π/3. The orientation changes by a rotation of ±2π/3

(clockwise or anti-clockwise) with rate γ/2 (see Fig. 2.1 (a) for a schematic representation).

A typical trajectory of the particle, starting from the origin and oriented along θ = 0 is shown

in Fig. 2.1(d).

At short-times t � γ−1 we see a crowding away from the centre, along the boundary of

a triangular region (see Fig. 2.2(a)). To understand this behaviour, let us first note that,

starting from the origin, the particle can cover a maximum distance of v0t along its initial

orientation, if there are no flips during this interval [0, t]. For the three different values of the

initial θ0 these corresponds to the points (v0t, 0), (−v0t
2 ,
√

3v0t
2 ) and (−v0t

2 ,−
√

3v0t
2 ) in the x−y

plane. For one or more flips, even though the total length traversed by the particle remains

v0t, the net distance covered is smaller. Thus, the position of the particle, at any time t, is

always bounded by the triangle formed by the above three points. It should be noted that

this boundary can be reached by directed paths only, i.e. say the side of the triangle between

(v0t, 0) and (−v0t
2 ,
√

3v0t
2 ) is formed by particles which start with θ = 0 or 2π

3 and till time t,

flip in between these two states only, while flip to any other state, i.e. θ = 4π
3 here, would

result in some point inside of the said boundary. Similarly the other two sides of the triangle

can be explained. As time increases the probability of such directed paths decrease and the

centre starts populating. As is evident from Fig. 2.2(b) and (c), the population at the centre

increases and we get a centrally peaked distribution at times larger than γ−1.

We are interested in the position probability distribution P (x, y, t) =
∑

θ Pθ(x, y, t) where

Pθ(x, y, t) denotes the probability that at time t the RTP has a position (x, y) and orientation

θ. It is straightforward to write the corresponding Fokker-Planck (FP) equations,

∂

∂t
P0 = −v0

∂P0

∂x
+
γ

2
(P 2π

3
+ P 4π

3
)− γP0

∂

∂t
P 2π

3
=

v0

2

∂P 2π
3

∂x
− v0

√
3

2

∂P 2π
3

∂y
+
γ

2
(P′ + P4π

3
)− γP∈π

3

∂

∂t
P 4π

3
=

v0

2

∂P 4π
3

∂x
+
v0

√
3

2

∂P 4π
3

∂y
+
γ

2
(P′ + P∈π

3
)− γP4π

3
.

(2.4)
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Here we have suppressed the argument of Pθ for brevity. It is possible to formally solve

these coupled first order differential equations using Fourier transformation. However, it is

hard to invert the Fourier transformation to extract information about the spatial position

distribution. Instead, in the following, we look at the evolution of the x and y-components

separately and calculate the marginal distributions which, with a slight abuse of notation we

denote as P (x, t) and P (y, t) for simplicity.

2.2.1 Marginal distribution along x-axis

The x-component of the position of the 3-state RTP evolves by the Langevin equation ẋ(t) =

v0σx(t). Hence, starting from the origin x = 0 at time t = 0, the position at time t is given

by,

x(t) = v0

∫ t

0
ds σx(s). (2.5)

Here σx = cos θ takes two distinct values 1,−1
2 , so, at any time t, x(t) is bounded in the

region −v0t/2 ≤ x(t) ≤ v0t.

To understand the nature of the marginal position distribution P (x, t) let us first look at

the dynamical behaviour of the effective noise σx: σx can jump from 1 to −1
2 through two

channels, namely, (θ = 0)→ (θ = 2π/3) and (θ = 0)→ (θ = 4π/3) and hence the jump rate

for σx = 1 → −1
2 is given by γ. On the other hand the jump, σx = −1

2 → 1 corresponds to

either (θ = 2π/3) → (θ = 0) or (θ = 4π/3) → (θ = 0) and the corresponding jump rate is

just γ/2. This effective dynamics is shown schematically in Fig. 2.3. Note that we consider

a uniform initial condition for θ and hence the σx process is stationary at all times t with

〈σx(t)〉 = 0. It is instructive to calculate the auto-correlation of σx (see Appendix 9.1),

〈σx(s)σx(s′)〉 =
1

2
exp

[
−3

2
γ|s− s′|

]
. (2.6)

As already mentioned in the previous section, the exponential form of the auto-correlator

indicates that the noise is highly correlated at the short-time regime and consequently one

can expect strong signatures of activity in this regime.

The simplest way to see these signatures is to look at the behaviour of the moments.
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σx = −1
2 σx = 1

γ
2

γ
(θ = 2π

3 ,
4π
3 ) (θ = 0)

Figure 2.3: The effective 2-state jump process characterizing the time-evolution of σx for the
3-state model.

As a direct consequence of the fact that 〈σx(t)〉 = 0, the mean position 〈x(t)〉 vanishes at

all times. The first non-trivial moment is then the variance 〈x2(t)〉 which can be calculated

exactly using Eq. (2.6) and is given by,

〈x2(t)〉 =
2v2

0

3γ

[
t− 2

3γ

(
1− e−

3γt
2

)]
. (2.7)

At short-times t� γ−1 the variance grows quadratically,

〈x2(t)〉 = v2
0t

2 +O(t3) (2.8)

indicating a ballistic behaviour. Note that, the speed of the particle in this ballistic regime

is simply v0, it does not depend on γ. On the other hand, in the long-time regime a diffusive

behaviour is recovered

〈x2(t)〉 ' 2Deff t (2.9)

where the effective diffusion constant Deff = v2
0/3γ.

To understand the change in behaviour in more details we investigate the position prob-

ability P (x, t) = P+(x, t) + P−(x, t) where P+(x, t) (respectively P−(x, t)) denotes the prob-

ability that position is x and σx = 1 (respectively σx = −1
2) at time t. The corresponding

Fokker-Planck equations are given by

∂P+

∂t
= −v0

∂P+

∂x
− γP+ +

γ

2
P−

∂P−
∂t

=
v0

2

∂P−
∂x
− γ

2
P− + γP+. (2.10)

Note that this set of FP equations can also be obtained directly from Eq. (2.4) by inte-

grating both sides over y and then identifying P+(x, t) =
∫
dyP0(x, y, t) and P−(x, t) =
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Figure 2.4: 3-state model: (a) Plot of P (x, t) for γ = 1 and for different values of t. The solid
black lines correspond to the analytical prediction Eq. (2.14) and the symbols correspond
to the data obtained from the numerical simulations. For better visibility we have excluded
the delta functions at the two boundaries. (b) Plot of P (x, t) obtained from numerical
simulations, as a function of the scaled variable w = x/

√
t for different (large) values of t and

γ = 1. The red dashed line shows the Gaussian distribution (see Eq. (2.20)). The inset shows
the same data as a function of x/t. The solid black lines there correspond to the analytical
prediction Eq. (2.14). Here we have used v0 = 1.

∫
dy[P2π/3(x, y, t) + P4π/3(x, y, t)].

We choose the initial conditions to be such that at t = 0 the RTP can be in any of the

σ−states with equal probability, i.e.,

P+(x, 0) =
1

3
δ(x) and P−(x, 0) =

2

3
δ(x). (2.11)

Taking a Laplace transform, P̂±(x, s) =
∫∞

0 dt e−stP±(x, t),, of Eq. (2.10), we get,

v0P̂
′
+ = −(s+ γ)P̂+ +

γ

2
P̂− +

1

3
δ(x)

v0P̂
′
− = (2s+ γ)P̂− − 2γP̂+ −

4

3
δ(x), (2.12)

where ′ denotes the derivative with respect to x. Note that the boundary condition for these

equations are simply limx→±∞ P̂ (x, s) = 0. The solution of this set of coupled differential
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equation is obtained for x 6= 0 as (see Appendix 9.2 for details),

P̂ (x, s) =


6γ + 5s− λ

2v0λ
exp

[
− x

2v0
(λ− s)

]
for x > 0

6γ + 5s+ λ

2v0λ
exp

[
x

2v0
(λ+ s)

]
for x < 0,

(2.13)

where where λ =
√

3s(3s+ 4γ) .

The inverse Laplace transform can be performed exactly [see Appendix 9.2 for details]

and we get the marginal distribution P (x, t) as,

P (x, t) = Θ(v0t− x)Θ

(
x+

v0t

2

)
Gx(x, t) +

1

3
e−γtδ(x− v0t) +

2

3
e−

γt
2 δ

(
x+

v0t

2

)
.(2.14)

Here Gx(x, t) is the bulk distribution, obtained from the branch-cut integral, whose explicit

form is given below in Eq. (2.15). The Dirac-delta functions at x = v0t and x = −v0t/2

correspond to the cases where initially σx = 1 (respectively −1
2) and σx does not change

its value up to time t. Presence of such delta-functions are typical to RTP-like dynamics in

free space, and has been observed also for one-dimensional RTP [55]. The presence of the

Θ-functions multiplying Gx(x, t) alludes to the fact that, at any time t, the particle is always

bounded between x = v0t and x = −v0t/2.

The bulk distribution Gx(x, t), obtained from the branch cut integral is given by,

Gx(x, t) =
1

6πv0

∫ a

0
du e

−u(t+ x
2v0

)

[
−3 sin

3x

2v0

√
u(a− u) +

(6γ − 5u)√
u(a− u)

cos
3x

2v0

√
u(a− u)

]
,

(2.15)

where a = 4γ/3. Upon doing this integral (See Appendix 9.2 for details), we get,

Gx(x = zv0t, t) =
γe−

γt
3

(z+2)

9v0

[
4I0

(
2 γt

3
w(z)

)
+

5− 2z√
(2z + 1)(1− z)

I1

(
2 γt

3
w(z)

)]
, (2.16)

where w(z) =
√

(2z + 1)(1− z) and Iν(z) is the modified Bessel function of the first kind [94].

Figure 2.4 compares the exact analytical P (x, t) for different values of t with the same ob-

tained from numerical simulations.
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As mentioned already, we are particularly interested in the behaviour of P (x, t) in the

short-time (t � γ−1) and long-time (t � γ−1) regimes. At short times, Taylor expanding

the right hand side of Eq. (2.16) around t = 0, we get,

Gx(x = zv0t, t) =
2γ

9v0

[
2−

(
z +

1

2

)
γt+O(t2)

]
. (2.17)

Clearly, the distribution is linear in the bulk while the δ-function dominates at the boundaries.

This linear nature of P (x, t) at short times is clearly visible from the t = 0.5 curve in Fig. 2.4

a.

At long times (t� γ−1), using the asymptotic behavior of Bessel functions, we have the

large deviation form

P (x = zv0t, t) ∼ e−tφ(z), (2.18)

where the large deviation function is given by

φ(z) =
γ

3

[
z + 2− 2

√
(2z + 1)(1− z)

]
. (2.19)

Around z = 0, the large deviation function is quadratic, φ(z) = 3
4γz

2 +O(z3). Consequently,

the typical fluctuations of x around the origin are of the order
√
t and are Gaussian in nature,

i.e., the distribution of the scaled variable w = x/
√
t is given by

P (w, t) '

√
3γ

4πv2
0

exp

(
−3γw2

4v2
0

)
. (2.20)

Figure 2.4(b) shows a plot of P (w, t) as a function of the scaled variable w = x/
√
t which

leads to a scaling collapse following Eq. (2.20) near the peak at w = 0. However, the signature

of the active nature of the system is clearly visible at the tails where the distribution remains

non-Gaussian.

Another interesting feature of P (x, t) is that it is asymmetric about the origin. To quantify

the asymmetry we calculate the skewness which is defined in terms of second and third

cumulants. In this case the first moment 〈x〉 = 0, and hence, the skewness is given by,

κ3 = 〈x3〉
〈x2〉3/2 . To calculate the third moment, we need the three point σ− correlation, which
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σy = 0

σy = −
√
3
2 σy =

√
3
2γ

2

γ
2

γ
2

(θ = 4π
3 ) (θ = 2π

3 )

(θ = 0)

Figure 2.5: 3-state model: Schematic representation of the jump-process governing the time
evolution of σy.

can be calculated using Eq. (2.1) and turns out to be (see Appendix 9.1)

〈σx(s1)σx(s2)σx(s3)〉 =
1

4
e−

3
2
γ|s3−s1| (2.21)

Thus, the third moment is given by,

〈x3(t)〉 =
2v3

0

9γ3

(
(4 + 3γt)e−

3γt
2 + 3γt− 4

)
. (2.22)

Using the above expression and Eq. (2.7), κ3 can be easily calculated. It turns out that

κ3(t) > 0 for all finite t, indicating a positively skewed distribution. This, however, goes to

zero κ3(t) ∼ t−1/2 as t→∞, indicating a slow approach towards a symmetric distribution at

long times.

2.2.2 Marginal distribution along y-axis

A direct consequence of the inherent anisotropy of the 3-state model is that the time evolution

of the y−component of position is very different from its x counterpart. In this section we

focus on the marginal distribution P (y, t) of the 3-state model. In this case, the effective

equation of motion along y is given by ẏ = v0σy(t). Consequently, starting from the origin

y = 0 at time t = 0, we have,

y(t) = v0

∫ t

0
ds σy(s) (2.23)

where σy = sin θ takes 3 distinct values 0,±
√

3/2. Thus, σy evolves according to a 3-

state jump process, with the jump rates being γ
2 for all the transitions (see Fig. 2.5 for
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a schematic representation of the σy process). Note that, at any time t, y(t) is bounded

between [−
√

3
2 v0t,

√
3

2 v0t].

As before, we first look at the moments to get an idea about the behaviour of this effective

1−d process. Similar to the x-component, the first moment 〈y(t)〉 vanishes at all times. The

second moment can be calculated in a straight-forward manner using the auto-correlation of

σy(t), which is same as that of σx(t)

〈σy(s)σy(s′)〉 =
1

2
exp

[
−3

2
γ|s− s′|

]
(2.24)

Consequently, the variance,

〈y2(t)〉 =
2v2

0

3γ

[
t− 2

3γ

(
1− e−3γt/2

)]
(2.25)

is identical with 〈x2(t)〉. Hence, once again we see a ballistic behaviour at short times (t �

γ−1) , 〈y2〉 ∼ v2
0t

2, which goes over to a long-time diffusive behaviour (t � γ−1) with

〈y2〉 ∼ 2v20
3γ t. So the effective diffusion constant Deff =

v20
3γ , same as for the x component.

Though the qualitative short and long time behaviours are similar, the x and y motions are

very different which is evident from the Fig. 2.2 (a), (b), and will become more clear from

the full distribution P (y, t) which we study below.

To calculate the time-dependent distribution P (y, t) of the y-component, we proceed in

the same way as before and write the FP equations for Pα(y, t), which denotes probability of

finding the particle at position y at time t with σy = α. Note that for notational simplicity

we denote the marginal probability distribution of the y−component also with the letter P .

The corresponding Fokker-Planck equations are,

∂P0

∂t
= −γP0 +

γ

2
(P+ + P−)

∂P+

∂t
= −v∂P+

∂y
− γP+ +

γ

2
(P0 + P−)

∂P−
∂t

= v
∂P−
∂y
− γP− +

γ

2
(P0 + P+) (2.26)

where we have denoted v =
√

3
2 v0; we have suppressed the argument of the Pα in the above

equation for brevity. The initial conditions are chosen in such a way that all the three values
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of σy are equally likely at time t = 0 and since we consider that the particle starts from the

origin, we must have

Pα(y, 0) =
1

3
δ(y) ∀α. (2.27)

Taking a Laplace transform of Eqs. (2.26) w.r.t., time, we get,

P̂0 =
γ

2(s+ γ)
(P̂+ + P̂−) +

δ(y)

3(s+ γ)
,

vP̂ ′+ = −(s+ γ)P̂+ +
γ

2
(P̂0 + P̂−) +

δ(y)

3
,

vP̂ ′− = (s+ γ)P̂− +
γ

2
(P̂0 + P̂+)− δ(y)

3
. (2.28)

where ′ denotes the derivative with respect to y. We want the full distribution, i.e., P̂ =

P̂0 + P̂− + P̂+. Solving Eqs. (2.28) we get,

P̂ (y, s) =
(2s+ 3γ)2

12v
√
s(s+ γ)

3
2

exp

[
−(2s+ 3γ)

2v

√
s

s+ γ
|y|
]

+
δ(y)

3(s+ γ)
. (2.29)

To find the position distribution as a function of the time t we need to compute the inverse

Laplace transformation of P̂ (y, s). Let us first note that, the last term in Eq. (2.29), when

inverted, results in 1
3e
−γtδ(y), which denotes the probability that the particle started with

σy = 0 and σy did not flip up to time t. To invert the first, more complicated term (in

Eq. (2.29)) , one needs to compute a Bromwich Integral in the complex s-plane. It is easy to

see that this integral involves a Branch-cut along the negative s-axis which can be converted

to a real line integral following the same procedure as in Sec. 2.2.1 (see Appendix 9.2). Finally,

we have,

P (y, t) = Gy(y, t)Θ(vt− |y|) +
e−γt

3

[
δ(y) + δ(y − vt) + δ(y + vt)

]
(2.30)

where,

Gy(y, t) =

∫ γ−ε

0

du e−ut

12πv

(3γ − 2u)2

√
u(γ − u)

3
2

cos

[
(3γ − 2u)y

2v

√
u

(γ − u)

]
− e−γt

3πy
sin

(
γ3/2y

2v
√
ε

)
+O(

√
ε).

(2.31)
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Figure 2.6: 3-state model: (a) Plot of P (y, t) for γ = 1 and for different values of t. The solid
black lines correspond to the analytical predictions Eq. (2.34) for t = 0.5, 1; Eq. (2.31) for the
other cases and the symbols correspond to the data obtained from the numerical simulations.
For better visibility we have excluded the delta functions at the origin and the boundaries.
(b) Plot of P (y, t) obtained from numerical simulations, as a function of the scaled variable
w = x/

√
t for different (large) values of t and γ = 1. The red dashed line shows the Gaussian

distribution (see Eq. (2.37)). The inset shows the same data as a function of x/t. The solid
black lines there correspond to the analytical prediction Eq. (2.31). Here we have used v0 = 1.

where ε is a very small number. Eq. (2.31) can be evaluated numerically for small ε. It turns

out that this agrees well with numerical simulations for times greater than γ−1. For t . γ−1

numerical evaluaation of Eq. (2.31) becomes difficult. In this regime we adopt a different

approach and write P̂ (y, s) in Eq. (2.29) as a series in s for y 6= 0,

P̂ (y 6= 0, s) =
1

12v

∞∑
n=0

(−y/v)n

2nn!
(3γ)n+2

n+2∑
m=0

(
n+ 2

m

)(
2

3γ

)m sm+(n−1/2)

(s+ γ)n+3/2
. (2.32)

Then, taking the inverse Laplace transformation of the above equation with respect to s gives

G(y = zvt, t) =
9γ2t

12v

∞∑
n=0

(−|z|)n

2nn!
(3γt)n

n+2∑
m=0

(
n+ 2

m

)(
2

3γt

)m
1F̄1

(
n+ 3

2
, 2−m,−γt

)
,

(2.33)

where pF̄q(a, b, z) is the regularized Hypergeometric function [94].

Using this result, we can get closed form expressions for the probability distribution

function at short and long times. At short times, the distribution is dominated by the three

δ-functions, to get the bulk distribution it is sufficient to calculate the first few terms of the
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series to get the leading order behaviour. The short-time distribution thus comes out to be

G(y, t) =
γ√
3v0

− γ2t

4
√

3v0

+
γ2y

18v2
0

(5γt− 6) +O(t2). (2.34)

At large times, the regularized Hypergeometric function in Eq. (2.33) can be approximated

to the highest order in t, as

1F̄1

(
n+ 3

2
, 2−m,−γt

)
≈ (γt)(n+3)/2

Γ((1− n)/2−m)
.

The summation over m can then be performed to give

G(y = zvt, t) ≈ 9γ

12v

∞∑
n=0,2,···

(
−3

2

) 3n+1
2 (γ|z|)n

n!

U
(

1+n
2 , 7+3n

2 ,−3γt
2

)
Γ
(

1−n
2

) (2.35)

where U(a, b, z) is the Hypergeometric-U function. The presence of Γ((1−n)/2) restricts the

sum to only over even n. Expanding the HypergeometricU function to the leading order in t

and using the properties of the Γ-function, we get a Gaussian in this large time regime,

G(y, t) ≈

√
3γ

4πtv2
0

exp

(
−3γy2

4v2
0t

)
. (2.36)

As before, it is useful to introduce the scaled variable w = y/
√
t, which has the distribution,

P (w, t) ≈

√
3γ

4πv2
0

exp

(
−3γw2

4v2
0

)
. (2.37)

Fig. 2.6 compares the analytical expression for the probability distribution function with

numerical simulations. For times t . γ−1, we use Eq. (2.34) while Eq. (2.31) is used for the

other cases.

Let us briefly summarize the results of the 3-state model. We have calculated the exact

time dependent marginal distributions, short time distributions for both x and y are domi-

nated by δ−functions, however in the bulk the leading order contribution to x distribution

is quadratic, while for y, it is linear. The y distribution is symmetric at all times, unlike the

x distribution which is highly asymmetric at short times which decreases with time.
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2.3 Four state (n = 4) dynamics

In this section we consider the case n = 4, i.e., where the internal spin can take 4 values,

θ = 0, π2 , π,
3π
2 . The orientation thus changes by ±π

2 (i.e., clockwise or anti-clockwise) with a

rate γ
2 (see Fig. 2.1 (b)). A typical trajectory of the particle starting from the origin can be

seen in Fig. 2.1(e).

The time evolution of the full 2d distribution obtained from numerical simulations is

shown in Fig. 2.2((d), (e), (f)). At time scales less than γ−1, there is a crowding away from

the origin. This can be explained in the same way as the n = 3 case, if the particle starts from

the origin with θ = 0, π
2 , π and 3π

2 with equal probability at t = 0, then at time t, it can go to

(v0t, 0), (0, v0t), (−v0t, 0) and (0,−v0t) in the x− y plane which form a diamond Fig. 2.2(f),

the sides of the diamond are formed by directed paths. This marks the boundary of the

distribution in the x − y plane. As time increases the crowding at the boundary decreases

and the centre starts populating as is evident from Fig. 2.2(e). Finally we get a centrally

peaked distribution at times larger than γ−1 Fig. 2.2(f).

This model has been introduced recently in [95] where the stationary distribution in the

presence of external potential has been studied. Here we calculate the position distribution

in the free space. The position probability distribution P(§, †,t) =
∑

θ Pθ(§, †,t) where

Pθ(§, †,t) denotes the probability that the particle is at position (x, y) with orientation θ at

time t. These probabilities evolve according to the Fokker-Planck (FP) equations,

∂

∂t
P0(x, y, t) = −v0

∂P0

∂x
+
γ

2
(P π
∈

+ P3π
∈

)− γP′,
∂

∂t
Pπ

2
(x, y, t) = −v0

∂Pπ
2

∂y
+
γ

2
(P′ + Pπ)− γP π

∈
,

∂

∂t
Pπ(x, y, t) = v0

∂Pπ
∂x

+
γ

2
(P π
∈

+ P3π
∈

)− γPπ,

∂

∂t
P 3π

2
(x, y, t) = v0

∂P 3π
2

∂y
+
γ

2
(P′ + Pπ)− γP3π

∈
. (2.38)

where the arguments of the Pθs have been suppressed on the r.h.s. for brevity. These coupled

differential equations again can be formally solved by writing a 4×4 matrix in Fourier space,

but the eigenvalues and eigenvectors are complicated and it is very hard to get the inverse

transform. So as in the previous case we concentrate on the marginal distributions only.
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2.3.1 Marginal distribution along x-axis

In this model, σx and σy have the same dynamics, so the process is symmetric in x and y at

all times, unlike the n = 3 case. Thus, it is sufficient to calculate the distribution along any

one direction (say x). The position x(t) evolves according to the equation ẋ = v0σx(t), where

σx = cos θ is the effective 3-state internal spin degree of freedom which can take 3 values,

0,±1 corresponding to θ = 0, π2 , π respectively.Here, at anytime t, the motion is bounded in

the region |x| < v0t.

The effective noise σx can jump to 0 from σx = ±1 which corresponds to the flip in θ

from 0 → π
2 and π → π

2 . Hence the rate for these jump processes are γ each. σx can also

jump from 0→ ±1, corresponding to the flips θ = π
2 → 0 and θ = π

2 → π. So the jump rates

for these two processes are γ
2 each. This dynamics is illustrated in Fig. 2.7.

σx/y = 0

σx/y = −1 σx/y = 1

γ
2

γ γ
γ
2

Figure 2.7: The effective 3-state jump process for the 4−state model

The σx process is stationary at all times with 〈σx(t)〉 = 0 and the autocorrelation function

(see Appendix 9.1),

〈σx(s)σx(s′)〉 =
1

2
e−γ|s

′−s|. (2.39)

Though the qualitative behaviour of the σ−correlations are very similar to the n = 3 case, the

decay constant is different. Using Eq. (2.39) we can readily calculate the first two moments of

x(t). The mean, 〈x(t)〉, is zero at all times as 〈σx(t)〉 = 0, while using Eq. (2.39) the variance

comes out to be

〈x(t)2〉 =
v2

0

γ2

[
γt− (1− e−γt)

]
. (2.40)
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So, at short times (t� γ−1) ,

〈x2(t)〉 =
v2

0t
2

2
+O(t3). (2.41)

Thus indicating ballistic behaviour with an effective speed veff = v0/
√

2. However, at long

times (t� γ−1) ,

〈x2(t)〉 ≈ v2
0t

γ
.

i.e., the motion is diffusive with Deff =
v20
2γ , different from the n = 3 case.

With this information at hand, we look at the full time-dependent position distribution

P (x, t) in terms of Pα(x, t), the probability that the particle is at position x at time t and

σx = α. The corresponding Fokker-Planck equations are,

∂P+

∂t
= −v0

∂P+

∂x
− γP+ +

γ

2
P0,

∂P−
∂t

= v0
∂P−
∂x
− γP− +

γ

2
P0,

∂P0

∂t
= −γP0 + γ(P+ + P−). (2.42)

We write P±1 as P± and drop the arguments of Pαs for brevity.

We choose the initial conditions such that all σ values are equally likely, i.e.,

P0(x, 0) =
1

2
δ(x), and P±(x, 0) =

1

4
δ(x). (2.43)

To solve Eqs. (2.42), it is convenient to introduce the Fourier transform of Pα(x) with

respect to x, i.e., P̃α(k) =
∫∞
−∞ e

ikxPα(x)dx. Upon doing the Fourier transform, Eqs. (2.42)

reduce to a set of coupled ordinary differential equations,

∂

∂t
P̄ = ΩP̄ with P̄ =


P̃+

P̃−

P̃0

 ; Ω =


−γ + ikv0 0 γ/2

0 −γ − ikv0 γ/2

γ γ −γ

 (2.44)

The solution of the above set of equations can be written in terms of the eigenvalues and
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eigenvectors of the matrix Ω,

P̃ (k, t) = e−γt
(
a0Ā0 + a+e

λtĀ+ + a−e
−λtĀ−

)
(2.45)

where we have used the fact that the eigenvalues of Ω are −γ,−γ±λ, with λ =
√
γ2 − k2v2

0.

Ā0,± are the corresponding eigenvectors,

Ā0 =


iγ

2kv0

− iγ
2kv0

1

 ; Ā± =


ikv0±

√
γ2−k2v20

2γ

ikv0∓
√
γ2−k2v20

2γ

1

 . (2.46)

The coefficients aαs can be determined using the intial conditions Eq. (2.43),

a0 =
−q2

2(1− q2)
; a± =

1±
√

1− q2

4(1− q2)
, (2.47)

with q = kv0
γ . Substituting these coefficients in Eq. (2.45), we get,

P̃ (k =
γq

v0
, t) =

e−γt

2(q2 − 1)

(
− q2 + (2− q2) cosh(γt

√
1− q2) + 2

√
1− q2 sinh(γt

√
1− q2)

)
.

(2.48)

Eq. (2.48) can be inverted exactly using Bessel Function identities [The Fourier inversion is

carried out in detail in Appendix 9.3.

P (z =
x

v0t
, t) = γt

e−γt

2

[
1√

1− z2
I1(γt

√
1− z2) + I0(γt

√
1− z2)− γt|z|

4

− 1

2γt

∫ 1

|z|
dω(

∂2

∂z2
)I0(γt

√
ω2 − z2)

]
+
e−γt

4v0t

(
2δ(z) + δ(z − 1) + δ(z + 1)

)
.

(2.49)

Note that this solution is valid for |z| < 1, P (z, t) is zero otherwise. The integral in the above

equation can be evaluated numerically to arbitrary accuracy for any x. P (x, t) obtained from

Eq. (2.49) is compared with numerical simulations in Fig. 2.8 (a) for γ = 1 and different

values of t which show an excellent match.
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Figure 2.8: 4-state model: (a) Plot of x-marginal for different values of t and γ = 1.0 The solid
black lines correspond to the analytical prediction Eq. (2.49) and the symbols correspond to
the data from numerical simulations. For better visibility we have excluded the delta functions
at the origin and the boundaries. (b) Plot of P (x, t) obtained from numerical simulations,
as a function of the scaled variable w = x/

√
t for different (large) values of t and γ = 1. The

red dashed lines shows the corresponding Gaussian distribution. The inset shows the same
data as a function of x/t. The solid black lines there correspond to the analytical prediction
Eq. (2.51). Here we have used v0 = 1.

The asymptotic forms of the distribution are easy to calculate from Eq. (2.49). At short

times (t � γ−1), the distribution is dominated by the three δ−functions at 0,±v0t while in

the bulk it is linear,

P (z, t) ≈ γt

2

(
1− γt|z|

2
− γt

4

)
. (2.50)

At long times (t� γ−1), using the asymptotic expressions for the modified Bessel functions

I0 and I1, we get a large deviation form,

P (z, t) =
v0e
−γt(1−

√
1−z2)√

4πDeff/t
(2.51)

with the large deviation function φ(z) = γ(1 −
√

1− z2). The typical fluctuations in x are

∼
√
t and Gaussian in nature. Thus the distribution near the origin can be written in terms

of the scaled variable w = x/
√
t as

P (w, t) ' 1√
4πDeff

exp

(
−γw

2

2v2
0

)
. (2.52)

56



CHAPTER 2. RTP IN TWO DIMENSIONS

A comparison of the obtained large deviation form, Eq. (2.51) (solid lines) and numerical

simulation is shown in Fig. 2.8 (b) inset for t = 100 and three values of γ. Figure. 2.8 (b)

shows a plot of P (w, t) as a function of the scaled variable w, a collapse is seen near the peak

at w = 0. However the tails are non Gaussian and do not collapse.

Thus in this model, we see again the short time distribution dominated by three δ−functions

and linear in the bulk. This 3−peaked structure evolves in time to a single Gaussian like

peak at the centre.

2.4 Continuous θ

In this section we consider the case where the orientation of the RTP is a continuous variable

and can take any real values in the range [0, 2π], i.e., the particle travels at a constant speed

v0, along the direction n̂ = (cos θ, sin θ) until it flips and changes its orientation to a new θ′,

it then moves with the same constant speed v0 along the new orientation θ′. The rate of this

flipping is γ, while the new orientation is chosen from a uniform distribution ∈ [0, 2π]. Thus

the effective rate of flipping from θ → θ′ is given by γ
2π , see Fig. 2.1 (c). A typical trajectory

following such dynamics is illustrated in Fig. 2.1 (f).

The time evolution of the 2d distribution obtained from numerical simulations is shown in

Figs. 2.2(g), (h) and (i).The distribution is isotropic at all times, however at times t� γ−1,

the particles crowd away from the origin taking the form of a circle or radius v0t. This marks

the boundary of the distribution in the x − y plane. As time increases the crowding at the

boundary decreases and the origin starts populating as is evident from Fig. 2.2(h). Finally

we get a centrally peaked distribution at times larger than γ−1 (Fig. 2.2(i)).

This model has been studied previously [96, 97], where exact expressions for the radial

distribution is obtained. We present a simpler derivation leading to the same results and

then go on to discuss the exact and large deviation form of the marginal distribution which

shows some intriguing behaviour.

2.4.1 Moments and Cumulants

Let us first look at the moments to see the short and long time behaviour of the particle. We

assume that the initially the particle is oriented along a random direction θ0 ∈ [0, 2π] with
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probability 1
2π . The new orientation at each tumble event is also chosen from a uniform dis-

tribution in [0, 2π]; because of this rotational symmetry the x and y directions are equivalent

and the odd moments are zero at all times. The first non-zero moment, the variance can be

calculated using the 2-point σ correlations (See Appendix 9.1).

〈x2(t)〉 =
v2

0

γ

(
t− 1− e−γt

γ

)
(2.53)

Thus, at short times (t� γ−1) 〈x2(t)〉 = v2
0t

2+O(t3), indicating a short-time ballistic regime.

This goes over to being diffusive at large times (t� γ−1), 〈x2(t)〉 ' 2Defft with an effective

diffusion constant Deff =
v20
2γ . Thus we see that the behaviour of this model is qualitatively

same as the two discrete models considered in the previous sections.

2.4.2 Position Distribution

Let us consider that the particle begins from origin at t = 0, pointing along n̂0 = (cos θ0, sin θ0),

where θ0 can be any angle between [0, 2π], then P(~∇, θ,t|θ′) denotes the probability for the

particle to be at (~r, θ) at time t, given θ0. It evolves according to the Fokker-Planck equation,

∂

∂t
P(~r, θ, t|θ0) = −v0n̂.~∇P(~r, θ, t|θ0)− γP(~r, θ, t|θ0) + γ

∫
dθ′

2π
P(~r, θ′, t|θ0), (2.54)

where the first term on the right is the drift term, the second term is the probability that

the RTP can flip to some other orientation at rate γ, while the third term takes into account

that the RTP can flip to θ from any other θ′ in [0, 2π]. Let us define the Fourier-Laplace

transform of P(~r, θ, t|θ0),

P̂(~k, θ, s | θ0) =

∫ ∞
0

dt e−st
∫
d~r ei

~k.~rP(~r, θ, s | θ0) (2.55)

where ~k = (k1, k2). We need to solve Eq. (2.54) with the initial condition,

P(~r, θ, 0|θ0) = δ2(~r)δ(θ − θ0) (2.56)
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where θ0 is some arbitrary angle in [0, 2π]. Using Eq. (2.56) and Eq. (2.55), Eq. (2.54)

becomes,

sP̂(~k, θ, s | θ0) = δ(θ − θ0) + iv0
~k.n̂P̂(~k, θ, s | θ0)− γP̂(~k, θ, s | θ0) + γ

∫
dθ′

2π
P̂(~k, θ′, s | θ0).

(2.57)

Solving for P̂(~k, θ, s | θ0), we have,

P̂(~k, θ, s | θ0) =

(
δ(θ − θ0) + γ

∫ 2π
0

dθ′

2π P̂(~k, θ′, s | θ0)

)
s+ γ − iv0

~k.n̂
.

Integrating over the final and initial orientations θ and θ0, Eq. (2.58) reduces to an

algebraic equation,

G(~k, s) =

∫ 2π

0
dθ

∫ 2π

0

dθ0

2π
P̂(~k, θ, s | θ0) =

f(~k, s)

1− γf(~k, s)
(2.58)

where

f(~k, s) =

∫ 2π

0

dθ

2π

1

s+ γ − iv0
~k.n̂

=
(

(γ + s)2 + v2
0k

2
)−1/2

. (2.59)

Note that, k2 = |~k|2 = k2
1 + k2

2. Finally we get the characteristic function G(~k, s) in the

Laplace space as,

G(~k, s) =
1√

(γ + s)2 + v2
0k

2 − γ
. (2.60)

Now, to obtain the position distribution, we need to find the Laplace-Fourier inverse of

G(~k, s). For simplicity, we drop the vector notation of k in G and f henceforth, as both depend

only on k2. G(k, s) has contributions from all the events where the particle does not flip or flips

multiple times till time t. It turns out that to invert Eq. (2.60) it is convenient if we subtract

the contribution of the no flip event, from G(k, s). The contribution of the no-flip event to the

probability distribution can be easily written as, e−γtδ(x− v0 cos θ0t)δ(y − v0 sin θ0t), which
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Figure 2.9: Continuous θ model: (a) Plot of x-marginal for different values of t and γ = 1.0
The solid black lines correspond to the analytical prediction Eq. (2.64) and the symbols
correspond to the data from numerical simulations. For better visibility we have excluded
the delta functions at the origin and the boundaries. (b) Plot of P (x, t) obtained from
numerical simulations, as a function of the scaled variable w = x/

√
t for different (large)

values of t and γ = 1. The red dashed line shows the corresponding Gaussian distribution.
The inset shows the same data as a function of x/t. The solid black lines there correspond
to the analytical prediction Eq. (2.66). Here we have used v0 = 1.

upon taking a Fourier-Laplace transform and averaging over all θ0 gives f(k̃, s). We define,

G(k, s) = G(k, s)− f(k, s). (2.61)

The inversion of G(k, s) is non-trivial and has been carried out in details in Appendix 9.4.

The resulting contribution to the probability distribution is

P (r, t) =
γe−γt

2πv0

exp

[
γ
v0

√
v2

0t
2 − r2

]
√
v2

0t
2 − r2

. (2.62)

To get the full distribution we have to add the contribution of the no-flip event to the

above equation, which is given by e−γt δ(r − v0t)/(2πr). Thus, we have the exact position

distribution at any time t,

P(r, t) = e−γt
[
δ(r − v0t)

2πr
+

γ

2πv0

exp

[
γ
v0

√
v2

0t
2 − r2

]
√
v2

0t
2 − r2

Θ(v0t− r)
]
. (2.63)
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The Θ function implies that the distribution is always bounded. This expression is identical

to the ones obtained in [96, 97].

2.4.3 Marginal Distribution

We now look at the marginal distribution along either x or y. For this purpose, we rewrite

Eq. (2.63) in terms of the Cartesian coordinates, by substituting r =
√
x2 + y2 in Eq. (2.63),

and thereafter integrate over y, to obtain,

P (x, t) =
γe−γt

2v0

(
L0

[
γ

v0
W (x)

]
+ I0

[
γ

v0
W

])
+

e−γt

πW (x)
(2.64)

where W (x) =
√
v2

0t
2 − x2; I0(z) is the the modified Bessel function of the first kind and

L0(z) is the modified Struve function [94].

The interesting difference between the marginal distribution of this model and the two pre-

viously discussed discrete models is that the divergence at the boundaries is not a δ−function

divergence but an algebraic divergence. The analytic expression of the distribution function

found in Eq. (2.64) is compared with numerical simulation for γ = 0.01 for different values of

t in Fig. 2.9(a). We can immediately look at the asymptotic limits of the distribution, using

the asymptotic forms of the modified Bessel and modified Struve functions [94], where the

active and passive characteristics are more prominent. At very short times (t � γ−1), the

distribution is dominated by the no flip process, given by

P (z =
x

v0t
, t) ≈ e−γt

π
√

1− z2
, (2.65)

while at large times (t� γ−1) we get a large deviation form from the asymptotic expansions

of I0 and L0. Thus,

P (z, t) ≈ v0t e
−γt(1−

√
1−z2)

√
4πDefft

. (2.66)

with the large deviation function φ(z) = γ(1−
√

1− z2).

The large deviation form of the distribution obtained in Eq. (2.66) is compared with

the results of numerical simulation at t = 2000 for four different values of γ in the inset of
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Fig. 2.9 (b) The typical fluctuations in x are Gaussian and scale as
√
t. Thus the distribution

near the origin in terms of the scaled variable w = x/
√
t becomes

P (w, t) ' 1√
4πDeff

exp[−γw
2

2v2
0

]. (2.67)

Figure 2.9 (b) shows a plot of P (w, t) with the scaled variable w. We see a scaling collapse

near the peak while near the boundaries there is no collapse indicating non-Gaussian tails.

Summarizing, we see at short times, this model is dominated by the divergence at the

boundaries, like the discrete models described in the previous two sections. However here,

the nature of divergence is algebraic unlike the δ−functions of the previous two models. This

short time 2−peaked distribution goes over to a single Gaussian like peak at large times.

2.5 Summary

We studied a set of RTP models in two spatial dimensions, where the orientation θ of the

particle can take either discrete or continuous values. We show that, for all the models, at

short-time regime, the RTP shows a ballistic behaviour, i.e., in this regime, the mean-squared

displacement ∝ v2
efft

2 where the effective velocity depends on the specific model. On the other

hand, in the long-time regime, the RTP shows a diffusive behaviour, i.e., the mean-squared

displacement grows linearly with time ∼ 2Defft, where, the effective diffusion constant Deff is

also model specific. The symmetry of the orientation dynamics manifests in the short-time

behaviour of the probability distribution (see Fig. 2.2). The particles cluster away from the

origin along some boundary whose shape depends crucially on the microscopic dynamics.

These features disappear at long times, where the crowding is near the origin. We calculate

the time-dependent marginal position distributions, and also the full two-dimensional distri-

bution for the continuous case and show that the ballistic to diffusive crossover is associated

to qualitatively different behaviours of the marginal position distributions at the short-time

and long-time regimes. We characterize these by obtaining closed form expressions for the

distributions at the two regimes. We find that, independent of the model, the typical position

fluctuations are Gaussian at long-times. However, the atypical fluctuations are different for

the different models and are characterized by large deviation function which we calculate
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explicitly.

Though run-and-tumble motion has been widely studied both theoretically and exper-

imentally, they model a specific kind of dynamics with only a single active time-scale. In

many organisms, the activity manifests itself as two distinct kinds of motion, leading to two

different activity time-scales. In the next chapter, we will discuss one such dynamics.
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Active Brownian motion with directional reversal

Like RTP another popular and well-known active particle model is the so called active Brow-

nian particle (ABP)—where the particle shows a persistent motion along the body axis, the

orientation of which evolves by a Brownian motion. In two dimensions the position distribu-

tion evolves by the Langevin equation,

ṙ = v0n̂ where θ̇(t) =
√

2DR η(t). (3.1)

Here η is a δ-correlated Gaussian white noise, while the rotational diffusion coefficient DR sets

the activity time-scale. They show qualitatively similar behavior as run-an-tumble particles—

a short-time active regime, characterized by a non-diffusive variance and a non-Gaussian

distribution, while at late times the typical distribution becomes a Gaussian with a diffusive

scaling. Though both RTP and ABP have been extremely successful as a microscopic models

to study the different collective phenomena like motility induced phase separation, they are

limited as they mimic the motion of only a certain class of bacteria like E. coli and different

catalytic swimmers (respectively).

Many microorgadisms such as Myxococcus xanthus [98, 99, 100, 101], Pseudomonas putida [102,

103], Pseudoalteromonas haloplanktis and Shewanella putrefaciens [104, 105], and Pseu-

domonas citronellolis [106] shows a distinctly different dynamics—they perform an ABP-

like motion, while completely reversing their direction intermittently. The origin of such

reversals is different in different organisms, eg., internal protein oscillations reverse the cell

polarity which causes the directional reversal in Myxococcus xanthus [98, 100] while a reversal

of swimming direction occurs due to the reversal in the rotation direction of polar flagella

in Pseudomonas putida [102, 103]. The addition of the drastic reversal dynamics to the

rotational diffusion gives rise to a host of emergent collective phenomena including fruiting

body formation[99], generation of rippling patterns [107] and accordion waves [108]. Despite
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Figure 3.1: A typical trajectory of a DRABP generated by discretizing (3.1), where in a
small interval ∆t, the particle reverses the direction with probability γ∆t and with probability
1−γ∆t performs an ABP: {∆x(t),∆y(t)} = v0σ(t)∆t{cos θ(t), sin θ(t)}; ∆θ(t) =

√
2DR∆t χ,

where χ is drawn from a standard normal distribution. The arrows indicate the instanta-
neous velocity vectors. The inset shows a long-time trajectory [which resembles a Brownian
trajectory] with the two end-points marked.

the widespread appearance of this direction reversing active Brownian particles (DRABP), a

theoretical understanding of it was still lacking—even at the level of single particle position

distribution. In this chapter, we try to bridge that gap. In Sec. 3.1 we introduce the model

of DRABP and discuss some basic features of the DRABP dynamics, like effective noise au-

tocorrelation and position moments. In Sec. 3.2, we study the position distribution of the

DRABP in these dynamical regimes. We discuss the first-passage properties of the DRABP

in Sec. 3.3 and summarize in Sec. 3.4.

3.1 Model

In two dimensions, the position r = (x, y) and orientation θ of a DRABP evolve according

to the Langevin equations,

ẋ(t) = v0 σ(t) cos θ(t) ≡ ζx(t), (3.2a)

ẏ(t) = v0 σ(t) sin θ(t) ≡ ζy(t), (3.2b)

θ̇(t) =
√

2DR η(t), (3.2c)
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(a) (b) (c)

Figure 3.2: Dynamical evolution of the position distribution P (x, y, t) for the case γ > DR

obtained from numerical simulations. Here we have taken γ = 0.1, DR = 0.01 and initial
orientation θ0 = π/4. The panels (a), (b) and (c) correspond to t = 1 [regime (I)], t = 50
[regime (II)] and t = 200 [regime (IV)], respectively. The strong anisotropy in regime (I)
persists in the intermediate regime (II) eventually disappearing at large times (IV). For
γ < DR the intermediate regime (b) is replaced by regime (III) which looks similar to (c).

where DR is the rotational diffusion coefficient, η(t) is a Gaussian white noise with 〈η(t)〉 = 0

and 〈η(t)η(t′)〉 = δ(t− t′). The dichotomous noise σ(t) alternates between ±1 at a constant

rate γ, triggering the direction reversal (similar to the propulsion velocity of a one-dimensional

run-and-tumble particle). We introduce ζx(t) and ζy(t) for notational convenience, they

denote the effective noise (propulsion velocity) along x and y directions. Figure 3.1 shows

a typical trajectory following the above dynamics. The presence of orientational diffusion

along with the directional reversals leads to the emergence of two time-scales in the system

given by D−1
R and γ−1, respectively. Experimental evidences indicate that these two time

scales are very well-separated, for example, for Myxococcus xanthus γ−1 ∼ 102s, while D−1
R ∼

106 s [109]. These well separated time-scales gives rise to four distinct dynamical regimes:

(I) t� min(γ−1, D−1
R ), (II) γ−1 � t� D−1

R , (III) D−1
R � t� γ−1, and (IV) t� max(γ−1,

D−1
R ).

3.1.1 Effective noise correlations

Let us first look at the correlations of the effective noisees ζx(t) and ζy(t). To this end, we first

note that, since the σ and θ processes are independent, it suffices to compute the correlations

of σ and cos θ, sin θ separately. Using the propagators of the σ-process,

Ψ(σ, t|σ0, 0) =
1

2

(
1 + σσ0e

−2γt
)
, (3.3)
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and that for the θ-process (note that, though θ is bound ∈ [0, 2π], as we are interested in the

correlations of cos θ, sin θ, we can consider θ ∈ (−∞,∞)),

Φ(θ, t|θ0, 0) =
1√

4πDRt
exp

[
−(θ − θ0)2

4DRt

]
, (3.4)

we can easily compute the mean autocorrelations of the effective noises. For a DRABP startiis

known to beng with θ(t) = θ0 and σ(0) = 1, they turn out to be,

〈ζx(s)〉 = v0〈σ(s)〉〈cos θ(s)〉 = v0σ0 cos θ0e
−(DR+2γ)s, (3.5a)

〈ζy(s)〉 = v0〈σ(s)〉〈sin θ(s)〉 = v0σ0 sin θ0e
−(DR+2γ)s, (3.5b)

and

〈ζx(s)ζx(s′)〉 = v2
0〈σ(s)σ(s′)〉〈cos θ(s) cos θ(s′)〉

=
v2

0

2

[
e−(DR+2γ)|s−s′| + e−2γ|s−s′|−DR(s+s′+2 min[s,s′]) cos 2θ0

]
,

〈ζy(s)ζy(s′)〉 = v2
0〈σ(s)σ(s′)〉〈sin θ(s) sin θ(s′)〉

=
v2

0

2

[
e−(DR+2γ)|s−s′| − e−2γ|s−s′|−DR(s+s′+2 min[s,s′]) cos 2θ0

]
〈ζx(s)ζy(s

′)〉 = v2
0〈σ(s)σ(s′)〉〈cos θ(s) sin θ(s′)〉

=
v2

0 sin 2θ0

2
e−2γ|s−s′|−DR(s+s′+2 min[s,s′]). (3.6a)

3.1.2 Position Moments

From Eq. (3.2a) and (3.2b), we can easily write the first two moments of DRABP as,

〈x(t)〉 =

∫ t

0
ds 〈ζx(s)〉, 〈x2(t)〉 =

∫ t

0

∫ t

0
ds ds′ 〈ζx(s)ζx(s′)〉 (3.7)

〈y(t)〉 =

∫ t

0
ds 〈ζx(s)〉, 〈x2(t)〉 =

∫ t

0

∫ t

0
ds ds′ 〈ζx(s)ζx(s′)〉. (3.8)

Further, using the explicit forms of the mean and autocorrelations of the effective noises
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in Eqs. (3.5b)-(3.6), we obtain the mean,

〈x(t)〉 =
v0 cos θ0

2γ +DR

(
1− e−t(2γ+DR)

)
; 〈y(t)〉 =

v0 sin θ0

2γ +DR

(
1− e−t(2γ+DR)

)
, (3.9)

and the second moments,

〈x2(t)〉 =
v2

0t

(2γ +DR)
+
v2

0(e−(2γ+DR)t − 1)

(2γ +DR)2

+
v2

0 cos 2θ0

(3DR − 2γ)

[
e−4DRt − 1

4DR
+

1− e−(DR+2γ)t

(DR + 2γ)

]
, (3.10a)

〈y2(t)〉 =
v2

0t

(2γ +DR)
+
v2

0(e−(2γ+DR)t − 1)

(2γ +DR)2

− v2
0 cos 2θ0

(3DR − 2γ)

[
e−4DRt − 1

4DR
+

1− e−(DR+2γ)t

(DR + 2γ)

]
. (3.10b)

Before proceeding further, it is interesting to look at how the variances 〈x2(t)〉c = 〈x2(t)〉−

〈x(t)〉2 and 〈y2(t)〉c = 〈y2(t)〉 − 〈y(t)〉2 behave in the different dynamical regimes.

Short-time regime (I): t� min(γ−1, D−1
R ),

The leading order behavior in this regime can be obtained by simply expanding the variance

Eqs. (3.10) in a Taylor series in t, about t = 0,

〈x2(t)〉c =
v2

0 t
3

3
(DR + 2γ − (DR − 2γ) cos 2θ0) + O(t4), (3.11a)

〈y2(t)〉c =
v2

0 t
3

3
(DR + 2γ + (DR − 2γ) cos 2θ0) + O(t4). (3.11b)

Clearly, there is an anisotropy in the system if we begin from arbitrary θ0 (except when

cos 2θ0 = 0).
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Intermediate regime (II): γ−1 � t� D−1
R

In this regime, the behavior of the variance is obtained by neglecting terms ∼ e−2γt and then

expanding the resulting expression in a series in t,

〈x2(t)〉c ≈
v2

0t

2γ
(1 + cos 2θ0)− v2

0t
2DR

γ
cos 2θ0 + O(t3), (3.12a)

〈y2(t)〉c ≈
v2

0t

2γ
(1− cos 2θ0) +

v2
0t

2DR

γ
cos 2θ0 + O(t3). (3.12b)

Thus in this regime, the anisotropy persists. In fact, by setting θ0 = 0 in Eq. (3.12)

yields, 〈x2(t)〉c ≡ 〈x2
‖(t)〉c ∝ t and 〈y2(t)〉c ≡ 〈x2

⊥(t)〉c ∝ t2. The notations x||(t) and x⊥(t)

correspond to the displacement in the directions along and orthogognal to which the DRABP

starts its motion.

Intermediate regime (III): D−1
R � t� γ−1

In this regime DRt � 1 while γt � 1 and one can neglect terms ∼ e−DRt. Expanding the

resulting expression in a series of t we get the variance behavior,

〈x2(t)〉c = 〈y2(t)〉c ≈
v2

0t

DR
(3.13)

which indicates that if DR > γ, the anisotropy vanishes already in the intermediate regime

and the motion becomes diffusive with an effective diffusion coefficient v2
0/(2DR).

Long-time regime (IV)

Finally, for t� max(γ−1, D−1
R ), we have,

〈x2(t)〉c = 〈y2(t)〉c ≈ 2Defft. (3.14)

The dynamics is isotropic and diffusive with an effective diffusion constant Deff =
v20

2(DR+2γ) .
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3.2 Position Distribution

In this section, we will discuss the position distribution of the DRABP in the different dy-

namical regimes.

3.2.1 Short time regime (I)

In this regime the time is much smaller than both the characteristic time scales of the system

i.e., t � min(γ−1, D−1
R ). Let us suppose that the particle starts from an initial orientation

θ0, then the Langevin equations can be written as,

ẋ(t) = v0σ(t) cos[θ0 + φ(t)] and ẏ(t) = v0σ(t) sin[θ0 + φ(t)] (3.15)

where φ(t) =
√

2DR

∫ t
0 ds η(s) is a standard Brownian motion. At times t � D−1

R , φ(t) ∼
√
DRt� 1, so we can use the approximation cosφ ' 1 and sinφ ' φ to the leading order in

φ. Equations (3.15) then reduce to,

ẋ(t) ≈ σ(t)(A−Bφ(t)) (3.16a)

ẏ(t) ≈ σ(t)(B +Aφ(t)). (3.16b)

where we have used,

A = v0 cos θ0 and B = v0 sin θ0, (3.17)

for notational simplicity. Now, let us assume that during time t there are n orientational

reversals. We can thus divide the duration [0, t] into n+ 1 intervals, such that σ changes sign

at the beginning of each interval and remains constant throughout the interval. Let si be the

duration of the i-th interval as shown in Fig. 3.3 and σi = (−1)i−1 denotes the value of σ in

this interval. For the sake of convenience we also define ti =
∑i

j=1 sj which is the total time

elapsed before the start of the (i+ 1)-th interval. Obviously, t0 = 0 and tn+1 = t.
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σ1 = 1 σ2 = −1 σ3 = 1 σn+1 = (−1)n

s1 s2 s3 sn+10 t

Figure 3.3: Schematic representation of the reversal process: si denotes the interval between
ith and (i+ 1)th reversal events during which σi = (−1)i−1 remains constant.

For a given trajectory {σi, si}, the final position of the particle can then be expressed as,

x(t) = A

n+1∑
i=1

σisi −B
n+1∑
i=1

σizi, and y(t) = B

n+1∑
i=1

σisi +A

n+1∑
i=1

σizi (3.18a)

where we have denoted zi =
∫ ti
ti−1

ds φ(s). Since φ(s) is an ordinary Brownian motion, its

integral should follow a Gaussian distribution— in fact, {zi; i = 1, 2 · · ·n + 1} form a set of

(n + 1) correlated Gaussian variables with the correlation matrix Cij = 〈zizj〉. The linear

combination
∑n+1

i=1 σizi then also follows a Gaussian distribution with the variance

bn =

n+1∑
i,j=1

σiσjCij = 2DR

n+1∑
i=1

[
i−1∑
j=1

(−1)i+jsisj(tj + tj−1) +
s2
i

3
(ti + 2ti−1)

]
, (3.19)

where to derive the final equality, we have used 〈φ(s)φ(s′)〉 = 2DR min(s, s′). From Eq. (3.18),

we can then write the marginal position distributions for a given trajectory {σi, τi},

P(x, {σi, si}) =
1

B
√

2πbn
exp

[
−

(x−A
∑n+1

i=1 σisi)
2

2bnB2

]
, (3.20a)

P(y, {σi, si}) =
1

A
√

2πbn
exp

[
−

(y −B
∑n+1

i=1 σisi)
2

2bnA2

]
. (3.20b)

Note that, for notational simplicity we have used the same letter P to denote both x and

y distributions.

To obtain the actual position distribution P (x, t) in this regime, we need to take into

account the contributions from all possible trajectories {σi, si; i = 1, 2, . . . , n + 1} with all
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possible values of n,

P (xi, t) =

∞∑
n=0

γne−γtPn(xi, t)

where Pn(x, t) =

∫ t

0

n+1∏
i=1

dsi δ(t−
∑
i

si)P(xi, {σi, si}) (3.21)

denotes the contribution from the trajectories with n number of reversals and xi can be either

x or y.

Equation (3.21) provides the exact time-dependent marginal distribution in this regime.

Even though the infinite series cannot be summed explicitly to obtain a closed-form expres-

sion, it can be systematically evaluated numerically to obtain P (x, t) for arbitrary γ and t. In

fact, for t . γ−1, it suffices to consider the first few terms to get a reasonably good estimate

of the marginal distributions. Figure 3.4(a) compares this estimate, evaluated up to n = 2

terms, with P (x, t) obtained from numerical simulations. Clearly, this perturbative approach

is extremely successful in accurately predicting the characteristic shape of the distribution,

with a wide plateau near the origin and a peak near x = v0t, in this short-time regime (I).

Physically, the peak in the distribution is a manifestation of the ABP nature of the

motion—the n = 0 term, corresponding to the no reversal case, correctly predicts the peak.

The emergence of the plateau, however, is a direct consequence of the reversal events—

for t � D−1
R , the orientation θ evolves slowly, and the dynamics can be thought of as a

one-dimensional RTP with an effective velocity v0 cos θ0. Now, for small values of γ, the

trajectories with a single flip contribute a constant value (the plateau) γe−γt/(2v0 cos θ0).

This agrees well with the exact result [Eq. (3.21)] to leading order in γ.

3.2.2 Intermediate time regime (II)

The correlated noise leads to an intriguing behavior in this regime γ−1 � t � D−1
R . Since

t� D−1
R is still true, the small φ(t) approximation in Eq. (3.16) is still valid. Moreover, for

t � γ−1, the frequent reversals lead to a Gaussian white noise ξ(t) with zero-mean and the

correlator 〈ξ(t)ξ(t′)〉 = γ−1δ(t− t′). Thus, the effective equations in this regime become,

ẋ(t) ≈ v0 ξ(t)(A−Bφ(t)) and ẏ(t) ≈ v0 ξ(t)(B +Aφ(t)), (3.22)

72



CHAPTER 3. ABP WITH DIRECTIONAL REVERSALS

where the constants A and B are given by Eq. (3.17). The above equations describe a

Brownian motion with stochastically evolving diffusion coefficients. Some specific versions of

such models have been studied recently [110] in a different context.

The characteristic function for the joint distribution can be written as,

〈exp (ik · x)〉 =

〈
exp

(
i

∫ t

0
ds ξ(s) [kx (A−Bφ(s)) + ky (B +Aφ(s))]

)〉
(ξ,φ)

,(3.23)

where the averaging is over both {ξ(t)} and {φ(t)} trajectories. The Gaussian nature of ξ(t),

for a fixed {φ(s)} trajectory, allows us to evaluate the characteristic function,

〈eik·x〉 =

〈
exp

[
−1

2
kT Σ(t)k

]〉
φ

, where k = (kx, ky)
T . (3.24)

The correlation matrix is given by,

Σ(t) =

 〈x2(t)〉ξ 〈x(t)y(t)〉ξ
〈x(t)y(t)〉ξ 〈y2(t)〉ξ



=
1

γ


∫ t

0 ds (A−Bφ(s))2
∫ t

0 ds (A−Bφ(s))(B +Aφ(s))

∫ t
0 ds (A−Bφ(s))(B +Aφ(s))

∫ t
0 ds (B +Aφ(s))2

 .(3.25)

Remembering that φ(s) is a standard Brownian motion, the rhs of Eq. (3.24) can be evaluated

using path integral [24],

〈exp (ik · x)〉 =

∫ ∞
−∞

dX

∫ X

0
Dφ exp

[
−
∫ t

0
ds

(
Z2

1

2γ
(φ+ Z2/Z1)2 +

φ̇2

4DR

)]
, (3.26)

where Z1 = (kyA − kxB) and Z2 = (kxA + kyB). Using the variable shift φ → φ + Z2
Z1

and

X → X + Z2
Z1

, Eq. (3.26) reduces to,

〈exp (ik.x)〉 =

∫ ∞
−∞

dX

∫ X

Z2/Z1

Dφ exp

[
−
∫ t

0
ds

(
φ̇2

4DR
+
Z2

1

2γ
φ2

)]
. (3.27)

The form of the path integral in the above equation corresponds to the imaginary time

propagator of a quantum harmonic oscillator with Hamiltonian H = − ~2
2m

d2

dx2
+ 1

2mω
2x2,
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upon setting ~ = 1, m = 1
2DR

and ω2 =
2Z2

1DR
γ . It propagates from initial position Z2

Z1
to the

final position X in time t. Thus, we have,

〈exp (ik.x)〉 =

∫ ∞
−∞

dX U(X,Z2/Z1, t), (3.28)

where, U(Xf , Xi, t) is the propagator of a quantum harmonic oscillator with initial and final

points Xi and Xf respectively in imaginary time t. This is well known in literature [111] and

with the mappings mentioned earlier we have,

U(Xf , Xi, t) =

√
ω

4πDR sinh(ωt)
exp

[
− ω

4DR sinh(ωt)

((
X2
f +X2

i

)
cosh(ωt)− 2XfXi

)]
.(3.29)

Using the above expression in Eq. (3.28) and performing the integral over X, we obtain,

〈eik·x〉 =
1√

coshωt
exp

[
−ω tanhωt

4DR

(
kx + ky tan θ0

ky − kx tan θ0

)2
]
,

(3.30)

Of particular interest are the distributions along and orthogonal to the initial orientation,

denoted by x‖ and x⊥ respectively. Setting θ0 = 0 gives x⊥ ≡ y and x‖ ≡ x. From Eq. (3.30),

we get

〈eikx⊥〉 =

[
cosh

(
v0kt

√
2DR

γ

)]−1/2

and 〈eikx‖〉 = exp

(
−k

2v2
0t

2γ

)
. (3.31)

This can be inverted exactly to yield,

P (x⊥, t) =
1

v0t

√
γ

8DR
f

(
x⊥
v0t

√
γ

8DR

)
, with f(z) =

1√
2π3

Γ

(
1

4
+ iz

)
Γ

(
1

4
− iz

)
,(3.32)

and

P (x‖, t) =

√
γ

v0

√
t
h

(
x‖
√
γ

v0

√
t

)
, with h(z) =

1√
2π

exp(−z2/2). (3.33)

Thus, we see that in this intermediate time regime (II) the direction parallel to the initial

orientation is alrady a Gaussian with a diffusive scaling. The perpendicular direction, on
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Figure 3.4: Marginal position distribution P (x, t) in the different dynamical regimes: (a)
t� min(D−1

R , γ−1), (b) γ−1 � t� D−1
R , (c) D−1

R � t� γ−1, (d) t� max(D−1
R , γ−1). The

symbols are from numerical simulations while solid black lines correspond to the analytical
predictions given by Eqs. (3.21) [up to n = 2], (3.32), (3.37) and (3.35) for (a)-(d) respec-
tively. Here v0 = 1 and we have used initial orientation θ0 = π/4 for (a), (c) and (d) and
θ0 = π/2 for (b).

the other hand, has a non-trivial scaling distribution. The tails of this distribution decay

exponentially, exp[−π|z| (with z = x⊥
√
γ/(2v0t

√
2DR). This drastically different nature of

the fluctuations for x|| and x⊥ lead to the anisotropic distribution seen in Fig. 3.2 (b).

3.2.3 Long-time regime (IV)

This regime corresponds to the time where the observation time is much larger than both the

time-scales of the system, i.e., D−1
R and γ−1. Mathematically, for a given time t, this regime

can be accessed by taking both DR and γ large (� t−1). In this limit, the effective-noise
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autocorrelations Eqs. (3.6) become

〈ζa(t)ζb(t′)〉 ≈
v2

0

(DR + 2γ)
δa,bδ(t− t′) = 2Deffδa,bδ(t− t′) where a, b ≡ x, y. (3.34)

This results in the isotropic Gaussian distribution,

P (x, y, t) ≈ 1

2Defft
G

(
x√

2Defft
,

y√
2Defft

)
, (3.35)

with G(x̃, ỹ) = e−(x̃2+ỹ2)/2/(2π). The corresponding x-marginal distribution (which, ob-

viously, is also a Gaussian) is plotted in Fig. 3.4(d) along with the data from numerical

simulations; an excellent agreement validates our prediction.

3.2.4 Intermediate-time regime (III)

This regime occurs in place of the intermediate time regime (II) whenDR > γ and corresponds

to DR � t−1 � γ. In this regime the autocorrelations of the effective noise in Eqs. (3.6)

become,

〈ζa(t)ζb(t′)〉 → (v2
0/DR)δa,b δ(t− t′) where a, b ≡ x, y (3.36)

Therefore, the typical position distribution is a Gaussian of the width v0

√
t/DR,

P (x, y, t) ≈ DR

v2
0t
G

(
x

v0

√
t/DR

,
y

v0

√
t/DR

)
, (3.37)

with G(x̃, ỹ) = e−(x̃2+ỹ2)/2/(2π). Note that this result is same as in the case of ABP for

t � D−1
R [56] —adding directional reversal does not change the physical scenario in this

regime. We validate this prediction with numerical simulations in Fig. 3.4(c).

The distributions in the long-time regime (IV) and the intermediate (III), though heuris-

tic, give a good quantitative prediction around the typical region. We however will provide

a better derivation of the diffusive behavior in the next chapter.
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Persistence
Exponent I II III IV

α⊥ 1/4 1 1/2 1/2

α‖ 0 1/2 1/2 1/2

Table 3.1: Persistence exponents for the x⊥ and x‖ components of the DRABP as defined
by decay of the survival probability S(t) ∼ t−α in the different dynamical regimes: (I) t �
min(D−1

R , γ−1), (II) γ−1 � t� D−1
R , (III) D−1

R � t� γ−1, and (IV) t� max(γ−1, D−1
R ).

3.3 Survival probability

The first-passage probability is defined as the probability that a particle, starting from under-

going a stochastic dynamics, reaches a given location at a specified time t for the first time.

Alternatively, one can also look at the survival probability, which denotes the probability that

the particle has not reached the given location till time t. In the absence of confining poten-

tials or any other constraints like stochastic resetting, the survival probabibility decreases as

t−α, where α is called the persistence exponent.

For active particles like bacteria, the first-passage time [112, 113] to reach a particular

target such as food source, weak spot of the host or toxins is a very significant observable.

For example, certain starvation induced complex processes have been seen in Myxococcus

xanthus [99] and Pseudomonas putida [114], which in turn would depend on the first-passage

properties. In this section we will discuss a few first-passage properties of the DRABP.

For this section we consider a DRABP, starting with θ(0) = 0 and σ(0) = 1, so that x‖ = x

and x⊥ = y. We are interested in the first-passage events (i) in the direction orthogonal to

the initial orientation: the y-component of the position of a DRABP, starting from some

arbitrary position y(0) = y0, has not crossed the y = 0 line up to time t, and (ii) in the

direction parallel to the initial orientation: the x-component of the position of a DRABP,

starting from some arbitrary position x(0) = x0, has not crossed the x = 0 line up to time

t. The survival probabilites corresponding to the two events are denoted by S⊥(t; y0) and

S||(t;x0). A summary of the persistence exponents in the different dynamical regimes are

summarized in Table 3.1.

The most interesting scenario appears for γ > DR where S⊥(t) shows three distinct

persistence behaviors in the three different dynamical regimes. For θ0 = 0, the Langevin
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Figure 3.5: Sy(t) vs t for γ > DR: (a) shows the crossover from αy = 1/4 (I) to αy = 1 (II)
for a fixed DR = 10−5 and y0 = 0.001. (b) shows the crossover from αy = 1 (II) to α⊥ = 1/2
(IV) for γ = 1 and y0 = 0.1.

equation Eq. (3.22) at very short times t� D−1
R , can be written as,

ẏ = v0σ(t)φ(t), where φ̇(t) =
√

2DRη(t). (3.38)

Now since t� γ−1, the above equation can be further approximated as,

ẏ ' v0σ(0)φ(t) = v0φ(t), (3.39)

where σ(0) = 1 is the initial condition. This is nothing but a random acceleration process for

which the persistence exponent is known to be 1/4 [115, 116]. Therefore, in the short-time

regime (I), we expect αy = 1/4, which is verified in Fig. 3.5(a) using numerical simulations.

In the intermediate time regime (II), the effective y-dynamics can be approximated by

[putting θ0 = 0 in Eq. (3.22)],

ẏ = v0ξ(t)φ(t), (3.40)

where ξ(t) emulates a delta-correlated white noise. This is a diffusing diffusivity process,

where the diffusion coefficient itself undergoes a diffusion process. We compute the survival

probability by solving the corresponding Fokker Planck equation with an absorbing boundary
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Figure 3.6: Survival probability S||(t;x0) for three values of γ, DR = 10−3 and x0 = 0.01.
The symbols denote the data obtained from numerical simulation. The black dashed lines
indicate the analytical predictions.

condition at y = 0. This leads to a new persistence exponent α⊥ = 1 in the context of

active particles. In fact, in the limit γ → ∞ and DR → 0, we find the exact first-passage

time distribution [see Appendix 9.5]. This result is consistent with the recently obtained

first-passage behavior for the diffusing diffusivity model [117]. We show the crossover from

αy = 1/4 to αy = 1 near t ∼ γ−1 using numerical simulations in Fig. 3.5(a).

In the large time regime (IV), the particle behaves like an ordinary diffusion process

with an effective diffusion constant. Consequently, the survival probability decays with the

Brownian exponent α⊥ = 1/2 as seen from the numerical simulations in Fig. 3.5(b). The

crossover from α⊥ = 1 to α⊥ = 1/2 occurs around t ∼ D−1
R .

If DR > γ, we effectively see two distinct exponents α⊥ = 1/4 in the short-time regime

(I), which crosses over to α⊥ = 1/2 in regime (III) and remains the same for large times (IV).

On the other hand, the survival probability in the parallel direction is not very exciting.

As we saw from the position distributions that fluctuations along the direction parallel to the

initial orientation is diffusive Gaussian in both the intermediate time regimes (II) and (III),

and the long-time regime (IV), the survival probability S||(t) also shows a Brownian behavior

at all times except in regime (I). In the short-time regime (I) as the particle starts at some

x0 pointing away from the target, it always survives for t� γ−1, D−1
R .
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3.4 Summary

We studied a stochastic active particle model that mimics a wide range of bacterial motion.

One of the important features of this model the presence of two active time-scales governed by

the rotaional diffusion coefficient and the reversal rate. The competition among the two active

time-scales give rise to many novel features —emergence of four distinct dynamical regimes

each of which has a different position distribution and persistence exponent. In particular,

we find that, the position distribution in the short-time and intermediate-time regimes have

certain unique features, very different from ordinary ABP and RTP. The short-time regime is

characterized by the emergence of a plateau. The intermediate regime (II) γ−1 � t � D−1
R

shows a unique scaling behavior—ballistic and diffusive along the directions orthogonal and

parallel to the initial orientations. We also find a novel persistence exponent α = 1, which

have not been seen in active motions so far, in the same regime.
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Universal framework for the long-time position

distribution of active particles

In all the models of active particles considered in Chapters 2 and 3, we saw that, inspite

of the very different microscopic stochastic dynamics, the long-time position distribution

is always a Gaussian with a diffusive scaling. For the simpler models of RTP, considered

in Chapter 2, we could explicitly show this Gaussian distribution by solving the Fokker-

Planck equation explicitly. However, in many complicated models, like the DRABP, an exact

solution of the Fokker-Planck equation is very difficult. One can still provide the following

heuristic argument and explain the Gaussian nature. The total displacement x(t) during

a time interval [0, t] can be expressed as x(t) =
∑N

i=1 ∆xi, with ∆xi being the increment

over the time interval [(i − 1)∆t, i∆t], where ∆t = t/N is chosen to be much longer than

the active time-scales. Thus, one can ignore the correlations among {∆xi} and treat them

as independent random variables. Consequently, a diffusive Gaussian distribution for x,

which is a sum of N independent random variables, is anticipated in the large N limit,

by appealing to the central limit theorem. An exact systematic derivation of the diffusion

equation corresponding to the Gaussian distribution, which is expected to be more involved,

is still lacking. In this chapter, we develop a general perturbative formalism, treating the

ratio of the active time-scale and observation time as a small parameter, to systematically

derive the diffusion equation at the leading order. This formalism allows us to explicitly

calculate the sub-leading corrections to the Gaussian, which cannot be obtained from the

heuristic argument above. In the following, we first outline our framework in Sec. 4.1 and

then illustrate its application by solving it explicitly for DRABP in Sec. 4.2. We summarize

the results of this chapter in Sec. 4.3.
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4.1 Perturbative framework and main results

In this section, we briefly outline the main steps of the general perturbative framework

for a one-dimensional active motion. The details, of course, depend on the specific model

under consideration. The full picture will become clear in the subsequent sections where we

explicitly carry out this perturbative procedure for the different models.

The active particle models under consideration are generically described by the over-

damped Langevin equation,

ẋ(t) = u(t), (4.1)

where the propulsion velocity u(t) independently evolves by a stochastic dynamics with a

characteristic time τa. In all the popular models of active particles, the propulsion velocity u

eventually reaches a stationary state with an exponentially decaying autocorrelation function

〈u(t)u(t′)〉 ∝ exp(−|t− t′|/τa).

The joint distribution P (x, u, t) satisfies a Fokker-Planck or a master equation,

∂P

∂t
= −u∂P

∂x
+ LuP, (4.2)

where the specific form of the operator Lu corresponding to the stochastic dynamics of u

depends on the specific model. We expand the joint distribution P (x, u, t) as,

P (x, u, t) =
∞∑
n=0

ψn(u)Fn(x, t), (4.3)

where ψn(u) are the eigenfunctions of Lu with ψ0(u) denoting the stationary state of u

satisfying Lvψ0(u) = 0. Evidently, the position distribution is given by,

ρ(x, t) =

∫
duP (x, u, t) = F0(x, t), (4.4)

as
∫
duψn(u) = δn,0. Note that,

∫
du can also indicate a sum over possible discrete states

as in RTP. For the sake of simplicity, we choose our initial conditions such that the position

distribution is even, i.e., ρ(x, t) = ρ(−x, t), at all times.
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We show that when the initial propulsion velocity u(0) is chosen from the stationary state

ψ0(u), the marginal position distribution admits the series expansion in the dimensionless

small perturbation parameter τa/t,

ρ(x, t) ≡ F0(x, t) =
∞∑
k=0

τka A
2k
0 (x, t), (4.5)

where t−k is absorbed in the series coefficient A2k
0 (x, t) for computational convenience [see

(4.9) below]. The choice of the superscript 2k in the notation is essentially related to the

fact that A2k
0 (x, t) is an even function of x. It will become clear when we show the explicit

calculation in later sections. We find that the leading term A0
0(x, t) always satisfies the

diffusion equation,

∂A0
0

∂t
= Deff

∂2A0
0

∂x2
, (4.6)

resulting in the familiar long-time Gaussian distribution,

A0
0(x, t) =

1√
4πDefft

exp

(
− x2

4Defft

)
. (4.7)

The explicit form of the effective diffusion coefficient Deff depends on the specific model.

We also find that the subleading contributions A2k
0 (x, t) with k > 0, to the large-time

leading Gaussian behavior A0
0(x, t), generically satisfy an inhomogeneous diffusion equation

of the form,

[
∂

∂t
−Deff

∂2

∂x2

]
A2k

0 (x, t) = S2k(x, t), (4.8)

where the source term S2k(x, t) is determined by the lower order solutions {A2n
0 (x, t); n <

k}. Therefore, starting from the Gaussian solution A0
0(x, t), the higher order contributions

A2k
0 (x, t) can be solved recursively for arbitrary k. Incidentally, Eq. (4.6) and Eq. (4.7)

suggest a diffusive scaling ansatz,

A2k
0 (x, t) =

1

tk
q2k

( x√
4Defft

) 1√
4πDefft

exp
(
− x2

4Defft

)
. (4.9)
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Substituting the above ansatz in Eq. (4.7), along with the scaling form

S2k(x, t) =
1

tk+1
s2k

( x√
4Defft

) 1√
4πDefft

exp
(
− x2

4Defft

)
, (4.10)

yields an inhomogeneous Hermite differential equation for q2k(z) as,

q′′2k(z)− 2z q′2k(z) + 4k q2k(z) = s2k(z). (4.11)

The two solutions of the corresponding homogeneous Hermite differential equation Eq. (4.11)

are

U2k(z) = H2k(z) and V2k(z) = z 1F1

(
1

2
− k, 3

2
, z2

)
. (4.12)

where H2k(z) is the Hermite polynomial of order 2k and 1F1(a, b, z) is the confluent hyper-

geometric function. Note that, U2k(z) and V2k(z) are respectively even and odd functions of

z. Therefore, remembering that q2k(z) must be an even function of z, the complete solution

can be written as,

q2k(z) = C2k U2k(z) +

∫ z

0
dy
[
V2k(z)U2k(y)− U2k(z)V2k(y)

] s2k(y)

W2k(y)
, (4.13)

where the Wronskian is given by,

W2k(y) =

∣∣∣∣∣∣U2k(y) V2k(y)

U ′2k(y) V ′2k(y)

∣∣∣∣∣∣ = (−1)k
(2k)!

k!
ey

2
. (4.14)

The arbitray constant C2k in Eq. (4.13) is determined by neither the normalization of

ρ(x, t) nor any symmetries of A2k
0 . We take recourse to the moments of the distribution to

determine C2k. To this end, starting from the Fokker-Planck or master equation, we derive

the moments 〈x2k〉/(4DRTt)
k and expand in powers of τa/t for t � τa. On the other hand,

the same can be also obtained from the distribution Eq. (4.5) and Eq. (4.9). In particular, the

coefficient of (τa/t)
k is given by

∫∞
−∞ dz e

−z2z2k q2k(z)/
√
π which involves C2k. This can now

be determined by comparing the coefficients of (τa/t)
k obtained by the two methods. Note

that, given the initial and boundary conditions, one, in principle, has all the information
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to find the complete solution of the Fokker-Planck equation. Therefore, at a first glance,

it might seem surprising that the moments are needed to determine the coefficients C2k.

However, only the boundary conditions are used to go from Eq. (4.8) to Eq. (4.13), and it is

the moments, through which the initial condition is used, albeit in an unconventional way.

In the following sections, we illustrate this framework with DRABP and calculate a few

subleading contributions to the Gaussian distribution explicitly.

4.2 Application to obtain long-time distribution of DRABP

Direction reversing active Brownian particles (DRABP), as introduced in the previous chap-

ter, follows the Langevin equations (3.2)

In this chapter, to study the long-time position distribution, we consider the initial condi-

tion where the particle starts at the origin with a random orientation θ(0) chosen uniformly

from [−π, π] and σ(0) = ±1 with equal probability 1/2. Clearly, due to these set of initial

conditions, the position distribution is isotropic at all times, and it is enough to look at

the x-position only. So for simplicity, we consider only the (x, σ, θ) process, which is also a

Markov process. The corresponding Fokker-Planck equation for Pσ(x, θ, t) is given by,

∂Pσ
∂t

= −v0σ cos θ
∂Pσ
∂x

+DR
∂2Pσ
∂θ2

− γPσ + γP−σ, where σ = ±1 (4.15)

with the initial condition,

Pσ(x, θ, 0) =
1

2π
δ(x)

[
δσ,1 + δσ,−1

2

]
. (4.16)

It is convenient to write Eq. (4.15) in terms of P = P+ + P− and Q = P+ − P− as,

∂P

∂t
= −v0 cos θ

∂Q

∂x
+DR

∂2P

∂θ2
, (4.17)

∂Q

∂t
= −v0 cos θ

∂P

∂x
+DR

∂2Q

∂θ2
− 2γQ. (4.18)

Using the effective noise correlation in the long-time regime, we argued in the previous

chapter that, the process x(t), at times much longer than the correlation-time, becomes

diffusive with the effective diffusion coefficientDDR = v2
0/[2(DR+2γ)]. Therefore, anticipating
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the diffusive scaling at long times, we rewrite the above equations in terms of the scaled

variable y = x/
√
DDR , as,

ε2∂P

∂t
= −ε

√
2(λ+ 1) cos θ

∂Q

∂y
+ LθP, (4.19a)

ε2∂Q

∂t
= −ε

√
2(λ+ 1) cos θ

∂P

∂y
+ LθQ− λQ, (4.19b)

where the operator Lθ = ∂2/∂θ2, ε2 = 1/DR is the persistence-time of the θ dynamics,and

the dimensionless parameter λ = 2γ/DR denotes the ratio of the rotational diffusion and

directional reversal time-scales.

The isotropic initial condition Eq. (4.16) leads to a symmetric marginal distribution

ρ(y, t) ≡
∫ π
−π dθP (y, θ, t) = ρ(−y, t). As a result all the odd moments of position vanish.

Moreover, it follows from Eq. (4.19) that P (y, θ, t) and Q(y, θ, t) remain invariant under the

transformation (y, ε)→ (−y,−ε). Consequently, ρ(y, t) must contain only even powers ε.

As we have mentioned earlier, the 2n-th moment 〈y2n(t)〉 is needed to completely deter-

mine the distribution at order (ε2/t)n; we first determine the moments recursively in the next

section.

4.2.1 Moments

To determine the position moments 〈y2n(t)〉, it is convenient to define the following correlation

functions,

M(k, n, t) =

∫ ∞
−∞

dy

∫ π

−π
dθ yk cos(nθ)P (y, θ, t), (4.20a)

L(k, n, t) =

∫ ∞
−∞

dy

∫ π

−π
dθ yk cos(nθ)Q(y, θ, t), (4.20b)

such that M(k, 0, t) = 〈yk(t)〉. Here, both n and k are non-negative integers.

Multiplying both sides of Eqs. (4.19) by yk cos(nθ) and then integrating over y and θ, we
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get, for n, k ≥ 1

[
ε2 d

dt
+ n2

]
M(k, n, t) = kε

√
λ+ 1

2

[
L(k − 1, n− 1, t) + L(k − 1, n+ 1, t)

]
, (4.21a)[

ε2 d

dt
+ n2 + λ

]
L(k, n, t) = kε

√
λ+ 1

2

[
M(k − 1, n− 1, t) +M(k − 1, n+ 1, t)

]
. (4.21b)

For n = 0 and k ≥ 1, we have,

ε2 d

dt
M(k, 0, t) = kε

√
2(λ+ 1)L(k − 1, 1, t), (4.22a)[

ε2 d

dt
+ λ

]
L(k, 0, t) = kε

√
2(λ+ 1)M(k − 1, 1, t). (4.22b)

The initial conditions for Eqs. (4.21)-(4.22) are M(k, n, 0) = L(k, n, 0) = 0. Moreover, from

the normalization and 〈cos(nθ)〉 = 0, it respectively follows that,

M(0, 0, t) = 1 and M(0, n, t) = L(0, n, t) = 0 for n > 0, (4.23)

for all t. Using the initial conditions, the solutions for n ≥ 1 and k ≥ 1 are,

M(k, n, t) =
k

ε

√
λ+ 1

2

∫ t

0
dt′e−

(t−t′)n2

ε2
[
L(k − 1, n− 1, t′) + L(k − 1, n+ 1, t′)

]
(4.24a)

L(k, n, t) =
k

ε

√
λ+ 1

2

∫ t

0
dt′e−

(t−t′)(n2+λ)
ε2

[
M(k − 1, n− 1, t′) +M(k − 1, n+ 1, t′)

]
.

(4.24b)

From Eq. (4.22a), the solution for the position moments M(k, 0, t) can be written as,

M(k, 0, t) =
k

ε

√
2(λ+ 1)

∫ t

0
dt′L(k − 1, 1, t′). (4.25)

The integral equations Eq. (4.24) can be used recursively to obtain the position moments

M(k, 0, t) from Eq. (4.25). It is evident from the structure of these equations, that recursive

connections between the correlation functions {M(k, n, t), L(k, n, t)}, for different values of

(k, n), form two independent networks, sitting on even and odd k + n sub-lattices. Since, on

the k = 0 boundary, the only non-zero term is M(0, 0, t) = 1, it follows that M(k, n, t) =

L(k, n, t) = 0 when k + n is odd. Therefore, to determine the non-zero position moments
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Figure 4.1: The illustration of recursive connections between the correlation functions
{M(k, n, t), L(k, n, t)}, for different values of (k, n) with even k + n; see Eq. (4.24). In the
n > k sector, shown in grey, M(k, n, t) = L(k, n, t) = 0.

M(k, 0, t) for even k, we need to stay on the even k + n network. This network, with the

relevant recursive connections is illustrated in Fig. 4.1. From this figure, it is further clear

that M(k, n, t) and L(k, n, t) also vanish for n > k. On the n = k boundary, Eq. (4.24)

simplifies to,

M(k, k, t) =
k

ε

√
λ+ 1

2

∫ t

0
dt′e−

(t−t′)k2

ε2 L(k − 1, k − 1, t′) (4.26a)

L(k, k, t) =
k

ε

√
λ+ 1

2

∫ t

0
dt′e−

(t−t′)(k2+λ)
ε2 M(k − 1, k − 1, t′). (4.26b)

We illustrate the recursive procedure by computing the position variance M(2, 0, t) explicitly.

To this end, we first need L(1, 1, t) (see Fig. 4.1), which is straightforwardly obtained from

Eq. (4.26) as,

L(1, 1, t) =
ε√

2(λ+ 1)

(
1− e−

(λ+1)t

ε2

)
. (4.27)

Using this, from Eq. (4.25), we get,

M(2, 0, t) = 2t− 2ε2

λ+ 1

(
1− e−

(λ+1)t

ε2

)
. (4.28)
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For M(4, 0, t), we now need to compute two additional correlation functions M(2, 2, t) and

L(3, 1, t), as the remaining required correlation functions have already been computed during

the previous evaluation of M(2, 0, t). In general, computation of the moment M(2j − 2, 0, t),

requires all the correlation functions in the triangular region k ≥ n, k+n ≤ 2j−2 and n ≥ 0,

on the even k + n sub-lattice. Therefore, subsequent computation of M(2j, 0, t) requires the

computation of only j additional correlation functions along the k + n = 2j line, starting

with k = n = j. Following this procedure, we also evaluate the fourth moment as,

M(4, 0, t) =12t2 − 3ε2t

4(λ+ 1)

[
4(λ− 15) + e−

(λ+1)t

ε2
16(3λ− 5)

(3− λ)

]
+

3ε4

4(λ+ 1)2

[
87− 10λ− λ2 − 16e−

(λ+1)t

ε2
(49− 38λ+ 9λ2)

(λ− 3)2
+ e−

4t
ε2 (λ+ 1)4

]
,

(4.29)

and the sixth moment M(6, 0, t) as,

M(6, 0, t) =120t3 +
90ε2t2

λ+ 1

[
λ− 11 + e−

(λ+1)t

ε2
(3λ− 5)2

(λ− 3)2

]
+

45ε4t

(λ+ 1)2

×
[

67455− 3375λ− 1755λ2 − 45λ3

2(λ+ 9)
+ e−

4t
ε2

(λ+ 1)6

2(λ− 3)3(λ+ 5)

+
e−

(λ+1)t

ε2

2(λ− 3)3
(−2723 + 3544λ− 1638λ2 + 288λ3 + λ4)


+

45ε6

16(λ+ 1)3

[
−21659− 172λ+ 1150λ2 + 148λ3 + 5λ4

(λ+ 9)2

− 8e−
4t
ε2

(λ+ 1)6(λ(5λ+ 18)− 3)

(λ− 3)4(λ+ 5)2
+
e−

(λ+1)t

ε2

(λ− 3)4
(173271− 268158λ+ 161953λ2

− 46276λ3 + 5737λ4 + 34λ5 − λ6) + e−
(λ+9)t

ε2
(λ+ 1)6

(λ+ 5)2(λ+ 9)2

]
. (4.30)

We will use the positions moments M(2k, 0, t) with k = 1, 2, . . . obtained here to determine

the position distribution ρ(y, t) perturbatively in ε.

4.2.2 Position distribution

Now, we look to obtain the position distribution perturbatively. For this purpose, it is

important to first note that, the distribution of θ, evolving by the Fokker-Planck operator
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Lθ, reaches a steady state. Thus, we can always express the solution of Eq. (4.19) in the

eigenbasis of Lθ as,

P (y, θ, t) =

∞∑
n=0

pn(θ)Fn(y, t), (4.31a)

Q(y, θ, t) =
∞∑
n=0

pn(θ)Gn(y, t), (4.31b)

where,

p0(θ) =
1

2π
and pn(θ) =

1

π
cos(nθ) for n ≥ 1 (4.32)

are the eigenvalues of Lθ with eigenvalue −n2,

Lθpn(θ) = −n2pn(θ). (4.33)

They obey the following orthonormality relations.

∫ π

−π
dθ cos(mθ) pn(θ) = δm,n, and

∫ π

−π
dθ cos θ cos(mθ) pn(θ) =

1

2
(δn−1,m + δn+1,m).

(4.34)

Note that, integrating Eq. (4.31) with respect to y, yields,

∫ ∞
−∞

P (y, θ, t) dy = p0(θ), and

∫ ∞
−∞

Q(y, θ, t) dy = 0, (4.35a)

due to the initial condition on θ, which is chosen from the stationary distribution p0(θ). Our

aim is to obtain the marginal position distribution,

ρ(y, t) ≡
∫ π

−π
dθP (y, θ, t) = F0(y, t). (4.36)
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In general,

Fn(y, t) =

∫ π

π
dθ P (y, θ, t) cos(nθ), (4.37a)

Gn(y, t) =

∫ π

π
dθ Q(y, θ, t) cos(nθ). (4.37b)

However, the above relations are not much of a use as the functions P (y, θ, t) and Q(y, θ, t)

are unknown. Now, since Eq. (4.19) is invariant under the transformation (y, ε)→ (−y,−ε),

the functions Fn(y, t) and Gn(y, t) also follow the same symmetry. For our initial conditions,

the marginal position distribution is always symmetric about y = 0, i.e., F0(y, t) = F0(−y, t).

Therefore F0(y, t) is an even function of ε.

Putting Eqs. (4.31) in Eq. (4.19) and thereafter using the orthonormality relations for

pn(θ), we obtain PDEs for Fm and Gm. For m = 0,

ε2∂F0

∂t
= −ε

√
2(λ+ 1)

∂G1

∂y
, (4.38a)[

ε2 ∂

∂t
+ λ

]
G0 = −ε

√
2(λ+ 1)

∂F1

∂y
, (4.38b)

and for all other m > 0,

[
ε2 ∂

∂t
+m2

]
Fm = −ε

√
λ+ 1

2

(
∂Gm+1

∂y
+
∂Gm−1

∂y

)
, (4.39a)[

ε2 ∂

∂t
+m2 + λ

]
Gm = −ε

√
λ+ 1

2

(
∂Fm+1

∂y
+
∂Fm−1

∂y

)
. (4.39b)

From Eq. (4.35), it is clear that we do not have a series in ν, so we straightaway look for

series solution of Fm and Gm in the form,

Fm(y, t) =

∞∑
k=0

εkAkm(y, t), (4.40a)

Gm(y, t) =

∞∑
k=0

εkBk
m(y, t). (4.40b)

By definition, Akm = Bk
m = 0 for k < 0. Moreover, since A0(y, t) is an even function of ε, we
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must have Ak0 = 0 for odd integers k, i.e., A1
0 = A3

0 = · · · = 0. Therefore,

A0(y, t) =
∞∑
k=0

ε2kA2k
0 (y, t). (4.41)

The symmetry,
∫ π
−π dθ Pσ(y, θ, t) =

∫ π
−π dθ P−σ(−y, θ, t), implies that

∫ π
−π dθ Q(y, θ, t) = −

∫ π
−π Q(−y, θ, t).

Therefore B0(y, t) should also be an odd function of ε,

B0(y, t) =

∞∑
k=0

ε2k+1B2k+1
0 (y, t). (4.42)

Now, putting Eqs. (4.40a) and (4.40b) in Eq. (4.38) and comparing powers of ε,

∂Ak−2
0

∂t
= −

√
2(λ+ 1)

∂Bk−1
1

∂y
, (4.43a)

∂Bk−2
0

∂t
+ λBk

0 = −
√

2(λ+ 1)
∂Ak−1

1

∂y
. (4.43b)

On the other hand, for m ≥ 1, we get from Eq. (4.39),

m2Akm +
∂Ak−2

m

∂t
= −

√
λ+ 1

2

∂

∂y

[
Bk−1
m−1 +Bk−1

m+1

]
, (4.44a)

(m2 + λ)Bk
m +

∂Bk−2
m

∂t
= −

√
λ+ 1

2

∂

∂y

[
Ak−1
m−1 +Ak−1

m+1

]
. (4.44b)

Before finding solutions for Akm and Bk
m, let us first simplify the series in Eqs. (4.40a) and

(4.40b). Putting k = 0 in Eq. (4.44a), we have m2A0
m = 0. Thus,

A0
m = δm,0A

0
0, (4.45)

i.e., k = 0 term in the series Eq. (4.40a) exists for m = 0 only.

Putting k = 0 in Eq. (4.43b) and (4.44b), we have B0
m = 0 for all m ≥ 0. Using this fact

and putting k = 1 in Eq. (4.44a), we have, A1
m = 0 for all m ≥ 1. Note that, we already have
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A1
0 = 0. Again, putting k = 1 in Eq. (4.44b), we get

(m2 + λ)B1
m = −

√
λ+ 1

2

(
∂A0

m−1

∂y
+
∂A0

m+1

∂y

)
. (4.46)

Further, using Eq. (4.45), and combining with the earlier result for m = 0, we get,

B1
m = −δm,1

1√
2(λ+ 1)

∂A0
0

∂y
+ δm,0B

1
0 . (4.47)

One can systematically proceed by putting k = 2, 3, 4, . . . and obtain non-vanishing coeffi-

cients Akm and Bk
m. This process is best illustrated graphically on the m-k plane (see Fig. 4.2).

Since, Akm only depends on Ak−2
m and Bk−1

m±1 and Bk
m also follow a similar pattern, it is clear

that Akm are non-zero on even k lines while Bk
m are non-zero on odd k lines only. Moreover,

both Akm and Bk
m vanish on the lower triangle m > k. Therefore, Eqs. (4.40a)-(4.40b) can be

refined to,

Am =
∞∑
k=m

ε2kA2k
m , (4.48a)

Bm =
∞∑
k=m

ε2k+1B2k+1
m . (4.48b)

Using the above series expansion, we now proceed to compute the marginal distribution

A0(y, t) perturbatively. The leading order term A0
0 satisfies

∂A0
0

∂t
= −

√
2(λ+ 1)

∂B1
1

∂y
. (4.49)

which is obtained by putting k = 2 in Eq. (4.43a). Now, B1
1 can be obtained by putting

k = 1, m = 1 in Eq. (4.44b),

B1
1 = − 1√

2(λ+ 1)

∂A0
0

∂y
. (4.50)

Inserting this back in Eq. (4.49) we get the diffusion equation,

∂A0
0

∂t
=
∂2A0

0

∂y2
. (4.51)
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k

m0
0

1 2 3

1
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4

Figure 4.2: Graphical representation of recursive determination of non-vanishing Akm (red
dots) and Bk

m (blue crosses) following the Eqs. (4.43a)-(4.44b).

Let us remark that, A0
0(y, t) should have the same properties as a normalized probability den-

sity function since [A0(y, t)/A0
0(y, t)]→ 1 as t→∞. This also demands that,

∫
dy Ak0(y, t) = 0

for k > 0. Hence, the above equation can immediately be solved to obtain a Gaussian distri-

bution,

A0
0(y, t) =

e−y
2/(4t)

√
4πt

. (4.52)

The subsequent coefficients Ak0(y, t) provide systematic correction to this Gaussian form.

Noting that ε2 has the dimension of time t, we expect the following diffusive scaling form,

A2k
0 (y, t) =

e−
y2

4t

√
4πt

1

tk
q2k

( y√
4t

)
. (4.53)

For the next order correction, putting k = 4 in Eq. (4.43a), we get,

∂A2
0

∂t
= −

√
2(λ+ 1)

∂B3
1

∂y
. (4.54)
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Figure 4.3: Plots for the long-time distribution of a DRABP with DR = 2.0, γ = 1, at
two different times—(a) compares the leading order contribution of the scaled Gaussian
distribution Eq. (4.52) with that obtained from numerical simulation; (b), (c) and (d) compare
q2(z), q4(z) and q6(z) obtained in Eq. (4.63), Eq. (9.69) and Eq. (9.75) with the same obtained
from numerical simulations. In all the plots the black solid lines denote the theoretical
predictions, while the numerical simulations are indicated by colored symbols.

Putting k = 3, m = 1 in Eq. (4.44b) to get B3
1 ,

(λ+ 1)B3
1 = −∂B

1
1

∂t
−
√
λ+ 1

2

(
∂A2

0

∂y
+
∂A2

2

∂y

)
. (4.55)

Thereafter, using k = 2,m = 2 in Eq. (4.44a), to obtain A2
2, we get an inhomogeneous

diffusion equation for A2
0,

[
∂

∂t
− ∂2

∂y2

]
A2

0 = − ∂2

∂y2

(
1

λ+ 1

∂

∂t
− 1

8

∂2

∂y2

)
A0

0, (4.56)
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as mentioned in Eq. (4.8). To solve the above equation, we anticipate the following scaling

form for A2
0(y, t),

A2
0(y, t) =

e−y
2/(4t)

√
4πt

1

t
q2

(
y√
4t

)
. (4.57)

Infact, in general, for higher orders,

A2k
0 (y, t) =

e−y
2/(4t)

√
4πt

1

tk
q2k

(
y√
4t

)
. (4.58)

Using the above mentioned scaling form and the expression for A0
0(y, t), we get for q2(z),

q′′2(z)− 2zq′2(z) + 4q2(z) = − (λ− 7)

8(λ+ 1)
(3− 12z2 + 4z4). (4.59)

This leads to the general solution for q2(z) using Eq. (4.13),

q2(z) = c2H2(z) +
(λ− 7)

16(λ+ 1)

(
−3z2 + 2z4

)
. (4.60)

The normalization condition
∫∞
−∞ dy A0(y, t) is satisfied trivially for arbitrary values of

C2 and thus as mentioned before we take recourse to the moments to evaluate C2. In

fact, at each order the constant C2k is determined by comparing the coefficient of (τ/t)k

of M(2k, 0, t)/(4t)k obtained from the two methods: the exact computation in Sec. 4.2.1 and

using the series Eq. (4.41); where the latter is simply given by,

∫ ∞
−∞

dz z2kq2k(z)e
−z2/
√
π. (4.61)

Following this procedure for k = 1, we get C2 = 5−3λ
64(λ+1) , which leads to,

q2(z) =
3λ− 5

32(λ+ 1)
+

(13− 3λ)

8(λ+ 1)
z2 +

(λ− 7)

8(λ+ 1)
z4. (4.62)

Similarly we can find the subleading contributions A4
0(y, t) and A6

0(y, t) (see 9.6). They
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satisfy the inhomogeneous differential equation,

[
∂

∂t
− ∂2

∂y2

]
A2k

0 (y, t) = S2k(y, t), (4.63)

as announced in (4.8). The explicit forms of S4 and S6 are given in the appendix. Substituting

the ansatz,

A2k
0 (y, t) =

e−y
2/(4t)

√
4πt

1

tk
q2k

(
y√
4t

)
, (4.64)

leads to inhomogeneous Hermite equation Eq. (4.11) for q4(z) and q6(z), whose general solu-

tion is given by (4.13). We find the explicit solutions (see Appendix) as,

q2k(z) =

2k∑
n=0

α2k,n(λ) z2n, (4.65)

where α2k,n(λ) is a polynomial in λ. The expressions of {α4,n; 0 ≤ n ≤ 4} and {α6,n; 0 ≤

n ≤ 6} are rather long and are given in 9.6. Figure 4.3 compares the leading order Gaussian

along with the subleading corrections q2(z) , q4(z) and q6(z) with the same extracted from

the numerical simulations of DRABP and shows reasonably good agreement.

4.3 Summary

In summary, we develop a unifying framework to systematically study the position distribu-

tion ρ(x, t) of active particles at late times t much larger than the activity time τa. In this

regime, the position distribution admits a perturbative series in powers of τ0/t. Using the

model of DRABP, we show that the leading term generically satisfies the diffusion equation

with an effective diffusion coefficient Deff. We further find that the higher-order subleading

corrections, again, generically satisfy an inhomogeneous diffusion equation, where the source

term is involves the previous order solutions. Consequently, the higher-order corrections

also admit diffusive scaling. The distribution of the scaled position z = x/
√

4Defft can be
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generically written as

q(z, t) = (e−z
2
/
√
π)

∞∑
k=0

(τ0/t)
k q2k(z), (4.66)

where q2k(z) is a 4k-th order polynomial in z that satisfies an inhomogeneous Hermite differ-

ential equation. This formalism has been shown to work for other popular models of active

particles like RTP, AOUP, and ABP. In fact, it is supposed to work for all other active particle

models which have a finite active time-scale.
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Stationary states of direction reversing active

Brownian particles in a harmonic trap

Till this point, we have considered free active particle models, i.e., where there is no ex-

ternal potential on the active particles. Under confining potentials, it is expected that the

active particle relaxes to a stationary state. As discussed in the introduction, unlike passive

Brownian particles, the active particles do not always relax to the equilibrium Boltzmann dis-

tribution. In fact, it is a competition between the active time-scale τa and the characteristic

time-scale of the confining potential that determines the exact nature of the stationary state.

There have been a handful of theoretical studies that find exact results for the stationary

state in such scenarios [68, 57, 61, 59, 95].

Of particular interest is the shape-transition of the position distribution from an active

phase, characterized by an accumulation of probability density near the boundary of the

confining region, to a Boltzmann-like passive phase [68, 57, 59, 95]. Importantly, most of

these previous works consider active particles with a single active time-scale. In this chapter,

we discuss the stationary properties of an active particle with two characteristic time-scales,

namely, a DRABP, trapped in a harmonic potential V (x, y) = µ
2 (x2 +y2). In such a scenario,

the Langevin equations (3.1) become,

ẋ = −µx+ v0 σ(t) cos θ(t), an ẏ = −µy + v0 σ(t) sin θ(t), (5.1)

where the orientation still undergoes a standard Brownian motion with diffusion coefficient

DR. Note that, for γ = 0, this model reduces to the ABP in a harmonic potential, for

which the stationary state has been studied in [57, 61]. On the other hand, for DR = 0,

since θ does not evolve, the model corresponds to a one-dimensional RTP along the initial

orientation in a harmonic potential [59]. In the absence of any potential, for both γ = 0

(ABP) and DR = 0 (RTP), the long-time dynamics becomes diffusive with effective diffusion
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(a) Passive-I (b) Active-I

(d) Active-II(c) Passive-II

Figure 5.1: Typical shape of the stationary position distribution P (x, y) for r0 = 1 in the
four phases—(a) Passive-I [(5.7)], (b) Active-I [(5.12)], (c) Passive-II [(5.20) for ν > 1], (d)
Active-II [(5.20) for ν < 1].

coefficient DAB = v2
0/(2DR) and DRT = v2

0/(2γ), respectively. For DRABP, i.e., both non-

zero γ and DR, the corresponding effective diffusion coefficient is DDR = v2
0/[2(DR + 2γ)].

In this chapter, we discuss that, in the presence of a harmonic potential, the interplay of γ,

DR and µ leads to a host of interesting behaviors in the stationary state.

We first give a qualitative description of the different phases in terms of long-time trajec-

tories in Sec. 5.1 and then provide detailed analytical derivations of the position distributions

in the different phases in Sec. 5.2. We summarize the results of this chapter in Sec. 5.3.

5.1 Stationary Phases

In this section, we introduce the different phases and provide an intuitive picture based on

the long-time trajectories, before going to the detailed analysis. For γ � µ or DR � µ,

the system is in an active phase, where the probability density accumulates near the circular

boundary of radius r0. On the other hand, for γ � µ or DR � µ the system is in a
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passive phase where the distribution has a single central peak. A unique feature of this

DRABP in harmonic potential is that for DR � γ, the distribution at the center always

diverges (algebraically for the two-dimensional position distribution and logarithmically for

the marginal) irrespective of whether the system is in the active or the passive phase. To

take this into account, we further subdivide the each of two phases into two sub-phases based

on our analytical results in the limiting cases.

Passive-I (DR � µ, for arbitrary γ): In this case, the stationary distribution is Boltzmann-

like which has a Gaussian form for the harmonic potential considered here [see Fig. 5.1(a)].

This is similar to the typical passive phase seen for ABP (γ = 0) in an external potential.

Active-I (γ � DR � µ): Here the stationary distribution is concentrated at the circular

boundary |r| = r0 [see Fig. 5.1(b)]. This is also the active phase for ABP, where γ = 0.

Passive-II (γ > µ� DR): In this passive phase also, the position distribution has a single

central peak. However, the distribution diverges at the center which distinguishes it from the

passive-I phase [see Fig. 5.1(c)].

Active-II (µ > γ � DR): This phase is characterized by a Mexican hat-like shape [see

Fig. 5.1(d)] of the distribution that is concentrated both at the center and at the circular

boundary |r| = r0.

While we have characterized the above phases analytically only in the limiting cases, the

general qualitative features hold even beyond these limits, which we verify using numerical

simulations for some other parameters (see Fig. 5.9). The phases are best represented in the

γ, DR and µ−1 space and a qualitative phase diagram is provided in Fig. 5.2. In order to

develop a physical understanding of the emergence of the different shapes, we look at the

typical trajectories in the different phases in the following section.

To understand the stationary behavior of DRABP, it is useful to characterize the long-

time trajectories in the different phases.

Passive-I: A typical trajectory of DRABP in this phase, shown in Fig. 5.3(a), resembles

that of an ordinary Brownian particle in a harmonic trap. This is because the randomization

time-scale D−1
R of the orientation is much smaller than the relaxation time-scale µ−1 of the

trap. Increasing γ decreases the randomization time-scale to (DR+2γ)−1. Consequently, the

description of DRABP at a time-scale larger than this randomization time-scale is given by
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μ-1

D
R

μ
-

1

γ

γ

D
R

Passive-I

Active-I

Active-I

Active-II

Active-II

Passive-II

(a)

(b) (c)

(d)

Figure 5.2: A simplistic schematic phase diagram for the steady state of DRABP in a har-
monic trap. (a) The phase diagram in the (γ, DR, µ

−1) space. For γ = 0, the phase diagram
of DRABP becomes that of an ABP in a harmonic trap [shown separately in (b)], where
we see the active-I phase for DR � µ (light green shaded region), which crosses over to
the passive-I phase for DR � µ (dark green shaded region). Although we do not know the
crossover/transition curve analytically, for simplicity, it is shown by the schematic dotted red
line. The DR → 0 plane [shown separately in (d)] shows a transition from the active-II to
passive-II phase, where the transition line, marked by a solid blue line, is known exactly (see
Sec. 5.2.3). Numerical evidence suggests (see Sec. 5.2.4) that the behaviors shown in (b) and
(c) extend for γ > 0 and DR > 0 respectively, implying some kind of transition/crossover
between active-I and active-II as well as passive-I and passive-II phases. The active (I & II)
region shrinks as µ−1 increases, indicating the funnel-like shape of the surface separating the
active (I & II) and the passive (I & II) phases shown in (a). However, the actual shape of
this surface may have more complex structure [see Fig. 5.9(b)] than the simple schematic
surface shown here. For µ−1 → 0 [shown separately in (c)], the passive region disappears
(i.e., pushed to infinity) leaving only the active phases.
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an Ornstein-Uhlenbeck process with an effective diffusion constant DDR.

Active-I: Figure 5.3(b) shows a typical trajectory in this phase. Except a very few detours

to the interior region, the particle mostly stays near the boundary, where the net force on

the particle is zero when its orientation vector n̂ is along r. This is due to the fact that in

this regime θ changes slowly as well as reversal events are very rare.

Passive-II: Figure 5.3(c) shows a typical trajectory in this regime. Unlike active-I, the

large number of directional reversals makes the persistence length ∼ v0/γ smaller than the

diameter of the confining region ∼ v0/µ. As a result, the particle is confined near the origin.

However, unlike passive-I, since DR is small here, trajectory-segments between consecutive

reversals are almost straight and pass through the central region, leading to a qualitatively

different distribution.

Active-II: As seen from Figure 5.3(d), since DR is small, in this regime also the particle

passes through the central region almost in a straight line. However, unlike the passive-

II, since the persistence length ∼ v0/γ is larger than the diameter of the confining region

∼ v0/µ, it goes all the way to the boundary and spends a considerable time there leading to

a concentration of probabilities at the boundary as well as the center.

These four classes of different trajectories lead to four qualitatively different shapes of the

stationary distribution, which we analyze in the following section.

5.2 Position distributions

The Fokker-Planck equation for the probability density function Pσ(x, y, θ, t) corresponding

to the Langevin equations (5.1) is given by,

∂Pσ
∂t

= −
[
∂

∂x
(−µx+ v0σ cos θ) +

∂

∂y
(−µy + v0σ sin θ)

]
Pσ − γ Pσ + γ P−σ +DR

∂2Pσ
∂θ2

.

(5.2)

We are interested in the steady state position distribution

P (x, y) ≡
∫ 2π

0
dθ
∑
σ=±1

Pσ(x, y, θ), (5.3)
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(a) Passive-I (b) Active-I

(d) Active-II(c) Passive-II

Figure 5.3: Long-time trajectories of a DRABP in a harmonic trap with µ = 1 in the different
phases. The finite support of the position distribution, a circle of radius r0 = 1, is marked
by dashed green lines. (a) passive-I phase: γ = 0.1 DR = 10; (b) active-I phase: γ = 0.001
DR = 0.05 (c) passive-I phase: γ = 5 DR = 0.01 (d) active-II phase: γ = 0.1 DR = 0.01.
The blue and red colors indicate the instantaneous state σ = +1 and −1 respectively.

where the stationary distribution Pσ(x, y, θ) ≡ Pσ(x, y, θ, t→∞) is the solution of Eq. (5.2)

with ∂Pσ/∂t = 0 [note that, for notational simplicity, we are using the same letter P to

denote all the probability distributions] The exact solution of Eq. (5.2) is hard to obtain in

practice, for arbitrary values of µ, γ and DR, even for the steady state. Hence we analyze the

distribution P (x, y) in the limiting cases where one of the parameters is much smaller than the

others, giving rise to distinct phases characterized by the shape of the position distribution.

Let us start with the most familiar passive phase (passive-I) where the stationary state is

Boltzmann-like.

5.2.1 Passive-I phase: DR � µ

In this case it is useful to rewrite Eq. (5.1) as,

ẋ = −µx+ ζx(t), and ẏ = −µy + ζy(t), (5.4)
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where the auto-correlation of the effective noises ζx(t) = v0σ(t) cos θ(t) and ζy(t) = v0σ(t) sin θ(t)

become [see Eq. (3.6)]

〈ζx(t)ζx(t′)〉 = 〈ζy(t)ζy(t′)〉 →
v2

0

2
e−(DR+2γ)|t−t′|, (5.5)

for t, t′ � D−1
R and arbitrary γ, while the cross-correlation 〈ζx(t)ζy(t

′)〉 → 0. Now, for large

DR, we can evolve Eq. (5.4) at a time step D−1
R � dt � µ−1, where the effective noises

emulate two independent white noises with auto-correlations

〈ζa(t)ζb(t′)〉 → 2DDR δa,b δ(t− t′), with {a, b} ∈ {x, y} (5.6)

and DDR = v2
0/[2(DR + 2γ)]. Thus, the Langevin equations (5.4) reduce to an Ornstein-

Uhlenbeck process, where the stationary state is given by the Boltzmann distribution,

P (x, y) =
µ

2πDDR
exp

[
−µ(x2 + y2)

2DDR

]
. (5.7)

This is the passive-I phase [see Fig. 5.1(a)] as announced in Sec. 5.1. The corresponding

marginal distribution is evidently also a Gaussian,

P (x) =

√
µ

2πDDR
exp

(
− µx2

2DDR

)
. (5.8)

which is compared with the numerical simulations in Figure 5.4(a).

Note that, the variance of the above distribution agrees with the expression obtained

from the exact Eq. (9.80) by taking the limit v0 → ∞, DR → ∞ keeping v2
0/DR constant

for arbitrary γ. Moreover, the exact kurtosis given by Eq. (9.85) tends to zero in this limit,

consistent with the Gaussian form of the above distribution [see Eq. (9.86)].

In the limit γ → 0, the above distribution reduces to that of an ABP in a harmonic

potential in the passive phase [56],

P (x, y) =
µ

2πDAB
exp

[
−µ(x2 + y2)

2DAB

]
, (5.9)

where DAB = v2
0/(2DR). The corresponding marginal distribution is also obviously a Gaus-
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Figure 5.4: The stationary marginal distribution P (x) in the passive-I phase for µ = 0.01
and v0 = 1. The analytical predictions for P (x) given by Eq. (5.8) and (5.10) (solid black
lines) are compared with numerical simulations (solid symbols) for γ = 1 (a) and γ = 10−4

(b) respectively.

sian,

P (x) =

√
µ

2πDAB
exp

(
− µx2

2DAB

)
, (5.10)

which we compare with numerical simulations in Fig. 5.4(b).

Next we discuss the most commonly seen active phase where the stationary probability

density is concentrated near the boundary.

5.2.2 Active-I phase: γ � DR � µ

In the limit γ/DR → 0, the Fokker-Planck equation (5.2) becomes,

∂Pσ
∂t

= −
[
∂

∂x
(−µx+ v0σ cos θ) +

∂

∂y
(−µy + v0σ sin θ)

]
Pσ +DR

∂2Pσ
∂θ2

, (5.11)

where P± represents two non-interacting ABPs with constant velocities v0 and −v0 respec-

tively. Since the stationary state of an ABP does not depend on the sign of the velocities

(alternatively, the initial orientation), in this limit we get the same stationary distributions

as that of an ABP in a harmonic potential [56, 61].

Therefore, for γ � DR � µ, the probability density is concentrated along a ring x2 +y2 =

r2
0 thereby indicating that the particle is in an active phase. In other words, the position
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Figure 5.5: The stationary marginal distribution P (x) in the active-I phase. The symbols
are obtained from numerical simulations for DR = 0.05 and γ = 10−4 and solid black lines
are from the analytical prediction Eq. (5.12).

distribution takes the limiting form

P (x, y) =
1

2πr0
δ
(√

x2 + y2 − r0

)
. (5.12)

We refer to this ABP-like active phase of DRABP as active-I to distinguish it from a novel

active phase obtained in Sec. 5.2.3, emerging from the direction reversal. The marginal

distribution is obtained by integrating Eq. (5.12) over y as,

P (x) =
1

π
√
r2

0 − x2
Θ(r0 − |x|), (5.13)

where the Θ(z) is the Heaviside-theta function. We compare this theoretical prediction

with numerical simulations in Fig. 5.5 and find an excellent agreement. Interestingly, this

active-I phase even extends to γ/DR = O(1), where the shape of the distribution remains

qualitatively same (weighted near the boundary), as discussed later in Sec. 5.2.4. The variance

and the kurtosis corresponding to Eq. (5.13) are r2
0/2 and −3/2 respectively, which are

consistent with the direct calculation of the same; see Eq. (9.87). Note that, the Fokker-

Planck equation (5.11) still holds for γ � µ � DR. The corresponding passive phase

(passive-I) is characterized by a Boltzmann distribution as given in Eq. (5.9).

Finally, we discuss two novel phases, where the directional reversal leads to a diverging

central peak along with the active and passive like features.

107



CHAPTER 5. DRABP IN A HARMONIC POTENTIAL

5.2.3 The novel active and passive phases: DR � (µ, γ)

The directional reversal leads to two new phases which are best seen in the DR/µ→ 0 limit.

It is useful to divide both sides of Eq. (5.2) by µ, which gives,

∂Pσ
∂(µt)

= −
[
∂

∂x
(−x+ r0σ cos θ) +

∂

∂y
(−y + r0σ sin θ)

]
Pσ − ν [Pσ − P−σ] +

DR

µ

∂2Pσ
∂θ2

,

(5.14)

where ν = γ/µ. In the limit DR/µ → 0 while keeping r0 and ν finite, θ evolves very slowly.

As a first approximation, θ can be kept fixed. This is equivalent to neglecting the second

order derivative with respect to θ in Eq. (5.14), resulting in the Fokker-Planck equation for

the conditional distribution Pσ(x, y, t|θ) for a given θ.

Now, for a fixed θ, it is convenient to make a rotation of the coordinate system

x‖
x⊥

 =

 cos θ sin θ

− sin θ cos θ

x
y

 , (5.15)

where x‖ and x⊥ are respectively the axes parallel and perpendicular to the θ-direction. In

the (x‖, x⊥) coordinates, the Fokker-Planck equation for Pσ(x‖, x⊥, t|θ) becomes,

∂Pσ
∂(µt)

=− ∂

∂x‖

[(
−x‖ + r0σ

)
Pσ
]
− ν [Pσ − P−σ]− ∂

∂x⊥
[−x⊥Pσ] . (5.16)

It is evident from the above equation that the dynamics of x‖ is nothing but that of a

one-dimensional RTP along θ in a harmonic potential. On the other hand, x⊥ indepen-

dently undergoes a deterministic overdamped motion in a harmonic potential, resulting

in x⊥ → 0 as t → ∞. Therefore, the steady state position distribution P (x‖, x⊥|θ) =∑
σ=±1 Pσ(x‖, x⊥, t → ∞|θ) can be obtained using the steady state result of 1D RTP in a

harmonic trap [59],

P (x‖, x⊥|θ) =
δ(x⊥) 21−2ν

r0B(ν, ν)

[
1−

(
x‖

r0

)2
]ν−1

Θ(r0 − |x‖|), (5.17)

where B(ν, ν) is the beta function.
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Figure 5.6: (a) Comparison of theoretical stationary state marginal distribution gν(z) given
by (5.22) as a function of the scaled variable z = µx/v0 in the DR → 0 limit (solid black lines)
with numerical simulations (symbols) for DR = 10−4, and µ = v0 = 1, for different values
of ν = γ/µ. This plot shows the transition from the Active-II to Passive-II at γ = µ/2 as
predicted by Eq. (5.23). (b) Comparison of Eq. (5.23) (red dashed lines) with the simulations
(symbols) for the same set of remaining parameters as in (a), which highlights the different
tail behavior in the two phases.

Subsequently, in terms of the original coordinates (x, y), the position distribution becomes,

P (x, y|θ) =
21−2ν

r0B(ν, ν)

[
1− x2 + y2

r2
0

]ν−1

δ(−x sin θ + y cos θ) Θ
(
r0 −

√
x2 + y2

)
. (5.18)

The dynamics of θ is independent of that of (x, y), whose distribution evolves by the

diffusion equation, leading to the uniform steady state for θ ∈ [0, 2π] for t� D−1
R . Averaging

Eq. (5.18) with respect to the steady state distribution θ, we get the scaling form for the

distribution,

P (x, y) =

∫ 2π

0

dθ

2π
P (x, y|θ) =

1

r2
0

fν

(
x

r0
,
y

r0

)
, (5.19)

with the scaling function,

fν(z1, z2) =
21−2ν

πB(ν, ν)

(1− z2
1 − z2

2)ν−1√
z2

1 + z2
2

Θ(1− z2
1 − z2

2). (5.20)

Plots of the scaling distribution fν(z1, z2) are shown in Fig. 5.1(c) and (d) for ν > 1 and ν < 1

respectively. For ν < 1, the distribution looks like a Mexican hat with algebraic divergences

both at the origin and at the boundary z2
1 + z2

2 = 1. On the other hand for ν > 1, the
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distribution goes to zero at the boundaries, while it still retains the algebraic divergence at

the origin.

The marginal distribution can be obtained by integrating Eq. (5.19) over one of the

coordinates. Integrating over y yields the scaling form,

P (x) =
1

r0
gν

(
x

r0

)
. (5.21)

The corresponding scaling function is given by,

gν(z) =
1

π
(1− z2)ν−

1
2 2F1

(
1

2
, ν, ν +

1

2
, 1− z2

)
Θ(1− z2), (5.22)

where 2F1(a, b, c, y) denote the Hypergeometric function.

The moments of the above distribution can be computed by using the series representation

of the hypergeometric function. The variance 〈x2〉 = r2
0/[2(2ν + 1)] and the kurtosis κ =

3(2ν − 3)/[2(2ν + 3)] obtained from Eq. (5.22) agree with the direct calculations of the same

(see Eq. (9.88)).

Figure 5.6(a) shows a very good agreement between Eq. (5.22) and numerical simulations

for small values ofDR. As seen in Fig. 5.6(a), the shape of the distribution near the boundaries

shows three qualitatively different behaviors. Indeed, it follows from Eq. (5.22) that the

behavior of the tails near z = ±1 undergoes a transition as a function of ν,

gν(z) ' 1

π
×



[
2(1− |z|)

]−(1/2−ν)
0 < ν < 1/2,

1 ν = 1/2,[
2(1− |z|)

]ν−1/2
ν > 1/2.

(5.23)

It is evident from the above equation that at the boundaries z = ±1, the marginal distribution

diverges for ν < 1/2, while it vanishes for ν > 1/2. We compare this theoretical prediction

with numerical simulations in Fig. 5.6(b) and find excellent agreement.

One distinctive feature of the scaling function in Eq. (5.22) is that, for all values ν, it has
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Figure 5.7: The central logarithmic divergence for the marginal stationary state distribution
in the passive-II phase. The symbols denote the scaled distribution obtained using numerical
simulations for γ = 10, µ = v0 = 1, while the solid red line indicates the analytical prediction
in Eq. (5.24). We see progressively better agreement for smaller values of DR.

a logarithmic divergence at the center,

gν(z) = −
Γ
(
ν + 1

2

)
π3/2Γ(ν)

[
log

(
z2

4

)
+ E + ψ(ν)

]
+O(z2), (5.24)

where Γ(ν) is the gamma function, E = 0.5772 . . . is the Euler-Mascheroni constant, and

ψ(ν) = Γ′(ν)/Γ(ν) is the digamma function. We illustrate the above small z behavior of

gν(z) and compare it with numerical simulation in Fig. 5.7. As expected, we find progressively

better agreement for smaller values of DR/µ for a fixed value of ν.

The divergence of fν(z1, z2) in Eq. (5.20) at the boundary z2
1 + z2

2 = 1 for ν < 1 is a

signature of activity, implying the accumulation of particles near the boundary. However,

this phase [see Fig. 5.1 (d)] is different from the active-I phase discussed earlier [see Fig. 5.1

(b)] marked by the presence of an additional central diverging peak. We refer to this phase

as active-II. On the other hand, the distribution has only a central peak for ν > 1, which

is characteristic of the passive phase. However, the diverging nature of the central peak

distinguishes this phase [see Fig. 5.1 (c)] from the usual passive-I phase [see Fig. 5.1 (a)]

discussed earlier. We refer to this phase as passive-II. Note that, the transition from active-II

to passive-II occurs at ν = 1/2 for the marginal distribution [see Eq. (5.23)], in contrast to

ν = 1 for the two-dimensional joint distribution.
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To further highlight the novel features of the passive-II phase in d = 2, we analyze the

position distribution (5.20) in the typical diffusive scaling limit of RTP, γ →∞ and v0 →∞

while keeping v2
0/γ = 2DRT fixed. This is equivalent to taking the limit ν → ∞ and z1,

z2 → 0, keeping z1
√
ν and z2

√
ν finite. This leads to the scaling form,

fν(z1, z2) = ν h
(
z1

√
ν, z2

√
ν
)
, (5.25)

and consequently, P (x, y) has the scaling form,

P (x, y) =
µ

2DRT
h

(
x

√
µ

2DRT
, y

√
µ

2DRT

)
. (5.26)

The corresponding scaling function is given by, h(w1, w2) = e−(w2
1+w2

2)/
√
π3(w2

1 + w2
2) with

{w1, w2} ∈ (−∞,∞).

While P (x, y) has the Boltzmann tail ∝ exp [−V (x, y)/DRT] with the potential V (x, y) =

µ(x2 + y2)/2, it has a novel algebraic divergence at the origin, unlike the passive-I case.

By integrating (5.26) over y, we get the marginal distribution P (x) =
√

µ
2DRT

q
(
x
√

µ
2DRT

)
,

where the scaling function q(w) =
∫∞
−∞ h(w,w′) dw′ is given by,

q(w) =
1

π3/2
K0

(
w2

2

)
exp

(
−w

2

2

)
. (5.27)

Here K0(z) is the zeroth order modified Bessel function of second kind and the normalization∫∞
−∞ q(w) dw = 1 is easily checked.

The asymptotic behavior K0(w2/2) ∼ exp(−w2/2) as w → ∞, leads to the Boltz-

mann distribution at the tails as expected. However, the small-w behavior K0(w2/2) =

−[log(w2/4) + E] +O(w4), leads to a logarithmic divergence,

q(w) = −[log(w2/4) + E] +O(w2), (5.28)

near the origin. This is in agreement with Eq. (5.24) for large ν and taking w = z
√
ν as the

scaling variable.
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Figure 5.8: The stationary marginal distribution in the passive-II phase in the scaling limit
γ → ∞, v0 → ∞ keeping DRT = v2

0/(2γ) finite, as a function of the scaled variable w =
x
√
µ/
√

2DRT. The symbols denote the data obtained from numerical simulations, while
the dashed red line corresponds to the scaling function given by Eq. (5.28). As expected,
departure from the predicted scaling behavior occurs for larger values of w and increases with
lower values of γ. We have used µ = 1, v0 = 10 and DR = 10−4.

5.2.4 Crossover from active-I to active-II

As discussed in Sec. 5.2.1, the scenario where µ−1 is the largest among the three time-scales

yields the passive-I phase. On the other hand, the complementary scenario where µ−1 is

the smallest time-scale, can lead to both active-I and active-II phases, as discussed earlier in

Secs. 5.2.2 and 5.2.3 respectively. It arises from the two limits of the Fokker-Planck equation

(5.14) in the rescaled time (µt): it leads to the active-I phase for γ/DR → 0, while for

DR/γ → 0, it gives the active-II phase. To understand the crossover from the active-I to the

active-II, as γ/DR is varied, we take recourse to numerical simulations and study the phase

diagram on the (γ, DR) planes for fixed values of µ.

We scan the (γ, DR) plane for a range of values of γ and DR at an interval of ∆γ =

∆DR = 0.05, and obtain the marginal stationary state distribution from simulation at these

points. To distinguish between the different phases, we numerically detect the existence of the

peaks near the origin and the boundaries. To detect if there is a peak away from the origin,

we check, whether, for some ε� r0, the first order finite difference ρ(x0)−ρ(x0−ε) is positive

for some x0 ∈ (0, r0) — suggesting ρ(x) increases with x, and thus, there is an accumulation

away from the origin. This is the signature of active phase. Now, to differentiate between

active-I and active-II, we further check the existence of an additional peak at the origin.
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This central peak is detected by monitoring the sign of the second order finite difference

ρ(−ε) + ρ(ε)− 2ρ(0) , where the negative sign corresponds to a maximum at the origin.
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Figure 5.9: The different phases in the (γ, DR) plane for µ = 10 (a) and µ = 2 (b). (a)
shows the phases active-I (green region) and active-II (orange region) detected numerically
using the procedure described in Sec. 5.2.4. This phase plane is schematically represented in
Fig. 5.2 (c). The passive phases appear for larger values of γ/µ and DR/µ, which is visible
(yellow region) in (b) for µ = 2.

We use this method with ε = 0.02 to obtain the phase diagram shown in Fig. 5.9, which

illustrates the transition (a) from active-I to active-II for µ = 10 and (b) between active and

passive phases for µ = 2. We make two observations from our numerically obtained phase

diagram. First, the boundary between the active-I and active-II phases is almost linear and

passes through the origin. Secondly, the cross-sectional area corresponding to the combined

active regions shrinks with increasing µ−1, thus implying a funnel-like surface. However, the

shape of the boundary between the active and passive phases suggest that the surface of the

funnel may have more complex structure than the simple schematic representation shown in

Fig. 5.2(a).

5.3 Summary

We studied the stationary state position distribution of a DRABP under a harmonic con-

finement. We find that the presence of two active time-scales leads to a richer stationary

state behavior compared to the previously known active particle models, like RTP and ABP

(both of which have a single active time-scale). We find that for DR � µ, the system always

relaxes to a Boltzmann-like distribution, for any γ, which we refer to as the passive-I phase.

On the other hand, for DR � µ, depending on the strength of γ relative to the two other
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parameters, we get three different phases: For γ � DR, an ABP-like active phase emerges

where the particle is most likely to be found near the circular boundary of radius v0/µ. This

is referred to as the active-I phase. For DR � γ < µ, a new active phase (active-II) emerges

which crosses over to a new passive phase (passive-II) for γ > µ. Both these new phases

are characterized by the presence of a non-Gaussian, diverging central peak of the position

distribution. However, the active-II is distinguished from the passive-II phase by the pres-

ence of the typical accumulation of probability density near the circular boundary. The exact

position distribution obtained analytically in the DR → 0 limit yields the exact transition

line in the (γ, µ−1) plane.
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Chapter 6

Effect of stochastic resetting on run-and-tumble

particles

An essential observable for active particles is the time it takes to search for a particular target,

such as a food source, a weak spot of the host, or toxins. From our everyday experience, a

natural tendency to optimize the search time is to return to the starting point after a period

of unsuccessful search and restart the search. This strategy is implemented in dynamical

processes by ‘stochastic resetting,’ where a dynamic process is intermittently stopped and

restarted from the initial starting position [8]. This has found applications in the biology,

economics and even social scienc [118, 119, 120]. Over the past decade, the effect of resetting

has been studied in many stochastic systems, the paradigmatic example being a Brownian

diffusive particle [121]. This simple process leads to a set of interesting behaviors including a

non-equilibrium stationary state, dynamical transition in the relaxation [122] to it as well as

a non-monotonic behaviour of mean first passage time [8, 123, 124, 125, 126]. Over the years

the effect of stochastic resetting on diffusion-like systems, like underdamped diffusions, Lévy

processes, random acceleration and diffusing diffusivity processes [127, 128, 129, 130, 131],

have gained great interest.

A very natural question is, what is the effect of resetting when the underlying dynamics

is active, instead of ordinary diffusion. In this chapter, we seek answers to this question by

studying introducing a stochastic resetting the the continuous two-dimensional RTP model,

introduced in Chapter 2. We consider an RTP in two dimensions starting from the origin,

with an orientation angle θ distributed uniformly ∈ [0, 2π]. At randomly chosen times ti

the RTP is reset back to the origin with the orientation also being reset to a random angle

in ∈ [0, 2π] with unifrom probability. We choose the reset times ti from an exponential
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distribution,

p(s) = α exp [−αs] , (6.1)

i.e., the RTP is reset at a constant rate α. Note that, the tumble dynamics of the RTP, which

also happens at a constant rate γ is independent of the resetting dynamics. Since the particle

is reset to the origin at a constant rate, it is expected that the particle would eventually reach

a stationary state. We study the stationary state position distribution of the RTP in Sec. 6.1,

and the approach to the stationary state in Sec. 6.2. In Sec. 6.3, we discuss the first-passage

properties of the RTP in presence of stochastic resetting. We summarize the results of this

chapter in Sec. 6.4.

6.1 Stationary State distribution

In this section, we will compute the long-time stationary position distribution of the RTP.

To this end it is important to note that the time evolution of the RTP under stochastic

resetting can be viewed as a renewal process, where the resetting events renew the process

at a rate α and between two successive renewal events, the particle undergoes free run-and-

tumble motion. So to investigate the position distribution of the RTP with resetting, we will

use a renewal equation technique instead of the usual Fokker-Planck approach used in the

remainder of the thesis. It turns out, that since we know the exact distribution of the RTP

in the absence of resetting, the renewal equation technique is much simpler.

For this resetting mechanism that we consider, it is straightforward to write a last renewal

equation for the position probability distribution,

Pα(~r, t) = e−αtP(~r, t) + α

∫ t

0
ds e−αs

∫ ∞
−∞

d~r′Pα(~r′, t− s)P(~r, s)

= e−αtP(~r, t) + α

∫ t

0
ds e−αsP(~r, s) (6.2)

where Pα(~r, t) denotes the probability distribution of the RTP in the presence of resetting,

while P0(~r, t) denote the same in the absence of resetting. The first term on the rhs of the

above equation corresponds to the situation where there are no resetting events during [0, t].
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The second term contains the contribution from all the trajectories where the last resetting

occurred at a time t − s. We have used the normalization condition of Pα(~r, t) in going

from the first line to the second line. In this chapter, we are particularly interested in the

marginal radial distributions Pα(r, t) =
∫ 2π

0 dφ rPα(~r, t) [where φ denotes the polar angle] in

the presence of the resetting. It is easy to see that the marginal radial distribution Pα(r, t)

also follow renewal equations of the same structure,

Pα(r, t) = e−αtP(r, t) + α

∫ t

0
ds e−αsP(r, s), (6.3)

where the distribution in the absence of resetting P(r, s) was already obtained in Chapter 2

[see Eq. (2.63)]. The stationary distribution is obtained by taking the t → ∞ limit in the

above equation, where the first term on the rhs goes to zero and we have,

Psα(r) =

∫ ∞
0

ds e−αsP(r, s) =
α

v0
e
−(α+γ) r

v0 +H(r) (6.4)

where H(r) =
αγr

v0

∫ ∞
r/v0

ds e−(α+γ)s
exp

(
γ
v0

√
v2

0s
2 − r2

)
√
v2

0s
2 − r2

(6.5)

where we have used the exact expression of P(r, s) from Chapter 2. Using two successive

variable transforms, y = v0s/r and ω = y − 1, it reduces to,

H(r) =
1

v0
e
−(α+γ) r

v0

∫ ∞
0

dω e
−(α+γ) rω

v0

exp
(
− rγ
v0

√
ω(ω + 2)

)
√
ω(ω + 2)

. (6.6)

This integral can be computed exactly by using the series expansion of the second exponential

in the integrand, and integrating each term separately thereafter. This exercise leads to an

exact expression for H(r) as a sum of an infinite series,

H(r) =

√
π

v0

∞∑
n=0

Bn
n!

(
γ

√
2r

(α+ γ)v0

)n
Kn

2

(
(α+ γ)r

v0

)
. (6.7)
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where, Kν(z) is the modified Bessel function of the second kind [94] and,

Bn =
sec nπ

2

Γ(1−n
2 )

=


1
π (n−1

2 )! for odd n

1√
π

n!
2n(n/2)! for even n.

(6.8)

Finally, we have the stationary radial distribution,

Psα(r) =
α

v0
e
−(α+γ) r

v0 +
αγ
√
πr

v2
0

∞∑
n=0

Bn
n!

(
2γ2r

(α+ γ)v0

)n
2

Kn
2

(
(α+ γ)r

v0

)
, (6.9)

where Bn is given by Eq. (6.8). Figure 6.1 (a) compares this prediction with the data obtained

from numerical simulations for Psα(r) for different values of α for a fixed γ; the solid lines

correspond to the analytical prediction Eq. (6.9), with the sum truncated after a few terms,

and the symbols correspond to the numerical simulation results. This Figure illustrates that

the series converges pretty fast, and can be used to compute stationary distribution at any r

to arbitrary accuracy.

It is interesting to look at the asymptotic behavior of Psα(r). Using the series expansion

of Kn
2
(z) near z = 0, we get, for small r,

Psα(r) =
α

v0
− αγ

v2
0

r ln r +
αγr

v2
0

(
γ ln

α

2v0
+ γ(ΓE + 1) + α

)
+O(r2 ln r), (6.10)

where ΓE is the Euler-Mascheroni constant. This is compared with the numerical simulations

in Figure 6.1(b).

Next we look at the large r behavior of the stationary state distribution. It is difficult to

extract the large r behavior directly from Eq. (6.9); instead we recast Eq. (6.6) in a different

form,

H(r) =
1

v0
e−(α+γ)r

∫ ∞
0

dω
e
− r
v0

Λ(ω)√
ω(ω + 2)

,

where Λ(ω) = (α + γ)ω − γ
√
ω(ω + 2). It is straightforward to check that Λ(ω) is a non-

monotonic function of ω with a minimum at ω0 = α+γ√
α2+2αγ

− 1. Thus, for large r, the above
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Figure 6.1: Plot of stationary state radial distribution P s
α(r) as a function of r, different

values of α and a fixed γ = 1. The symbols in both panels correspond to the data obtained
from numerical simulations. In (a), the solid black lines are from the numerical evaluation of
the series sum Eq. (6.9) keeping upto n = 60 terms while the red dashed lines represent the
large deviation function as given by Eq. (6.12). (b) shows the same distribution zoomed in
near r = 0 along with the theoretical prediction in Eq. (6.10) (solid black lines).

integral can be evaluated using saddle point method (See 9.8), which yields

H(r) ≈

(
2π

v0r
√
α2 + 2αγ

)1/2

exp

[
− r

v0

√
α2 + 2αγ

]
. (6.11)

Since this exponential decays much slower than the first term in Eq. (6.5), the large r behavior

of the radial distribution is dominated by this term, and we have,

Psα(r) ≈ αγ

v
3/2
0

(
2πr√

α2 + 2αγ

)1/2

exp

[
− r

v0

√
α2 + 2αγ

]
. (6.12)

This exponential decay for large r is compared with the results from numerical simulations

in Figure 6.1(a) which shows an excellent agreement.

It is interesting to compare the stationary state distribution obtained here with those

studied previously in the context of diffusion [124]. For a passive diffusive particle in d = 2,

it has been shown that the presence of stochastic resetting results into a radial distribution

which vanishes at the origin ∼ r ln r, while showing an exponential decay for large r. In

contrast, here we see that, the introduction of stochastic resetting to an underlying 2d RTP

dynamics leads to a finite value of the radial probability density at r = 0 [see Eq. (6.10)].

Physically, this difference can be understood form the following argument. The leading
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contribution to the radial position distribution near the origin comes from the trajectories

which undergo none or very few tumblings between two consecutive resetting events. For

example, the non-zero contribution at the origin comes from the first term of Eq. (2.63)

which is actually the position distribution of the free RTP in the short time active regime.

Such trajectories, with small number of tumblings carry the signature of the active nature

of the underlying system, which in turn shows up in the stationary state distribution in the

presence of resetting. On the other hand, the distribution decays exponentially, similar to a

Brownian particle, with a characteristic decay length
√
α2 + 2αγ. This exponent is identical

to the one obtained in Ref. [132] in the context of resetting of 1d RTP, and thus appears to

be robust in any dimensions.

It is useful to consider some special limiting scenarios.

� Diffusive limit: In the absence of resetting, the RTP dynamics reduces to ordinary

diffusion in the limit γ →∞, v0 →∞ but with a finite ratio
v20
2γ = Deff which plays the

role of an effective diffusion constant. It is easy to see that, in this limit, both the radial

and x-marginal distributions for the RTP reduce to the corresponding known results

for diffusive particles. For example, using the limit γ →∞, v0 →∞, and finite Deff in

Eq. (6.5) we have,

Psα(r) =
αr

2Deff

∫ ∞
0

ds

s
e−αs exp

(
− r2

4Deff s

)
=

αr

Deff
K0

(√
α

Deff
r

)
, (6.13)

which is identical to the result obtained in Ref. [124].

� Small flip rate γ → 0: In this limit the second term in the expression for the radial

distribution Eq. (6.5) goes to zero. Thus we find that the stationary state distributions

decay exponentially with a decay constant v0
α which is the mean distance traveled by

the particle between two consecutive resetting events when there are no flips.

It is also interesting to look how the system relaxes to the stationary state discussed

above.
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6.2 Relaxation to stationary state and position distributions

It is interesting to look at how the non-equilibrium stationary state as described in the

previous section is attained. In this section we look at how the radial and marginal position

distributions relax to the respective stationary state distributions.

We start from the renewal equation Eq. (6.3), using Eq. (2.63), we have the full time-

dependent radial distribution,

Pα(r, t) = e−(α+γ)tδ(r − v0t) +
γre−t(α+γ−γ

√
1−(r/v0t)2)

v2
0t
√

1− (r/v0t)2
+
α

v0
e−(α+γ)r/v0 +H(r, t) (6.14)

where,

H(r, t) =
αγr

v2
0

∫ t

r
v0

ds
e
−s

(
α+γ−γ

√
1−(r/v0s)2

)
s
√

1− (r/v0s)2
. (6.15)

To evaluate the integral in H(r, t), we make a change of variable s = tτ and obtain,

H(r = zv0t, t) =
αγzv0t

v2
0

∫ 1

z
dτ e−(α+γ)tτ

exp
[
γt
√
τ2 − z2

]
√
τ2 − z2

=
αγzv0t

v2
0

∫ 1

z
dτ e−tφ(z,τ) 1√

τ2 − z2
(6.16)

where z = r/v0t, (z ∈ [0, 1]) and φ(z, τ) = (α + γ)τ − γ
√
τ2 − z2. Now at very large t and

fixed z we can estimate H(r, t) by saddle point method (worked out in details in 9.8). The

dominant contribution to the integral comes from the minimum of φ(z, τ) at τ0 = z(α+γ)√
α2+2αγ

.

Now there can be two possibilities:

(I) τ0 < 1 : In this case the minimum of φ(z, τ) lies within the limits of integration (z, 1)

(note that τ0 is always greater than z). Thus for τ0 < 1,

H(r = zv0t, t) ≈
αγ
√
zv0t

√
π/2

v2
0(α2 + 2αγ)1/4

e−zt
√
α2+2αγ (6.17)

We drop the prefactors going forward as we are only interested in the behavior at the tails.
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Thus from Eq. (6.3) and Eq. (6.14), we have for the region τ0 < 1, i.e., for z <

√
α2+2αγ
α+γ ,

Pα(z, t) ∼ exp
[
−z t

√
α2 + 2αγ

]
(6.18)

Note that the third term on the rhs of Eq. (6.14) has been dropped as the corresponding

length scale v0
α+γ is much smaller than that in H(r, t) which is v0

√
α2 + 2αγ/(α+ γ).

(II) τ0 > 1 : The minimum of φ(z, τ) lies outside the limits of integration, the minimum

value of φ(z, τ) within the integration limits is at the boundary τ = 1.Thus the dominant

contribution to the integral comes from near τ = 1,

H(r = zv0t, t) ∼ e−(α+γ)t+γt
√

1−z2 . (6.19)

This is of the same order as the second term on the rhs of Eq. (6.14), which indicate to the

fact that this contribution physically correspond to the trajectories that have undergone none

or very few resettings until time t. So for the region τ0 > 1, i.e., z >

√
α2+2αγ
α+γ

Pα(z, t) ∼ exp
[
−(α+ γ)t+ γt

√
1− z2

]
(6.20)

Combining the above equations, we have, Pα(z, t) ∼ exp [−tψ(z)], with

ψ(z) =

{
z
√
α2 + 2αγ for z <

√
α2+2αγ
α+γ

(α+ γ)− γ
√

1− z2 for z >

√
α2+2αγ
α+γ .

(6.21)

Writing in terms of the original variable r = zv0t, this translates to,

Pα(r, t) ∼

{
e
− r
v0

√
α2+2αγ

for r < r0(t)

e−(α+γ)t+γ
√
t2−(r/v0)2 for r > r0(t).

(6.22)

where r0(t) =

√
α2+2αγ
α+γ t. Thus we see that at a large time t, the position distribution for the

region r < r0(t) is time independent and has the exact same form as the stationary state

large deviation function in Eq. (6.12), while for the region r > r0(t) the distribution is time

dependent. Since r0(t) is linear in t, the region which has reached stationary state grows

at a constant speed as shown in Figure 6.2(a). The relaxation of the position distribution
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Figure 6.2: Approach to the non-equilibrium stationary state: (a) Diagrammatic representa-
tion of how the relaxation occurs in the r−space; (b) Comparison of the numerical simulation
results with our analytical predictions for γ = 1 and α = 0.1. The symbols represent the
data obtained from numerical simulation and the solid black lines indicate the large deviation
form Eq. (6.12). The dashed magenta lines represent the transient part of the distribution as
given in Eq. (6.21) and Eq. (6.22) with proper prefactors(see 9.89). The main plot shows the
radial distribution; the dashed red vertical lines indicate r = r0(t) for two values of t = 10, 20.
The plot in the inset shows the distribution in terms of the scaled variable z, the dashed red

vertical line denotes z =

√
α2+2αγ
α+γ .

calculated from the numerical simulation is compared with the our results Eq. (6.22) in

Figure 6.2(b).

6.3 First Passage Properties

In this section we discuss the probability of survival of an RTP Sα(x0, t), starting from

a position (x0, 0) at t = 0 and undergoing stochastic resetting (by the same protocol, as

considered in the previous section), in the presence of an absorbing boundary at x = xabs. In

the context of a search process x = xabs is the target; and an event in which the RTP reaches

the line x = xabs corresponds to the searcher successfully locating the target.

Even in the absence of resetting, the exact calculation of the survival probability of an RTP

is difficult in dimensions greater than one because the orientation is a continuous variable.

However, for the special case x0 = xabs = 0 the survival probability S(0, t) of a d-dimensional

RTP was calculated in [62],

S(0, t) =
e−γt/2

2

[
I0

(
γt

2

)
+ I1

(
γt

2

)]
. (6.23)
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In the following, we use the above result to investigate the survival probability for a two-

dimensional RTP under resetting. We begin by writing down a renewal equation for the

survival probability Sα(x0, t) for the protocol of resetting the position of the particle to the

some point (xr, yr) and randomizing the orientation (velocity) at each reset event.

Sα(x0, t) = e−αtS(x0, t) + α

∫ t

0
ds e−αsS(xr, s)Sα(x0, t− s). (6.24)

where S denotes the survival probability without resetting. The first term on the RHS is

due to the trajectories which have not undergone resetting. The second term, on the other

hand, integrates over all those survived trajectories where the last resetting occurred at a

time t−s, which accounts for the factor αe−αs. We consider xabs = xr = 0. Taking a Laplace

transform, S̃α(x, s) =
∫∞

0 dt e−stSα(x, t), on both sides of Eq. (6.24) and setting the initial

position x0 = 0, we get,

S̃α(0, s) =
S̃0(0, α+ s)

1− αS̃0(0, α+ s)
. (6.25)

We are now in a position to use Eq. (6.23). Taking a Laplace transform t→ s, we have

S̃0(0, s) =
1√

s(γ + s)
. (6.26)

Putting this is in Eq. (6.25), we get the survival probability in s−space as

S̃α(0, s) =
1

s+
√

(s+ α)(s+ α+ γ)
. (6.27)

To invert the Laplace transform we need to write the corresponding Bromwich integral,

Sα(0, t) =
1

2πi

∫ c+i∞

c−i∞
ds

est

s+
√

(s+ α)(s+ α+ γ)
(6.28)

where c is chosen such that all the singularities of the integrand lie to the left of the line

Re[s] = c. Clearly, the above integral involves a branch-cut along the real s-axis in addition
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to a simple pole at s = −α(γ+α)
2α+γ . Taking into account all the contributions, we finally have,

Sα(0, t) =
2α(γ + α)

(γ + 2α)2
e
−α(γ+α)

2α+γ
t
+
e−αt

π

∫ γ

0
du

e−ut
√
u(γ − u)

α2 + (2α+ γ)u
(6.29)

The second term involves a convergent integral, which unfortunately does not yield any closed

form solution. If we write the numerator of the second term as an infinite series and do the

u−integral we have the full survival probability as,

Sα(0, t) =
2α(γ + α)

(γ + 2α)2
e
−α(γ+α)

2α+γ
t
+
e−(α+γ)tγ2

2α2
√
π

∞∑
n=0

(
2γ(α+ γ)

α2

)n
Γ

[
n+

3

2

]
1F̃1

[
3

2
, n+ 3, γt

]
(6.30)

where 1F̃1 [a, b, z] is the regularized Kummer function [94]. Using the asymptotic expansion

of 1F̃1 [a, b, z] for small z, [94] we have for small t,

Sα(0, t) =
1

2
− 1

8
(2α+ γ)t+O(t2) (6.31)

At t = 0, the survival probability has the expected value 1
2 , since we start with uniform initial

conditions (i.e., the initial orientation is chosen uniformly from [0, 2π]). Again for large t, we

can use the asymptotic expansion of 1F̃1 [a, b, z] for large z [94]. This yields for large t

Sα(0, t) =
2α(γ + α)

(γ + 2α)2
e
−α(γ+α)

2α+γ
t
+O(e−αt). (6.32)

Thus, at large times the survival probability decays as,

Sα(0, t) ∼ exp

[
−α(γ + α)

2α+ γ
t

]
. (6.33)

Equation Eq. (6.29) is compared to numerical simulations in Figure 6.3(a). They show

excellent match.

A related observable is the first passage time, which is the time at which the particle

reaches x = xabs for the first time. The corresponding first passage probability Fα(x0, t)dt

denotes the probability that the particle, starting at x = x0 is absorbed at x = xabs during
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Figure 6.3: Plot for xabs = xr = 0. (a) Survival probability: Colored points denote results
obtained from numerical simulation, while solid black lines correspond to Eq. (6.29). (b)
Mean first passage time: Colored points denote results obtained from numerical simulation,
while solid black lines correspond to Eq. (6.35).

the time interval [t, t+ dt]. It is the time derivative of survival probability.

Fα(x0, t) = − ∂

∂t
Sα(x0, t) (6.34)

The mean first passage(MFPT) time is defined as the mean time taken to be absorbed and

is thus given by,

Tα(x0) =

∫ ∞
0

dt tFα(x0, t) =

∫ ∞
0

dt Sα(x0, t), (6.35)

where, to obtain the second equation, we have used Fα(x0, t) from Eq. (6.34) and then

performed an integration by parts. We also used the fact that Sα(x0,∞) → 0. The RHS of

equation Eq. (6.35) is actually the Laplace transform S̃α(x0, s = 0). For x0 = 0 we can use

Eq. (6.27) to get the MFPT. Thus we have,

Tα(0) =
1√

α(α+ γ)
(6.36)

This diverges as α → 0 and decreases monotonically with α. This is due to the fact that

every time we reset the particle back to the origin its orientation is chosen uniformly between

[0, 2π], so the probability that it gets absorbed at a reset event is always half. The result

obtained in Eq. (6.36) is compared with numerical simulations in 6.3(b).

It is interesting to see what happens when we push the absorbing boundary parallel to
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Figure 6.4: Plot for xabs = −0.1 and xr = 0: (a) Survival probability: Colored points
denote results obtained from numerical simulation, black dashed line are the exponential
tails as denoted by Eq. (6.33). (b) Mean first passage time: Colored points are obtained from
numerical simulation. The existence of a minimum in all the curves clearly indicate the fact
that the mean first passage time is minimized for an optimal value of the resetting rate α.

y-axis to some negative x (i.e., xabs < xr = 0). The problem with solving the backward

FP equation does not allow us to analytically find how the survival probability will change

in that case. However numerical simulations with small negative xabs indicate interesting

results. Figure 6.4(a) suggests that the decay of the survival probability at large times is

still exponential with the same decay exponent α(γ+α)
2α+γ as in Eq. (6.33). The mean first

passage time on the other hand shows a non-monotonic behavior with the resetting rate,

Figure 6.4(b). Staring from α = 0, Tα first decreases, reaches a minimum and then goes

up again. This is shown in Figure 6.4(b). This can be explained in the context of a search

process as follows. In the absence of resetting the time taken by the RTP to find the target

x = −|xabs| is infinite, however as we increase the resetting rate α to the origin, the RTP

comes back to the origin and starts a fresh search. The probability that it finds the target

increases and the mean time becomes finite. But if we keep on increasing α, then the RTP

resets even before it can reach the target, thus the mean first passage time increases. This

suggests that if an RTP undergoes resetting and the resetting position and the absorbing

boundary are different then there is an optimal resetting rate at which the mean first passage

time is minimized.
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6.4 Summary

In this chapter we discussed the effect of stochastic resetting on an RTP in two spatial

dimensions: the RTP starts from the origin with some random orientation in [0, 2π] and at

a constant rate restarts the process with the same initial conditions. A stationary state is

attained in the long time limit. We calculate the exact stationary state distribution which

has exponentially decaying tails, similar to a passive Brownian particle, albeit with a different

decay length. The behavior of the stationary distributions near the origin is governed by the

activity where we see a non-vanishing probability density for the radial distribution. There

is also a dynamical transition in relaxation to this stationary state—at a finite time, there

is a domain in space inside which the stationary has been attained while regions outside it

are still time-dependent. We show that the boundary of this domain propagates linearly

with time, so at very large times we expect the distribution to attain stationary-state. The

presence of stochastic resetting is known to non-trivially change the first passage properties

of diffusion processes. In this chapter, we show how the survival probability of the RTP

in the presence of an absorbing boundary changes when stochastic resetting is introduced.

In particular, we investigate two scenarios, (i) when the particle is reset to a position very

close to the absorbing boundary, and (ii) when the resetting position is a finite distance away

from the absorbing boundary. We calculate the survival probability and show that it decays

exponentially at large times. We also discuss the dependence of the mean first passage

time on the resetting rate. We show that when the resetting position coincides with the

absorbing boundary position, the MFPT monotonically decreases with increasing resetting

rate, irrespective of the value of the flipping rate. On the other hand, when the particle is

reset to some position away from the absorbing boundary, the MFPT shows a non-monotonic

behavior; it reaches a minimum at an optimal resetting rate.
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Chapter 7

Active reservoirs: microscopic model and energy

transport

We have seen that the effective motion of a colloidal particle in an equilibrium medium can

be modeled by a Langevin equation with a constant dissipation and δ-correlated noise. What

happens if the medium is nonequilibrium, for example, made up of active particles? It turns

out that such nonequilibrium reservoirs exhibit many unusual features compared to equilib-

rium thermal ones. For example, tracer particles immersed in such reservoirs exhibit many

unusual features including violation of the equilibrium fluctuation relations, emergence of

negative friction, modification of equipartition theorem and anomalous relaxation dynamics.

At this point, a natural and obvious question is to ask, what happens to the energy transport

through an extended system when it is connected to active reservoirs at the two ends in-

stead of the usual thermal reservoirs, where energy always flows from the hotter to the colder

reservoir. In this chapter, we first study the dynamics of a tracer particle whose position is

coupled to those of overdamped active particles via harmonic springs. In the later part of

this chapter, we ask the question of activity driven energy transport in a simple setting—an

ordered chain of harmonic oscillators connected to two active reservoirs at the two ends.

The chapter is organized as follows: In Sec. 7.1, we compute the reduced dynamics of

a tracer coupled to active particles. In Sec. 7.1, we introduce a simple set-up to study the

activity driven energy transport. In Secs. 7.3 and 7.4, we discuss the average stationary

current flowing through the system and average kinetic temperature profile of the system in

the stationary state. We summarize our results in Sec. 7.5.

7.1 Active reservoir model

Let us consider a particle of mass M coupled elastically to N active particles via isotropic

harmonic springs of spring constant k each. The model is inspired by the famous Caldeira-
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Leggett model, used to study quantum Brownian motion [133, 134]. Moreover, more compli-

cated non-quadratic interactions can be well approximated by harmonic interactions near the

equilibrium (minima of the interaction potential). In this chapter, we consider the dynamics

along one direction only; however, generalization to higher dimensions is straightforward.

The equations of motion of the combined system are given by,

Mẍ(t) = −k
∑
i

(
x(t)− yi(t)

)
(7.1)

ẏi(t) = −λ
(
yi(t)− x(t)

)
+ u(t) i = 1, 2 . . . , N (7.2)

where x denotes the tracer displacement while yi denotes the displacement of the ith active

particle; λ is the spring constant scaled by the damping coefficient; and u(t) denotes the

propulsion velocity of the active particles. The formalism discussed below, holds for any

microscopic realization of the propulsion velocity. We will first derive the equations of motion

of the tracer by explicitly integrating out the environmental degrees of freedom yi(t). To this

end, we first note that the equation of motion of the bath particles Eq. (7.2) are ordinary

first order linear differential equations with inhomogeneous terms. It has a general solution,

yi(t) = yi(0)e−λt + e−λt
∫ t

0
ds eλs

(
λx(s) + u(s)

)
, (7.3)

where λ = k/γ. Putting Eq. (7.3) in Eq. (7.1), we get,

Mẍ(t) = ke−λt
∑
i

yi(0)−N
[
kx(t)− kλe−λt

∫ t

0
dseλsx(s)− ke−λt

∫ t

0
dseλsu(s)

]
(7.4)

Defining m = M/N as a reduced effective mass, we get,

mẍ(t) = ke−λt
∑

i yi(0)

N
− kx(t) + kλe−λt

∫ t

0
ds eλsx(s) + ke−λt

∫ t

0
ds eλsu(s). (7.5)

Thus, the effective dynamics of the tracer depend on the initial condition of the bath particles

in the form of a time-dependent velocity that decays exponentially and hence does not affect

the long time dynamics of the tracer. Moreover, if we consider that the bath particles are

isotropically distributed in the medium, then in a suitable coordinate system, the contribution
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of the first term on the right-hand side of the above equation can always be taken to be zero.

Thus, we have,

mẍ(t) = −kx(t) + kλe−λt
∫ t

0
ds eλsx(s) + ke−λt

∫ t

0
ds eλsu(s). (7.6)

Performing an integration by parts on the second integral on the rhs of the above equation,

we arrive at a generalized Langevin equation for the tracer dynamics,

mẍ(t) = −
∫ t

0
dsΓ(t− s) ẋ(s) + f(t), (7.7)

where

Γ(τ) = ke−λτ (7.8)

denotes the memory kernel and

f(t) = k

∫ t

0
ds e−λ(t−s)u(s) (7.9)

denotes the effective noise experienced by the tracer. Note that, since the environmental par-

ticles are treated effectively as independent, it is sufficient to consider the coupled dynamics

of only one active or passive particle with the tracer.

To find the autocorrelations of this effective noise f(t), we need to consider some mi-

croscopic model for u(t).As we have discussed in chapter 4, all the popular active particle

models have an exponential autocorrelation in the stationary state. Accordingly, we choose

u(t) such that it has a zero mean and exponential autocorrelation,

〈u(t)u(t′)〉 = v2
0 exp

(
−α|t− t′|

)
. (7.10)

Using Eq. (7.9) it follows that the effective noise autocorrelation of the tracer is given by the

double integral,

〈f(t)f(t′)〉 = k2 e−2λt

∫ t

0
ds1

∫ t′

0
ds2 e

λ(s1+s2) 〈u(s1)u(s2)〉 . (7.11)
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Upon doing the integrals with the explicit form of the correlations Eq. (7.10), we finally get

(for α 6= λ),

〈f(t)f(t′)〉 =
v2

0k
2

λ2 − α2

[
e−α|t−t

′| − α

λ
e−λ|t−t

′| − e−(λt+αt′) − e−(λt′+αt) +
(α− λ)

λ
e−λ(t+t′)

]
.

(7.12)

The above expression again clearly indicates a violation of FDT. Moreover at finite times,

larger than the α−1 and λ−1, the last two terms in the above equation go to zero and the

effective noise correlation reduces to,

〈f(t)f(t′)〉 =
v2

0k
2

α2 − λ2

[α
λ
e−λ|t−t

′| − e−α|t−t′|
]

=
αkv2

0

λ(α2 − λ2)
Γ(|t− t′|)− v2

0k
2

α2 − λ2
e−α|t−t

′|.

(7.13)

This is the modified Fluctuation dissipation relation followed by a tracer elastically coupled

to an active environment. For α = λ, one needs to do the integrals in Eq. (7.11) starting

with α = λ. The stationary noise correlation in that case is given by,

〈f(t)f(t′)〉 =
v2

0k
2

2λ
|t− t′| e−λ|t−t′| (7.14)

It is important to note two limits of Eq. (7.13):

� Large spring constant (k, λ� α): In this limit the noise correlation Eq. (7.13) reduces

to,

〈f(t)f(t′)〉 = a2
0e
−α|t−t′|, (7.15)

where a0 = v0k/λ.Additionally, in this limit, the memory kernel Eq. (7.8) also reduces

to a delta function,

Γ(τ) ≈ γδ(τ), (7.16)
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which leads to the effective equation motion of the tracer to be,

mẍ(t) = −γẋ(t) + f(t). (7.17)

where f(t) is just an exponentially correlated colored noise, the same as the autocorre-

lation time as that of the active particles of the environment. The form of Eq. (7.17)

has been used in previous works [135, 136, 16], the emergence of the same from a micro-

scopic model of active environment justifies these phenomenological models. Moreover,

Eq. (7.17) is familiar with the equation of standard underdamped active particles. [87].

Usually, a problem for studying single active particle trajectories is that the active

particles are small in size and have a finite lifetime. The result, that, the motion of a

tracer particle in an environment of active particles emulates the motion of those active

particles, might be of great help to the experimentalists studying single active particle

trajectories.

� Passive limit: This limit corresponds to α → ∞, v0 → ∞, such that Deff = v2
0/(α) is

finite. Putting these limits in the noise correlation Eq. (7.12), we obtain an effective

passive limit of the active environment,

〈Ωa(t)Ωa(t′)〉 = KBTeffΓ(t− t′) +KBTeff e
−λ(t+t′), (7.18)

where we the effective temperature is given by, Deff = KBTeff/γ. The above equation

in the stationary state reduces to the well-known equilibrium form of the FDT,

〈Ωa(t)Ωa(t′)〉 = KBTeff Γ(t− t′). (7.19)

Next we will discuss the transport properties of an extended system connected to active

reservoirs. The usual theoretical attempts to study transport properties often rely on the

study of simple, yet analytically tractable model systems. A paradigmatic example is a chain

of harmonic oscillators connected to thermal reservoirs of different temperatures at the two

ends, first studied by Rieder, Lieb, and Lebowitz (RLL) in a seminal work. They showed

that this system reaches a nonequilibrium stationary state carrying a thermal current, which
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is proportional to the temperature difference of the thermal reservoirs and survives in the

thermodynamic limit. They also found that the average kinetic temperature profile of the

oscillators is flat in the bulk and is given by the arithmetic mean of the reservoir temperatures.

Having understood the behavior of Hamiltonian particles connected to active particles, we

study the problem of ‘activity driven transport’ in the next section using a setup similar to

the RLL model.

7.2 Model for studying active transport

We consider a one-dimensional chain of N particles with fixed boundary conditions, each

with mass m, connected by harmonic springs of stiffness k, attached to two different active

reservoirs at the boundaries [see Fig. 7.1]. This setup is similar to the famous Reider-Lieb-

Lebowitz (RLL) model, where the end particles of the chain were connected to equilibrium

thermal reservoirs. For simplicity, we consider the active reservoirs to be modeled by a single

overdamped active particles with exponentially decaying autocorrelation. We also assume

the strong coupling limit Eq.(7.17) for the coupling between the end particles of the chain to

the active reservoir, so that the coupling to the active reservoir can be modeled by including

a stochastic force on the boundary particle. The equations of motion for xl, the displacement

of the l-th particle from its equilibrium position, read,

mẍ1 = −k(2x1 − x2)− γ ẋ1 + f1(t), (7.20a)

mẍl = −k(2xl − xl−1 − xl+1), ∀ l ∈ [2, N − 1], (7.20b)

mẍN = −k(2xN − xN−1)− γ ˙xN + fN (t), (7.20c)

where the fixed boundary conditions imply x0 = 0 = xN+1 and f1,N (t) are independent

stationary colored noises with autocorrelation, 〈fj(t)fl(t′)〉 = δjl a
2
j exp(−|t − t′|/τj), where

aj denotes the strength of the noise and the correlation-time τj is a measure of the activity.

As a specific example, we consider the dichotomous noise

fj(t) = ajσj(t), (7.21)
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Figure 7.1: Schematic representation of a chain of oscillators connected to two nonequilibrium
reservoirs which exert active forces f1,N (t) on the boundary oscillators.

where σj alternates between ±1 at a constant rate αj , giving rise to an exponential correlation

with τj = 1/(2αj).

If we wait for long enough times, the chain eventually reaches a stationary state. In

this chapter, we compute the average energy current flowing through the system and kinetic

temperature profile in the stationary state. To this end, we first rewrite Eqs. (7.20) as,

MẌ(t) = −ΦX(t)− Γ Ẋ(t) + F (t), (7.22)

where X(t) = {xl(t); l = 1, . . . , N} is a vector and M is an N -dimensional diagonal matrix

with Mlj = mδl,j . Moreover, Γ and Φ are N -dimensional matrices given by

Γlj = γ(δl,1δj,1 + δl,Nδj,N ),Φlj = k (2δl,j − δl,j−1 − δl,j+1) .

Finally, Fj = f1(t)δj1 + fN (t)δjN is a vector.

We are interested in the solution of Eq. (7.22) in the stationary state, which is most conve-

niently obtained by taking a Fourier transform with respect to time, X̃(ω) =
∫∞
−∞ dt e

iωtX(t).

This leads to,

X̃(ω) = G(ω)F̃ (ω), (7.23)

where F̃ (ω) is the Fourier transform of F (t) and

G(ω) = [−Mω2 + Φ− iω(ΓL + ΓR)]−1
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=


−mω2 + 2k − iωγ −k 0 · · ·

−k −mω2 + 2k −k · · ·
...

...
. . . · · ·

0 · · · −k −mω2 + 2k − iωγ



−1

.(7.24)

Inverting the transform, we get from Eq. (7.23),

X(t) =
1

2π

∫ ∞
−∞

dω e−iωtG(ω)F̃ . (7.25)

To compute the steady state energy current and kinetic temperature profiles, we need the

autocorrelation of fj(t) in the Fourier-space,

〈f̃j(ω)f̃l(ω
′)〉 = 2πδjlδ(ω + ω′)g̃(τj , ω). (7.26a)

Here g̃(τj , ω) =
2a2jτj

1+ω2τ2j
denotes the spectral density of the active force from the jth reservoir,

which clearly is a Lorentzian with corner frequency τ−1
j .

7.3 Stationary energy current

Our primary observable of interest is the average energy current flowing through the system,

which can be most conveniently expressed as [137],

Jact ≡ 〈J (t)〉 =
〈
ẋ1[−γẋ1 + f1(t)]

〉
, (7.27)

where J (t) denotes the instantaneous current and the average is taken in the NESS. Using

the solution Eq. (7.25), the stationary current defined in Eq. (7.27) comes out to be [see see

Appendix. 9.9 for details],

Jact = γ

∫ ∞
0

dω

π
ω2|G1N (ω)|2

[
g̃(τ1, ω)− g̃(τN , ω)

]
, (7.28)

where g̃(τj , ω) contains information about the reservoir activity. Equation (7.28) is a Landauer-

like formula, where the Lorentzian reservoir spectra g̃(τj , ω) couples to the phonon transmis-

sion coefficient ω2|G1N (ω)|2. To compute the currents explicitly we need G1N (ω), which
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Figure 7.2: Activity induced current Jact vs τ1 for different values of τN and γ = 1 = m =
a1 = aN and k = 2; symbols indicate the data obtained from numerical simulations with
N = 64 oscillators and the solid black lines indicate the analytical prediction Eq. (7.30). The
red crosses mark the non-trivial current reversal points and τm indicates the value of the
activity for Jact is maximum.

is obtained by exploiting the tridiagonal structure of G−1(ω) [138, 139, 140, 141]. We are

particularly interested in the thermodynamic limit N → ∞, where G1N (ω) vanishes expo-

nentially outside the phonon band |ω| > ωc = 2
√
k/m [139]. In that limit, we show that, the

contribution from the j-th reservoir (j = 1, N) is given by [see Appendix. 9.9 for details],

γ

∫ ∞
0

dω

π
ω2|G1N (ω)|2g̃(τj , ω) =

∫ π

0

dq

π

mka2
jτj sin2 q

[mk + 2γ2(1− cos q)][m+ 2kτ2
j (1− cos q)]

,(7.29)

where ω and q are related by mω2 = 2k(1− cos q). Computing the q-integral and combining

the contributions from both the reservoirs, we get the active current flowing through the

system in the thermodynamic limit,

Jact =
m

2γ2
(a2

1 E1 − a2
N EN ) with,

Ej =

τ2
j k

2

[√
1 + 4γ2

mk − 1

]
+ γ2

[
1−

√
1 +

4kτ2j
m

]
2τj(τ2

j k
2 − γ2)

. (7.30)

Figure 7.2 shows a plot of the predicted Jact as a function of the left reservoir activity τ1

for a set of different values of τN . This shows an excellent match with the current measured
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(a) (b)

Figure 7.3: (a) Plot of the phonon transmission coeffcient ω2|G1N (ω)|2 in the N →∞ limit
[see Eq. (9.124)] and the reservoir spectrum g̃(τ, ω) [see Eq. (9.106)] for τ = 0.5 as functions
of ω. (b) Plot of the single reservoir transmission coefficient ω2|G1N (ω)|2g̃(τ, ω) vs ω for
different values of τ . Here we have taken m = 1, k = 2 and γ = 1.

from numerical simulations with a chain of oscillators driven by the dichotomous noise given

in Eq. (7.21). The figure illustrates some remarkable features of the active current: (i) Jact

exhibits a non-monotonic behavior as the activity of either of the reservoirs is changed, giving

rise to a negative differential conductivity and (ii) the current reverses its direction as the

activity of one of the reservoirs, say τ1, is changed at a non-trivial value τ∗1 6= τN . In the

following, we discuss these two remarkable features in details.

Negative differential conductivity

The active current shows a non-monotonic behavior—as τ1 is increased, Jact initially increases

until reaching a maximum value after which it starts to decrease. This non-monotonic be-

havior implies that the differential conductivity χj = dJact
dτj

, which is nothing but the linear

response of the current to a small change in the activity of the j-th reservoir, becomes nega-

tive in some parameter regimes. It is clear from Eq. (7.30) that this non-monotonic behavior

is inherent to the individual contributions from both the reservoirs — if τN is increased,

keeping τ1 fixed, a similar behavior is seen where the current first decreases and then starts

to increase. The existence of this non-monotonic behavior becomes qualitatively clear by

looking at the frequency spectrum of the reservoir g̃(τ, ω). From Eq. (7.26a), it is clear that

g̃(τ, ω) is a Lorentzian, peaked around ω = 0 with width ∼ τ−1. On the other hand, the
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phonon transmission coefficient ω2|G1N (ω)|2 is peaked around the characteristic frequency

ωc = 2
√
k/m, with a minimum at ω = 0 [see Fig. 7.3(a)]. Consequently, the overlap of the

system transmission coefficient and the reservoir spectra changes non-monotonically as τ is

changed, reaching a maximum at some intermediate value of τ−1 ∈ [0, ωc] [see Fig. 7.3(b)].

This, in turn, gives rise to the non-monotonic behavior of Jact, which shows a maximum

(minimum) as τ1 (τN ) is varied. In fact, it can be easily seen from Eq. (7.30) that for large

k, the current is maximum at a value of τ1 = τm ∝ ω−1
c .

Current reversal

There is another, more striking, behavior induced by the presence of the active driving,

namely, reversal of the direction of the current. We see from Fig. 7.2, that for any given

τ1, Jact reverses its direction twice—once (trivially) at τ1 = τN and again at another value

τ1 = τ∗1 which depends non-trivially on τN . For a fixed τN , Jact begins with a negative value

(energy flowing from right to left reservoir) for τ1 = 0, which becomes positive (energy flowing

from left to right reservoir) with increase in τ1. However, on increasing τ1 further, the current

again reverses its direction and becomes negative. Mathematically, this additional reversal

can be understood from the observation that for a fixed value of τN , E1 → 0 for both τ1 → 0

and τ1 →∞ [see Eq. (7.30)], and consequently Jact has the same negative value at these two

limits. Now, since Jact must reverse sign at τ1 = τN , an additional reversal is required to

reach the limiting negative values. A similar scenario is observed when τN is changed keeping

τ1 fixed, as expected from the symmetry of the system.

This behavior is illustrated in Fig. 7.4; panel (a) shows a three-dimensional plot of Jact on

the (τ1, τN ) plane, while Fig. 7.4(b) shows the two-dimensional projection of (a) indicating

the regions Jact > 0 and Jact < 0. For any given τN , the current reverses its direction at

τ1 = τN and another non-trivial point τ1 = τ∗1 (τN ). The latter is given by the non-trivial

solution of a2
1E1(τ1) = a2

NEN (τN ). Similarly, for any given τ1, the current reversal occurs at

τN = τ1 and τ∗N (τ1) [indicated by the solid red curve in 7.4(b)]. Interestingly, the intersection

of the curves τ1 = τN and τ1 = τ∗1 (τN ) denoted by τ1 = τN = τ̄ is a saddle point, as can be

seen from Fig. 7.4(a). The current does not change direction when one passes through the

saddle point—for τN = τ̄ , the current remains negative for all values of τ1 6= τN , while for
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Figure 7.4: (a) Three dimensional plot of Jact on the (τ1, τN ) plane: the meshed orange surface
denotes Jact given by Eq. (5) in the main text, while the un-meshed, semi-transparent blue
surface corresponds to Jact = 0. The curves formed by intersection of these two surfaces give
the locus of the zeros of the active current, the intersection of these two curves are denoted
by τ1 = τN = τ̄ , which clearly is a saddle point of Jact. Jact > 0 in the region above the blue
surface, while Jact < 0 in the region below the blue surface. (b) Two dimensional projection
of (a) showing phase diagram of Jact in the (τ1, τN ) plane—: The light blue (green) shade
indicates the region where the active current is negative (positive). The continuous red curve
shows τ∗N as a function of τ1 whereas the dashed curve indicates the line τN = τ1.

τ1 = τ̄ , the current remains positive for all values of τN 6= τ1.

NDC and current reversal have been observed in certain nonequilibrium systems with non-

linearity, presence of obstacles or kinetic constraints [142, 143, 144, 145, 146]. Surprisingly,

the dynamical active driving here gives rise to both features even in a linear chain.

7.4 Kinetic temperature

In this section we will discuss the average kinetic energy of the chain oscillators defined by,

T̂l = m〈ẋ2
l 〉. (7.31)

It is well-known that T̂l provides a way to define a local ‘temperature’ for driven oscillator

chains [147, 9]. In this case, using Eq. (7.25), we get,

T̂l = m

∫
dω

2π
ω2
[
|Gl1(ω)|2g̃(τ1, ω) + |GlN (ω)|2g̃(τN , ω)

]
. (7.32)
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Figure 7.5: (a) The kinectic temperature profile T̂l for τ1 = 1 and different values of τN
measured from simulations with a chain of N = 64 oscillators driven by the active noises
(7.21). The dashed black lines show the predicted bulk temperature (7.33). (b) Comparison
of Jact (solid lines) with the expected current for ‘effective’ temperature gradient T1 − TN
(dashed lines) for two different values of τN . Here m = 1, k = 1, γ = 1 and a1 = aN = 1.

The matrix elements can again be computed exploiting the tridiagonal structure of G−1(ω).

Performing a similar calculation as before [see Appendix. 9.10 for details], we find that, in

the thermodynamic limit N → ∞, the steady state temperature profile is flat in the bulk,

accompanied by exponentially decaying boundary layers. The bulk temperature T̂bulk can be

obtained explicitly, and is given by

T̂bulk =
1

2
(T1 + TN ), with Tj =

a2
jτj

γ
√

1 + 4τ2
j k/m

. (7.33)

The predicted value of bulk temperatures for a fixed τ1 and different values of τN are plotted

in Fig. 7.5(a) along with numerical simulations performed with the active force given in

Eq. (7.21); the excellent agreement validates our prediction. Interestingly, boundary kinks

in the T̂l profile, which are generically present for coupling with thermal reservoirs [148], are

absent here.

The form of Eq. (7.33) raises a possibility of associating an effective temperature Tj to

the j-th active reservoir. At first glance, this identification also appears to be consistent

with a ‘zeroth law’ — when τ1 = τN , i.e., T1 = TN , the bulk of the system is at the same

‘temperature’ as the reservoirs. However, such an interpretation is not acceptable for several

reasons. First, note that the kinetic temperatures of the boundary sites T̂1,N remain different
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from T̂bulk giving rise to a boundary layer even when τ1 = τN [see Fig. 7.5(a)] which is absent

for ordinary equilibrium reservoirs. Moreover, the stationary active current (7.30) is very

different than the energy current which would have been generated if the system were con-

nected to thermal reservoirs of temperatures T1 and TN at the two ends. This is illustrated

in Fig. 7.5(b) which shows neither current reversal nor any NDC in the ‘effective’ thermal

scenario. However, the effective temperature picture becomes viable in the limit of small

activity, which we discuss next.

Passive limit- It is well known that active systems show an effective passive behavior in the

limit of vanishing correlation time [10, 56, 11]. Similarly, in our case, when τj → 0, the active

force fj(t) resembles a white noise with effective correlation 〈fj(t)fj(t′)〉 → a2
jτjδ(t− t′). In

this limit, the active forces in Langevin Eqs. (7.20) can be thought of representing thermal

reservoirs with effective temperatures a2
jτj/γ and satisfying FDT. The well known results

of the RLL model are expected to be recovered in this ‘thermal’ limit. Indeed we see from

Eq. (7.33) that when the active time-scales are much smaller than the coupling time-scale,

i.e., τ1, τN �
√
m/k, the kinetic temperature associated with the reservoirs T eff

j ' a2
jτj/γ

are consistent with the thermal picture. Moreover, in this limit, it can be easily seen from

Eq. (7.30) that,

Jact =
k(T eff

1 − T eff
N )

2γ

[
1 +

mk

2γ2
− mk

2γ2

√
1 +

4γ2

mk

]
+O(τ2

j ), (7.34)

which is the same as the well-known form of the thermal current [147, 139] to leading order

in τ1, τN . This can also be seen from Fig. 7.5(b) where Jact converges to the effective thermal

current for τ1, τN �
√
m/k.

7.5 Summary

In summary, we studied a simple model where the reduced dynamics of a tracer coupled to

active particles can be obtained exactly by integrating out the active degrees of freedom. We

find in that in the strong coupling limit, the active particles, exert exponentially correlated

143



CHAPTER 7. ACTIVE TRANSPORT

stochastic force and a constant dissipation on the probe. Then we study the transport

properties of a harmonic chain coupled to two active reservoirs. For simplicity, we take the

active reservoirs to be single active particles with different activities τ1 and τN coupled to the

end particles of the harmonic chain in the strong coupling limit. We find that the active drive

leads to some novel features in the average stationary current flowing through the chain—(i)

changes non-monotonically as the activity of the reservoirs are changed, leading to a negative

differential conductivity (NDC), and (ii) exhibits an unexpected direction reversal at some

finite value of the ac- tivity drive. We also compute the kinetic temperature profile of the

chain oscillators, which, similar to the thermally driven scenario, remains uniform in the bulk

of the system. However, we show that inspite of this resemblance, an effective temperature

picture cannot be consistently built.
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Conclusion

Active particles form a class of nonequilibrium systems that are used to describe the dy-

namics of microorganisms like bacteria. Such dynamics, though random, are fundamentally

different from passive Brownian particles as they show a persistent motion along some pre-

ferred direction. The nature of this persistent dynamics, again, varies among the different

classes of organisms and is modeled by a correlated, stochastic propulsion velocity that drives

the system. The correlated structure of the propulsion velocity makes the position evolution

a non-Markovian process. Naturally, obtaining exact results on the physical observables of

such systems is challenging. In this thesis, we analytically study the statistical properties of

various active particles. In this process, we find some exact results for the position distribu-

tion of free and confined active particles. We also find some universal properties which hold

true for all active particle models. The exact results obtained in this thesis will not only

help in understanding active particles better but also pave the way for understanding other

long-standing issues in statistical physics like nonequilibrium transport phenomena [142, 149]

better.

In chapters 2 and 3, we study a few active particle models without any external potential.

In particular, in chapter 2, we study a set of RTP models in two spatial dimensions, where

the orientation can take either discrete or continuous values. We find that the short-time

behavior of the RTPs depends heavily on the specific model. The signatures of activity

disappear from the typical fluctuations at long times but are encoded in the large-deviation

functions, which we find exactly. In chapter 3, we investigate the dynamics of a particle

executing an active Brownian motion with intermittent directional reversals. We show that

directional reversal leads to a host of exciting, new features in the position and first-passage

time distributions, which are very different from normal ABP or RTP dynamics. In particular,

a novel intermediate time regime emerges when the reversal rate is much larger than the

rotational diffusion—the dynamics, in that case, is described by a diffusion process with
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a stochastic diffusion coefficient. Our exact analytical results in these two chapters mark

a significant progress in the understanding of two different classes of bacterial motion —

appealing to both theoretical and experimental physicists. Our predictions can be verified

with new measurements with existing experimental setups. Possible future directions include

studying the effects of finite tumble/reversal times, non-Markovian waiting-times between

successive tumblings/reversals, investigation of extremal statistics. It is also interesting to

see if all these microscopic models exhibit collective features like motility-induced phase

separation [43] upon introducing repulsive interactions among them.

In both chapters 2 and 3, we found that the typical long-time position fluctuations of

the different active particle models are Gaussian with a diffusive scaling. Though we extract

this behavior exactly for the models considered in chapter 2, we can not do the same for

DRABP (in chapter 3). In chapter 4, we provide a generic universal framework to study the

long-time distribution of active particles. In fact, using our framework, we can show that the

leading order position distribution always satisfies a diffusion equation, while the subleading

order corrections follow inhomogeneous diffusion equations with the inhomogeneous part

depending only on the previous order solutions and can be calculated systematically. These

quantitative predictions for the deviation of the position distribution from Gaussian, at the

typical scale O(
√
t) are more accessible compared to the rare x ∼ O(t) fluctuations, which

are characterized by the large deviation functions. Thus, in addition to providing an exact

derivation of the diffusion equation at large times, the results of this chapter might be very

relevant for experiments.

In chapter 5, we study the stationary behavior of a DRABP in a harmonic potential. We

find that the competition of the three time-scales — determined by the reversal rate, the

rotational diffusion coefficient, and the trap stiffness, renders the position distribution in the

stationary state very rich. In particular, we find the emergence of two novel phases (which we

call the active II and passive II phases) alongside the usual active and passive phases seen in

RTP and ABP [59, 57, 61]. Both of these new phases are characterized by stationary position

distributions that have a logarithmic peak at the center of the trap. They differ only at the

boundaries, where the active II phase shows an algebraic divergence, while the passive II

phase goes to zero. It would be intriguing to find out whether the different phases predicted
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here can be observed in experiments with bacteria like Myxococcus xanthus, Pseudomonas

citronellolis, etc. in a harmonic trap using acoustic or optical tweezers. Theoretically, some

interesting future questions would be understanding the first-passage behavior of the DRABP

in a harmonic trap if the stationary behavior remains qualitatively the same for generic

confining potentials.

Stochastic resetting of a dynamical process helps optimize the time it takes to reach a

specific target. Searching for a particular target, such as a food source, a weak spot of

the host, or toxins is very pertinent for bacteria and similar microorganisms. The effects of

stochastic resetting on active particles is thus an important issue, which we address in chapter

6. We find exact results on the stationary state position distribution and find significant

deviations from passive Brownian motion. We also investigate the relaxation of the position

distribution to this stationary state and the first-passage properties. In this chapter, we used

an instantaneous resetting protocol where the RTP is reset in zero time. It is impossible

to realize this protocol experimentally, where it takes a finite time to return to the initial

position. To overcome this drawback, many non-instantaneous resetting protocols have been

suggested lately [150, 151]. It would be interesting to see how the analytical results obtained

here change for such protocols.

In chapter 7, we explore the question what happens to the transport properties of a system

when coupled to active particles. Active particles, which have their own energy depot, could

serve as paradigmatic examples of nonequilibrium reservoirs, and an obvious question is what

happens to the transport properties of an extended system when it is connected to two such

‘active reservoirs’. We first study a simple analytical model where overdamped active particles

are coupled to a probe by harmonic springs. We find an exact reduced equation of motion

of the probe by integrating out the active degrees of freedom of its environment. Using this

result, we then study the energy transport through an ordered harmonic chain connected to

two active reservoirs at the two ends. We find exact expressions for the average stationary

current (in the thermodynamic limit of the chain), which shows two novel features: (i)

negative differential conductivity and (ii) an unexpected current reversal at some non-zero

value of the active drive. We also show that there is no effective thermal picture for this

energy transport. The work discussed in this chapter is the first to study the effect of active
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reservoirs on the transport properties of extended systems, and the obtained exact results are

robust for all well-known active particle models. It is interesting to see how the signatures

of specific dynamics are expected to be seen in the fluctuations of the current. Some other

interesting future questions are: What are the effects of disorder, anharmonicity, and pinning

in the presence of active driving? How do our results change if the nonequilibrium reservoir

is modeled by more realistic models of interacting active particles?
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Appendix

9.1 Calculation of the Propagator for the θ Processes and 2-point σ

Correlations

n-state Model

Let θj = 2πj
n , j = 0, 1, . . . n − 1 denote the n possible values of θ, and Pj(t) denote the

probability that the particle orientation is θj at time t. The Fokker Planck equation governing

the time-evolution of Pj(t) with periodic boundary conditions, Pn(t) = P0(t), is

d

dt
Pj = −γPj +

γ

2
Pj+1 +

γ

2
Pj−1. (9.1)

This set of equations is easily solved by going to the Fourier basis,

Pj(t) =
n−1∑
k=0

ei
2πjk
n Qk(t) (9.2)

where Qk(t) = 1
n

∑n−1
j=0 e

−i 2πjk
n Pj(t).The time dependence of Qk is given by

Qk(t) = Qk(0) e−λkt (9.3)

where, λk = γ(1 − cos 2πk
n ) are the eigenvalues of the tri-diagonal matrix. Now, with initial

conditions, Pj(0) = δjm; θ(0) = 2πm
n , we have

Pj(t) =
1

n

n−1∑
k=0

ei
2πk(j−m)

n e−λkt. (9.4)
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Thus we can write the propagator of the process starting with θ0 at time t = 0 as

P (θ, t|θ0, 0) =
1

n

n−1∑
k=0

eik(θ−θ0)e−λkt. (9.5)

Using this we can calculate the 2 or higher point correlations of the σs defined in main

chapter.For example,

〈σx(t)σx(0)〉 =
1

n

∑
θ,θ0

cos θ cos θ0 P (θ, t|θ0, 0)

=
1

n2

n−1∑
k=0

e−λkt|
∑
θ

cos θeikθ|2. (9.6)

Continuous Model

Here the propagator can be written as a sum of contributions from events where the final and

initial θ are same (i.e., no θ flip) and where they are different. They can be as in Eq. (2.2)

P (θ, t|θ0, 0) = e−γtδ(θ − θ0) + (1− e−γt) 1

2π
. (9.7)

Thus the 2−point σ correlations can be evaluated as

〈σi(t)σi(0)〉 =
1

2π

∫
dθ dθ0P (θ, t|θ0, 0)σi(t)σi(0). (9.8)

Now, σα(t) is cos θ or sin θ for α = x and α = y respectively. Using the properties of sin and

cos functions, the integral contributes only when there is no θ flip. Thus we have,

〈σx(t)σx(0)〉 = e−γt
1

2π

∫ 2π

0
dθ cos2 θ =

1

2
e−γt

〈σy(t)σy(0)〉 = e−γt
1

2π

∫ 2π

0
dθ sin2 θ =

1

2
e−γt.
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9.2 Details of the 3-state X Marginal Distribution

We rewrite Eqs. (2.12) in the main chapter for x 6= 0,

v0
dP

dx
= WP. (9.9)

where,

P =

P̂+

P̂−

 and W =

−(s+ γ) γ/2

−2γ (2s+ γ)

 . (9.10)

The eigenvalues ofW are given by (s±λ)/2, where λ =
√

3s(3s+ 4γ). Using these eigenvalues

and implementing the boundary conditions that P̂±(x, s)→ 0 as x→ ±∞, we have

P̂+(x, s) =


A+ exp

[
− x

2v0
(λ− s)

]
for x > 0

B+ exp

[
x

2v0
(λ+ s)

]
for x < 0

(9.11)

and

P̂−(x, s) =


A− exp

[
− x

2v0
(λ− s)

]
for x > 0

B− exp

[
x

2v0
(λ+ s)

]
for x < 0,

(9.12)

where and A± and B± are arbitrary constants. Putting P± back in Eq. (9.9), we have,

A− =
A+(2γ + 3s− λ)

γ
, B− =

B+(2γ + 3s+ λ)

γ
. (9.13)

Next, to evaluate the constants A+ and B+, we note that due to the presence of the δ-

functions, integrating the original Eqs. (2.12) around the origin x = 0 yields discontinuity
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conditions for P̂± across x = 0,

v0 [A+ −B+] =
1

3
,

v0

[
A+(2γ + 3s− λ)

γ
− B+(2γ + 3s+ λ)

γ

]
= −4

3
.

Solving these two equations determines the constants as

A+ =
3(2γ + s) + λ

6v0λ
, B+ =

3(2γ + s)− λ
6v0λ

. (9.14)

Using Eq. (9.14) in Eqs. (9.11) and (9.12) and adding P̂+ and P̂−, we get the Laplace transform

of the position distribution P (x, t) as given by Eq. (2.13) in the main chapter.

Next we show the computation of the inverse laplace transform of Eq. (2.13) in the main

chapter. Let us consider the case x > 0. We need to compute the Bromwich integral,

P (x, t) =
1

2πi

∫ c0+i∞

c0−i∞
est

6γ + 5s− λ
2v0λ

exp

[
− x

2v0
(λ− s)

]
ds (9.15)

where λ = 3
√
s(s+ a) with a = 4γ/3. The integrand has a branch-cut along the real axis

from s = 0 to s = −a, so we draw a contour keeping the branch-cut to the left of c0, as shown

in Fig. 9.1. This contour can be broken into 6 different parts as indicated in the figure.

AB C
D

Im[s]

Re[s]c0
E

F

Figure 9.1: Illustration of the contour used to evaluate the integral (9.15).
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Using Cauchy’s theorem, for this contour integral we can write

∫
A

+

∫
B

=

∫
C

+

∫
D

+

∫
E

+

∫
F
. (9.16)

Now,
∫
A = P (x, t) is the integral that we need, with A extending to ∞.

We first compute the contributions coming from the small circular arcs D and F of radius

ε(→ 0). Along D, s = −a + εeiθ, while along F , s = εeiθ. It can be immediately seen that

the contributions of the integrals along these two circular arcs vanish in the limit ε → 0. In

the following we evaluate the integrals along C,E and B separately.

Along C, s = ueiπ + iε, hence, ds = −du. With ε → 0, λ = 3i
√
u(a− u) here and we

have,

∫
C

=

∫ a

0

−du
2πi

e
−u(t+ x

2v0
)
e
i 3x
2v0

√
u(a−u)

(
6γ − 5u

i6v0

√
u(a− u)

− 1

)
.

On the other hand, along E, s = ue−iπ − iε, and ds = −du. In this case, λ = −3i
√
u(a− u)

for ε→ 0, and we have

∫
E

=

∫ 0

a

−du
2πi

e
−u(t+ x

2v0
)
e
−i 3x

2v0

√
u(a−u)

(
i(6γ − 5u)

6v0

√
u(a− u)

− 1

)
.

Adding the contributions from the segments C and E, we get,

∫
C

+

∫
E

=

∫ a

0
du
e
−u(t+ x

2v0
)

6πv0

[
(6γ − 5u)√
u(a− u)

cos
3x

2v0

√
u(a− u)− 3 sin

3x

2v0

√
u(a− u)

]
.(9.17)

To evaluate the integral along B, we note that, here the real part of s is negative and

|s| → ∞; hence the integral reduces to,

∫
B
≈ 1

3v0

∫
ds

2πi
exp

[
s(t− x

v0
)

]
e
− γx
v0 (9.18)

where we have used the fact that along B, |s| � γ to approximate
(

6γ+5s−λ
2v0λ

)
as 1

3v0
and

exp
(
− x

2v0
(λ− s)

)
as exp

(
− x
v0

(s+ γ)
)

.

Now, since the integrand in Eq. (9.18) does not have any singularity, we can deform the

contour B to be along the imaginary axis, and write,
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∫
B

=
1

3v0

∫ −i∞
i∞

ds

2πi
exp

[
s(t− x

v0
)

]
e
− γx
v0 = −1

3
δ(x− v0t)e

− γx
v0 = −e

−γt

3
δ(x− v0t). (9.19)

The required integral P (x, t) =
∫
A is now obtained using Eq. (9.16) along with Eqs. (9.17)

and (9.19). The Bromwich integral for x < 0 can be also be computed following the same

procedure. The final expression for P (x, t) is quoted in Eqs. (2.14) and (2.15) in the main

chapter.

For the case of P (y, t) we also proceed similarly. In that case, however, the contribution

of the integrals around the small circles (D and F in the above contour) are ∼ ε−1/2, and

thus cannot be ignored.

To carry out the line integral in Eq. (2.15) in the main chapter, we first make a change

of variable u = a(w + 1)/2, yielding,

Gx(x = zv0t, t) =
γ

9πv0
e−

γt
3

(z+2)

∫ 1

−1
dw e−

γt
3

(z+2)w
[
− 3 sin zγt

√
1− w2 +

(4− 5w)√
1− w2

cos zγt
√

1− w2
]
.

(9.20)

Next, we use the following identity from Section 4.124, Eq. 1 of [152]

F (p, q) ≡ 1

π

∫ 1

−1
dw e−pw

cos(q
√

1− w2)√
1− w2

= I0(
√
p2 − q2). (9.21)

Using this identity, we further have,

− 1

π

∫ 1

−1
dw e−pw sin(q

√
1− w2) =

∂F

∂q
= −

q I1

(√
p2 − q2

)
√
p2 − q2

− 1

π

∫ 1

−1
dww e−pw

cos(q
√

1− w2)√
1− w2

=
∂F

∂p
=
p I1

(√
p2 − q2

)
√
p2 − q2

.

Using these, Eq. (9.20) can be evaluated exactly as

Gx(x = zv0t, t) =
γe−

γt
3

(z+2)

9v0

[
4I0

(
2 γt

3
w(z)

)
+

5− 2z√
(2z + 1)(1− z)

I1

(
2 γt

3
w(z)

)]
, (9.22)

with w(z) =
√

(2z + 1)(1− z). This is quoted as Eq. (2.16) in the main chapter.
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9.3 Computation of the Inverse Fourier Transform for 4-state Marginal

Distribution

In this Section we compute the inverse Fourier transform of P̃ (q, t) given by Eq. (2.48) in the

main chapter. To this end, it is first convenient to rewrite it as,

P̃ (q, t) = e−γt
[

q2

2(q2 − 1)

(
cosh(γt

√
1− q2)− 1

)
+ cosh(γt

√
1− q2) +

sinh(γt
√

1− q2)√
1− q2

]
.

Let us denote the three terms inside the square brackets in the above equation by T1, T2, T3.

Note that the Fourier transform of all the three terms are related by taking derivatives or

integrals of each other with respect to the arguments (q and x).We exploit this and invert

T1, T2, T3 term by term, separately. We start by evaluating the Fourier inverse of T2, for this

we use an integral Bessel function identity from Section 6.645 Eq. 3 of [152],

∫ 1

−1

1√
1− x2

e−aI1(b
√

1− x2)dx =
2

b
(cosh

√
a2 + b2 − cosh a).

Let a = iγqt and b = γt. Then,

∫ 1

−1

e−iqγt√
1− x2

I1(γt
√

1− x2)dx =
2

γt
[cosh(γt

√
1− q2)− cos(γqt)].

We use the scaling, γt→ t′ and x→ x′t,

cosh(t′
√

1− q2) =
t′

2

∫ t′

−t′
dx′e−iqx

′ I1(
√
t′2 − x′2)

t′2 − x′2
+ cos(qt).

We can actually call t′ and x′ as t and x without any ambiguity, throughout the calculations

and put back the scaling forms at the end. Thus,

F−1[cosh(t
√

1− q2)] =
tI1(
√
t2 − x2)

2
√
t2 − x2

Θ(t− |x|) +
1

2
(δ(x+ t) + δ(x− t)) (9.23)
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where the δ−functions come from the term cos(qt). Note, this is actually the Fourier trans-

form of T2 Now,

∫ t

0
cosh(τ

√
1− q2)dτ =

sinh(t
√

1− q2)√
1− q2

. (9.24)

Thus if we integrate Eq. (9.23) from 0 to t, we get the Inverse Transform of the T3 term.

Using, I ′0(x) = I1(x) to do the integral, we get

F−1

[
sinh(t

√
1− q2)√

1− q2

]
=

1

2
I0(
√
t2 − x2)Θ(t− |x|). (9.25)

Only the inverse of T1 remains to be evaluated. We integrate l.h.s. of Eq. (9.25) from 0 to t,

to get

∫ ∞
−∞

e−iqx
1

1− q2

(
cosh(t

√
1− q2)− 1

)
dq. (9.26)

Taking derivatives with respect to x twice, we get,

−
∫ ∞
−∞

e−iqx
q2

1− q2

(
cosh(t

√
1− q2)− 1

)
dq (9.27)

which is exactly twice the negative of T1. Thus, we need to do this same set of operations on

the r.h.s. of Eq. (9.25) to get the inverse of the first term. Thus the inverse Fourier transform

F−1[T1] is

= −1

2

∂2

∂x2

[
Θ(t− |x|)

∫ t

0
dωI0(

√
ω2 − x2)Θ(ω − |x|)

]
=

1

2

∂

∂x

[
δ(t− |x|)sgn(x)

∫ t

0
dωI0(

√
ω2 − x2)Θ(ω − |x|)−Θ(t− |x|) ∂

∂x
I0(
√
ω2 − x2)Θ(ω − |x|)

]
.

(9.28)

Now, because of the δ−function, the first term on r.h.s. of the above equation is non-zero

only when |x| = t, but then again putting that in the θ−function, we get 0, since (ω − |t|) is
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always less than 0. So the first term on the r.h.s. is always zero. Thus Eq. (9.28) reduces to

−1

2

∂

∂x

[
Θ(t− |x|)

∫ t

0

(
dω
∂I0(
√
ω2 − x2)

∂x
Θ(ω − |x|)− I0(

√
ω2 − x2)δ(ω − |x|)sgn(x)

)]
.

(9.29)

Doing the delta-function integral, i.e., the second integral above, we get Θ(t − |x|)sgn(x).

The derivative of theta function in the first term gives zero in exactly the same way as above.

Thus (9.29) becomes,

−1

2
Θ(t− |x|)

∫ t

0
dω
∂2I0(

√
ω2 − x2)

∂x2
Θ(ω − |x|) +

1

2
Θ(t− |x|)

∫ t

0
dω
∂I0(
√
ω2 − x2)

∂x
δ(ω − |x|)sgn(x)

− 1

2
δ(t− |x|) +

1

2
Θ(t− |x|)2δ(x). (9.30)

The second integral in (9.30) can be evaluated exactly and yields, x√
ω2−x2 I1(

√
ω2 − x2)δ(ω−

|x|).

Now, using the properties of I1(z) for z → 0, we write

lim
ω→|x|

I1(
√
ω2 − x2)√
ω2 − x2

=
1

2
,

and so the second term in (9.30) reduces to be − |x|2 Θ(t− |x|).

Thus,

F−1

[
q2

1− q2

(
cosh(t

√
1− q2)− 1

)]
= −1

4
(δ(x+ t) + δ(x− t)) +

1

2
δ(x)− |x|

8
Θ(t− |x|)

− 1

4
Θ(t− |x|)

∫ t

0
dω

∂2

∂x2
I0(
√
ω2 − x2)Θ(ω − |x|).

(9.31)

Thus, combining Eqs. (9.23), (9.25) and (9.31), we get the full inverse transform as written

in the main chapter.
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9.4 Laplace Fourier Inversion of G(k, s) of the Continuous Process in

the main chapter

We start from Eq. (2.61) in the main chapter, and putting the forms of f(k, s) and G(k, s)

from Eqs. (2.59) and (2.60), we have

G(k, s) =
γ(√

(s+ γ)2 + v2
0k

2 − γ
)√

(s+ γ)2 + v2
0k

2
. (9.32)

Let us put s+ γ = s′ and rewrite G(k, s) as

G(k, s′) =
γ(√

s′2 + v2
0k

2 − γ
)(√

s′2 + v2
0k

2

) . (9.33)

We can now take the 2−d inverse Fourier transform from ~k to ~r

P̃ (r, s′) =
1

(2π)2

∫ ∞
0

kdk

∫ 2π

0
dψeikr cos(ψ)G(k, s′)

where ψ is the angle between ~k and ~r. Doing the ψ integral,

P̃ (r, s′) =
1

2π

∫ ∞
0

k dk J0(kr)G(k, s′). (9.34)

Doing the k integral is non-trivial. We first use an integral identity [152]

∫ 1

0
dw

(a− w)

[(a− w)2 + b2(1− w2)]3/2
=

1√
a2 + b2(

√
a2 + b2 − 1)

.

(9.35)

The right-hand side of the above identity can be mapped to G(k, s′) by identifying a = s′

γ

and b = kv0
γ . Thus, we can write,

G(k, s′) = γ

∫ 1

0
dw

(s′ − γw)

[(s′ − γw)2 + k2v2
0(1− w2)]

3
2

. (9.36)
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We now use an integral Bessel Function identity from Section 6.611 Eq. 1 of [152],

∫ ∞
0

dte−αttJ0(βt) =
α

(α2 + β2)
3
2

.

Again the right-hand side of this identity can be mapped to the integrand in Eq. (9.36) if

α = (s′ − γw) and β = kv0

√
1− w2. Thus G(k, s′) becomes

γ

∫ 1

0
dw

∫ ∞
0

dte−(s′−γw)ttJ0(kv0t
√

1− w2). (9.37)

Putting this back in the expression for P̃ (r, s′), i.e., Eq. (9.34), and substituting back s =

s′ − γ, we have

P̃ (r, s) =
γe−γt

2π

∫ ∞
0

k dk

∫ ∞
0

dt e−stt

∫ 1

0
dw eγwtJ0(kr)J0(kv0t

√
1− w2). (9.38)

Thereafter doing the k integral, we have

P̃ (r, s) =
γe−γt

2πv0

∫ ∞
0

dt e−st
∫ 1

0
dw eγwt

δ(r − v0t
√

1− w2)√
1− w2

(9.39)

Since the above equation is already in the form of a Laplace transformation
∫∞

0 dt P (r, t)e−st,

the inverse transform P (r, t) can be immediately read out,

P (r, t) =
γe−γt

2πv0

∫ 1

0
dw

δ(r − v0t
√

1− w2)√
1− w2

eγwt.

The w-integral can be done immediately due to the presence of the δ-function and yields,

P (r, t) =
γe−γt

2πv0

exp

[
γ
v0

√
v2

0t
2 − r2

]
√
v2

0t
2 − r2

. (9.40)

9.5 Exact first-passage time of a DRABP in the intermediate regime

(II)

In this section we work out in detail the survival probability of a DRABP in the intermediate

time regime (γ−1 � t � D−1
R ) along the direction orthogonal to the initial orientation. We
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obtain this by setting θ0 = 0 where x⊥ ≡ y. Let Sy(t; y0) denote the probability that a

particle starting from (0, y0) with an initial orientation θ0 = 0 has not crossed the y = 0 line

till time t. Mathematically,

Sy(t; y0) =

∫ ∞
0

dy P (y, t; y0) (9.41)

where P (y, t; y0) is the marginal probability distribution in the presence of an absorbing

wall at y = 0, starting from the initial position y0. The survival probability in this regime is

actually determined by trajectories which have already survived regime (I). Thus, in principle,

one should take into account dynamics of both the regimes (I) and (II). However, the regime

(I) almost vanishes for γ � 1 and it suffices to consider the effective dynamics in regime

(II) only. Hence, we start with the Langevin equation along the y-direction [Eq. (3.40) with

θ0 = 0] in the intermediate regime (II),

ẏ = v0 ξ(t)φ(t), (9.42)

where φ(t) is a Brownian motion. We can write the corresponding forward Fokker-Planck

(FP) equation for P (y, φ, t), i.e., the probability that y(t) = y and φ(t) = φ,

∂

∂t
P (y, φ, t) =

v2
0φ

2

2γ

∂2

∂y2
P (y, φ, t) +DR

∂2

∂φ2
P (y, φ, t). (9.43)

Note that, for notational simplicity we have suppressed the initial position dependence. We

need to solve this FP equation with the initial condition P (y, φ, 0) = δ(y − y0)δ(φ) and

boundary conditions P (y, φ, t) → 0 as φ(t) → ±∞ and P (0, φ, t) = P (∞, φ, t) = 0. For

simplicity, we make a change of variable
v20t
2γ → t and define Λ2 = 2γDR/v

2
0. Equation (9.43)

then becomes

∂

∂t
P (y, φ, t) = φ2 ∂

2

∂y2
P (y, φ, t) + Λ2 ∂

2

∂φ2
P (y, φ, t). (9.44)
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The absorbing boundary condition at y = 0 can be taken care of by using the sin-eigenbasis

sin(ky) with k ≥ 0. It is also convenient to take a Laplace transform w.r.t. time t,

P̃ (k, φ, s) =

∫ ∞
0

dt e−st
∫ ∞

0
dy sin(ky)P (y, φ, t). (9.45)

Equation (9.44) reduces to an ordinary second order differential equation in terms of P̃ (k, φ, s),

Λ2 d2

dφ2
P̃ (k, φ, s)− (s+ φ2k2)P̃ (k, φ, s) = − sin(ky0)δ(φ). (9.46)

with the boundary condition P̃ (k, φ, s)→ 0 for φ→ ±∞. For φ 6= 0, The general solution of

Eq. (9.46) is given by

P̃ (k, φ, s) = a D−q

(
φ

√
2k

Λ

)
+ b D−q

(
−φ
√

2k

Λ

)
, (9.47)

where q = 1
2(1 + s

kΛ), Dν(z) denotes the parabolic cylinder function [94] and a, b are two

arbitrary constants independent of φ. Using the boundary conditions for φ→ ±∞, and the

fact that P̃ (k, φ, s) is continuous at φ = 0 we have,

P̃ (k, φ, s) =


a D−q

(
φ
√

2k
Λ

)
, for φ > 0

a D−q

(
−φ
√

2k
Λ

)
, for φ < 0.

(9.48)

Integrating Eq. (9.46) across φ = 0, we get,

dP̃

dφ

∣∣∣∣
φ=0+

− dP̃

dφ

∣∣∣∣
φ=0−

= −sin(ky0)

Λ2
.

Using this equation with Eq. (9.48) we get,

a =
2
q
2 sin(ky0)√

8πkΛ3
Γ
(q

2

)
. (9.49)

Finally, combining Eq. (9.49) with Eq. (9.48) we get,

P̃ (k, φ, s) =
2
q
2 sin(ky0)√

8πkΛ3
Γ
(q

2

)
D−q

(
|φ|
√

2k

Λ

)
, (9.50)
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where, as before, we have denoted q = 1
2(1 + s

kΛ). Since we are interested in the y-marginal

distribution, we integrate over φ to get,

P̂ (k, s) =
2 sin(ky0)

s+ kΛ
2F1

(
1,
q + 1

2
,
q + 2

2
,−1

)
,

which is the sin–Laplace transform of P (y, t). Here 2F1(a, b, c, z) denotes the Hypergeometric

function [94].

To find the position distribution we need to invert the Laplace and sin transformations.

The inverse Laplace transform is defined by the integral,

P̂ (k, t) =

∫ c0+i∞

c0−i∞
ds estP̃ (k, s), (9.51)

where c0 is chosen such that all the singularities of the integrand lie to the left of the Re(s) =

c0 line. To compute the above integral let us first recast P̃ (k, s) as,

P̃ (k, s) =
2 sin(ky0)

s+ kΛ
2F̃1

(
1,
q + 1

2
,
q + 2

2
,−1

)
Γ

(
q + 2

2

)
, (9.52)

where 2F̃1(a, b, c, z) =2 F1(a, b, c, z)/Γ(c) denotes the regularized Hypergeometric function

which is analytic for all values of a, b, c and z. From Eq. (9.52), it is straightforward to

identify the singularities of P̃ (k, s), on the complex s-plane all of which lie on the negative

real s-axis: sn = −kΛ(4n + 5) with n = −1, 0, 1, 2, · · · where s−1 comes from the prefactor

(s+ Λk)−1 while sn≥0 are obtained from the singularities qn = −2(n+ 1) of Γ
(
q+2

2

)
.

The inverse Laplace transform of Eq. (9.52) can then be expressed as

P̂ (k, t) =

∞∑
n=−1

esntRn, (9.53)

where Rn denotes the residue of P̃ (k, s) at s = sn. These residues can be computed exactly

and turn out to be

Rn = 2 sin(ky0)
(−1)n+1

(n+ 1)!
2F̃1

(
1,−n− 1

2
,−n,−1

)
.
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Using the above expression in Eq. (9.53) and shifting n→ n− 1, we get,

P̂ (k, t) = 2 sin(ky0)
∞∑
n=0

(−1)n

n!
e−(1+4n)kΛt2F̃1

(
1,−n+

1

2
,−n+ 1,−1

)
. (9.54)

Using properties of Hypergeometric functions, it can be shown that

2F̃1

(
1,−n+

1

2
,−n+ 1,−1

)
=

(−1)n√
2

(
−1/2

n

)
n!.

Substituting the above identity in Eq. (9.54) we finally get,

P̂ (k, t) =
√

2 sin(ky0)e−kΛt
∞∑
n=0

(
−1

2

n

)
e−4nkΛt =

sin(ky0)√
cosh (2kΛt)

. (9.55)

The position distribution is given by the inverse sin-transform,

P (y, t; y0) =
2

π

∫ ∞
0

dk sin(ky)P̂ (k, t) =
1

π

∫ ∞
0

dk
2 sin(ky) sin(ky0)√

cosh (2kΛt)

=
1

π

∫ ∞
0

dk
[cos(k(y − y0))− cos(k(y + y0))]√

cosh (2kΛt)
.

Clearly, P (y, t) has a scaling form,

P (y, t; y0) =
1

4Λt

[
f
(y − y0

4Λt

)
− f

(y + y0

4Λt

)]
, (9.56)

where, the scaling function f(z) can be evaluated exactly,

f(z) =
1

π

∫ ∞
0

dκ
cos(κz)√
cosh(κ/2)

=
1√
2π3

Γ
(1

4
+ iz

)
Γ
(1

4
− iz

)
. (9.57)

The survival probability, given by Eq. (9.41), also has a scaling form,

Sy(t; y0) = g
( y0

4Λt

)
, (9.58)

where g(z0) is given by,

g(z0) =

∫ ∞
0

dz [f(z − z0)− f(z + z0)] = 2

∫ z0

0
dz f(z). (9.59)
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Figure 9.2: (a) Survival probability Sy(t; y0) for γ = 80 and three different values of DR

starting from y0 = 0.01. The symbols indicate the data obtained from numerical simulations
and the dashed black lines indicate the analytical prediction in Eq. (9.62). (b) shows the

same data plotted against the scaled time τ = v0t
√

8DR
γ , the dashed black line is obtained

by numerically integrating Eq. (9.64). The deviation from the analytical prediction at the
tails is expected for t & D−1

R .

In terms of the original notation t→ v2
0t/(2γ), and Λ2 = 2γDR/v

2
0,

Sy(t; y0) = g

(
y0

v0t

√
γ

8DR

)
. (9.60)

The large time behavior can be extracted easily by taking z0 � 1,

g(z0) = 2z0f(0) +O(z2
0). (9.61)

Thus, we have,

S(y0, t) ≈
Γ(1/4)2

2π3/2

√
γ

DR

y0

v0t
for

y0

v0t
�

√
DR

γ
� 1. (9.62)

Using this result we conclude in the main text that the survival probability of a DRABP

in the time regime (II) γ−1 � t � D−1
R has a power-law decay with persistence exponent

αy = 1.

Note that, the exact first-passage distribution Fy(t) = −∂tSy(t; y0) can be easily computed
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from Eq. (9.60),

Fy(t; y0) =
y0

√
2γ3/2

v3
0 t

2
√
DR

f

(
y0

v0t

√
γ

8DR

)
. (9.63)

which was obtained in Ref. [117] in the context of diffusing diffusivity. In terms of the scaled

time τ = v0t
√

8DR
γ ,

Sy(τ) = g(1/τ) = 2

∫ 1/τ

0
dzf(z) = 2

∫ ∞
τ

dz

z2
f(1/z), (9.64)

where f(z) is defined in Eq. (9.57).

9.6 Intermediate steps in the computation of A4
0(y, t) and A6

0(y, t) for

DRABP

In this section, we provide the intermediate steps leading to the subleading contributions

A4
0(y, t) and A6

0(y, t) for DRABP.

Setting k = 6 in Eq. (4.43a), we get an inhomogeneous diffusion equation for A4
0(y, t),

[
∂

∂t
− ∂2

∂y2

]
A4

0(y, t) = S4(y, t), (9.65)

where the inhomogeneous part is given by,

S4(y, t) =
∂2

∂y2

[(
− 1

λ+ 1

∂

∂t
+

1

8

∂2

∂y2

)
A2

0 +

(
1

(λ+ 1)2

∂2

∂t2
− (λ+ 9)

32(λ+ 1)

∂3

∂y2 ∂t

+
(λ+ 5)

32(λ+ 9)

∂4

∂y4

)
A0

0

]
. (9.66)

Considering the scaling form for A4
0(y, t), as given by Eq. (4.53) and using the explicit forms

of A0
0(y, t) and A2

0(y, t), we have get an inhomogeneous Hermite equation for q4(z) like in

Eq. (4.11). The inhomogeneous term is given by,

s4(z) =

4∑
n=0

r4,2n(λ)z2n, (9.67)
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where the coefficients {r4,n} are,

r4,0(λ) = − 15

256(λ+ 1)2(λ+ 9)
(223− 251λ+ 45λ2 + 7λ3),

r4,2(λ) =
15

32(λ+ 1)2(λ+ 9)
(939− 323λ+ 25λ2 + 7λ3),

r4,4(λ) = − 15

32(λ+ 1)2(λ+ 9)
(1655− 395λ+ 5λ2 + 7λ3),

r4,6(λ) =
1

8(λ+ 1)2(λ+ 9)
(2371− 467λ− 15λ2 + 7λ3),

r4,8(λ) = − 1

16(λ+ 1)2(λ+ 9)
(441− 77λ− 5λ2 + λ3).

The general solution for q4(z) can be again obtained using Eq. (4.13) in terms of an unde-

termined constant C4. This constant can be found out by comparing the coefficient of (τ/t)2

in the expansion of M(4, 0, t)/(4t)2 of Eq. (4.29) to the one obtained from the approximate

distribution Eq. (4.41) (more precisely Eq. (4.61) with k = 2). Following this procedure we

finally get,

q4(z) =

4∑
n=0

α4,n(λ)z2n, (9.69)

with

α4,0 = − 1

2048(λ+ 1)2(λ+ 9)
(2031− 411λ− 963λ2 − 57λ3),

α4,1 = − 1

256(λ+ 1)2(λ+ 9)
(219− 559λ+ 273λ2 + 27λ3),

α4,2 =
1

256(λ+ 1)2(λ+ 9)
(9609− 3789λ+ 523λ2 + 97λ3),

α4,3 =
1

64(λ+ 1)2(λ+ 9)
(1655− 395λ+ 5λ2 + 7λ3),

α4,4 =
1

128(λ+ 1)2(λ+ 9)
(441− 77λ− 5λ2 + λ3). (9.70)

Similarly, we can find an inhomogeneous diffusion equation for the next subleading order
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contribution A6
0(y, t), by setting k = 8 in Eq. (4.43a),

[
∂

∂t
− ∂2

∂y2

]
A6

0(y, t) = S6(y, t), (9.71)

where the inhomogeneous term is given by,

S6(y, t) =
∂2

∂y2

[(
− 1

λ+ 1

∂

∂t
+

1

8

∂2

∂y2

)
A4

0

+
( 1

(λ+ 1)2

∂2

∂t2
− λ+ 9

32(λ+ 1)

∂3

∂t∂y2
+

λ+ 5

32(λ+ 9)

∂4

∂y4

)
A2

0

−

(
1

(λ+ 1)3

∂3

∂t3
− 57 + 10λ+ λ2

128(λ+ 1)2

∂4

∂y2∂t2
+

307 + 135λ+ 21λ2 + λ3

64(λ+ 1)(λ+ 9)2

∂5

∂y4∂t

− 481 + 162λ+ 17λ2

2048(λ+ 9)2

∂6

∂y6

)
A0

0

]
. (9.72)

Again, considering the scaling form for A6
0(y, t), as given by Eq. (4.53) and using the explicit

forms of A0
0(y, t), A2

0(y, t) and A4
0(y, t), we have get an inhomogeneous Hermite equation for

q6(z) like in (4.11). The inhomogeneous term is given by,

s6(z) =
6∑

n=0

r6,2n(λ)z2n. (9.73)

The coefficients {r6,n} are given by,

r6,0(λ) =
−4389525 + 2500575λ+ 2973390λ2 − 626850λ3 − 158025λ4 − 7245λ5

16384(λ+ 1)3(λ+ 9)2
,

r6,2(λ) =
979965 + 13285545λ− 11694270λ2 + 480690λ3 + 420945λ4 + 24885λ5

4096(λ+ 1)3(λ+ 9)2
,

r6,4(λ) =
108286605− 63628215λ− 7444304λ2 − 1734096λ3 − 585375λ4 − 45675λ5

4096(λ+ 1)3(λ+ 9)2
,

r6,6(λ) =
−20520801 + 7463603λ− 930538λ2 − 216762λ3 + 29435λ4 + 3255λ5

512(λ+ 1)3(λ+ 9)2
,

r6,8(λ) =
17055513− 4774859λ+ 108634λ2 + 142026λ3 − 7715λ4 − 1455λ5

1024(λ+ 1)3(λ+ 9)2
,

r6,10(λ) =
−619479 + 145477λ+ 7162λ2 − 4118λ3 + 45λ4 + 33λ5

256(λ+ 1)3(λ+ 9)2
,

r6,12(λ) =
27783− 5733λ− 602λ2 + 150λ3 + 3λ4 − λ5

256(λ+ 1)3(λ+ 9)2
. (9.74)
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The general solution for q6(z) can be again obtained using Eq. (4.13) in terms of an unde-

termined constant C6. This constant can be found out by comparing the coefficient of (τ/t)2

in the expansion of M(6, 0, t)/(4t)3 of Eq. (4.29) to the one obtained from the approximate

distribution Eq. (4.41) (more precisely (4.61) with k = 3). Following this procedure we finally

get,

q6(z) =
6∑

n=0

α6,n(λ)z2n, (9.75)

where the coefficients {α6,n(λ)},

α6,0(λ) =
−908925− 261945λ+ 444030λ2 + 311790λ3 + 23535λ4 + 315λ5

65536(λ+ 1)3(λ+ 9)2
,

α6,1(λ) =
−831375 + 1643205λ+ 820650λ2 − 781110λ3 − 114315λ4 − 4095λ5

16384(λ+ 1)3(λ+ 9)2
,

α6,2(λ) =
880905 + 3333045λ− 4445190λ2 + 680970λ3 + 216525λ4 + 11025λ5

16384(λ+ 1)3(λ+ 9)2
,

α6,3(λ) =
1790095− 1116021λ+ 393878λ2 + 10774λ3 − 13365λ4 − 945λ5

2048(λ+ 1)3(λ+ 9)2
,

α6,4(λ) =
−2931543 + 1066229λ− 132934λ2 − 30966λ3 + 4205λ4 + 465λ5

4096(λ+ 1)3(λ+ 9)2
,

α6,5(λ) =
156933− 41207λ− 270λ2 + 1234λ3 − 39λ4 − 11λ5

1024(λ+ 1)3(λ+ 9)2
,

α6,6(λ) =
−27783 + 5733λ+ 602λ2 − 150λ3 − 3λ4 + λ5

3072(λ+ 1)3(λ+ 9)2
. (9.76)

The subleading order contributions obtained above are compared with numerical simulations

in 4.3 and show good agreement.

9.7 Variance and kurtosis of the position distribution

Here we calculate the variance and kurtosis of the DRABP in a harmonic trap exactly. We

use these to find the limiting expressions in the four different phases. Starting from the origin,

the solution of the Langevin equation (5.1), for a given realization of {σ(s), θ(s); 0 < s < t},
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gives the location {x(t), y(t)} of the DRABP as,

x(t) = v0

∫ t

0
ds e−µ(t−s)σ(s) cos θ(s),

y(t) = v0

∫ t

0
ds e−µ(t−s)σ(s) sin θ(s). (9.77)

We consider the initial condition σ(0) = ±1 with equal probability 1/2, which ensures

that all the odd moments of the position vanish at all times. To calculate the first nontrivial

moment, the variance, we need the two point correlations of the noises, which have already

been calculated in Eq. (3.6). Using Eq. (9.77) and noise autocorrelations (we take θ0 = 0 for

simplicity, as we are interested in the stationary moments which do not depend on the initial

orientation) we obtain,

〈x2(t)〉 =
v2

0

2µ (2γ +DR + µ)
− v2

0 (DR − µ) e−2µt

µ (2DR − µ) (2γ +DR − µ)
− v2

0 e
−4DRt

2 (2DR − µ) (2γ − 3DR + µ)

+
2v2

0 (2γ −DR + µ) e−(2γ+DR+µ)t

(2γ +DR − µ) (2γ +DR + µ) (2γ − 3DR + µ)
,

(9.78)

and,

〈y2(t)〉 =
v2

0

2µ (2γ +DR + µ)
− v2

0DR e
−2µt

µ (2DR − µ) (2γ +DR − µ)
+

v2
0 e
−4DRt

2 (2DR − µ) (2γ − 3DR + µ)

− 4v2
0DR e

−(2γ+DR+µ)t

(2γ +DR − µ) (2γ +DR + µ) (2γ − 3DR + µ)
.

(9.79)

In the limit t→∞, both 〈x2(t)〉 and 〈y2(t)〉 relax to the same stationary value,

〈x2(t→∞)〉 = 〈y2(t→∞)〉 =
v2

0

2µ (2γ +DR + µ)
+O(e−λt), (9.80)

where λ = min(2µ, 4DR, 2γ+DR +µ) gives the leading order time-scale of relaxation to the

stationary value.

For a Gaussian distribution, all the higher order cumulants 〈xn〉c with n > 2 are zero.
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The widely used measure to identify non-Gaussianity is the fourth cumulant 〈x4〉c, which is

also known as kurtosis. It is often expressed in the dimensionless form,

κ(t) =
〈x4(t)〉 − 3〈x2(t)〉2

〈x2(t)〉2
. (9.81)

Note that, however, vanishing kurtosis is not a sufficient condition for Gaussianity. Clearly, to

compute the kurtosis, we need the fourth moment of the distribution, which can be calculated

using Eq. (9.77) and the four-point correlations of the noises. Using the propagators Eqs. (3.3)

and (3.4) these four-point correlations can be calculated in a straightforward manner. For

t1 < t2 < t3 < t4,

〈σ(t1)σ(t2)σ(t3)σ(t4)〉 = e−2γ (t4−t3)e−2γ (t2−t1), (9.82)

and for the θ-process,

〈cos θ(t1) cos θ(t2) cos θ(t3) cos θ(t4)〉 =
1

8
e−DR(7t1+5t2+3t3+t4)

(
e12DRt1 + e8DR(t1+t2) + e4DR(t1+2t2)

+2e4DR(t1+t2+t3) + 2e4DR(2t1+t2+t3) + 1
)
.

(9.83)

The full time-dependent fourth moment has a fairly large expression which upon taking the

t→∞ limit yields,

〈x4(t→∞)〉 =
3 (4DR + 3µ)

8µ2 (2DR + µ) (2γ +DR + µ) (2γ +DR + 3µ)
. (9.84)

The stationary state value of the kurtosis can be readily obtained using the second and fourth

moments derived above, and comes out to be,

κ(t→∞) =
3µ (2γ − 7DR − 3µ)

2 (2DR + µ) (2γ +DR + 3µ)
. (9.85)

The limiting expressions of variance and kurtosis in the different phases can be easily

obtained from Eq. (9.80) and (9.85) respectively:

� In the limit v0 →∞, DR →∞ with arbitrary γ and µ� DR, keeping v2
0/(DR + 2γ) =
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2DDR constant (passive-I phase), we get

〈x2〉 =
DDR

µ
and κ = 0. (9.86)

� In the limit µ� DR and γ → 0 (active-I phase), we have

〈x2〉 =
v2

0

2µ2
and κ = −3

2
. (9.87)

� In the limit DR → 0 (active-II and passive-II phases)

〈x2〉 =
v2

0

2µ(2γ + µ)
and κ =

3(2γ − 3µ)

2(2γ + 3µ)
. (9.88)

The kurtosis is always negative in the active phases. On the other hand, in the passive-

II phase the kurtosis is negative in the region 1/2 < γ/µ < 3/2 and becomes positive for

γ/µ > 3/2. Note that, zero kurtosis for γ/µ = 3/2 in the DR → 0 limit of the passive-II phase

does not imply a Gaussian distribution, as is evident from Eq. (5.22). On the other hand,

for the passive-I phase, Eq. (5.8) implies that kurtosis and all the other higher cumulants are

zero.

9.8 Saddle Point Integral

Saddle point integration technique has been used quite extensively in this article. In this

Appendix we show the evaluation of H(r, t) (in Eq. (6.16)) using this method; all the other

integrals are also computed in a similar way

H(r = zv0t, t) =
αγzv0t

v2
0

∫ 1

z
dτ e−tφ(z,τ) 1√

τ2 − z2
(9.89)

with φ(z, τ) = (α + γ)τ − γ
√
τ2 − z2. The function φ(z, τ) always has a minimum w.r.t. τ

at some τ0, which is obtained by solving

∂φ(z, τ)

∂τ

∣∣∣∣
τ=τ0

= 0⇒ τ0 =
z(α+ γ)√
α2 + 2αγ

. (9.90)
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Since the denominator of the integrand in Eq. (9.89) is a monotonically decreasing function

for τ > z, the integrand has a maximum at τ = τ0. For large t, the integrand becomes

sharply peaked at τ0, so we can expand φ(z, τ) in a Taylor series about τ = τ0,

φ(z, τ) = φ(z, τ0) +
(τ − τ0)2

2
φ′′(z, τ0) +O

[
(τ − τ′)3

]
. (9.91)

Keeping upto the quadratic term in the expansion for φ(z, τ), gives a very good estimate of

the integral in Eq. (9.89) at large t.
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Figure 9.3: Plot of φ(z, τ) and e−tφ(z,τ) for α = 0.1; γ = 1: Left panel shows a case where

z < (α+γ)√
α2+2αγ

, while the right panel shows a case where z >

√
α2+2αγ

(α+γ) . The red dashed lines

denote the actual minimum of the functions while the green dashed ones on the right panel
denote the point τ = 1. We have taken t = 10 in the insets. The peak becomes sharper as
we keep increasing t.

This form of φ(z, τ) is used when z < τ0 < 1, i.e., τ0 lies within the integration limits i.e.,

[z, 1].

H(r = zv0t, t) ≈
αγzv0t√

2v2
0

e−tφ(z,τ0)√
τ2

0 − z2

∫ ∞
−∞

dτ ′ e−tφ
′′(z,τ0)τ ′2 =

αγ
√
zv0t

√
π/2

v2
0(α2 + 2αγ)1/4

e−zt
√
α2+2αγ

(9.92)

If τ0 > 1 ie, z >

√
α2+2αγ

(α+γ) , then within the integration limits the integrand reaches its

maximum value at the boundary τ0 = 1 as shown in 9.3. In such a scenario we can still

expand φ(z, τ) about τ = 1 as,

φ(z, τ) = φ(z, 1) + (1− τ)φ′(z, 1) +O
[
(∞− τ)∈

]
(9.93)
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At large t we keep upto the second term in the above expansion and have

H(r = zv0t, t) ≈
αγzv0t√

2v2
0

e−tφ(z,1)

√
1− z2

∫ 1

z
dτe−t(τ−1)φ′(z,1) = A(z)e−(α+γ)t+γt

√
1−z2 (9.94)

where

A(z) =
αγzt√

2v0(1− z2)1/2

(
1− e−t(1−z)|φ′(z,1)|

)
t|φ′(z, 1)|

. (9.95)

and φ′(z, 1) = 1√
1−z2

(
(α+ γ)

√
1− z2 − γ

)
. Note that the exponential part in Eq. (9.94)

gives the leading order contribution to H(r, t), while A(z, t) gives a sub-leading contribution.

This along with the 2nd term on the rhs of Eq. (6.14) is plotted in Figure 6.2 (b) with

magenta lines.

9.9 Stationary state Current

In this section, we sketch the main steps of the computation of the current starting from

Eq. (4) in the main text. For the sake of completeness we first rewrite the Langevin equations

Eqs. (1),

MẌ(t) = −ΦX(t)− ΓẊ(t) + Ξ(t) + F (t), (9.96)

where, X(t) = {xl(t); l = 1, . . . , N} is a vector, M is an N -dimensional diagonal matrix with

Mlj = mδl,j ; Φ and Γ are N -dimensional matrices given by

Φjl = k (2δj,l − δj,l−1 − δj,l+1) ,

Γ = ΓL + ΓR with (ΓL)jl = γδj,1δl,1, (ΓR)jl = γδj,Nδl,N . (9.97)

Moreover, the vectors Ξ(t) and F (t) represent the thermal and active forces exerted by the

reservoirs on the boundary oscillators,

Ξ(t) = ΞL(t) + ΞR(t) with (ΞL)j(t) = ξ1(t)δj1 and (ΞR)j(t) = ξN (t)δjN ,(9.98a)

F (t) = FL(t) + FR(t) with (FL)j(t) = f1(t)δj1 and (FR)j(t) = fN (t)δjN . (9.98b)
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Here, ξ1,N (t) are delta correlated white-noises, while the active noises f1,N (t) have an expo-

nentially decaying auto-correlation,

〈ξj(t)ξl(t′)〉 = δjl 2γTjδ(t− t′), and, 〈fj(t)fl(t′)〉 = δjl a
2
je
−|t−t′|/τj . (9.99)

Note that, even though Eq. (9.96) formally appears to be a limiting case of [153] with van-

ishing bulk activity, the two scenarios differ by their physical nature as well as emergent

phenomena, as we will see below.

The stationary energy current flowing through the system can be expressed as J = 〈J (t)〉

where

J (t) = ẋ1[−γẋ1 + ξ1(t) + f1(t)] (9.100)

denotes the instantaneous work done by, the left reservoir on the left boundary oscillator

and the statistical averaging is done over the stationary state. It is convenient to recast this

energy current using the above matrix notation and separate it into two terms,

J = J1 + J2 with, J1 = −Tr
[
〈Ẋ(t)ẊT (t)ΓL〉

]
and J2 = Tr

[
〈(ΞL + FL)ẊT (t)〉

]
,(9.101)

where ẊT denotes the transpose of the vector Ẋ. In the following we compute J1 and J2

separately using the solution of Eq. (9.96),

X(t) =

∫ ∞
−∞

dω

2π
e−iωtG(ω)[Ξ(ω) + F (ω)], (9.102)

where G(ω) = [−Mω2 + Φ− iω(ΓL + ΓR)]−1 [see Eq. (10)]. Let us first consider,

J1 =

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
ω ω′ e−i(ω+ω′)t Tr

[
〈X̃(ω)X̃T (ω′)〉ΓL

]
=

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
ω ω′ e−i(ω+ω′)t Tr

[
G(ω)

〈
[Ξ(ω) + F (ω)][Ξ(ω′) + F (ω′)]

〉
G(ω′)ΓL

]
,

(9.103)

where we have used the fact that GT (ω′) = G(ω′) as G is a symmetric matrix. The noise

correlations appearing in the above equation can be evaluated in a straightforward manner
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using Eqs. (9.98)-(9.99). Since the noises from the two reservoirs are independent, it is natural

to separate the corresponding contributions and write,

〈[
Ξ(ω) + F (ω)

][
Ξ(ω′) + F (ω′)

]〉
= 2πδ(ω + ω′)

[
SL(ω) + SR(ω)

]
, (9.104)

where the matrix elements of SL,R(ω) are given by,

(
SL(ω)

)
jl

= [2γT1 + g̃(τ1, ω)]δj,1δl,1, and (SR)jl = [2γTN + g̃(τN , ω)]δj,Nδl,N .(9.105)

Here g̃(τj , ω) denotes the Fourier transform of the active force auto-correlation

g̃(τj , ω) = a2
j

∫ ∞
−∞

ds eiωse−|s|/τj =
2a2

jτj

(1 + ω2τ2
j )
. (9.106)

Using Eqs. (9.104) and (9.105) in Eq. (9.103), we get,

J1 = −
∫ ∞
−∞

dω

2π
ω2Tr

[
G(ω)

(
SL(ω) + SR(ω)

)
G∗(ω)ΓL

]
, (9.107)

where G∗(ω) = G(−ω) denotes the complex conjugate of G(ω). Proceeding similarly for J2,

we have from Eq. (9.101) and Eq. (9.104),

J2 = i

∫ ∞
−∞

dω

2π
ωTr[G∗(ω)SL(ω)]. (9.108)

Combining Eqs. (9.107) and (9.108) and rearranging the terms, we have,

J =

∫ ∞
−∞

dω

2π
ωTr

[(
iG∗(ω)− ωG∗(ω)ΓLG(ω)

)
SL(ω)

]
−
∫ ∞
−∞

dω

2π
ω2 Tr

[
G∗(ω)ΓLSR(ω)

]
.

(9.109)

Now, remembering the definition of G(ω) = [−Mω2 + Φ − iω(ΓL + ΓR)]−1, it can be easily

shown that,

G∗(ω)ΓLG(ω) =
G(ω)−G∗(ω)

2iω
−G∗(ω)ΓRG(ω). (9.110)
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Using the above relation the first term of Eq. (9.109) can be further simplified,

∫ ∞
−∞

dω

2π
ωTr

[(
iG∗(ω)− ωG∗(ω)ΓLG(ω)

)
SL(ω)

]
=

i

2

∫ ∞
−∞

dω

2π
ωTr

[(
G(ω) +G∗(ω)

)
SL(ω)

]
+

∫ ∞
−∞

dω

2π
ω2 Tr

[
G∗(ω)ΓRG(ω)SL(ω)

]
.

(9.111)

The first integral on the second line vanishes as ω(G(ω) +G∗(ω))SL(ω) is an odd function of

ω, and we finally have, from Eqs. (9.109) and (9.111),

J =

∫ ∞
−∞

dω

2π
ω2 Tr

[
G(ω) ΓRG

∗(ω)SL(ω)−G(ω)SR(ω)G∗(ω) ΓL

]
. (9.112)

From the expressions of SL(ω) and SR(ω) given in Eq. (9.105) it is immediately clear that J

separates into two parts — J = Jth + Jact, where,

Jth = γ2(T1 − TN )

∫ ∞
−∞

dω

2π
ω2|G1N (ω)|2, and (9.113a)

Jact = J1
act − JNact with J jact = γ

∫ ∞
−∞

dω

2π
ω2|G1N (ω)|2g̃(τj , ω). (9.113b)

The thermal current Jth is well known in the literature [147, 137] and is given by,

Jth =
k(T1 − TN )

2γ

[
1 +

mk

2γ2
− mk

2γ2

√
1 +

4γ2

mk

]
. (9.114)

In the following we compute the active current Jact exactly. To this end, we first need the

explicit form for the matrix element G1N (ω). This has been calculated in the context of

thermal transport [137], we revisit the calculation here for the sake of completeness.

By definition, G(ω) is the inverse of a tri-diagonal matrix (see Eq. (7.24)) and the elements

Gij(ω) can be computed explicitly exploiting this tridiagonal structure of G−1(ω) [141]. In

particular, we will need the following elements,

Gl1(ω) = (−k)l−1 θN−l
θN

, and (9.115a)

GlN (ω) = (−k)N−l
θl−1

θN
(9.115b)
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where θl satisfies the recursion relation,

θl = (−mω2 + 2k) θl−1 − k2 θl−2 for l = 2, 3, . . . , N − 1, (9.116a)

and θN = (−mω2 + 2k − iωγ) θN−1 − k2 θN−2. (9.116b)

Using the boundary conditions θ0 = 1 and θ1 = (−mω2 + 2k − iωγ) [141], the recursion

relation (9.116a) can be solved in a straightforward manner. It is convenient to express the

solution as,

θl =
(−k)l−1

sin(q)
[k sin ((l + 1)q)− iωγ sin(lq)] for l = 2, 3, . . . , N − 1, (9.117)

where q and ω are related by,

cos q =

(
1− mω2

2k

)
⇒ ω = ωc sin

q

2
, (9.118)

where ωc = 2
√
k/m. Using Eq. (9.117) in Eq. (9.116b) we then have,

θN =
(−k)N

sin q

[
a(q) sin(Nq) + b(q) cos(Nq)

]
, (9.119)

where,

a(q) = −2i γω

k
+ cos q

(
1− γ2ω2

k2

)
, and b(q) = sin q

(
1 +

γ2ω2

k2

)
. (9.120)

Now we can proceed to compute the active current. Using Eq. (9.119) and Eq. (9.115b) for

l = 1 in Eq. (9.113b), we get,

J1
act =

γ

πk2

∫ ∞
0

dω ω2 sin2 q

|a(q) sin(Nq) + b(q) cos(Nq)|2
g̃(τ1, ω). (9.121)

At this point, it is important to note that, for ω > ωc, q becomes complex. Thus, for large

N , in the region ω > ωc, the integrand vanishes exponentially as exp(−2Nq̄), where q̄ is real.

Thus, to compute the current for thermodynamically large systems, we can limit the range

of integration in Eq. (9.121) to be 0 ≤ ω ≤ ωc or equivalently, 0 ≤ q ≤ π. Moreover, the

functions sin(Nq) and cos(Nq) are highly oscillatory for large N and in the N → ∞ limit,
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we can average over x = Nq and write [140],

J1
act =

γ

πk2

∫ ωc

0
dω ω2 sin2 q g̃(τ1, ω)

∫ 2π

0

dx

2π

1

|a(q) sinx+ b(q) cosx|2
. (9.122)

The x-integral has a simple form and can be evaluated exactly (see Sec. 2.558 in [152]),

∫ 2π

0

dx

2π

1

(c1 sinx+ d cosx)2 + c2
2 sin2 x

= − 1

dc2
, (9.123)

where we have denoted c1 = Re[a(q)], c2 = Im[a(q)] and d = b(q) for notational simplicity.

Substituting Eq. (9.123) in Eq. (9.122), we get,

J1
act =

k

2π

∫ ωc

0
dω

ω sin q

k2 + γ2ω2
g̃(τ1, ω) =

k

2

∫ π

0

dq

π

∣∣∣dω
dq

∣∣∣ ω sin q

k2 + γ2ω2
g̃(τ1, ω). (9.124)

Thereafter, using the Jacobian |dωdq | =
k sin q
mω , we arrive at,

J1
act =

∫ π

0

dq

π

mkτ1a
2
1 sin2 q

[mk + 2γ2(1− cos q)][m+ 2kτ2
1 (1− cos q)]

, (9.125)

where we have also expressed g̃(τ1, ω) as a function of q. This integral can be evaluated

exactly and leads to,

J1
act =

m

2γ2
a2

1E1 with E1 =

τ2
1 k

2

[√
1 + 4γ2

mk − 1

]
+ γ2

[
1−

√
1 +

4kτ21
m

]
2τ1(τ2

1 k
2 − γ2)

. (9.126)

One can similarly obtain JNact = m
2γ2

a2
NEN , where,

EN =

τ2
Nk

2

[√
1 + 4γ2

mk − 1

]
+ γ2

[
1−

√
1 +

4kτ2N
m

]
2τN (τ2

Nk
2 − γ2)

. (9.127)

The total active current is obtained by combining Eq. (9.127) and (9.126), which is quoted

in Eq. (5).
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9.10 Kinetic temperature profile

The kinetic temperature of the lth oscillator as defined in the main text is given by,

T̂l = m〈ẋ2
l (t)〉. (9.128)

Since we are primarily interested in the effect of the active driving, we put T1 = TN = 0.

Then, from Eq. (9.102), we get,

T̂l = m

∫ ∞
−∞

dω

2π
ω2
[
|Gl1(ω)|2g̃(τ1, ω) + |GlN (ω)|2g̃(τN , ω)

]
. (9.129)

From Eqs. (9.115) we have,

|Gl1(ω)|2 =
k2N−4

sin2 q|θN |2
∣∣∣k sin(N − l + 1)q − iωγ sin(N − l)q

∣∣∣2, (9.130a)

|GlN (ω)|2 =
k2N−4

2 sin2 q|θN |2
∣∣∣k sin(lq)− iωγ sin(l − 1)q

∣∣∣2. (9.130b)

We are particularly interested in the behavior of the kinetic temperature in the bulk in

the thermodynamic limit N → ∞. For this purpose we evaluate T̂l for l = N/2 + ` where

` � N . Let us first consider the contribution from the left reservoir, i.e., the first term in

Eq. (9.129). Once again, the integrand vanishes exponentially for ω > ωc in the large N

limit, and we can write,

I1 ≡
∫ ∞
−∞

dω

2π
ω2|Gl1(ω)|2g̃(τ1, ω)

=
1

k4

∫ π

0

dq

2π

∣∣∣∣dωdq
∣∣∣∣ω2 k

2 (1− cos(N − 2`+ 2)q) + ω2γ2 (1− cos(N − 2`)q)

|a(q) sin(Nq) + b(q) cos(Nq)|2
g̃(τ1, ω).

(9.131)

As before, in the N →∞ limit, we can average over the fast oscillations in x = Nq. For this

purpose, let us note,

∫ 2π

0

dx

2π

sinx

(c1 sinx+ d cosx)2 + c2
2 sin2 x

=

∫ 2π

0

dx

2π

cosx

(c1 sinx+ d cosx)2 + c2
2 sin2 x

= 0.(9.132)
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Using these identities and Eq. (9.123), Eq. (9.131) reduces to,

I1 =
1

2γk

∫ π

0

dq

2π

∣∣∣dω
dq

∣∣∣ ω

sin q
g̃(τ1, ω) =

1

4πγm

∫ π

0
dq g̃(τ1, ω(q)) (9.133)

The q-integral can be evaluated exactly, and yields,

I1 =
1

2γm

a2
1τ1√

1 + 4τ2
1 k/m

. (9.134)

The integral involving GlN can also be performed following the same procedure and results

in,

I2 ≡
∫ ∞
−∞

dω

2π
ω2|GlN (ω)|2g̃(τN , ω) =

1

2γm

a2
NτN√

1 + 4τ2
Nk/m

. (9.135)

Combining these results, we see that the kinetic temperature remains uniform in the bulk

and is given by,

T̂bulk =
1

2γ

 a2
1τ1√

1 + 4τ2
1 k/m

+
a2
NτN√

1 + 4τ2
Nk/m

 . (9.136)

This is the result presented in Eq. (6).

For a finite chain the kinetic temperature deviates from T̂bulk near the boundaries giving

rise to exponentially decaying boundary layers; see Fig. 9.4(a). To obtain the behavior of the

boundary layers, we need to evaluate Eq. (9.129) in the limits l� N and l ∼ N .

9.10.1 T̂l near left boundary

Let us first concentrate near the left boundary, where l = 1, 2, 3 . . . � N . For convenience,

we rewrite Eq. (9.129) as,

T̂l = m[L1(l, τ1) + LN (l, τN )], (9.137)
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(a) (b)

Figure 9.4: Boundary layer properties of the kinetic temperature profile: (a) shows T̂l profile
near the left boundary. The main plot compares the contributions from Eq. (9.140), (9.145)
and (9.148) (in solid black lines) with numerical simulations (in colored symbols). The inset
plot shows the exponential decay of T̂l from T̂bulk at the left boundary for a system of N = 64
oscillators with m = 1, k = 1, γ = 1 and τ1 = 1. (b) shows the absence (presence) of the
boundary kinks when τ1,N is much larger (smaller) than ωc = 2

√
k/m. Here N = 32 with

m = 1, k = 0.5, γ = 1 and τ1 = 1.

where L1(l, τ1) and LN (l, τN ) denote the contributions from the left and right reservoirs

respectively,

L1(l, τ) =

∫ ∞
−∞

dω

2π
ω2|Gl1(ω)|2g̃(τ, ω), (9.138a)

LN (l, τ) =

∫ ∞
−∞

dω

2π
ω2|GlN (ω)|2g̃(τ, ω). (9.138b)

We first evaluate the contribution from the right reservoir LN (l, τ). In this case, once

again, the contribution coming from |ω| > ωc vanishes exponentially for large N and in the

thermodynamic limit Eq. (9.138b) reduces to,

LN (l, τ) =
1

k4

∫ ωc

0

dω

π
ω2 k

2 sin2(lq) + ω2γ2 sin2(l − 1)q

|a(q) sin(Nq) + b(q) cos(Nq)|2
g̃(τ, ω). (9.139)

Averaging over the fast oscillations in the N →∞ limit and using Eq. (9.123), we get,

LN (l, τ) =
1

2γm

∫ π

0

dq

π

k2 sin2(lq) + ω2γ2 sin2(l − 1)q

(k2 + γ2ω2)
g̃(τ, ω). (9.140)

Though this integral does not yield any closed form expression, it can be evaluated numerically
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for arbitrary l and τ .

Next, we consider the contribution from the left reservoir L1(l, τ). It turns out that

L1(l, τ) (Eq. (9.138a)) has non-vanishing contribution from both |ω| < ωc and |ω| > ωc.

Thus, it is convenient to rewrite Eq. (9.138a) as,

L1(l, τ) = Lb1(l, τ) + Lo1(l, τ), (9.141)

where Lb1(l, τ) and Lo1(l, τ) denote the contributions from |ω| < ωc and |ω| > ωc respectively.

For |ω| > ωc, Eq. (9.118) implies that q = π − iq̄, where q̄ is real. We first evaluate the

contribution from this region,

Lo1(τ) =

∫ ∞
ωc

dω

π
ω2|Gl1(ω)|2 g̃(τ, ω)

=
1

k4

∫ ∞
ωc

dω

π
ω2 |ik sinh(N − l + 1)q̄ − ωγ sinh(N − l)q̄|2

|ia(q̄) sinh(Nq)− b(q̄) cosh(Nq̄)|2
g̃(τ, ω), (9.142)

where we have used the identities,

sin(nq) = (−1)n+1 i sinh(nq̄), and cos(nq) = (−1)n cosh(nq̄), n = 0, 1, 2, . . . .(9.143)

In the N →∞ limit, Eq. (9.142) reduces to

Lo1(τ) =
1

k4

∫ ∞
ωc

dω

π
ω2e−2lq̄ k

2e2q̄ + ω2γ2

|ia(q̄)− b(q̄)|2
g̃(τ, ω) (9.144)

The integral over ω ∈ [ωc,∞] can be converted to an integral over q̄ ∈ [0,∞] using the relation

ω = ωc cosh(q̄/2) [see Eq. (9.118)], to get,

Lo1(τ) =
ω3
c

2

∫ ∞
0

dq̄

π
e−2lq̄ sinh(q̄/2) cosh2(q̄/2)

k2 + γ2ω2
c cosh2(q̄/2)e−2q̄

g̃
(
τ, ωc cosh

q̄

2

)
. (9.145)

This, again, can be evaluated numerically for arbitrary l. For |ω| < ωc, q is real and the

contribution to Eq. (9.138a) is given by,

Lb1(τ) =

∫ ωc

0

dω

π
ω2|Gl1(ω)|2 g̃(τ, ω)
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=
1

k4

∫ ωc

0

dω

π
ω2 k

2 sin2(N − l + 1)q + ω2γ2 sin2(N − l)q
|a(q) sin(Nq) + b(q) sin(Nq)|2

g̃(τ, ω). (9.146)

For l � N and N → ∞ limit, averaging over the fast oscillations x = Nq involves integrals

of the form,

Q(v) =

∫ 2π

0

dx

2π

sin2(x− v)

(c1 sinx+ d cosx)2 + c2
2 sin2 x

=

[
c2

1 + c2
2 − d2

]
cos(2v)−

[
c2

1 + (c2 − d)2 + 2c1d sin(2v)
]

2dc2

[
c2

1 + (c2 − d)2
] , (9.147)

where v > 0 is arbitrary and c1 = Re[a(q)], c2 = Im[a(q)] and d = b(q) as before. Using the

above result in Eq. (9.146) with appropriate values of v,

Lb1(τ) =
1

k4

∫ ωc

0

dω

π
ω2
[
k2Q((l − 1)q) + ω2γ2Q(lq)

]
g̃(τ, ω)

=
ω3
c

2k4

∫ π

0

dq̄

π
sin2 q

2
cos

q

2

[
k2Q((l − 1)q) + ω2

c sin2 q

2
γ2Q(lq)

]
g̃
(
τ, ωc sin

q

2

)
(9.148)

Adding the contributions given by Eq. (9.140), (9.145) and (9.148), we can evaluate the ki-

netic temperature profile near the left boundary, which is shown in Fig. 9.4.

9.10.2 T̂l near right boundary

The behavior near the right boundary can be obtained in a similar manner. For this purpose,

it is convenient to define, ` = N − l + 1, such that ` = 1, 2, 3, . . . � N corresponds to the

oscillators near the right boundary. Next, we note that, from Eqs. (9.130a) and (9.130b),

|Gl1(ω)|2 = |GN−l+1,N (ω)|2 (9.149)

|GlN (ω)|2 = |GN−l+1,1(ω)|2. (9.150)

Then the T̂l profile near the right boundary (l ∼ N) is given by,

T̂N−`+1 = m

∫ ∞
−∞

dω

2π
ω2
[
|GN−`+1,1(ω)|2g̃(τ1, ω) + |GN−`+1,N (ω)|2g̃(τN , ω)

]
= m

∫ ∞
−∞

dω

2π
ω2
[
|G`,N (ω)|2g̃(τ1, ω) + |G`,1(ω)|2g̃(τN , ω)

]
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= m
[
LN (`, τ1) + L1(`, τN )

]
, (9.151)

where L1(`, τ) and LN (`, τ) are obtained from Eqs. (9.140), (9.145) and (9.148).

Interestingly, boundary kinks, which are absent in the active regime appear in the passive

limit, similar to the thermal scenario. This is shown in Fig. 9.4(b) where kinks are visible

near the right boundary as the activity of the corresponding reservoirs is small, whereas no

kinks are visible near the left reservoir, which remains in the strongly active regime.
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[22] E. Frey and K. Kroy, “Brownian motion: a paradigm of soft matter and biological

physics,” Annalen der Physik, vol. 14, no. 1-3, p. 20, 2005.

[23] J. G. Skellam, “Random dispersal in theoretical populations,” Biometrika, vol. 38,

no. 1/2, p. 196, 1951.

[24] S. N. Majumdar, “Brownian functionals in physics and computer science,” Current

Science, vol. 89, p. 2076, 2005.

[25] P. H. Cootner, ed., The random character of stock market prices. MIT press, Cambridge,

Massachusetts, 1964.

[26] H. C. Berg, Random walks in biology. Princeton University Press, 2018.

[27] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen,
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[44] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, “Dynamical

clustering and phase separation in suspensions of self-propelled colloidal particles,”

Physical review letters, vol. 110, no. 23, p. 238301, 2013.

[45] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur,

“Pressure is not a state function for generic active fluids,” Nature Physics, vol. 11,

no. 8, pp. 673–678, 2015.

[46] J. Elgeti, R. G. Winkler, and G. Gompper, “Physics of microswimmers—single particle

motion and collective behavior: a review,” Reports on progress in physics, vol. 78, no. 5,

p. 056601, 2015.

[47] R. Golestanian, J. M. Yeomans, and N. Uchida, “Hydrodynamic synchronization at low

reynolds number,” Soft Matter, vol. 7, no. 7, pp. 3074–3082, 2011.

[48] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,

and R. A. Simha, “Hydrodynamics of soft active matter,” Rev. Mod. Phys., vol. 85,

pp. 1143–1189, Jul 2013.
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Giornale degli Economisti e Annali di Economia, p. 233, 1975.
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