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Abstract. The SKA pulsar search pipeline will be used for real time detection of pulsars. Modern radio
telescopes, such as SKA will be generating petabytes of data in their full scale of operation. Hence, experience-
based and data-driven algorithms are being investigated for applications, such as candidate detection. Here,
we describe our findings from testing a state of the art object detection algorithm called Mask R-CNN to
detect candidate signatures in the SKA pulsar search pipeline. We have trained the Mask R-CNN model to
detect candidate images. A custom semi-auto annotation tool was developed and investigated to rapidly mark
the regions of interest in large datasets. We have used a simulation dataset to train and build the candidate
detection algorithm. A more detailed analysis is planned. This paper presents details of this initial investigation
highlighting the future prospects.
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1. Introduction

Modern radio telescopes, such as the Square Kilometre
Array (SKA), generate data in the order of petabytes in
their full scale of operation. Data volumes arise due to
the extensive array size (197 antennas in South Africa
and 1,31,072 antennas in Western Australia), multi-
ple beams (up to about 1500), broadband digitization
(about 800 Msps), and from the demanding science
requirements (Dewdney 2016; Labate et al. 2019).
Correspondingly, there is a considerable high-speed
signal processing: FFT, filtering, cross-correlations,
beamforming, etc., employed using dedicated hard-
ware components. Subsequent processing uses a mix of
application-specific and non-deterministic algorithms,
where statistical and experience-based decision making
is indispensable.

This article is part of the Special Issue on “Indian Participation in
the SKA”.

Manual or semi-automated approaches will not be
feasible when handling such volumes of data. We will
have to employ automated and heuristic algorithms that
can ease the classification of data, detection of pat-
terns/objects in the data streams in real-time. Machine
learning, which is an actively evolving field, brings
in a host of valuable practical techniques to effi-
ciently handle the radio-telescope large volume data
processing.

This paper investigates the use of a state of the
art object detection algorithm called Mask R-CNN to
detect accelerated binary pulsar’s signatures in a pulsar
search pipeline data stream. In a related work by Lyon
et al. (2016), Keith et al. (2010) and Bates et al. (2012),
candidate detection was performed on pulsar profiles.
We demonstrated a novel approach of detecting candi-
date signatures in the middle of the processing pipeline.
Additionally, our effort for detecting binary pulsar sig-
natures involving machine learning-based approaches
is novel. By determining the location and co-ordinates
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of the candidate, we will be able to extract useful infor-
mation for the sifting needed to sort the candidates.

This paper is outlined as follows: Section 2 gives a
brief background on machine learning. Section 3 intro-
duces the SKA pulsar search pipeline (Levin et al.
2017), the Fourier Domain Acceleration Search (FDAS)
(Ransom 2001) and the machine learning pipeline,
which were investigated. Section 4 provides a discus-
sion about our main results. Section 5 talks about our
future propects and Section 6 concludes the work.

2. Background on machine learning

Machine learning is the study of algorithms, which can
improve over time with experience and data. Machine
learning is classified into three categories: (1) Super-
vised Learning, (2) Unsupervised Learning and (3)
Reinforcement Learning.

The term supervised learning implies that the data
is labeled. An artificial intelligence (AI) model cre-
ates a mapping between the features and output and
uses this mapping function to predict values for new
datasets. Support Vector Machines (Hearst et al. 1998),
Decision Trees (Quinlan 1986), K-Nearest Neighbors
(Cunningham & Delany 2022) are some of the widely
used supervised machine learning algorithms.

Unsupervised machine learning signifies AI mod-
els, which create a mapping function by clustering and
grouping similar data. K-means clustering (Jain 2008),
Expectation Maximization clustering (Moon 1996) and
Auto Encoders (Bank et al.2020) are some of the widely
used unsupervised machine learning algorithms.

Reinforcement learning works on the concept of AI
agent, which observes its surroundings and performs an
action. Based on the action taken, it is either rewarded
or penalized (Sutton 2005). Over time, the AI model
will aim towards maximizing the reward function.

In most of the above three categories of machine
learning, the underlying workhorse is a neural network.
A neural network is primarily composed of neurons
(Gurney 1997). A neuron takes a sum of weighed inputs
along with a bias and subjects this output to an activa-
tion function. The activation function determines if a
neuron has to switch on or off. Figure 1 shows a general
structure of a neuron with two inputs and a bias. Neu-
ral network-based approaches in some cases, create the
mapping between the input data and its corresponding
labels.

Neural networks can be effectively used for model-
ing the behavior of a function. But in case of complex
functions, more number of neurons in the form of layers

Figure 1. Structure of an artificial neuron having two
inputs, two weights, a bias and an activation function.

Figure 2. An artificial neural network having multiple neu-
rons, one input layer, one hidden layer and one output. For
complex problems, the neural network can have multiple hid-
den layers. For multi-class classification problems, there are
multiple neurons in the output layer.

will have to be added. A neural network with multiple
hidden layers is called a deep neural network. Figure 2
shows an artificial neural network with one hidden layer.

In case of pulsar searches, we will have to deal with
large amounts of image-based data and the processing
will have to be done in real time (Lyon et al. 2018).
Lyon et al. (2018), in their paper, introduces a real time
pulsar candidate detection pipeline.

When dealing with image data, we use a special case
of an Artificial Neural Network called the Convolutional
Neural Network (CNN) (Krizhevsky et al. 2012). The
feature extraction in a CNN happens with a repeated
set of convolutions and pooling. Convolutions are per-
formed via filters to produce feature-maps. The pooling
layer is responsible for reducing the spatial size of the
feature maps. The feature map, additionally helps in
reducing subsequent computation required.
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Figure 3. Main processing in FDAS consists of matched filtering to deconvolve the fundamentals and their harmonics
(Thiagaraj et al. 2020)

3. SKA pulsar search pipeline

One of the complex tasks of the SKA pulsar engine,
shown in Figure 4, is to search for pulsars in binary
systems, where the apparent frequency of the pulsar is
changed significantly during the observation.

A FDAS algorithm (Ransom et al. 2002) is being
tested for the SKA application. The frequency changes
manifest in the Fourier space as sinc functions con-
volved with an FIR response. To deconvolve these
signals, a set of optimized matched filters are con-
structed and used in the FDAS module (Figures 3 and
4) (Thiagaraj et al. 2020).

The FDAS module receives the RFI-mitigated com-
plex spectra, generated from the dedispersed time series.
Each spectrum is passed through a set of 85 matched fil-
ters, each analysing a unique acceleration-period range
in the search. Outputs from the filters are detected to
obtain the power series and saved in a 2-dimensional
data array known as a filter-output-plane (FOP) (Fig-
ure 5).

For SNR optimization across the search parameter
space, 84 filters are required to search across pulsar
periods up to 500 Hz with +/−350 ms−2 acceleration
range. A typical data size of 4 M samples, which corre-
spond to an observation time of about 10 min (Thiagaraj
et al. 2020).

In this work, our focus is on the FDAS module. We
have investigated the use of Mask R-CNN to detect
candidates of accelerated binary pulsar signatures.

3.1 Fourier domain acceleration search

The intermediate output product of the FDAS process-
ing when viewed as a particular image intensity mode, a
distinct shape (hourglass, butterfly) is observed. These
butterfly shapes come from the particular arrangement
of the filters, and when an accelerated binary pulsar
fundamental or harmonics signals gets deconvolved
through them. The intensity, location and inclination
of these shape/patterns give us information about these
candidates.

Conventional processing in this stage, involves sift-
ing through the filter output plane (FOP) array and
performing a harmonic summing and thresholding.
Additionally, basic CNNs perform classification, but we
investigate an improved version of CNN, known as the
Mask-RCNN that can identify the patterns and provide
a mark in the regions (bounding box), where pattern
features are identified. Typically, the CNN is compu-
tationally expensive to implement. In our case, due to
the use of accelerators, additional computation steps for
implementing convolutions is less significant.

The R-CNN and Fast R-CNN algorithm (Girshick
2015), which use a selective search algorithm could not
be used for real life deployments as there was a perfor-
mance bottleneck. The Faster R-CNN algorithm (Ren
et al. 2015) could not be used as we needed a mask to be
drawn for every detected object. Due to these reasons,
we chose Mask R-CNN to perform candidate signature
detection. Our investigation is to see if the Mask R-CNN
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Figure 4. Schematic of the pulsar search processing work
flow in SKA. FPGA-based acceleration architecture inves-
tigated for (1) RFI mitigation, (2) dedispersion, (3) FFT,
(4) acceleration search and (5) candidate folding optimiza-
tion modules.

suite can be used to train and recognize these image pat-
terns. We have identified the public domain availability
of Mask R-CNN from matterport github repository.1

3.2 Mask R-CNN

Mask R-CNN (He et al. 2017) is a small, flexible
generic object sample segmentation framework. It not
only detects targets in the image, but also gives a high-
quality segmentation result for each target. It is extended
on the basis of Faster R-CNN, and adds a new branch

1https://github.com/matterport/Mask_RCNN.

Figure 5. (A) An intensity image of the filter output plane
around one of the harmonic positions. (B) Signal’s harmonic
positions and a few spurious detections. (C) Spectrum after
the matched filtering. (D) Input spectrum. In this illustration,
we have used the double pulsar test vector (Thiagaraj et al.
2020).

to predict an object mask, which is parallel with bound-
ing box recognition branch. For object classification,
we have used the default ResNet101 (He et al. 2015)
as our classfication network. For the detection net-
work, we have used a region proposal network, which
was proposed with the Faster R-CNN algorithm. Fea-
ture extraction in the Mask R-CNN happens via the
Feature Pyramid Network (FPN) algorithm. The FPN
algorithm was designed to handle images of various
sizes and shapes by keeping speed, memory and accu-
racy in mind. The algorithm consists of both a top down
and bottom up approaches to produce feature maps. The
bottom up network features a regular convolutional neu-
ral network for extracting features from images. Every
layer in the bottom up pyramid reduces spatially, allow-
ing for high level structures to be determined, thereby
increasing the semantic value. The top down network
provides a pathway to construct high resolution layers
from the semantic rich layer. Additionally, there are lat-
eral connections provided to help the detector to better

https://github.com/matterport/Mask_RCNN
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Figure 6. As a basic step, we took the default MS-COCO weights along with Mask R-CNN. MS-COCO weights are
provided along with the Mask R-CNN repository. A city image was taken and subjected to this algorithm. We observed that
up to one extent of the resolution of the image, it could detect objects, draw bounding boxes on each of the detected along
with a confidence score and additionally draw a mask for each of the detected objects.

detect the object locations. This algorithm has shown
significant improvements over the other state-of-the-art
approaches (Lin et al. 2016). Mask R-CNN defines the
loss function2 as follows:

L = Lcls + Lbox + Lmask, (1)

where Lcls denotes the classification loss, Lbox denotes
the bounding box loss and Lmask is the average binary
cross entropy loss, only including k-th mask if the region
is associated with the ground truth class k.

3.3 Basic tests with Mask R-CNN

Mask R-CNN is available as a github repository from
matterport. The github repository is cloned onto our
local system, following the setup procedure given in
the github repository.

At the time of this work, the default Mask R-CNN
available from the repository has been trained on 80
different objects from the MS COCO (Lin et al. 2014)
dataset. Figure 6 is an example illustration to show the
default detection capability of Mask R-CNN. Image
shown is a city street and the detections are highlighted
with bounding boxes.

In addition, to understand the training procedure of
Mask R-CNN, we have experimented it to detect dam-
ages in a set of car images. For this purpose, we collected
sample images from an external github repository.3

It was necessary to annotate the images using Visual
Geometry Group (VGG) annotator. We then trained
the Mask R-CNN suite using the standard procedures
described in github. The loss function for this exper-
iment remains the same as the standard loss function

2https://en.wikipedia.org/wiki/Loss_function.
3https://github.com/priya-dwivedi/Deep-Learning/tree/master/
mask_rcnn_damage_detection/customImages.

described in Section 3.2. For this experiment, we have
not performed any predictive success analysis.4 Figure
7 shows the result from training the Mask R-CNN on
the car damage dataset.

The training of the neural network is an important
task and this procedure is described in the next section.

3.4 Training a neural network

Every neural network requires a good dataset (both
qualitatively and quantitatively). A dataset is split into
three parts i.e., a training set which is used in the neural
network, a validation set which is used for preventing
overfitting and a testing set to evaluate the performance
of a neural network. During the training of the neu-
ral network, there is a specific loss function, which is
defined. A loss function can either be predetermined or
a custom user-defined. The loss function gives us an
approximate idea about how well an algorithm, mod-
els a given data. A neural network updates its weights
with the backpropagation algorithm. A forward pass in
a neural network is defined as one run starting from the
input layer to the output layer. A combination of one
forward propagation and one backward propagation is
called an epoch. During the training cycle, the algo-
rithm is subjected to the training data and is validated
with the validation dataset. When the validation loss,
begins exceeding the training loss we can safely con-
clude the training process and extract the weights. The
weights are a crucial database produced at the end of the
training process, which will help in making appropriate
connection between the neurons. The weights will be
provided to the inferencing logic.

4https://en.wikipedia.org/wiki/Predictive_analytics.

https://en.wikipedia.org/wiki/Loss_function
https://github.com/priya-dwivedi/Deep-Learning/tree/master/mask_rcnn_damage_detection/customImages
https://github.com/priya-dwivedi/Deep-Learning/tree/master/mask_rcnn_damage_detection/customImages
https://en.wikipedia.org/wiki/Predictive_analytics
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Figure 7. Before getting into candidate detection, we trained Mask R-CNN on a custom car damage dataset. Input images
along with their respective masks were taken as input to the model. The custom weights were extracted and were tested on
test images. This figure shows the result for one of the test images taken.

Figure 8. A bird’s eye perspective of how Mask R-CNN will work for our task. The figure shows the ideal input and output
scenarios for a candidate signature image. The custom dataset will be annotated and then trained on Mask R-CNN to get a
custom weights file. This weights file will be used to detect signatures on a new set of test images.

3.5 Adapting Mask R-CNN for candidate detection

As discussed before, The default Mask R-CNN is used
to detect generic objects. We will have to train the Mask
R-CNN to produce a new set of weights to detect the
candidate signatures (hourglass/butterfly patterns). This
process involves four steps:

• Preparing the dataset,
• Image annotation,
• Training,
• Testing.

3.6 Dataset preparation

To train the neural network, we have used different sets
of binary pulsar signal data. We had a choice of using
real observational data from a telescope or using sim-
ulated data. A telescope data will have the presence
of interfering signals, which is undesirable for initial

training of the machine learning suite. To maintain a
controlled test/training environment, we have consid-
ered to use simulated datasets. Such simulated data
are produced using a mock pulsar signal generation
tool called SIGPROC5 fake utility. Fake is a command
line program written to create test data sets containing
pulses hidden in Gaussian noise background. Various
(38 different) datasets for the training purpose were
produced by modifying the -period, -width, -snrpeak,
-binary, -bper parameters of the fake utility. We have
used data files produced with accelerations (+/−500
ms−2, +/−250 ms−2, +/−25 ms−2 and 0 ms−2 ),
periods (2 s, 0.002 s), pulse duty cycle ratios (0.4,
0.2, 0.1, 0.05), a constant SNR value of 80 and dis-
persion measure of 1.0. The simulated data obtained
are in a filterbank format. The sampling period was
set to 64 microseconds and the observation period was
set to 536 seconds (close to real observation parame-
ters). The data files are first dedispersed and channel

5https://sigproc.sourceforge.net/sigproc.pdf.

https://sigproc.sourceforge.net/sigproc.pdf
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Figure 9. Taskflow involved in the image dataset prepara-
tion. GNU octave scripts were developed and used for this
purpose.

collapsed to form a time series of 8 million sam-
ples.6

The time series data is subjected to 8 million point
fast Fourier transform (real to complex). The resulting 4
million points after the transform are convolved with 85
templates to get a FOP, which is an array of dimension
85 rows by 4 million columns. A schematic of the data
preparation flow is shown in Figure 9.

The FOP array is subjected to a sliding window
approach to extract images used for training the Mask
R-CNN model. The images are of size of 85 rows by
256 columns (similar to an image having 85×256 pixel
size). Since the FOP is a very large array, there are
many regions, in the array without any significantly use-
ful data for the training purpose. So we have selected
regions where there are more likelihood presence of
signals and noise combinations (starting from funda-
mental frequency locations to their multiple harmonic
positions). This sliding window approach helped us to
get 886 image segments (85 × 256 arrays) from the
original FOP. The number 886 is an arbitrary choice
and adequate to select a smaller training dataset. From
this dataset, we have picked up 50 good quality images
for the training purposes and 34 random set of images
for testing. Figure 10 shows the images obtained by
processing different datasets that are having varying
signal strengths (signal to noise ratio, SNR). After the
images are obtained, they are subjected to image bound-
ary annotation, as discussed in the next section.

6https://www.jb.man.ac.uk/research/pulsar/Education/Tutorial/tut/
tut.html.

Figure 10. First image on the top left shows a candidate
image with a high intensity. We have taken the size of the
image to be 85 ∗ 256 pixels. The candidate signatures in the
shape of a butterfly are obtained after subjecting the candidate
array to 85 different acceleration filters. The second image in
the top right shows the same candidate, but it is shifted to the
corner. The third image in the bottom shows the candidate
image dominated with noise.

3.7 Image annotation

The Mask R-CNN model requires annotating the
images using an image boundary annotation tool. The
developers recommend using a standard VGG anno-
tator. Initially, we have used this standard tool for
annotating the images however, we found this tool
requires more human involvement to edit the boundaries
and appeared cumbersome to annotate large number of
images . Hence, we explored developing our own cus-
tom annotator tool with features to annotate the images
a little faster than the VGG tool. The annotation speed
performance was achieved by automatically drawing
the six sides (edges) needed for bounding the butter-
fly image boundaries. As mentioned earlier, for VGG,
it was required to draw each of the six sides manually,
which was consuming more time. The custom annotator
was made use to test short bounding box-based anno-
tations. The working principles of the annotation tools
are presented below for a comparison.

VGG annotator developed by the visual geometry
group7 is very useful to draw multiple segment anno-
tation boxes, which are required for complex images,
such as humans, animals, buildings, cars, etc., (Dutta
& Zisserman 2019). After the manual annotation, the
co-ordinates of the bounding box are saved in a JSON8

file format. We have produced one set of (50 images)
training image dataset using the VGG annotator. We
annotated our training data set (consisting of 50 images)
manually using a six point reference for the mask and
saved the co-ordinates in a JSON format (Figure 11a–d).

7https://www.robots.ox.ac.uk/~vgg/software/via/.
8https://en.wikipedia.org/wiki/JSON.

https://www.jb.man.ac.uk/research/pulsar/Education/Tutorial/tut/tut.html
https://www.jb.man.ac.uk/research/pulsar/Education/Tutorial/tut/tut.html
https://www.robots.ox.ac.uk/~vgg/software/via/
https://en.wikipedia.org/wiki/JSON
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Figure 11. Example images from the training dataset. Sub-
figures (a–d) were achieved using the web-based VGG
annotator tool. Subfigures (e–h) were made using our cus-
tom annotator developed from this work. This effort helped
us to analyze the effectiveness of the extent of the annota-
tion. The yellow lines in all the subfigures mark the region of
interest.

The custom annotator was developed to speed up
the annotation process.9 It is based on python and
javascript. The code can be executed in a web browser.
On loading the image, the user needs to select the
mid-point of the butterfly image and the tool will auto-
matically draw the six edges of the bounding boxes. We
have pre-estimated and fixed upper limits for the dimen-
sion of the bounding box and thereby the code could
automatically complete the annotation process. Upon
selecting (with a mouse-click) the butterfly image’s cen-
ter, the annotator calculates the six nodal points of the
bounding box with respect to the center point chosen by
the user. We have used this tool to create a second set
of training dataset, which is essentially the same as the
one produced by the VGG annotator, but with shorter
wings (Figure 11e,f).

After the annotation was completed, we passed the
dataset for training. The training process is explained in
the next section.

3.8 Training

The Mask R-CNN suite comes with a toolflow for train-
ing. It is a computationally intensive task and we have
installed the required programs in the Google Colab10

cloud environment with GPU-based acceleration. While
performing the training, we have saved the weights-
file produced after every epoch. The number of epochs

9https://drive.google.com/drive/folders/
1JOeRlDB4ckhhG9QeNID1qK0eMF19Wbo8.
10https://colab.research.google.com/.

Figure 12. We subjected the Mask R-CNN model to train
on 50 high resolution images. The images were annotated
with two different extents of annotation. The loss curve
obtained for two different kinds of annotation scheme data-
sets (VGG and custom) are shown. VGG annotator was used
to produce full extent annotations (Figure 11a–d) and the
custom annotator was used for producing short annotations
(Figure 11e–h). The loss curve flattened after the second
epoch on both the cases. Training was terminated after the
third epoch. Marginally, lower loss was observed for the full
extent training set.

required is not known a priori. So, we have arbitrar-
ily started the training process with the limit set to six
epochs. But we found that the training was converging
much before the third epoch.

The loss curve is a progress indicator of the train-
ing process. Typically, the flattening of the loss curve
around lower values indicates that the training is com-
plete and it can be terminated. At each new epoch the
same dataset is fed, but in a shuffled order to the network
to build an effective mapping function for the weights.

Figure 12 shows the loss curves obtained for the train-
ing process. We can observe that after epoch second,
the loss curves are flattening. It can also be observed
that two of our datasets (full extent annotated by VGG
and short extent annotation by custom annotator) have
shown similar trends. Since the loss curves started flat-
tening at the second epoch, we terminated our training
process at the next (3rd) epoch. We utilized the trans-
fer learning11 method to train our Mask R-CNN suite
between each of the epochs. The pretrained COCO
weights (Lin et al. 2014) were used as the initial base
weights file for the training. The model was trained with
a learning rate of 0.001 on both datasets. The learning
rate is a tuning parameter that determines the step size
at each iteration, while moving towards a minimum of

11https://en.wikipedia.org/wiki/Transfer_learning.

https://drive.google.com/drive/folders/1JOeRlDB4ckhhG9QeNID1qK0eMF19Wbo8
https://drive.google.com/drive/folders/1JOeRlDB4ckhhG9QeNID1qK0eMF19Wbo8
https://colab.research.google.com/
https://en.wikipedia.org/wiki/Transfer_learning
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Figure 13. Ensemble of detections corresponding to images with low levels (a, b,. . .) of noise to the images with high levels
(. . ., m, n) of noise are shown. The test images had an acceleration value of 500 ms−2, period of 2 s, pulse duty cycle ratios
of 0.4, 0.05 and with a constant SNR of 40. At low noise levels, the regions of interest were detected with high accuracy.
At high noise levels, there were multiple false detections. Different colored bounding boxes (dashed lines) indicate different
instances of the detected regions.

a loss function. A larger learning rate signifies a higher
chance of convergence at a local minima. A smaller
learning rate signifies a higher chance of convergence
at a global minima. The local and the global minima are
referred to the loss function.

As mentioned before, the training is computation-
ally intensive and we have used Google Colab, which
is equipped with a Nvidia T4 GPU. Mask R-CNN has
a specific configurable parameter which is known as
IMAGES_PER_GPU. We found that by limiting the
number of images to be processed by the GPU as two,
the computation went faster. Figure 12 shows the model

loss curves produced during the training process of the
two datasets.

3.9 Results from our experiment

The training process generates the weights file for infer-
encing. The weight file is collected and passed onto the
Mask R-CNN inferencing logic. We have considered 34
images for testing purposes. Out of the 34 images, four
images had a high SNR, 13 images had a medium SNR
and 17 images had very low SNR. Figure 13 shows a
subset of the images passed through the Mask R-CNN
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inferencing logic. As these were the first experimental
results, elaborate statistics were not collected. However,
we have the following qualitative analysis:

• The full length annotation based training was able
to identify the regions and mark them with high
confidence scores. The masks appeared only for
very high SNR cases (Figure 13a, b).

• When the butterfly pattern is located around the
edges of the image, we observed multiple detec-
tions having overlapped regions (Figure 13e, g, i).

• With low SNR cases, false detections appeared
at multiple places (Figure 13k, l).

• Short length annotation-based training resulted
in higher false detections in the high SNR cases.

• The medium SNR images also gave multiple
detected objects with overlapped regions (Figure
13h, i, j).

• The low SNR cases also gave multiple false
detections (Figure 13m, n).

• In each of the above three cases, the mask was
not drawn over the detected objects.

• Image pixel size of the training region seemed
to play a major role in the detection and loss
function estimation.

4. Discussion

The current design of SKA pulsar search is likely to
use machine learning approaches in a variety of places,
for example, for RFI detection and pulsar candidate
identification (Lyon et al. 2016). We have investigated
a machine learning approach for a new application
in the search processing (FDAS), where conventional
thresholding-based approaches are usually followed.
We have trained the network for a single feature detec-
tion. Usually, the Mask R-CNN applications detect
objects with well-defined boundaries, where the object
edges are well-defined (sharp) with regard to the back-
ground. In our case, the object has a fuzzy boundary,
but with a recognizable butterfly pattern for the human
eyes. We have carried out this investigation to detect
such fuzzy objects as a research work within the SKA
pulsar search activity. Our work demonstrated the abil-
ity to train a network to detect such fuzzy objects. It
has opened up further possible studies, where we can
do more quantitative studies on the algorithm and its
computational performance improvements for the pul-
sar search work in general. In addition, we have also
looked at the limitations of the standard annotation tools
and also studied the extent of annotation required using a

semi-automated custom annotation tool. There is scope
for further enhancement of this custom annotation tool.
The present training method used a single feature, by
including a few extended features to the training (some
noise patterns) and code enhancements, we will be able
to determine the location, inclination and intensity of the
candidates more precisely. Such information will enable
simplifying usual complexities associated with subse-
quent candidate sifting (sorting) and related processing.
Thus, our detection pipeline can be further improved to
provide higher level of information during the search.

5. Future prospects

The practical implementation of this new scheme and its
interfaces with the processing pipeline needs to be fur-
ther explored. For this purpose, we have investigated the
use of FPGA platform and OpenCL languages. We have
carried out a study for hardware acceleration of Mask
R-CNN for a future implementation. Since the pulsar
search pipeline runs on an accelerator, we have studied
the possibility of using an FPGA platform. In our early
investigation, we found the OpenCL implementation of
CNN available for DE-10 Nano FPGA board.12 How-
ever, more work needs to be done to map the different
libraries and enhance it for Mask R-CNN. A proposed
implementation of Mask R-CNN on hardware platform
is shown in Figure 14. We have also made a docker
image of the basic Mask R-CNN software and will be
enhancing it to deploy it over kubernetes clusters.

More investigation are to be performed with a larger
dataset. In the future study, we will have more quan-
titative study with multiple classes. We will also be
investigating the image pixelization aspects in the future
work.

We would like to use real telescope data for our
further investigations. In our future work, we will be
investigating the masking logic for identifying overlap-
ping instances of butterfly pattern in an RFI background.
Modern radio telescope data analysis faces challenges
in the form of Radio Frequency Interference (RFI). The
effect of RFI on our scheme requires future investiga-
tion. Normally, RFI can be dealt by capturing data in
an RFI free observatory sites, removing the RFI prone
datasets or by replacing the RFI affected set by benign
random or median values (Buch et al. 2016, 2018, 2019,
2022). We have also proposed in our earlier work (Bhat
et al. 2020), a novel method to identify observation slots

12https://www.intel.com/content/www/us/en/developer/
topic-technology/edge-5g/hardware/fpga-de10-nano.

https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/hardware/fpga-de10-nano
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/hardware/fpga-de10-nano
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Figure 14. This figure shows how a Mask R-CNN acceleration could be done for an FPGA-based deployment. The Mask
R-CNN will get trained on a GPU/CPU-based device and will then be converted into OpenCL equivalent code, which can
execute instructions parallely. The host code will handle the basic input and output of an image.

that are likely to be free from RFI. It proposes a routine
analysis of the radio telescope incoming data streams
to identify RFI free observation slots using machine
learning techniques. The methodology basically makes
use of statistical analysis and detecting outliers in the
data to build a comprehensive database. This database
can be analyzed to view the RFI trends with time. The
potential RFI free slots can be predicted using Long
Short Term Memory (LSTM) techniques (Misra et al.
2007, 2008).

The current work was taken up as a research activity
towards identifying new algorithms and techniques for
future implementations.

6. Conclusion

This paper showed the potential of a machine learn-
ing algorithm Mask R-CNN for detecting candidate
images in a pulsar search pipeline. We have tested this
concept with a set of simulated data and shown the
results here. We have also investigated the aspects of
annotation for the training and presented a brief discus-
sion. We have comprehensive inferences from our work.
We have presented these details from the perspective
of future improvements and hardware implementation.
Our training made use of the cloud-based computa-
tional infrastructure provided by Google. The entire
work details, codes developed, data images used, output
products including the neural network weight files are
documented and available via github.13 We anticipate
the future pulsar search and similar candidate detection
will benefit from this work.

13https://github.com/tprabu2000/Shashank-S-Bhat-Investigation-
of-a-Machine-learning-methodology-for-the-SKA-pulsar-search
-pipeline.
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