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Abstract. We propose the intensity mapping of the redshifted Hi 21-cm signal from the post-reionization
epoch as a cosmological probe of f (R) gravity. We consider the Hu–Sawicki family of f (R) gravity models
characterized by a single parameter f,R0. The f (R) modification to gravity affects the post-reionization 21-cm
power spectrum through the change in the growth rate of density fluctuations. We find that a radio interferometric
observation with a SKA1-mid-like radio telescope in both auto-correlation and cross-correlation with galaxy
weak-lensing and Lyman-α forest may distinguish f (R) models from �CDM cosmology at a precision, which
is competitive with other probes of f (R) gravity.
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1. Introduction

Einstein’s general theory of relativity (GR) has endured
a complete century of intensive scrutiny, and has
emerged as the most successful theory of gravitation.
Several tests on Solar system scales have proved its
consistency on small scales (Marchi & Cascioli 2020).
However, modifications to the theory of gravity have
often been proposed as a way to explain the observed
cosmic acceleration (Faraoni 2009). Several observa-
tional evidences like Galaxy redshift surveys, Cosmic
Microwave Background Radiation (CMBR) observa-
tions and supernovae surveys strongly indicate that the
energy budget of our Universe is dominated by dark
energy—a fluid with energy-momentum tensor that vio-
lates the strong energy condition (Perlmutter et al. 1997;
Hinshaw et al. 2003; Spergel et al. 2003; Riess et al.
2016). The cosmological constant (�) treated as a fluid
with an equation of state p = −ρ is the most popu-
lar candidate for dark energy in the framework of
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classical general relativity (Padmanabhan 2003).
However, the � CDM, model suffers from several the-
oretical and observational difficulties (Weinberg 1989;
Carroll 2001; Riess et al. 2016; Zhao et al. 2017). In
the matter sector, scalar fields have often been used to
model various properties of dynamical and clustering
dark energy (Ratra & Peebles 1988; Turner & White
1997; Caldwell et al. 1998; Armendariz-Picon et al.
2001; Bento et al. 2002; Padmanabhan & Choudhury
2002; Bagla et al. 2003; Nojiri et al. 2006). Extensive
literature is available on the diversity of such models
and their general treatment using model-independent
parametrizations Chevallier & David (2001); Linder
(2003); Barboza & Alcaniz (2008).

Alternatively, a modification of Einstein’s theory
can mimic dark energy without requiring an exotic
fluid (Amendola & Tsujikawa 2010). In f (R) theory,
the Ricci scalar, R appearing in the Einstein-Hilbert
action, is replaced by a general function of R (Nojiri &
Odintsov 2007; Sotiriou & Liberati 2007; Capozziello
& Francaviglia 2008; Sotiriou & Faraoni 2010) as:

S = 1

2κ

∫
d4x

√−g f (R) + Sm, (1)
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where κ = (8πGN )/c4 and Sm the action for mat-
ter. The f (R) modification naturally has its imprint on
the background comsological evolution and growth of
structures.

Tomographic intensity mapping of the neutral hydro-
gen Hi distribution (Chang et al. 2008; Bull et al.
2015; Obuljen et al. 2018) using radio observations of
the redshifted 21-cm radiation is a powerful probe of
cosmic evolution and structure formation in the post
reionization epoch (Bharadwaj & Sethi 2001; Bharad-
waj et al. 2001; Bharadwaj & Pandey 2003; Bharadwaj
& Srikant 2004; Wyithe & Loeb 2007, 2008, 2009;
Loeb & Wyithe 2008; Visbal et al. 2009). The epoch
of reionization is believed to be completed by redshift
z ∼ 6 (Gallerani et al. 2006). Following the complex
phase transition characterizing the epoch of reioniza-
tion (EoR), some remnant neutral hydrogen remained
clumped in the dense self-shielded damped Ly-α (DLA)
systems (Wolfe et al. 2005). These DLA systems are the
dominant source of the Hi 21-cm signal in the post-
reionization era. Intensity mapping experiments aim
to map out the collective Hi 21-cm radiation without
resolving the individual gas clouds. The redshifted 21-
cm signal from the post-reionization epoch as a biased
tracer (Bagla et al. 2010; Guha Sarkar et al. 2012) of
the dark matter distribution imprints a host of astro-
physical and cosmological information. It is, thereby a
direct probe of large scale matter distribution, growth
of perturbations and the expansion history of the Uni-
verse. Observationally, the post-reionization signal has
two key advantages: first, since the galactic synchrotron
foreground scales as ∼(1 + z)2.6, the lower redshifts are
far less affected by the galactic foreground. Second, in
the redshift range z ≤ 6, the astrophysical processes of
the EoR are absent, whereby the background UV radi-
ation field does not have any feature imprinted on the
21-cm signal.

The f (R) modification to gravity will affect the
21-cm power spectrum through its signature on cos-
mic distances, the Hubble parameter and the growth
rate of density perturbations. We consider a Hu–Sawicki
form of f (R), and investigate the possibility of differ-
entiating such a modification from the standard �CDM
model.

In this paper, our objective is to make error projec-
tions on parameters of a f (R) gravity theory using the
post-reionization 21-cm power spectrum in auto- and
cross-correlations. For cross-correlation of the 21-cm
signal, we have considered two dark matter tracers: (a)
galaxy weak lensing and (b) the Lyman-α forest.

We investigate observational strategies with the
upcoming square kilometer array (SKA) towards

constraining f (R) theories at precession levels compet-
itive, if not significantly better than the next generation
of supernova Ia observations, galaxy surveys and CMB
experiments.

2. Cosmology with f (R) gravity

We consider a spatially flat Universe comprising of
radiation (density, ργ ) and non-relativistic matter (den-
sity, ρm). In a f (R) gravity theory, the Einstein’s
field equation and its trace for a Friedman–Lemitre–
Robertson–Walker metric (FLRW) with a scale factor
a(t) and Hubble parameter H = ȧ(t)/a(t), reduces to
(Tsujikawa et al. 2009)

3H2 f,R − 1

2
(R f,R − f ) + 3H ḟ,R = κ2(ρm + ργ ),

(2)

H f,R − 2 f,R Ḣ − f̈,R = κ2
(

ρm + 4

3
ργ

)
, (3)

where f,R = ∂ f (R)/∂R and the ‘.’ denotes a differ-
entiation with respect to the cosmic time t . The Ricci
scalar, R is given by R = 6(2H2 + Ḣ). It is convenient
to express the above equations in terms of the following
set of dimensionless variables:

x1 ≡ − ḟ,R
H f,R

, x2 ≡ − f

6H2 f,R
,

x3 ≡ R

6H2 , x4 ≡ κ2ργ

3H2 f,R
.

In terms of these quantities, the dynamical evolution
of the density parameters can be obtained by solving
the following set of autonomous first-order differential
equations (Tsujikawa et al. 2009)

x ′
1 = −1 − x3 − 3x2 + x2

1 − x1x3 + x4, (4)

x ′
2 = x1x3

m
− x2(2x3 − 4 − x1), (5)

x ′
3 = − x1x3

m
− 2x3(x3 − 2), (6)

x ′
4 = −2x3x4 + x1x4, (7)

where ‘′’ = d/d ln(a) and m measures the deviation from
�CDM model defined as:

m ≡ dln f,R
dlnR

= R f,RR
f,R

.

These equations form a 4-dimensional coupled
dynamical system, which can be integrated numerically
for a given f (R) and with suitable initial conditions.
Solution to the above coupled ODEs can be used to
determine the dynamics of the density parameters and
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map a f (R) gravity theory to a dark energy with an
effective equation of state (EoS), weff(z) as:

	m ≡ κ2ρm

3H2 f,R
= 1 − (x1 + x2 + x3 + x4), (8)

	γ ≡ x4, (9)

	DE ≡ x1 + x2 + x3, (10)

weff ≡ −1

3
(2x3 − 1). (11)

A wide variety of f (R) models have been pro-
posed (Capozziello 2002; Carroll et al. 2004; Hu &
Sawicki 2007a; Nojiri & Odintsov 2007). The func-
tional form of f (R) is chosen so that the model is
phenomenologically satisfactory. We expect the f (R)

cosmology to be indistinguishable from the �CDM at
high redshifts, where the latter is well constrained from
CMBR observations. At low redshifts, the accelerated
expansion history should be close to the �CDM pre-
dictions and on Solar system scales, the proposed f (R)

model should be consistent with the �CDM model as a
limiting case.

We consider the f (R) gravity model proposed by
Hu–Sawicki (HS), where the functional form of f (R) is
given by (Hu & Sawicki 2007a; Amendola & Tsujikawa
2010):

f (R) = R − μRc
(R/Rc)

2

(R/Rc)2 + 1
. (12)

Here, μ and Rc are two non-negative parameters in the
model, where Rc is the present day value of the Ricci
scalar. The expansion rate H for a viable f (R) grav-
ity theories is expected to be close to the concordance
�CDM (Hu & Sawicki 2007b) predictions. The quan-
tity f,R plays a crucial role to quantify the deviation of
f (R) gravity models from GR, whereby f,R behaves
like an extra degree of freedom that acts similar to a
scalar field. We may write:

f,R = −2 f0
R

H2
0

[
1 +

(
R

Rc

)2
]−2

, (13)

with | f0| ≡ (μH2
0 )/Rc as the only free parameter.

To recover standard GR results in Solar system
tests, the present day value of f,R is restricted to
log10 | f,R0| < −6 (Hu & Sawicki 2007a). Further,
the second derivative f,RR = d2 f (R)/dR2 > 0 to
avoid ghost and tachyonic solutions (Amendola et al.
2007). Weak lensing peak abundance studies have
provided strong constraints on log10 | f,R0| < −4.82
and −5.16 with WMAP9 and Planck15 priors, respec-
tively. Tight constraints are also obtained from weak
lensing peak statistics study with log10 | f,R0| < −4.73

(WMAP9) and log10 | f,R0| < −4.79 (Planck 2013; Liu
et al. 2016). In our work, we adopt the fiducial value
log10 | f,R0| = −5 from observations (Cataneo et al.
2015; Liu et al. 2016).

Growth of large scale structure (LSS) offers a
unique possibility to constrain cosmological models.
The quantity of interest is the growth rate of matter
density perturbations fg(k, z) ≡ (dlnδm(k, z))/(dlna).
which is sensitive to the expansion history of the
Universe. In the linear perturbation theory, and on sub-
horizon scales (k/a � H ), the evolution of matter
density perturbations δm(k, z) is dictated by the differ-
ential equation (Boisseau et al. 2000; Song et al. 2007;
Tsujikawa et al. 2008, 2009)

δ̈m + 2H δ̇m − 4πGeff(a, k)ρmδm 	 0, (14)

where Geff is an effective gravitational constant, which
is related to standard Newtonian gravitational constant
(GN ) as:

Geff(a, k) = GN

f,R

[
1 + (k2/a2)( f,RR/ f,R)

1 + 3(k2/a2)( f,RR/ f,R)

]
.

(15)

In f (R) theories, Geff is a scale-dependent function
(Baghram & Rahvar 2010). The scale dependence of
the growing mode of density fluctuations is widely
exploited to differentiate the structure formation beyond
standard model of cosmology. In obtaining the approx-
imate Equation (14), we have incorporated the assump-
tion that oscillating modes are negligible compared to
the modes induced by matter perturbations and also
˙f,R ≈ 0 on sub-horizon scales of interest (Tsujikawa

et al. 2009).
Figure 1 shows the departure of the the growth rate

fg(z, k) for the f (R) theory with log10 | f,R0| = −5
from the �CDM prediction. We know that the growth
rate is scale-independent and depends only on redshift
for the �CDM model. Thus, the k-dependence seen
in the figure arises purely from the f (R) modification
to gravity. Since different modes grow differently, the
evolution has an additional contribution towards chang-
ing the shape of the cosmological power spectrum. The
departure is small at very low redshifts and also very
high redshifts and increases monotonically with k for
a given redshift. We find that a departure of >12% is
seen in the redshift window 0.5 < z < 1.5 for k > 0.5
Mpc−1.

In Figure 2, we have shown the linear growth rate
fg(z, k) for �CDM and f (R) with log10 | f,R0| = −5
at a redshift z = 2.3. At smaller scales (large k modes),
the scale-dependent growth become more prominent
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Figure 1. Departure of the growth rate fg(z, k) for the
f (R) theory with log10 | f,R0| = −5 from the �CDM pre-
diction. We plot the quantity |( fg − f �CDM

g )/ f �CDM
g | in the

(z, k) plane.

Figure 2. Growth rate fg(z, k) for the f (R) theory of
log10 | f,R0| = −5 model. We have also shown the results
for log10 | f,R0| = −4 and log10 | f,R0| = −6 model for com-
parison purpose. The dotted bottom shows scale-independent
�CDM prediction. The fiducial redshift chosen as z = 2.3.

and larger scales (small k modes), f (R) gravity coin-
cide with �CDM. We have also shown the fg(k, z) for
log10 | f,R0| = −4 and log10 | f,R0| = −6 gravity model
for comparison purpose only.

2.1 Matter power spectrum

f (R) gravity has a significant impact on structure
formation in low-density regions through a scale-
dependent growth factor because of enhancement of
gravitational forces. The modification to the force law
in modified gravity theories is highly constrained from
local tests (Will 2014). It is also well studied that f (R)

modification to gravity will induce non-linearities in the
power spectrum through mechanisms like chameleon
(Mota & Shaw 2007), dilaton effect (Brax et al. 2014),
etc. The shape of the matter power spectrum is sensi-
tive to the choice of cosmological model and as such

Figure 3. Departure of the matter power spectrum P(z, k)
for the f (R) theory with log10| f,R0| = −5 from the
� CDM prediction. We plot the quantity (Pf (R)(k, z)
− P�CDM(k, z))/(P�CDM(k, z)) at redshift z = 2.3.

it is sensitive probe of the underlying theory of gravity
or dark energy. We model the power spectrum in f (R)

gravity models as:

Pf (R)(k) = PLin

(1 + k2/k2
trunc)

2
e−(k/ks)2

, (16)

where PLin is the linear matter power spectrum. In our
analysis, we have used the analytic fitting function by
Hu–Eisenstein for PLin (Eisenstein & Hu 1998). We
have used the fitting parameters (ktrunc, ks) for the sup-
pressed matter power spectrum from Brax & Valageas
(2019) for f (R) gravity models. P(k, z) is obtained by
multiplying the square of the growing mode with this.
We remind ourselves that the growing mode is scale-
dependent for f (R) models and is scale-independent
for �CDM model.

Figure 3 shows the relative deviation of matter power
spectrum of f (R) gravity theory from �CDM at a fidu-
cial redshift z = 2.3. The topmost curve corresponds
to linear theory prediction and the one below shows
the suppressed matter power spectrum due to the addi-
tional factor introduced in Equation (16). The relative
deviation of PLin(k) from its �CDM counterpart grows
at smaller scales, because the mass of the scalar field
yields a characteristic scale dependence for the linear
growing mode. Moreover, on linear scales, there is no
additional chameleon screening mechanism.

Many simulation results show that the deviation is
significantly suppressed due to screening mechanism
(Li et al. 2013; Arnold et al. 2019). The additional
prefactor in Equation (16) is fitted for mildly nonlinear
behavior and reproduces the suppressed matter power
spectrum with sub-percent accuracy without requiring
the full non-linear simulations (refer Figure 5 in Li et al.
2013).
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3. 21-cm signal from the post-reionization era

Bulk of the low-density hydrogen gets completely ion-
ized by the end of the reionization epoch around z ∼ 6
(Gallerani et al. 2006). A small fraction of Hi that sur-
vives the process of reionization is believed to remain
confined in the over-dense regions of the IGM. These
clumped, dense DLAs (Wolfe et al. 2005) remain neu-
tral as they are self-shielded from the background
ionizing radiation. They store ∼80% of the Hi at z < 4
(Prochaska et al. 2005) with Hi column density greater
than 2 × 1020 atoms cm−2 (Lanzetta et al. 1995a;
Storrie-Lombardi et al. 1996; Peroux et al. 2003) and
are the dominant source of the 21-cm radiation in the
post-reionization epoch. The clustering properties of
these DLA clouds suggest that they are associated with
galaxies and located in regions of highly non-linear
matter over densities (Zwaan et al. 2005; Cooke et al.
2006; Nagamine et al. 2007). The 21-cm signal from
the post-reionization epoch has been extensively stud-
ied Subramanian & Padmanabhan (1993); Bharadwaj
& Sethi (2001); Bharadwaj et al. (2001); Bharadwaj
& Pandey (2003); Bharadwaj & Srikant (2004); Vis-
bal et al. (2009); Wyithe & Loeb (2009). The emitted
flux from individual clouds is extremely weak (<10
μJy). These individual DLA clouds are unlikely to be
detected in radio observations, even with futuristic tele-
scopes. However, in an intensity mapping experiment,
one does not aim to resolve the individual sources.
The collective emission forms a diffused background
in all radio-observations at the observation frequencies
<1420 MHz. Fluctuations of this signal on the sky
plane and across redshift, maps out the three dimen-
sional tomographic image of the Universe.

Several assumptions simplify the modeling of the
post-reionization Hi signal. These are either moti-
vated from implicit observations or from numerical
simulations.

• In the post-reionization epoch, there is an enhance-
ment of population of the triplet state of Hi due to
the Wouthheusen field coupling. This makes the
spin temperature Ts much greater than the CMB
temperature Tγ . Thus, the 21-cm radiation is seen
in emission in this epoch against the background
CMBR (Madau et al. 1997; Bertotti et al. 2003;
Loeb & Zaldarriaga 2004). For z ≤ 6, the spin
temperature and gas kinetic temperature remain
strongly coupled through Lyman-α scattering or
collisional coupling (Madau et al. 1997).

• Extensive study of the Lyman-α absorption lines
in quasar spectra indicates that in the redshift

range 1 ≤ z ≤ 3.5, the cosmological den-
sity parameter of the neutral gas has a value
	gas ∼ 10−3 (Prochaska et al. 2005). Thus,
the mean neutral fraction is x̄Hi = 	gas/	b ∼
2.45 × 10−2, which does not evolve in the entire
redshift range z ≤ 6.

• On the large cosmological scales of interest, Hi
peculiar velocities are assumed to be determined
by the dark matter distribution. Thus, peculiar
velocity manifests as a redshift space distortion
anisotropy in the 21-cm power spectrum.

• The discrete nature of DLA sources is not con-
sidered. The corresponding Poisson noise owing
to this discrete sampling is neglected assuming
that the number density of the DLA emitters is
very large (Bharadwaj & Srikant 2004).

• Hi perturbations are generated by a Gaussian
random process. We do not consider any non-
Gaussianity and thereby the statistical informa-
tion is contained in the two-point correlation or
the power spectrum.

• Galaxy redshift surveys and numerical simula-
tions show that the galaxies are biased tracers
of the underlying dark matter distribution (Mo
et al. 1996; Dekel & Lahav 1999; Yoshikawa
et al. 2001). If we assume that Hi in the post-
reionization epoch is housed predominantly in
dark matter halos, we may expect the gas to trace
the underlying dark matter density field with a
bias bT (k, z) defined as:

bT (k, z) =
[
PHi(k, z)

P(k, z)

]1/2

,

where PHi(k, z) and P(k, z) denote the Hi and
dark matter power spectra, respectively. The bias
function quantifies the nature of Hi clustering
in the post-reionization epoch. Further, the fluc-
tuations in the ionizing background may also
contribute to bT (k, z) (Wyithe & Loeb 2009). On
scales below the Jean’s length, the linear density
contrast of Hi gas is related to the dark matter
density contrast though a scale-dependent func-
tion (Fang et al. 1993). However, on large scales,
the bias is known to be scale-independent, though
the scales above which the bias is linear, is sensi-
tive to the redshift being probed. Several authors
have now demonstrated the nature of Hi bias
using N-body simulations (Bagla et al. 2010;
Guha Sarkar et al. 2012; Carucci et al. 2017). The
simulations are based on the principle of popu-
lating dark matter halos in a certain mass range
with gas and thereby identifying them as DLAs.
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These simulations show that the large scale lin-
ear bias grows monotonically with redshift for
1 < z < 4 (Marín et al. 2010). This feature
is shared by galaxy bias as well (Fry 1996; Mo
et al. 1996, 1999). There is a steep rise of the 21-
cm bias on small scales. This is because in the
absence of small mass halos as is expected from
the CDM power spectrum and consequently, the
Hi being distributed only in larger halos. A fit-
ting formula for the bias bT (k, z) as a function
of both redshift z and scale k has been obtained
from numerical simulations (Guha Sarkar et al.
2012) of the post-reionization signal as:

bT (k, z) =
4∑

m=0

2∑
n=0

c(m, n)kmzn. (17)

The critical density for collapse is smaller in
f (R) gravity models, which leads to a signifi-
cant suppression of bias, i.e., b f (R)

T < bGR
T . This

has been seen in numerical simulations (Aviles
et al. 2018; Arnold et al. 2019). Though the fit-
ting function for bT (17) is obtained from �CDM
simuation, we used the same form for f (R)

gravity assuming the bias is not significantly dif-
ferent in the redshifts of our interest. However,
we have kept the bias as free parameter, which
we have eventually marginalized over. We kept
the third-order component of polynomial bias as
the free parameter because we know on large
scale, the bias is completely indistinguishable
from �CDM and suppression shows up only on
small scales. For log10 | f,R0| = −5 model, our
used bias fitting function is well within the error
bars and can be used safely (Aviles et al. 2018).

We have used these simulation results in our
modeling of the post-reionization epoch.

Adopting all the assumptions discussed above, the
power spectrum of post-reionization Hi 21-cm bright-
ness temperature fluctuations from redshift z is given
by (Bertotti et al. 2003; Bharadwaj et al. 2009):

PHi(k, z) = T̄ (z)2 x̄2
HibT (k, z)2

× (1 + βT (k, z)μ2)
2
P(k, z), (18)

where μ = k̂ · n̂, βT (k, z) = fg(k, z)/bT (k, z), and

T̄ (z) = 4.0 mK (1 + z)2
(

	b0h2

0.02

) (
0.7

h

)
H0

H(z)
.

(19)

Figure 4. The 21-cm power spectrum in the (k‖, k⊥) space
at the observing frequency ν0 = 710 MHz.

The term fg(z, k)μ2 Hi peculiar velocities (Bharadwaj
& Sethi 2001; Bertotti et al. 2003), which, as we men-
tioned, is also sourced by the dark matter fluctuations.

The f (R) modification affects the 21-cm power spec-
trum through the change in the redshift space distortion
parameter βT (k, z) and P(k, z). Figure 4 shows the
21-cm power spectrum at z = 1 in the (k‖, k⊥) space.
The asymmetry in the signal is indicative of redshift
space distortion and is sensitive to βT (k, z). We empha-
size that (x̄Hi, βT (k, z)) along with the cosmological
parameters completely model the post-reionization
21-cm signal. We note that the product b2

T x̄Hi, which
appears in the overall amplitude of the 21-cm signal
is a largely unknown parameter and depends largely
on the Hi modeling. We shall, therefore, be inter-
ested in constraining the function βT (k, z) from some
radio-interferometric observation of the signal. We shall
marginalize our Fisher matrix projections over the
overall amplitude to make error projections.

We shall now investigate the possibility of constrain-
ing the function βT (k, z) and thereby put observational
bounds on | f,R0| from a radio-interferometric observa-
tion of the signal.

3.1 Observed 21-cm power spectrum

The quantity of interest in radio-interferometric obser-
vation is the complex visibility V(U, ν) measured as
function of baseline U = (u, v) and observing fre-
quency ν. Considering an observation frequency band
width and defining ν as the difference from the cen-
tral observing frequency, a further Fourier transform
in ν gives us the visibility v(U, τ ) as a function of
delay channel τ . The measured visibility can be writ-
ten as a sum of signal s(U, τ ) and noise n(U, τ ) as
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v(U, τ ) = s(U, τ ) + n(U, τ ). The signal s(U, τ ) can
be written as:

s(Ua, τm) = 2kB

λ2

∫
d3k

(2π)3 G(k,Ua, τm)δ̃Tb(k), (20)

where δ̃Tb(k) denotes the fluctuations of the 21-cm
brightness temperature in Fourier space. The transfor-
mation kernel G is given by:

G(k⊥, k‖,Ua, τm) = Ã
(
k⊥r
2π

− Ua

)
B̃

(
k‖r ′

2π
− τm

)
,

where Ã(U) and B̃(τ ) denote the Fourier transform of
the telescope beam A(θ) and the frequency response
window function B(ν), respectively. We use r to
denote comoving distance to the observing redshift z =
(1420 MHz per ν) − 1 and r ′ = dr(ν)/dν. The signal
covariance matrix is defined as 〈s(Ua, τm)s∗(Ub, τn)〉 =
CS

(a,m),(b,n) and is given by:

CS =
(

2kB

λ2

)2 1

r2r ′

∫
d2Udτ G(k,Ua, τm)

× G∗(k,Ub, τn)PHi(k), (21)

where

k =
(

2πU
r

,
2πτ

r ′

)
.

The noise in the visibilities measured at different
baselines and frequency channels are uncorrelated.
If we define the noise covariance matrix as CN =
〈n(Ua, τm) n∗(Ub, τn)〉, we have:

CN =
(

2kB

λ2

)2
(

λ2Tsys

Ae

)2
B

t
δm,nδa,b, (22)

where t is the correlator integration time and B is the
observing bandwidth. The system temperature Tsys can
be written as a contribution from the instrument and the
sky as Tsys = Tinst + Tsky, where

Tsky = 60 K
( ν

300 MHz

)−2.5
.

We first investigate the possibility of constraining the
scale-dependent function βT (k, zfid). We divide the
observational range kmin to kmax into Nbin bins and
constrain the values of βT (ki ) at the middle of the bin
ki using a Fisher matrix analysis. The departure from
the �CDM model for the fiducial log10 | f,R0| < −5
model for a range of k values, peaks around z ∼ 1. We
choose the observational central frequency to be 710
MHz corresponding to this redshift. We first consider
an OWFA (Bharadwaj et al. 2015; Sarkar et al. 2017a,
2018a) like array, which is the upgraded version of the
Ooty radio telescope and is expected to operate as an
linear radio-interferometric array. The OWFA is a 530

m long and 30 m wide parabolic cylindrical reflector
that is placed along the north–south direction on a hill
that has the same slope (∼11◦) as the latitude of the
place. This makes it possible to track a given patch of
sky by rotating the cylinder about the long axis of the
telescope. The OWFA has 1056 dipoles in total that
are equally placed at ∼0.5 m apart from each other
along the long axis of the telescope. OWFA is capable
of operating in two independent simultaneous radio-
interferometric modes: PI and PII. The OWFA PII has
264 antennas in total, the radio signals from four con-
secutive dipoles have been combined to form a single
antenna element. The OWFA PII has the smallest base-
line length, d = 1.92 m that corresponds to the distance
between the two consecutive antennas in the array. The
OWFA PII has an operating bandwidth, B = 39 MHz
(for detailed specifications, see Bharadwaj et al. 2015).
The full covariance matrix is given by:

Cab = CS + CN

Nr
, (23)

where Nr = 264−a is the redundancy of the baselines.
The Fisher matrix is given by:

Fi j = 1

2

∑
m

C−1(m)abC(m)bc,iC
−1(m)cdC(m)bc, j ,

(24)

where i and j runs over the parameters βT (k1),
βT (k2), . . . , βT (kNbin). The error on the i th parameter

is obtained from the Cramer Rao bound as
√
F−1
i i . We

found that in the k-range 0.06 < k < 1.32 βT (k) can
be measured in 4 bins at >9% for 500 × 50 h observa-
tion with 50 independent pointings. Since the maximum
departure of βT (k) from the �CDM is∼11% in the k-
range of interest, such an observation will at its best be
able to distinguish between a log10 | f,R0| = −5 at a
∼1 − σ level and log10 | f,R0| =−4 at ∼2 − σ level.

For stronger constraints, we now consider a SKA1-
mid-type of radio array. We consider a binning in
visibility U and a total observing time T0 causing
a reduction of noise variance by a factor Np, where
Np is the number of visibility pairs in the bin given by
Np = Nvis(Nvis − 1)/2 ≈ N 2

vis/2, where Nvis is the
number of visibilities in the bin measured in time T0.
We may write:

Nvis = Nant(Nant − 1)

2

To
t

ρ(U)δ2U, (25)

where Nant is the total number of antennas in the
array and ρ(U) is the baseline distribution function. In



    5 Page 8 of 16 J. Astrophys. Astr.            (2023) 44:5 

general, the baseline distribution function is given by
a convolution:

ρ(U) = c
∫

d2rρant(r)ρant(r − λU), (26)

where c is fixed by normalization of ρ(U) and ρant is
the distribution of antennas. Further, if we assume a
uniform frequency response over the entire observation
bandwidth B and a Gaussian beam for the telescope:∫

dτ B̃(τ − τm)B̃∗(τ − τn) = Bδmn (27)

and∫
d2UA(U − Ua)A∗(U − Ub) ≈ λ2

Ae
δa,b, (28)

where Ae is the effective area of the antenna dishes.
With these simplifications, we may then write:

CS ≈
(

2kB

λ2

)2 Bλ2

r2r ′Ae
PHi

(
2πUa

r
,

2πτm

r ′

)
δm,nδa,b.

The 21-cm power spectrum is not spherically sym-
metric, due to redshift space distortion, but is symmetric
around the polar angle φ. Using this symmetry, we
would want to sum all the Fourier cells in an annulus of
constant (k, μ = cos θ = k‖/k) with radial width k
and angular width θ for a statistical detection with
improved SNR. The number of independent cells in
such an annulus is:

Nc = 2πk2kμ
Vol

(2π)3 , (29)

where the volume ‘Vol’ of the intensity mapping sur-
vey is given by Vol = (r2λ2r ′B)/Ae. Thus, the full
covariance matrix may be written as:

CTot = 1√
Nc

[
CS + CN

Np

]
. (30)

The covariance matrix is diagonal owing to the binning
in U since different baselines, which get correlated due
to the telescope beam are now uncorrelated. Further, to
increase the sensitivity, we consider the angle averaged
power spectrum by averaging over μ. Thus, we have:

PHi(k) = T̄ (z)2 x̄2
Hib

2
T

(
1 + 2

3
βT + 1

5
β2
T

)
P(k, z)

(31)

and the corresponding variance is obtained by summing:

δPHi(k) =
[∑

μ

1

δPHi(k, μ)2

]−1/2

, (32)

where δPHi(k, μ) = (Aer2r ′)/(λ2B)CTot.

Figure 5. Variation of βT (k, zfid) at the fiducial redshift
zfid = 1 for various Hu–Sawcki f (R) models. The �CDM
prediction is also shown. We also show the 1−σ error bars on
βT at six logarithmically spaced k-bins in the observed range
of scales for the fiducial model with log10 | f,R0| = −5.

The fisher matrix for parameters λi may be written
as:

Fi j =
∑
k

1

δP2
Hi(k)

∂PHi(k)

∂λi

∂PHi(k)

∂λ j
. (33)

We consider a radio telescope with an operational fre-
quency range of 350 MHz–14 GHz. We consider 250
dish antennae, each with a diameter of 15 m and an
efficiency of 0.7. To calculate the normalized baseline
distribution function, we assumed that baselines are dis-
tributed, such that the antenna distribution falls off as
1/r2. We also assumed that there is no baseline cover-
age <30 m. We assume Tsys = 60 K and an observation
bandwidth of 128 MHz. We assume U = Umin = 50,
over which the signal is averaged.

Figure 5 shows the variation of βT (k, zfid) at the
fiducial redshift z = 1 corresponding to the observing
central frequency of 710 MHz. The monotonic rise of
βT (k, zfid = 1.0) owes its origin to both the monotonic
growth of fg(k) and also a slow decrease of bT (k, zfid =
1.0) in the k-range of interest. The behavior is similar
for different values of log10 | f,R0|. The �CDM result
is seen to coincide with the f (R) prediction on large
scales. We note that the log10 | f,R0| = −6 matches with
the �CDM model for k < 0.15 Mpc−1. We consider a
fiducial log10 | f,R0| = −5 for our analysis. The k-range
between the smallest and largest baselines in binned
as k = αk, where α = (1/Nbin)ln(Umax/Umin),
with (Umin,Umax) = (50, 550). We consider 400 ×
50 h observation in 50 independent pointings. The
1 − σ errors on βT (ki ) are obtained from the Fisher
matrix analysis, where the overall normalization of the
power-spectrum is marginalized over. We found that for
k > 0.4 Mpc−1, the log10 | f,R0| = −5 can be differen-
tiated from the �CDM model at a sensitivity of >5σ , if
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Table 1. The 68% (1 − σ ) marginalized errors on
log10 | f,R0| and 	m0.

Model log10 | fR0| 	m0

f (R) −5 ± 0.62 0.315 ± 0.005

we consider 6k-bins. On larger scales k < 0.4 Mpc−1

and the f (R) models with −6 < log10 | f,R0| < −4
remain statistically indistinguishable from the �CDM
model. Thus, it appears that 21-cm observations of the
post-reionization epoch may only be able to constrain
f (R) theories on relatively small scales.

Instead of constraining the binned function βT (k),
we investigate the possibility of putting bounds on
log10 | f,R0| from the given observation. Marginalizing
over the overall amplitude of the power spectrum, we are
thus interested in two parameters (	m0, log10 | f,R0|).
The 1 − σ bounds on log10 | f,R0| obtained from the
marginalized Fisher matrix is given in Table 1. Our error
projection may be compared with constraints obtained
from other observational probes Table 2. We found
that our projected constraints are competitive with con-
straints obtained from diverse probes.

The radio-interferometric observation of the post-
reionization Hi 21-cm signal, thus holds the potential
of providing robust constraints on f (R) models.

4. Cross-correlation of 21-cm signal with galaxy
weak lensing

Weak lensing (Waerbeke & Mellier 2003; Munshi et al.
2008) of background source galaxies by large scale
structure (cosmic shear) has been extensively studied
as a powerful cosmological probe (Jain & Seljak 1997;
Eisenstein & Hu 1998; Huterer & White 2002; Takada
& Jain 2003; Heavens 2003; Knox et al. 2004; Miyazaki
et al. 2007; Hoekstra & Jain 2008; Takada & Jain 2009).
The quantity of interest to us is the amplification matrix
(Waerbeke & Mellier 2003; Munshi et al. 2008), which
quantifies the distortions due to gravitational lensing.
These distortions allow to analyze large scale structures
and map the matter distribution, on a broad range of
scales. Noting that scalar perturbations cannot induce
any rotation, only one has shear (γ ) and convergence
(κ) effects in the lensed distorted image of a galaxy. This
weak shear/convergence signal is superposed on the
intrinsic ellipticities and irregularities of background
galaxy images (Treu 2010). We are interested in the sta-
tistical properties of these distortion fields. The angular

power spectrum of the shear field is identical to that of
the convergence field, whereby we shall only be looking
at the convergence field. The weak-lensing convergence
field on the sky is given by a weighed line of sight
integral (Waerbeke & Mellier 2003) of the overdensity
field δ:

κ(θ) =
∫ χs

0
Aκ(χ)δ(χ θ, χ)dχ, (34)

where χ denotes the comoving distance and

Aκ(χ) = 3

2

(
H0

c

)2

	m 0

g(χ)χ

a(χ)
,

with

g(χ) =
∫ χs

χ

n(z)
dz

dχ ′
χ ′ − χ

χ ′ dχ ′. (35)

The weight function appearing in the kernel incorpo-
rates all the sources distributed according to a distribu-
tion function n(χ) up to χs . We have assumed that the
source galaxies are distributed as (Huterer et al. 2006):

n(z) = n0

(
z

z0

)α

exp

[
−

(
z

z0

)]β

. (36)

In this work, we have considered a weak-lensing survey,
where z0 = 0.5,α = 2 andβ = 1 (Takada & Jain 2009).
On small angular scales (typically for � > 10) where
flat sky approximation is reasonable, we can use the
Limber approximation (Limber 1954) in Fourier space
and write the weak-lensing convergence angular power
spectrum as:

C�
κ = 9

4

(
H0

c

)4

	2
m 0

∫ χs

0

g2(χ)

a2(χ)
P

(
�

χ
, χ

)
dχ, (37)

where P denotes the matter power spectrum. The noise
for the convergence angular power spectrum is given by
C�

κ , where

C�
κ =

√
2

(2� + 1) fsky

(
C�

κ + σ 2
ε

ng

)
. (38)

Here, the Poisson noise is dictated by the total galaxy
count:

ng =
∫ χs

0
n(z)

dz

dχ ′ dχ ′. (39)

The fraction of the sky observed in the weak-lensing
survey is assumed to be fsky = 0.5 and we adopt σε =
0.4 as the galaxy-intrinsic rms shear (Hu 1999). The
factor (2� + 1) in the denominator counts the number
of samples of C�

κ for a given �.
On large scales, the redshifted Hi 21-cm signal from

post-reionization epoch known to be biased tracers
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Table 2. Bounds on p = log10 | f,R0| from other probes.

Probe of f (R) gravity Bound on log10 | f,R0|
GW merger, GW170817 p < −2.52 (Jana & Mohanty 2019)
Suyaev Zeldovich clusters PLANCK −5.81 < p < −4.40 (Peirone et al. 2017)
Weak-lensing peak statistics −5.16 < p < −4.82 (Liu et al. 2016)
CMB + cluster + SN + H0 + BAO p < −3.89 (Schmidt et al. 2009)

of the underlying dark matter distribution. Assuming
Hi perturbations are generated by a Gaussian random
process and incorporating the effect of redshift space
distortion, the fluctuations of the 21-cm brightness tem-
perature δT (r) in Fourier space may be written as:

δT (r) = 1

(2π)3

∫
eik·rT (k),

where

T (k) = A(z)
[
1 + βTμ2](k), (40)

with

AT = 4.0 mK bT x̄Hi(1 + z)2
(

	b0h2

0.02

)

×
(

0.7

h

) (
H0

H(z)

)
. (41)

Here,  denotes the fluctuations of the dark matter over-
density field in Fourier space, bT is a bias function and
x̄Hi is the mean neutral fraction, which is assumed to
remain constant in the post-reionization epoch (z < 6).
We adopt the value x̄Hi = 2.45 × 10−2 from (Lanzetta
et al. 1995b; Péroux et al. 2003; Noterdaeme et al. 2009;
Zafar et al. 2013). We define a quantity on the sky:

T (n̂) = 1

χs − χ0

χs∑
χ0

χ δT (χ n̂, χ), (42)

as the integral of the 3D 21-cm brightness temperature
field along the radial direction.

In a radio interferometric observation, the quantity
of interest is the complex visibilities, which are Fourier
transformation of the intensity distribution on the sky.
Using a flat sky approximation, we define visibilities as:

VT ( U) =
∫

d2 θa(θ)T (θ)e−2π i U·θ ,

Vκ( U) =
∫

d2 θκ(θ)e−2π i U·θ , (43)

where θ is the angular coordinates on the flat sky plane,
a(θ) denotes the beam function of the telescope mea-
suring the angular coverage of the 21-cm survey. The

mulipole � is related to baseline U as � = 2πU . The
aperture function ã( U) is the Fourier transformation
of a(θ). Defining the cross-correlation angular power
spectrum CT κ(U ) as 〈VT ( U)V ∗

κ ( U′)〉 = CT κ(U ), we
have (Dash & Guha Sarkar 2021) for a sharp aperture
ã( U),

CT κ(U ) = 1

π(χs − χ0)

χs∑
χ0

χ

χ2 ATAκ

×
∫ ∞

0
dk‖

[
1 + βT

k2‖
k2

]
P(k, χ), (44)

with

k =
√√√√k2‖ +

(
2π UUU
χ

)2

.

The auto-correlation angular power spectra may be
similarly written as (Dash & Guha Sarkar 2021):

CTT (U ) = 1

π(χ2 − χ1)2

χ2∑
χ1

χ

χ2 A2
T

×
∫ ∞

0
dk‖

[
1 + βT

k2‖
k2

]2

P(k, χ), (45)

Cκκ(U ) = 1

π

∫ χs

0

dχ

χ2 A2
κ

∫ ∞

0
dk‖P(k, χ). (46)

We follow the formalism in (Dash & Guha Sarkar
2021) and considered the cross-correlation with the 21-
cm signal averaged over the signals from redshift slices
to improve the signal-to-noise ratio. As a note of cau-
tion, we point out that working in the Fourier basis in
the flat sky approximation necessarily makes the sig-
nal non-ergodic when we consider correlation between
two-time slices (due to time evolution of all the rele-
vant cosmological quantities). Further, one also notes
the complications arising from the inseparability of the
baseline U (transverse) from the frequency (radial) in
this formalism.

The angular power spectrum for two redshifts sepa-
rated byz is known to decorrelate very fast in the radial
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direction (Bharadwaj & Pandey 2003). In this work, we
consider the summation in Equation (44) over redshift
slices, whose width is larger than the typical decorrela-
tion length. Each term in the sum can thus be thought of
as an independent observation of the signal. Thus, the
noise in each term in the summation may be thought
of as an independent random variable and the mutual
noise covaraiances between the slices may be ignored.
Thus, the errors in CT κ(U ) is given by:

σT κ
=

√
(Cκκ + 〈N κ〉)(CTT + 〈NT 〉)

(2� + 1)Nc
, (47)

where Nc is the number of redshift slices over which tthe
signal is averaged in Equation (44) and 〈NFHi〉 and 〈N κ〉
correspond to the average of the noise power spectrum
for FHi and κ , respectively.

We compute the expected bounds on HS f (R) grav-
ity free parameter, which measures the deviation from
�CDM models. We have considered telescope specifi-
cations of the upcoming SKA1-mid radio interfeoreme-
ter. We have used the cosmological parameters from
Planck (2018) results (	m0, 	b0, H0, ns, σ8, 	K ) =
(0.315, 0.0496, 67.4, 0.965, 0.811, 0) from (Aghanim
et al. 2020) for our subsequent analysis. The model
galaxy distribution function (n(z, z0)) is adopted from
Takada & Jain (2004) and Huterer et al. (2006). The
cross-correlation can only be computed in an overlap-
ping volume for the weak lensing and 21-cm intensity
mapping survey. We choose the frequency band 400–
950 MHz of SKA1-mid, since it corresponds to a
redshift range that overlaps with the redshift range of the
weak-lensing survey. SKA1-mid has 250 antennae. The
diameter of each antenna is taken to be 13.5 m and sys-
tem temperature (Tsys) assumed to be 40 K for the entire
redshift range. We also assume that full frequency band
will be sub-divided into smaller frequency bands of
32 MHz. The details of the SKA1-mid telescope specifi-
cations including the baseline distribution can be found
in the SKA website.1

Cross-correlation of CMBR weak lensing and Hi
21-cm power spectrum has been studied earlier (Sarkar
2010; Dash & Guha Sarkar 2021). In this paper, we
address the cross-correlation with galaxy weak-lensing.
A typical galaxy weak-lensing survey is different from
CMBR weak-lensing survey for the following reason.
The CMBR temperatures are drawn from a Gaussian
distribution, where the galaxies are the tracers of the
underlying matter distribution, which are at least small
scales and completely non-linear. However, we have not

1https://www.skatelescope.org.

Figure 6. Auto-correlation signal as a function of multiples
for modified f (R) model. The dotted line shows the �CDM
prediction. The source redshift of a galaxy assumed to be
zs = 1.0.

incorporated the effects of non-linearity in our analysis
as we are working in the regime of the linear pertur-
bation theory. Second, the galaxy surveys are purely
3D, while CMB anisotropies are in general a function
of angular position � on sky. Figure 6 shows theoret-
ically expected convergence auto-correlation angular
power spectrum signal for �CDM and HS model with
free parameter log10 | f,R0| = −5 for reference. The
source redshift of galaxy assumed to be zs = 1. It can
be seen that on larger scales, the f (R) model predic-
tions agree with �CDM. A significant deviation from
classical GR is only found beyond a scale � > 200
because of the scale-dependent growing mode. Simi-
lar results are obtained from simulations in Higuchi &
Shirasaki (2016) and Li & Shirasaki (2018). We also
note that the deviation from �CDM in a range of scale
200 < � < 3000 is typically around 10–15%.

We are interested in the cross-correlation signal of Hi
21-cm and galaxy lensing. The cross-correlation signal
takes the same shape as of convergence auto-correlation
signal. We have computed the cross- correlation signal
using Equation (44). Figure 7 shows the difference of
the Hi 21-cm and galaxy weak lensing angular cross-
correlation power spectrum for HS parametrization with
log10 | f,R0| = −5 from �CDM. The 1-σ error bars on
�CDM shows the HS model with log10 | f,R0| = −5
can be differentiated from �CDM at a level of >2σ

sensitivity using galaxy density ng = 60 arcmin−2 and
radio interferometric observation time Tobs = 600 h.

The Fisher analysis is used to put bound on the
parameter log10 | f,R0| using the cross-correlation sig-
nal. Assuming the fiducial value of log10 | f,R0| = −5
and marginalizing over the overall amplitude, redshift
distortion parameter (βT ), we found the 1 − σ bounds,
on log10 | f,R0| as shown in Table 3.
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Figure 7. Difference of Hi 21-cm-galaxy weak lensing
cross-correlation power spectrum for the HS model with free
parameter log10 | f,R0| = −5 from the standard �CDM. The
1 − σ error bars on �CDM shown assuming the galaxy den-
sity ng = 60 arcmin−2 and observation time Tobs = 600 h.

Table 3. The 68% (1 − σ ) constraints of log10 | f,R0| and
	m0 from Hi 21-cm and galaxy lensing cross power spec-
trum.

Model log10 | f, R0| 	m0

HS- f (R) −5 ± 0.59 0.315 ± 0.10

5. Cross-correlation of 21-cm signal with Lyman-α
forest

5.1 Lyman-α forest power spectrum

Lyman-α forest traces out the small fluctuations in the
Hi density in the IGM along the line of sight (LoS)
to distant background quasars and shows an absorption
feature in the quasar spectra. The quantity of interest
is the transmitted QSO flux through the Lyman-α. The
fluctuating Gunn–Peterson effect allows us to write:

F = F̄e−A(1+δ)� , (48)

where F̄ denotes the mean transmitted flux, � depend
on the slope of the temperature-density power spectrum
and the factor A depends on the Hi photoionization
rate, which is difficult to measure independently and
assumed to be nearly ∼1. Several simulation works of
Lyman-α forest shows the transmitted flux δF = (F̄ −
F)/F̄ ∝ δ (Carucci et al. 2017).

The influence of f (R) gravity theory in the
Lyman-α forest power spectrum has been studied exten-
sively (Arnold et al. 2015; Brax & Valageas 2019).
Fitting formulae for Lyman-α forest power spectrum

(PFF (k)) are usually written in terms of the matter
power spectrum P(k) with several prefactors to match
numerical simulations. We follow Brax & Valageas
(2019) to model the Lyman-α power spectrum in f (R)

gravity theory. The Lyman-α power spectrum can be
written in terms of matter power spectrum as follows:

PFF (k, z) = (1 + βFμ2)2

(1 + fgk‖/kNL)
P(k, z)e−(k‖/kth)2

, (49)

where μ is the cosine of the angle between LoS (n̂)

and the wave vector (k), so that μ = k̂ · n̂ = k‖/k.
Here, βF is the large scale aniosotropy parameter or
so called the redshift distortion factor and kth is the
thermal brodening cutoff wave number. We will use
Equation (49) to compute the 3D and 1D Lyman-α auto
correlation power spectrum. The Equation (49) gives
the 3D Lyman-α power spectrum in the redshift space.
The observed 1D power spectrum along LoS is given
by the standard integral:

P1D
FF (k‖) = 1

(2π)2

∫
dk⊥PFF (k). (50)

Both Lyman-α and the Hi 21-cm signal from the post-
reionization epoch are extremely useful tools to probe
underlying theory of gravity and put stringent con-
straints on cosmological parameters individually. How-
ever, on large scale, both trace the dark matter density
field motivating us to investigate their cross-correlation
signal (Guha Sarkar et al. 2010). The cross-correlation
of the Lyman-α and Hi 21-cm signal has been stud-
ied for the �CDM model extensively (Guha Sarkar
et al. 2010; Sarkar & Datta 2015; Carucci et al. 2017;
Sarkar et al. 2018b). In this paper, we shall extend it
to f (R) gravity models. The Lyman-α and Hi 21-cm
signal can be written using the formalism in Sarkar &
Datta (2015) and Equation (49). We choose a fiducial
redshift z = 2.3 for this analysis. Figure 8 shows the
3D cross-correlation power spectrum in (k⊥, k‖) plane
for log10 | f,R0| = −5. The asymmetry in cross-signal
arises because of Kaiser effect in the redshift space.
However, the deviation of asymmetry is much enhanced
than the auto-correlation signal. Figure 8 shows the
3D Lyman-α and Hi 21-cm cross-correlation power
spectra at a fiducial redshift z = 2.3. The fiducial red-
shift chosen to be z = 2.3 as the QSO distribution is
known to peaks at z = 2.25 and falls off as we move
away from peak (Abolfathi et al. 2018). The devia-
tion of spherical symmetry in power spectrum arises
because of the linear redshift space distortion parame-
ters βF and βT . We next use the cross-correlation signal
to put constraints on the parameter βT (k, z). We have
used the cosmological parameters from Planck (2018)
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Figure 8. The 3D cross-correlation power spectrum in
redshift space for f (R) gravity at a fiducial redshift z = 2.3.
The asymmetry in the signal is indicative of redshift space
distortion.

Figure 9. Redshift distortion parameter βT at a fiducial
redshift z = 2.3. The 1 − σ marginalized error is shown
by the shaded region on the top of fiducial f (R) gravity
log10 | f,R0| = −5 model. We have also shown the dif-
ferent parameterized f (R) gravity models and �CDM for
comparison.

results (	m0, 	b0, H0, ns, σ8, 	K ) = (0.315, 0.0496,
67.4, 0.965, 0.811, 0) from Aghanim et al. (2020) for
our subsequent analysis. We consider a radio interfero-
metric array for the 21-cm observations mimicking the
SKA1-mid. The SKA1-mid is one of the three different
instruments that will be built as a part of the SKA tele-
scope. SKA1-mid has 250 antennae. The diameter of
each antenna is taken to be 13.5 m and system tempera-
ture (Tsys) assumed to be 40 K for the redshift z = 2.3.
We also assume that the full frequency band will be sub-
divided into smaller frequency bands of 32 MHz. For
Lyman-α forest observation, we have used the quasar
number of distribution from DR14 of SDSS (Abolfathi
et al. 2018). It has a total angular coverage of 14.555
deg2 and we assumed the QSO number density, n̄ = 60
deg−2. Each spectra is assumed to have been measured
at >3σ sensitivity.

We have divided the k-range from 0.1 < k < 1
into 4 k-bins. We perform Fisher matrix analysis for the

Table 4. The 68% (1 − σ ) marginalized errors on
log10 | f,R0| and 	m0 from the 21-cm and Lyman-α cross-
correlation.

Model log10 | f, R0| 	m0

f (R) −5 ± 0.29 0.315 ± 0.012

following parameters: the binned values of βT , over-
all normalization factor (N̄ ), distortion factor (βF ) and
third order component of polynomial bias bT . We have
marginalized over all the parameters except the four
values of βT .

Figure 9 shows the βT (k, z) for f (R) gravity models.
The shaded region corresponds to the 1−σ error projec-
tion for the fiducial log10 | f,R0| = −5 gravity model.
At large scale, all f (R) gravity theories match with
standard �CDM model. However, we found that on
small scales beyond (k > 0.5), the log10 | f,R0| = −5
model can be distinguished from �CDM model at a
level of 3 − σ sensitivity, if we consider 2k-bins for
500 × 60 h observation with 60 independent pointings.
But, other f (R) gravity models are not very much dis-
tinguishable (<3 − σ) throughout the k range. This is
because at very higher redshifts, we expect all the modi-
fied gravity theories match to our standard concordance
�CDM model and deviation from it, is much smaller.
Instead of constraining the binned function βT (k),
we investigate the possibility of putting bounds on
log10 | f,R0| from the given observation. Marginalizing
over the overall amplitude of the power spectrum, we are
thus interested in two parameters (	m0, log10 | f,R0|).
The error projections are given in Table 4.

6. Conclusion

Einstein’s relativity has been extremely well tested on
Solar system scales (Bertotti et al. 2003; Shapiro et al.
2004; Chiba et al. 2007). The f (R) modification often
confronts the strong agreement of general relativity on
such small scales. Einstein’s relativity can be recovered
and Solar system tests can be evaded by the chameleon
mechanism Khoury & Weltman (2004), Capozziello &
Tsujikawa (2008) and Gu & Lin (2011). Effectively,
this implies that f (R) differs very little from R on
solar system scales. It has been shown that Hu–Sawicki
f (R) gravity models agree well with the late-time
cosmic acceleration without invoking a cosmological
constant and satisfies both cosmological and Solar sys-
tem tests in the weak-field limit (De Felice & Tsujikawa
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2010). However, Solar system tests alone put only weak
bounds on these models (Hu & Sawicki 2007a) and
there is a great variability of model parameters. We
have shown that the 21-cm intensity mapping instru-
ments like SKA1 will be capable of constraining the a
field value log10 | f,R0| = −5±0.62 of 68% confidence.
This is an order of magnitude tighter than constraints
currently available from galaxy cluster abundance (Fer-
raro et al. 2011). Further, Cataneo et al. (2015) showed
that marginalized 95.4% upper limit on log10 | f,R0| =
−4.79 using the cluster+Planck+ WMAP+ lensing
+ACT+SPT+SN+BAO data. Joint analysis of 21-
cm intensity mapping with the above observation probe
shall be able to narrow down the current constraints.
We note that the low redshift departure of f (R) grav-
ity from GR predictions is small and better modeling is
needed to invoke non-linear chameleon suppression for
tighter constraints on f (R) models.

The radio-interferometric observation of the post-
reionization Hi 21-cm signal, thus holds the potential of
providing robust constraints on f (R) models. We have
seen that the error projections from both the auto- and
cross-correlation signals provide competitive bounds
on f (R) models. Several observational aspects, how-
ever, plague the detection of the 21-cm signal. We have
evaded the key observational challenge arising from
large astrophysical foregrounds that plague the sig-
nal. Astrophysical foregrounds from both galactic and
extra galactic sources plague the signal and significant
amount of foreground subtraction is required before
one may detect the signal. Several methods of subtract-
ing foregrounds have been suggested (see Ghosh et al.
2011 and citations in this work). Cross-correlation of
the 21-cm signal has also been proposed as a way to
mitigate the issue of large foregrounds (Guha Sarkar
et al. 2010; Sarkar & Datta 2015). The cosmological
origin of the 21-cm signal may only be ascertained in a
cross-correlation. The foregrounds appear as noise in
the cross-correlation and may be tackled by consid-
ering larger survey volumes. Further, man-made radio
frequency interferences (RFIs), calibration errors and
other observational systematics inhibits the sensitive
detection of the Hi 21-cm signal. A detailed study
of these observational aspects shall be studied in a
future work. We conclude by noting that future obser-
vation of the redshifted Hi 21-cm signal shall be an
important addition to the different cosmological probes
aimed towards measuring possible modifications to
Einstein’s gravity. This shall enhance our understand-
ing of late-time cosmological evolution and structure
formation.
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