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Abstract. Cosmic dawn (CD) and the epoch of reionization (EoR) are the most important parts of cosmic
history during which the first luminous structures emerged. These first objects heated and ionized the neutral
atomic hydrogen in the intergalactic medium. The redshifted 21-cm radiation from the atomic hydrogen provides
an excellent direct probe to study the evolution of neutral hydrogen (Hi) and thus reveal nature of the first
luminous objects, their evolution and role in this last phase transition of the Universe and formation and evolution
of the structures thereafter. Direct mapping of the Hi density during the CD–EoR is rather difficult with the
current and forthcoming instruments due to stronger foreground and other observational contamination. The
first detection of this redshifted Hi signal is expected to be done through statistical estimators. Given the upmost
importance of the detection and analysis of the redshifted 21-cm signal, physics of CD–EoR is considered as
one of the objective of the upcoming SKA-low telescope. This paper summarizes the collective effort of Indian
astronomers to understand the origin of the redshifted 21-cm signal, sources of first ionizing photons, their
propagation through the IGM, various cosmological effects on the expected 21-cm signal, various statistical
measures of the signal like power spectrum, bispectrum, etc. A collective effort on detection of such signal
by developing estimators of the statistical measures with rigorous assessment of their expected uncertainties,
various challenges like that of the large foreground emission and calibration issues are also discussed. Various
versions of the detection methods discussed here have also been used in practice with the Giant Meterwave
Radio Telescope with successful assessment of the foreground contamination and upper limits on the matter
density in reionization and post-reionization era. The collective efforts compiled here has been a large part of
the global effort to prepare proper observational technique, analysis procedure for the first light of the CD–EoR
through the SKA-low.

Keywords. Intergalactic medium—cosmology: theory, observation—dark ages, reionization, first stars—
diffuse radiation—large-scale structure of the Universe—methods: analytical, numerical—methods:statistical.
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1. Introduction

In the standard model of cosmology, the Universe
started with a hot and dense state. As the Universe
expands adiabatically, it cooled down to a temperature
at which the matter components of the Universe (elec-
trons and protons) combined to form neutral atomic
hydrogen (Hi). This occurred at redshift z ≈1100 (e.g.,
Peebles 1993) when radiations got decoupled from mat-
ter and traveled freely across the inter-galactic medium
(IGM). Afterglow of the surface of last scattering is
observed as the cosmic microwave background (CMB).
The CMB observations indicate that tiny fluctuations
(∼10−6) were present in the matter density field during
matter-radiation decoupling. Afterwards, the Universe
remained completely dark and neutral for a long time
till these fluctuations have grown sufficiently to form
first luminous objects which lit up the Universe at
z ≈ 20 (see e.g., Ghara et al. 2015a, b). This marks
the cosmic dawn (CD) during which the X-rays from
the first objects (stars, quasars, galaxies, etc.) heated up
the IGM. Sooner, the ionizing UV photons from these
sources also started leaking into the IGM and gradually
ionized all the neutral hydrogen (Hi) in the IGM. This
last phase change in the ionization state of the Universe
is coined as the epoch of reionization (EoR). After-
wards, the Universe remained ionized on cosmological
scales as we see it today. This last stage is also known
as post-reionization epoch. CMB observations give us
a clearer picture of how the Universe was in its primary
stages and observations like the galaxy-redshift surveys
show the present state of the Universe. However, we
know only a little about the CD–EoR.

Our present knowledge of CD–EoR is guided by
a few indirect observations, such as measurements of
Thomson scattering optical depth from CMB observa-
tions (e.g., Douspis et al. 2015; Planck Collaboration
et al. 2016, 2020), observation of Gunn–Peterson
troughs in the high-z quasars (e.g., Becker et al. 2001;
Fan et al. 2002, 2006) and measurements of lumi-
nosity functions from the high-z Ly-α emitters (e.g.,
Hu et al. 2002; Malhotra & Rhoads 2004; Ota et al.
2007; Ouchi et al. 2010; Choudhury et al. 2015). These
observations commonly suggest that EoR has started
roughly at z ≈ 13 and ended by z ≈ 6 (e.g., Robert-
son et al. 2013, 2015; Mondal et al. 2015; Mitra et al.
2018a, b). However, a deeper insight of these epochs are
required to understand these primary stages of the struc-
ture formation. Hi being the most abundant element in
the IGM during these epochs, the 21-cm radiation which
originates due to hyperfine transition in Hi proves to
be most promising probe of CD–EoR. The CD–EoR

21-cm signal is highly sensitive to the properties of the
first astrophysical sources and their interactions with
the IGM. Therefore, mapping out the intensity distri-
bution of the redshifted 21-cm radiation from Hi in
the IGM provides a unique and direct way to study
CD–EoR (e.g. Sunyaev & Zeldovich 1975; Hogan &
Rees 1979; Scott & Rees 1990; Bharadwaj et al. 2001;
Bharadwaj & Sethi 2001). Given such important infor-
mation that the observations of redshifted 21-cm signal
is expected to reveal, it is in one of the major sci-
ence goals of the upcoming Square Kilometer Array
(SKA-low) (Koopmans et al. 2015). It is expected that
the direct observations of the CD–EoR 21-cm signal
would be able to answer various fundamental questions
related to the progress of heating and reionization of the
IGM, properties of sources involved and their evolution,
etc.

A substantial effort is ongoing with the SKA pathfi
nder radio-interferometers, such as uGMRT (Swarup
et al. 1991; Gupta et al. 2017), PAPER (Parsons et al.
2010), LOFAR (van Haarlem et al. 2013), MWA (Tin-
gay et al. 2013), HERA (DeBoer et al. 2017) and
NenuFAR (Mertens et al. 2021) to detect the CD–EoR
21-cm signal. However, most of them are not suited
for the CD observations due to their limited sensitiv-
ity and range of operation. The upcoming SKA-low
will be a giant leap in terms of sensitivity as well as it
will have a large frequency bandwidth (50–350 MHz)
to cover both CD and EoR. Unfortunately, even with
first phase of SKA-low, a direct detection of the signal
is not possible due to ∼104–105 times stronger galac-
tic and extra-galactic foregrounds (e.g., Ali et al. 2008;
Bernardi et al. 2009; Ghosh et al. 2012). Therefore, the
current experiments aim to observe the signal by mea-
suring its statistics, majorly the power spectrum (PS)
(e.g., Bharadwaj & Sethi 2001; Bharadwaj & Ali 2004,
2005). However, only few weak upper limits on the PS
amplitudes have been reported to date (e.g., GMRT:
Paciga et al. 2011, 2013; LOFAR: Yatawatta et al. 2013;
Patil et al. 2017; Gehlot et al. 2019; Mertens et al.
2020; MWA: Li et al. 2019; Barry et al. 2019; Trott
et al. 2020; PAPER: Cheng et al. 2018; Kolopanis et al.
2019; HERA: The HERA Collaboration et al. 2021).
In its first phase, SKA-low shall be able to measure
the 21-cm power spectrum with high precision at dif-
ferent redshifts within relatively less observation time.
One would additionally compute higher-order statistics,
such as bispectrum (e.g., Majumdar et al. 2018, 2020;
Kamran et al. 2021a,b; Giri et al. 2019), trispectrum
(Mondal et al. 2016, 2017), etc., which can provide
additional information of these epochs. Moreover, the
second phase of the SKA-low is expected to produce
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images of the 21-cm signal maps from CD and EoR. One
can then use various image-based statistical tools, such
as Minkowski functional (e.g., Kapahtia et al. 2018,
2019, 2021) and largest cluster statistics (e.g., Bag et al.
2018, 2019; Pathak et al. 2022), etc., to extract maxi-
mum information out of the signal.

The Hi intensity mapping of the post-reionization
(z ≤ 6) 21-cm signal holds the potential to probe
the large-scale structures and constrain various cos-
mological parameters (Bharadwaj et al. 2001, 2009;
Bharadwaj & Sethi 2001; Loeb & Wyithe 2008; Visbal
et al.2009; Villaescusa-Navarro et al.2015). It can inde-
pendently probe the expansion history of the Universe
by measuring the Baryon acoustic oscillation (BAO)
in the 21-cm power spectrum (PS) (Chang et al. 2008;
Wyithe et al. 2008; Seo et al. 2010).

Several efforts have already been carried out towards
detecting the post-reionization 21-cm signal. Pen et al.
(2009) first detected the signal by cross-correlating
the Hi Parkes all sky survey (HIPASS) and the six
degree field galaxy redshift survey (6dFGRS; Jones
et al. 2004). At a higher redshift (z ∼ 0.8), the detec-
tion of the cross power spectrum has been presented
in Chang et al. (2008) using 21-cm intensity maps
acquired at the green bank telescope (GBT) and the
DEEP2 galaxy survey. Further improvement on these
measurements was carried out (Masui et al. 2013) by
cross-correlating the new intensity mapping data from
the WiggleZ dark energy survey (Drinkwater et al.
2010). The auto-power spectrum measurement of 21-
cm intensity fluctuation maps acquired with GBT has
been used to constrain neutral hydrogen fluctuations
at z ∼ 0.8 (Switzer et al. 2013). These measure-
ments were conducted using single-dish telescopes in
the low-redshift (z < 1) regime, where we already have
optical surveys. Next-generation intensity mapping sur-
veys with SKA-mid (Bull et al. 2015) will have the
potential to open up a large cosmological window at
the post-reionization epoch, allowing us to detect the
21-cm signal with a high level of accuracy.

Rest of the article is arranged in the following
way. We start Section 2, with discussion on analyti-
cal and numerical models of the 21-cm signal. Next,
we present different statistical tools to quantify the sig-
nal in Section 3. We mention observational challenges
in detection of the Hi 21-cm signal in Section 4. We
briefly mention different foreground contributions to
the observed signal. In Section 5, we quote the present
upper limits on the signal with the current telescopes
and also discuss the prospects of measuring signal
statistics using SKA-low. We finally summarize the
paper in Section 6.

2. Modeling 21-cm signal

The redshifted 21-cm radiation acts as a proxy to the
Hi distribution in the IGM, which almost follows the
underlying matter density field during CD. However
during EoR, theHi distribution is largely determined by
the ionized regions. The Hi 21-cm signal is quantified
using the differential brightness temperature (Rybicki &
Lightman 1979) observed against CMB at a frequency
ν and along a direction n̂. This can be written as:

Tb(n̂rν, ν) = T̄ (z)x̄Hi(z)[1 + δHi(n̂rν, z)]
(

1 − Tγ

Ts

)

×
[

1 − 1 + z

H(z)

∂v‖(n̂rν, z)
∂rν

]
, (1)

where ν is the frequency of observation and related to
the redshift z as ν = 1420/(1 + z) MHz. rν is the co-
moving distance to the redshift z, x̄Hi is the mean neutral
hydrogen fraction, δHi is the Hi density contrast, H(z)
is the Hubble parameter, ∂v‖

∂rν
is the gradient of peculiar

velocity along the line-of-sight (LoS) direction and the
characteristic Hi brightness temperature:

T̄ (z) = 4.0 mK(1 + z)2
(

1 − YP

0.75

)

×
(

�bh2

0.020

) (
0.7

h

)(
H0

H(z)

)
, (2)

where the symbols have their usual meaning. Note that
T̄ (z) depends only on the background cosmological
model. The CD–EoR 21-cm signal also depends on
the factor (1 − Tγ /Ts) in Equation (1), where Tγ =
Tγ 0(1 + z) is the CMB temperature and Ts is the spin
temperature of the Hi gas in the IGM. The spin tem-
perature is not a thermodynamical quantity, rather it is
defined by the relative population of Hi atoms between
two hyperfine states, i.e.,

n1

n0
= g1

g0
exp

(−T∗
Ts

)
. (3)

Here, g1 = 3 and g0 = 1 are the degeneracy fac-
tors of the excited states and ground states with n1 and
n0 being numbers of Hi atoms in the respective states.
T∗ = 0.068 K = hPνe/kB, where hP is the Planck
constant, νe = 1420 MHz and kB is the Boltzmann con-
stant. There are three major physical processes which
control the level population of Hi atoms and couples
Ts to either the gas kinetic temperature TK or Tγ or
the Ly-α color temperature Tα during various stages.
Computation shows that the Ts depends on the other
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three temperatures as (e.g., Pritchard & Loeb 2012):

T−1
s = T−1

γ + xcT
−1
K + xαT−1

α

1 + xc + xα

, (4)

where xc and xα denote the strength of different pro-
cesses. During the initial stages of CD, the Ly-α
radiations from the sources electronically excited and
de-excited the Hi atoms due to resonant scattering. This
redistributes the atoms between the two hyperfine levels
and therefore, couples the spin temperature to Tα ≈ TK .
This is known as Wouthuysen–Field effect (Wouthuy-
sen 1952; Field 1958; Chen & Miralda-Escudé 2004)
makes xα dominant over all other coupling terms. Later
at z ≈ 17, the X-rays have been started heating IGM
andTs starts rising towardsTγ . Therefore, the CD 21-cm
signal is observed in absorption, however, reionization
starts as soon as Ts overshoots Tγ and the EoR 21-cm
signal is observed in the emission. The evolution of
the simulated mean brightness temperature T̄b(z) dur-
ing CD–EoR is shown in the bottom panel of Figure 4.
There are several experiments which aim to measure
this global signal from CD–EoR. However, the radio-
interferometric instruments, such as SKA, are expected
to observe the spatial fluctuations in the brightness tem-
perature of the CD–EoR signal, which is defined as:

δTb(n̂rν, ν) = Tb(n̂rν, ν) − T̄b(ν), (5)

where T̄b(ν) ≡ T̄b(z), as shown in the bottom panel of
Figure 4.

The formation and evolution of the first sources (as
mentioned in Section 1) is expected to actively con-
trol the topology of the fluctuating CD–EoR signal
δTb(n̂rν, ν) (Barkana & Loeb 2001; Furlanetto et al.
2006; Pritchard & Loeb 2012). It is widely accepted
that the star-forming galaxies during the CD–EoR are
the primary source of UV photon production. Having a
small mean free path, they cannot photoionize Hi much
far into the IGM. Some of these galaxies are likely
to have accreting supermassive or intermediate-mass
black holes at their centers, and they will act as mini-
quasars (mini-QSOs). The mini-QSOs can majorly
produce high-energy X-ray photons, which have larger
mean free path and heat up the IGM. Besides, the
galaxies with a high star formation rate are likely to
host binary systems, such as high-mass X-ray binaries
(HMXBs), which also produce a copious amount of
X-ray photons and interact with the IGM differently
as compared to the mini-QSOs.

The relative abundances of different sources and their
radiation processes can have distinct imprints on the
evolution of Hi in the IGM during CD–EoR. It is widely
understood that the UV photons ionize Hi efficiently

than the X-ray photons. Hence, for example, if the
Universe is dominated by the UV radiations from the
galaxies, it would become an so-called ‘inside-out’
reionization scenario. This is because the UV photons
first ionize the dense regions around the sources and
then, the ionization fronts advance further into the IGM.
On the other hand, if the sources, such as HMXBs pro-
ducing hard X-ray photons with large mean free paths
would have been most abundant in the early Universe,
they could cause the so-called ‘outside-in’ reionization
scenario (Choudhury et al. 2009). In this scenario, high
energy X-ray photons would easily escape from their
host galaxies and travel the large distance in the IGM
to be redshifted to the lower frequency corresponding
to the ionizing photons. Hence, the under-dense regions
ionize first, and as time goes on, the reionization slowly
progresses into the denser regions. In practice, both of
these scenarios contribute to the photo-ionization of
IGM gas. However, the inside-out scenario driven by
UV photons from the galaxies dominates the photo-
ionization. On contrary, the X-ray photons contributes
majorly to heat up the IGM thereby modulating Ts of
the Hi.

We now briefly summarize analytical and numerical
methods to simulate δTb(n̂rν, ν) of the CD–EoR 21-cm
signal in the following subsections.

2.1 Analytical modeling

According to Equations (1) and (5), one needs a
perfect knowledge of x̄Hi(z), δHi(n̂rν, z), Ts(n̂rν, z)
and ∂v‖(n̂rν, z)/∂rν to accurately model δTb(n̂rν, ν).
Owing to complicated interplay between the cosmologi-
cal and astrophysical processes, it is not straightforward
to write analytical expressions for all of these quantities
and hence, for δTb during CD–EoR. However, modeling
of the statistics of the signal is possible under some sim-
plified assumption. Here, we briefly discuss a simplistic
but effective model of the EoR 21-cm power spectrum as
described in Bharadwaj & Ali (2005). Note that power
spectrum is the Fourier transform of the two-point cor-
relation of a fluctuating field. We refer the reader to
Section 3.2, for a complete description of the power
spectrum statistics.

As mentioned before, assuming that the Hi gas is
heated well before it is reionized, and that the spin tem-
perature is coupled to the gas temperature with Ts � Tγ

CMB temperature, so that (1 − Tγ /Ts) → 1 (Equa-
tion 1). Now, the EoR 21-cm emission signal depends
only on theHi density contrast and peculiar velocity. We
assume that the hydrogen density and peculiar velocities
follow the dark matter with possible bias bHi. Further, it
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is assumed that non-overlapping spheres of co-moving
radius R are completely ionized, the centers of the
spheres being clustered with a bias bc ≥ 1 relative to
underlying dark matter distribution. One would expect
the centers of the ionized spheres to be clustered, given
the fact that one can identify them with the locations of
the first luminous objects, which are believed to have
formed at the peaks of the density fluctuations. Similar
kind of models have used in the context of the effect of
patchy reionization on the CMB (Gruzinov & Hu 1998;
Knox et al. 1998) and Hi emission in high redshifts
(Zaldarriaga et al. 2004).

In this simple reionization model, the ionization his-
tory is considered as x̄Hi(z) = 1/1 + exp((z−z0)/�z),
where z0 = 10 and �z = 0.5, so that 50% of the hydro-
gen is reionized at a redshift of z = 10 (see Figure 1).
The fraction of volume ionized fV , the mean neutral
fraction x̄Hi and mean co-moving number density of
ionized spheres n̄Hi are related as fV = 1 − x̄Hi =
(4πR3/3)n̄Hi. The co-moving size of the spheres, R
increases with z, so that the mean co-moving number
density of the ionized spheres remains constant. Using
various assumptions mentioned above, the Hi power
spectrum of brightness temperature fluctuations have
been modeled as (for more details see Bharadwaj & Ali
2005):

P(�k, z) = T̄ 2(z)
[
bHi x̄Hi(1 + β μ2) − bc fVW (kR)

]2

× Pm(k, z) + T̄ 2(z)
f 2
VW

2(kR)

n̄Hi
, (6)

whereW (kR) = 3[sin(kR)−kR cos(kR)]/(kR)3 is the
Fourier transform of the spherical top hat window func-
tion, μ is the cosine of the angle between �k and the LoS
vector n̂, the term (1 + βμ2) arises due to the peculiar
motion of the Hi atoms and β denotes the linear redshift
distortion parameter (Bharadwaj et al. 2001; Bharadwaj
& Ali 2004). The first term, which contains dark matter
power spectrum Pm(k) arises from the clustering of the
hydrogen and the clustering of the centers of the ionized
spheres. The second term, which has 1/n̄Hi arises due
to the discrete nature of the ionized regions.

Figure 2 shows the behavior of P(k) as a function of
k at three different frequencies 110, 120 and 130 MHz,
which corresponds to redshifts of ∼11.9, 10.8 and 9.9,
respectively. At ν ≤ 110 MHz, the Hi power spectrum
traces the dark matter power spectrum as the hydrogen is
largely neutral. The results shown here assume bHi = 2
and the centers of the ionized bubbles to be clustered
with a bias bc = 1.5 with respect to the underly-
ing matter distribution. The presence of these clustered
bubbles reduces the signal. At 130 MHz, Hii bubbles

Figure 1. Evolution of the mean neutral fraction x̄Hi with
the frequency of redshifted Hi emission for the reionization
model discussed in the text.

Figure 2. Expected Hi power spectrum P(k, z) from the
epoch of reionization at different frequencies (as shown in
the figure) for models of the Hi distribution considered here.
Here, the μ dependence has been incorporated by using the
average value 〈μ2〉 = 1/3.

occupy around 50% of the Universe. The clustering of
the bubbles or the dark matter is no longer important
at this stage, and the Hi power spectrum is largely gov-
erned by the discrete nature (Poisson distribution) of the
ionized bubbles. The power spectrum drastically falls
towards the large k, which corresponds to the scales
smaller than the typical bubble sizes. At lower red-
shifts (higher frequencies), the Hi signal is expected
to decrease rapidly because most of the Hi would
be ionized. The analytical model for the reionization
breaks down beyond a stage when a large fraction
of the Universe is ionized. This break down occurs
beyond 130 MHz for the model presented here. Note
that the power spectrum shows oscillations for smaller
length-scales (k > π/R), which arises from the nature
of the window function W (kR) (Equation 6). At these
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scales, the amplitude of W 2(kR) falls as (kR)−4, which
is steeper than the matter power spectrum Pm(k). Hence,
at sufficiently large k, the EoR power spectrum P(k)
is dominated by the dark matter fluctuations and it
approaches Pm(k) with the approach being faster for
large R. It is important to note that the oscillations in
P(k) are due to the fact that all the ionized bubbles are
assumed to be spheres of the same size. In reality, the
ionized regions will have a spread in the bubble shapes
and sizes.

However, this model has a limitation that it cannot be
used when a large fraction of the volume is ionized as
the ionized spheres start to overlap and the Hi density
contrast becomes negative in the overlapping regions.
Calculating the fraction of the total volume, where the
Hi density contrast is negative, is found to be f 2

V /2.
Hence, the model is valid for z > 10, where fV < 0.5
and the δHi is negative in <12.5% of the total volume.

In the post-reionization era (z ≤ 6), the bulk of the
Hi resides in the high column density clouds, which
produces the damped Lyman-α absorption lines as
observed in the quasar spectra (Lanzetta et al. 1995;
Storrie-Lombardi et al. 1996; Péroux et al. 2003). The
current observations indicate that the co-moving, den-
sity of Hi expressed as a fraction of the present critical
density is nearly constant at a value �Hi(z) ∼ 10−3 for
z ≥ 1 (Péroux et al.2003; Noterdaeme et al.2012; Zafar
et al. 2013). The damped Lyman-α clouds are believed
to be associated with galaxies, which represent highly
non-linear overdensities. However, on the cosmologi-
cal large-scales, it is reasonable to assume that these
Hi clouds trace the dark matter with a constant linear
bias bHi = 2 (Sarkar et al. 2016).

Converting �Hi to the mean neutral fraction x̄Hi =
�Hi/�b gives us x̄Hi = 50�Hi h2(0.02/�bh2) or
x̄Hi = 2.45 × 10−2. It is also assumed that Ts � Tγ ,
and hence, one sees the Hi in emission. Using these, we
have

P(�k, z) = T̄ 2(z) b2
Hi x̄

2
Hi(1 + βμ2)2Pm(k, z). (7)

The fact that the neutral hydrogen is in discrete clouds
makes a contribution which is not included here.
Another important effect not included here is that the
fluctuations become non-linear at low z. Both these
effects have been studied using simulations (Bharadwaj
& Srikant 2004).

The predictions for post-reionization Hi power spec-
trum P(k) are shown as a function of k for two
frequencies 325 MHz (z ≈ 3.36) and 800 MHz (z ≈
0.77) in Figure 3. In this era, the Hi is assumed to trace
the dark matter field with a bias bHi = 2. Therefore,
the shape of the Hi power spectrum as a function of k

Figure 3. Expected post-reionization Hi power spectrum
P(k, z) at two frequencies (as shown in the figure).

is decided by the dark matter power spectrum Pm(k) at
the relevant Fourier modes. The values of P(k) increase
with frequency (decrease with redshift) is a reflection
of the fact that Pm(k) grows with time.

2.2 Numerical modeling

Even though analytical models provide some approxi-
mate pictures of CD–EoR 21-cm signal, it is not possible
to incorporate various complex physics into them. It is
thus necessary to use numerical simulations to obtain
realistic maps of CD–EoR 21-cm signal and other quan-
tities relevant to the observations. The numerical models
typically stands on basic assumption that the hydrogen
traces the underlying dark matter field and the collapsed
halos host the ionizing sources.

2.2.1 Radiative transfer technique We have already
seen that the intensity of the Hi 21-cm radiation cru-
cially depends on the ionization fraction, gas tempera-
ture and the Lyman-α coupling (see Equations (1) and
(4)). Thus, besides knowing how the radiating sources,
such as galaxies, high-mass X-ray binaries and quasars
are distributed in the simulation volume and their spec-
tral energy distribution (SED), it is also important to
know how the emitted UV, X-ray and Lyman-α pho-
tons propagate into the clumpy baryonic field. One can
simplify the picture of star formation by assuming that
the stellar content of a galaxy is proportional to the mass
of the host dark matter halo and SEDs of the galaxies per
unit stellar mass are the same as one can obtain from a
stellar population synthesis code like PEGASE2 (Fioc
& Rocca-Volmerange 1997). Note that, in reality, the
star formation scenario can be very complex.
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Figure 4. The top panel shows a light-cone demonstrating the redshift evolution of the brightness temperature fluctuations
of the Hi 21-cm signal during CD–EoR phase. The bottom panel shows the evolution of the corresponding mean brightness
temperature of the 21-cm signal. The details of the dark matter only N-body simulation as well as the source model used in
GRIZZLY to generate this light-cone can be found in Ghara et al. (2015b).

In principle, one needs to solve a seven-dimensional
cosmological radiative transfer equation (see e.g.,
Choudhury et al. 2016) at every grid point of the sim-
ulation box to include all relevant physical processes.
This is computationally very challenging and thus, often
approximations are used for the radiation transfer. For
example, a 3D radiative transfer code C2 RAY (Mellema
et al. 2006) works by tracing rays from all UV emitting
sources and iteratively solving for the time evolution
of xHii. Even with such approximation, C2 RAY results
match very well with fully numerical radiative trans-
fer Codes (see e.g., Iliev et al. 2006). Alternatively,
a one-dimensional radiative transfer scheme is used
in codes such as GRIZZLY (Ghara et al. 2015a, b)
and BEARS (Thomas & Zaroubi 2008). This method
approximates the transfer of UV, X-rays and Lyman-
α photons by assuming that the effect from individual
sources is isotropic. Although GRIZZLY employs a
range of approximations to correct for overlaps between
individual ionized regions around the sources, its results
are still in good agreement with those of the 3D radia-
tive transfer code C2 RAY (see Ghara et al. 2018 for
details), while being at least 105 times faster. In addi-
tion, as GRIZZLY also includes X-ray heating and
Ly-α coupling, it can probe the cosmic dawn, where
the spin temperature fluctuations are expected to dom-
inate the fluctuations in the 21-cm signal. We present
one simulated GRIZZLY light-cone of the brightness
temperature in Figure 4. Clearly, at the beginning of
the cosmic dawn era (around z ∼ 20 in this case),
Lyman-α coupling is the most crucial effect that deter-
mined the fluctuations in the 21-cm signal. This was
followed by an era, where X-ray heating becomes

important. One can see that over time individual emis-
sion regions around the X-ray sources overlap together.
The gas in the IGM became significantly heated around
z ∼ 12 after which the spin temperature fluctuations
became negligible compared to the ionization fluctua-
tions.

As mentioned before, radiative transfer methods
are based on post-processing of the outputs of N-
body simulations (such as dark matter halo catalog,
density and velocity fields, etc.), and these miss the
hydro-dynamical effects on the small scales. On the
other hand, more sophisticated fully coupled radiative-
hydrodynamic simulations of galaxy formation, such
as Renaissance (Xu et al. 2016), CoDa I (Aubert et al.
2018), CoDa II (Ocvirk et al. 2020) by CPU-GPU
code EMMA (Aubert et al. 2015) can include several
small scale physics and thus are useful to study the
stochastic star formation, metal enrichment, radiative
feedback, recombination in the IGM, etc. The impact of
such relevant processes as found from these studies are
often approximately used in other types of simulations,
such as semi-numerical and numerical without hydro-
dynamics. While these simulations are very important to
consider small-scale physical processes, these are often
limited by small box size and thus challenging to com-
pare with the 21-cm observations. In addition, resolving
very fine scale physical processes, such as a super-
nova, turbulence, etc., are still beyond the capacity of
these methods and often depends on simplified sub-grid
prescriptions.

2.2.2 Semi-numerical simulations Detailed and fast
models of reionization are a crucial ingredient for
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Figure 5. One realization of the two-dimensional sections through the simulated Hi brightness temperature maps at z = 10,
9, 8 and 7 within simulation volume of [215 Mpc]3. See Mondal et al. (2017) for details.

interpreting the observed data and constraining the
physics of the CD–EoR. The aforementioned radiative
transfer simulations are required for accurate modeling,
however, they are not well-suited for exploring a vast
range of parameter space (see e.g., Mondal et al.2020b).
Therefore, fast methods are crucial to simulate a high
dynamic range large-volume boxes of the Hi 21-cm
signal. This can be achieved by using semi-numerical
techniques, which typically involve three main steps: (a)
simulating dark matter distribution at the desired red-
shifts, (b) identifying the collapsed dark matter halos
and (c) generating the reionization map using an excur-
sion set formalism. The first two steps mostly overlap
with those in the radiative transfer techniques. It is the
excursion set (Furlanetto et al. 2004) or similar formal-
ism, which generates ionization maps based on some
approximate methodology.

For example, a semi-numerical code REIONYUGA1

(Mondal et al. 2015, 2016, 2017) generates ionization
fields following methodologies described in Choudhury
et al. (2009) and Majumdar et al. (2014). The code
uses matter density field simulated using a fast, effi-
cient and accurate parallelized particle-mesh N -body
code2 (Mondal et al. 2015), and the corresponding
halo distribution obtained using a Friends-of-Friends
halo finder3 (Mondal et al. 2015). The methodology
of REIONYUGA assumes that the amount of ionizing
photons produced by a source is directly proportional
to its host halo mass above a certain mass cut-off Mmin,
which is a parameter in simulations. The proportion-
ality factor here is quantified through a dimensionless
parameter Nion, which is related to several degenerate
astrophysical factors (see e.g., Shaw et al. 2020). The
mean free path of the ionizing photons in the IGM Rmfp

1https://github.com/rajeshmondal18/ReionYuga.
2https://github.com/rajeshmondal18/N-body.
3https://github.com/rajeshmondal18/FoF-Halo-finder.

is the third parameter of REIONYUGA. The methodol-
ogy determines whether a grid point to be ionized or not
by smoothing the hydrogen density field and the pho-
ton density field using spheres of different radii starting
from the grid size to Rmfp. A grid point is considered to
be ionized if for any smoothing radius (within Rmfp), the
photon density exceeds the hydrogen density at that grid
point. Grid points which do not satisfy this condition are
assigned with an ionized fraction. Figure 5 shows one
realization of the two-dimensional sections through the
simulated Hi brightness temperature maps at z = 10, 9,
8 and 7 for a [215 Mpc]3 simulation box. The resultant
ionization maps are similar to those simulated using the
costlier radiative transfer methods.

There are several semi-numerical codes available
publicly such as SCRIPT4 (Maity & Choudhury 2022),
21cmFAST5 (Mesinger et al. 2011) and SIMFAST216

(Santos et al.2010), etc. However, these codes have their
own assumptions and physically motivated parameters.
One should appropriately choose these codes based on
the individual requirement.

3. Statistical measures of 21-cm signal

The CD–EoR 21-cm signal (see Equations (1) and (5)) is
a random field of brightness temperature fluctuations.
We need statistical estimators to quantify the signal.
One can quantify it using the one-point statistics, such
as variance (Patil et al. 2014), skewness and kurtosis
(Harker et al. 2009) of δTb. Despite being easier to
compute and interpret, one-point statistics have limited
information. Therefore, many-point statistics, such as
N -point correlation functions, are needed to quantify
the signal completely. We shall discuss about a few

4https://bitbucket.org/rctirthankar/script.
5https://github.com/21cmfast/21cmFAST.
6https://github.com/mariogrs/Simfast21.
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many-point statistics in Fourier space, such as power
spectrum, bispectrum, etc., in the following sections.
One can also utilize other techniques, such as matched
filtering, to enhance the detectability of the signal by
extracting its important underlying features.

3.1 Matched filtering technique

The detectability of the CD–EoR 21-cm signal in terms
of different statistical quantities is low as the targeted
signal is weak. Thus, one of the major focuses of the the-
oretical study of the signal has been to design optimum
estimators that enhance the detectability of the sig-
nal. The application of the matched filtering technique,
which applies pre-defined filters to the measurements to
enhance the detectability of the observation is one such
complementary method.

In the case of EoR 21-cm signal, Datta et al. (2007)
introduced this method, where spherical top-hat filters
in the image-space were applied to the measured visibil-
ities for enhancing the detectability of ionized regions.
Follow up studies, such as Datta et al. (2008, 2009b,
2012a), Majumdar et al. (2011, 2012) considered var-
ious scenarios of IGM ionization states and estimated
the detectability of ionized bubbles with radio inter-
ferometers like GMRT, MWA, LOFAR, SKA-low. For
example, Datta et al. (2012a) showed that ∼1200 h of
observation with LOFAR should be enough to detect
ionized regions with a size ∼25 cMpc at redshift 7.57
with mean ionization fraction x̄Hi = 0.5. As the largest
ionized regions in the field-of-view (FoV) is expected
to be formed around very bright sources, such as high-z
quasars, this technique can also give information about
the bright sources (see e.g., Datta et al. 2012a; Majum-
dar et al. 2012).

Recently, Ghara & Choudhury (2020) developed
a rigorous Bayesian framework based on the same
method to constrain the parameters that characterize
the ionized regions. This study shows 20 h integration
with SKA-low will be enough to constrain the location
and size of the ionized regions around typical quasars
at z = 7 (Figure 6), while it also constrains the dif-
ference in the neutral fractions inside and outside the
Hii bubble. This framework is useful in identifying large
ionized regions in the observed field and hence, will be
interesting for following up observations with deeper
integration times.

In contrast to the distribution of ionized regions in the
IGM during the EoR, the CD Hi 21-cm signal mostly
depends on how emission/absorption regions are dis-
tributed in the IGM. In this case, one can also apply the
matched filtering technique to enhance the detectability

Figure 6. Simulated δTb maps at z ≈ 7 using GRIZZLY,
the red points indicate the position of a quasar in the field-of-
view, the dashed circles represent the best-fit size of matched-
filter estimated from a Bayesian analysis as used in Ghara &
Choudhury (2020).

of individual emission/absorption regions in the IGM. In
a slightly different approach, one can also simply com-
bine the measured visibility from different baselines and
frequency channels to enhance the detectability of the
signal (see e.g., Ghara et al. 2016). We refer the reader
to Datta et al. (2016) for more details on these methods.

3.2 3D power spectrum

The spatial fluctuations in the Hi differential brightness
temperature δTb(�x) within a 3D co-moving cube of vol-
ume V can be decomposed into different Fourier modes
in �k-space as:

�T̃b(�k) = V−1
∑

�x
exp[−i �k · �x]δTb(�x), (8)

where �T̃b(�k) is the Fourier conjugate of δTb(�x) and
the summation is over all real space points within the
volume. Note that the wave vector �k can be both positive
and negative, however, we have �T̃ ∗

b (�k) = �T̃b(−�k)
as δTb(�x) is a real field. Now, the Hi 21-cm 3D power
spectrum P(�k) can be defined as follows:

〈�T̃b(�k1)�T̃b(�k2)〉 = V δK(�k1 + �k2) P(�k1), (9)
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Figure 7. Dimensionless form of CD (dashed lines) and
EoR (solid lines) 21-cm 3D power spectrum �2

b(k) =
k3P(k)/(2π2). The CD power spectra are obtained from the
radiative transfer simulations GRIZZLY, whereas the EoR
power spectra are computed using the semi-numerical simu-
lations REIONYUGA. See Ghara et al. (2015b) and Mondal
et al. (2017) for details.

where δK is the 3D Kronecker’s delta function. The
power spectrum is the Fourier pair to the two-point
correlation function, which measures excess probabil-
ity as a function of two points in real space. We now
discuss a few important properties of the P(�k). The
3D Kronecker’s delta function δK appearing in above
Equation (9) is a consequence of the fact that the
Hi fluctuations are assumed to be statistically homo-
geneous or ergodic in nature along all three spatial
directions. It signifies that the Hi signal in the different
Fourier modes are uncorrelated. Assuming statistical
isotropy in the signal removes the direction depen-
dence of the 3D power spectrum, and we can express
power spectrum as a function of only k instead of �k,
i.e., P(�k) = P(k). In reality, the CD–EoR 21-cm
signal is affected by several LoS effects, such as the
redshift-space distortion, light-cone effect and Alcock–
Paczynski effect. However, the statistical isotropy is
always valid for the monopole component of the 3D
power spectrum P(k). Figure 7 shows dimensionless
3D power spectrum �2

b(k) = k3P(k)/(2π2) of the EoR
21-cm signal (solid lines) obtained from an ensemble
of simulated signals at four redshifts as shown in Fig-
ure 5. In Figure 7, we also show the CD 21-cm 3D power
spectrum (dashed lines), which have been simulated
using the 1D radiative transfer simulation GRIZZLY as
mentioned in Section 2.2.1.

One of the primary goals of the ongoing radio-
interferometric experiments is to measure the 3D power

spectrum of the EoR 21-cm signal. However, these
interferometers are limited in terms of sensitivity. The
SKA-low in its first phase is expected to provide EoR
21-cm power spectrum at a considerably high SNR level
within 100 h of observations (Shaw et al. 2019). Owing
to its larger frequency bandwidth, SKA-low will be able
to provide measurements of CD 2-cm power spectrum
at a reasonably high SNR.

3.3 Multifrequency angular power spectrum

The CD–EoR 21-cm signal is observed across a fre-
quency bandwidth for a range of cosmic times, as each
wavelength corresponds to a different look-back time.
The observed data sets are thus three-dimensional (3D)
with the two directions on the sky-plane and the fre-
quency (wavelength) constituting the third dimension.
The light-cone effect imprints the cosmological evo-
lution of the 21-cm signal along the LoS direction (or
frequency axis) (Datta et al. 2012b). The effect is partic-
ularly pronounced when the mean 21-cm signal changes
rapidly as the Universe evolves. Mondal et al. (2018)
have developed a method to properly incorporate the
light-cone effect in simulations of the 21-cm signal that
also includes the effects of peculiar velocities. They
showed that the 3D power spectrum P(k) fails to quan-
tify the entire two-point statistical information as it
inherently assumes the signal to be ergodic and periodic
in all three directions (Figure 8), whereas the light-cone
effect breaks these conditions along the LoS direction
(Mondal et al. 2018). Therefore, the issue is how to anal-
yse the statistics of the 21-cm signal in the presence of
the light-cone effect. Datta et al. (2012b) and Mondal
et al. (2018) have proposed an unique statistical esti-
mator of the signal, the multifrequency angular power
spectrum (MAPS), which quantifies the entire second-
order statistics of the 21-cm signal without requiring
the signal to be ergodic and periodic along the LoS
direction.

The MAPS is defined as follows:

C�(ν1, ν2) = �−1 〈�T̃b2( �U , ν1) �T̃b2(− �U , ν2)〉,
(10)

for a given multipole � = 2π | �U | and at a pair of frequen-
cies (ν1, ν2). In the above equation, � is the solid angle
subtended by the observation volume to the observer,
�T̃b2( �U , ν) is the Fourier conjugate of the Hi 21-cm
brightness temperature fluctuations δTb(�θ, ν) ≡ δTb(�x)
with respect to the two-dimensional angle �θ defined
on the sky-plane, and �U is the Fourier conjugate of �θ .
For the case, where the signal is assumed to be both
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Figure 8. This plot shows information loss in the assumption of statistical homogeneity and periodicity along the frequency
direction. Dotted curves are for the power spectrum, which assumes the signal is ergodic and periodic along the frequency
direction and the soiled curves are for MAPS, which does not require these assumptions. See Mondal et al. (2018) for details.

ergodic and periodic, the MAPS bears a direct rela-
tion to the three-dimensional power spectrum P(�k) (see
Section 3.2) i.e.,

CEP
� (�ν) = (r2

c r
′
cB)−1

∑
k‖

eik‖r ′
c�νP(�k⊥, k‖), (11)

where �ν = |ν1 − ν2|, rc and r ′
c denote the distance

between the observer and the center of the observa-
tion volume and its derivative regarding ν and B gives
the observing bandwidth. In Equation (11), �k⊥ and k‖,
respectively, denote the perpendicular and parallel com-
ponents of the 3D wavevector �k regarding the LoS
direction of the observer.

Mondal et al. (2020a) have applied MAPS to quan-
tify the statistics of light-cone EoR 21-cm signals and
study the prospects for measuring it, using the upcom-
ing SKA observations. In a previous study (Mondal
et al. 2019), we have also found that it is possible to
recover the cosmic history across the entire observa-
tional bandwidth using MAPS statistics. Furthermore,
by construction, the MAPS is more natural to use for
radio-interferometric observations than the 3D power
spectrum P(k), which provides biased estimates of the
signal (Mondal et al. 2020a).

3.4 Higher order statistics

The two-point Fourier space statistics (i.e., power spec-
trum) can provide a complete statistical description of
a pure Gaussian random field. However, the fluctua-
tions in the CD–EoR 21-cm signal δTb(�x) are highly
non-Gaussian (Bharadwaj & Pandey 2005; Mellema
et al. 2006). This non-Gaussianity arises due to the non-
random distribution of the first luminous sources in the
IGM and the interaction of radiation from these sources
with IGM gas through various complex astrophysical
processes, such as the heating and ionization during

CD–EoR. Furthermore, this intrinsic non-Gaussianity
evolves (either increases or decreases) with time as the
heating and the ionization fronts grow and percolate in
the IGM. It is necessary to consider the non-Gaussian
statistics of the signal, while interpreting it thoroughly
via statistical inference methods. As discussed in Sec-
tion 3.2, the power spectrum P(k) is a resultant of
signal correlation at a single Fourier mode, and there-
fore, it is not sensitive to the non-Gaussianity present
in the CD–EoR 21-cm signal. To capture this inher-
ent non-Gaussianity present at various length scales,
one needs the higher-order statistics, such as the bis-
pectrum (three-point), trispectrum (four-point), etc. The
bispectrum, the Fourier transform of the three-point cor-
relation function, is the lowest order statistic that can
directly probe the non-Gaussianity present in the sig-
nal. We define bispectrum B(�k1, �k2, �k3) as

〈�T̃b(�k1)�T̃b(�k2)�T̃b(�k3)〉 = V δK(�k1 + �k2 + �k3)

× B(�k1, �k2, �k3), (12)

where �T̃b(�k) is the Fourier transform of δTb(�x), and
δK(�k1 + �k2 + �k3) is the Kronecker’s delta function.
The occurrence of Kronecker’s delta function is due
to statistical homogeneity of the signal. This indicates
that bispectrum is defined only when the three vec-
tors (�k1, �k2, �k3) form a closed triangle in �k-space, i.e.,
�k1 + �k2 + �k3 = 0, shown in Figure 9. The bispectrum,
hence, provides us with the correlations among the sig-
nal at different Fourier modes and thus is capable to
capture the non-Gaussianity.

Recently, Trott et al. (2019) for the first time tried
to put an upper limit on the 21-cm bispectrum using
the observational data from the MWA phase II array.
The detection of the CD–EoR 21-cm bispectrum will
require more sensitive observations than needed for
power spectrum detection. The next-generation radio
interferometers, such as HERA and upcoming SKA-low
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are expected to have enough sensitivity for bispectrum
measurements. It is thus more relevant now to predict
the characteristics of the CD–EoR 21-cm bispectrum in
view of the construction of SKA-low.

Several studies on the CD–EoR 21-cm bispectrum
have been performed so far. Bharadwaj & Pandey
(2005) and Ali et al. (2005) made the first theoreti-
cal attempts to characterize the EoR 21-cm bispectrum
using their analytical models. One of the most crucial
features of the bispectrum predicted in their studies is
its sign that can attain both positive and negative val-
ues. Later on, a number of independent studies, such as
Watkinson et al. (2017, 2019), Majumdar et al. (2018,
2020), Hutter et al. (2020) and Kamran et al. (2021a, b),
confirmed the sign of the CD–EoR 21-cm bispectrum
using the detailed simulations of the 21-cm signal from
the CD–EoR and for a variety of k-triangles (equilat-
eral, isosceles and scalene). The sign of the bispectrum

Figure 9. Definition of triangles in �k-space. The shaded
region shows the positions of all the unique points of inter-
sections of �k1 and �k2 vectors, while satisfying Equations
(13)–(15).

is an important feature of this statistic. Figure 10 clearly
demonstrates that the redshift evolution of the bispec-
trum during CD, for instance, has way more features in
its magnitude and sign than the power spectrum evolu-
tion. The sign and magnitude of the bispectrum uniquely
identify which one among the dominant physical pro-
cesses, such as the Ly-α coupling, X-ray heating, and
photo-ionization is driving the non-Gaussianity at a par-
ticular cosmic time. For further insights, we refer the
interested reader to (b). Furthermore, when analyzed,
the sign change of the bispectrum’s evolution with tri-
angle configurations and the redshift can be used as a
confirmatory test of the CD–EoR 21-cm mean signal
detection.

A comprehensive view of the non-Gaussianity
requires the study of the bispectra for all possible trian-
gles in the Fourier space. Bharadwaj et al. (2020) for the
first time, proposed a new parameterization for the bis-
pectrum of triangles of all possible unique shapes in the
Fourier space, shown by the shaded region in Figure 9,
while the following conditions are satisfied.

k1 ≥ k2 ≥ k3, (13)

0.5 ≤ n ≤ 1.0, (14)

n cos θ ≥ 0.5, (15)

where n = k2/k1 and cos θ = −�k1 · �k2/k1k2.
Majumdar et al. (2020) and Kamran et al. (2021a)

followed the same prescription and presented a com-
prehensive and correct interpretation of the CD–EoR
21-cm signal by studying the bispectrum of all possi-
ble unique triangles using the simulated signal. These
studies conclude that the squeezed limit bispectrum typ-
ically attains the largest magnitude among all possible
unique triangles in the Fourier space. The squeezed-
limit bispectrum is, thus, expected to have the largest
detection probability.

Figure 10. Left panel: Redshift evolution of the 21-cm power spectrum during CD at k = 0.16 Mpc−1. Right panel:
Redshift evolution of the 21-cm bispectrum for squeezed-limit k-triangle during CD at k1 = 0.16 Mpc−1 (k2 = 0.16 and
k3 = 0.05 Mpc−1).



J. Astrophys. Astr.            (2023) 44:4 Page 13 of 36     4 

3.5 Intrinsic errors in statistical estimators

Statistical errors which are inherent to the measure-
ments of the CD–EoR 21-cm signal have two com-
ponents: (1) cosmic variance, which is inherent to the
signal itself and (2) system noise, which is observation-
ally inevitable. The cosmic variance error arises from
the finite volume of the Universe accessible to a mea-
surement, whereas the system noise is observed by the
receivers even looking at a hypothetically blank sky.
There have been several works to predict the errors on
the EoR 21-cm power spectrum P(k) measurements
(see e.g., Parsons et al. 2012; Zaroubi et al. 2012;
Jensen et al. 2013; Pober et al. 2014; Ewall-Wice et al.
2016a). Most of these earlier works have commonly
assumed the signal to be a Gaussian random field, for
simplicity. However, the EoR 21-cm signal is a highly
non-Gaussian field as already discussed in Section 3.4.
This non-Gaussianity is expected to affect the total
error in the measurement of any statistical estimator
of the CD–EoR 21-cm signal. The system noise, on the
other hand, is considered to be a Gaussian random field,
whose impact in the error co-variance would be com-
peting with the non-Gaussianity of the signal.

Considering the 3D power spectrum P(�k) (Equa-
tion 9), the corresponding statistical error covariance
between the measurements at �ki and �k j can be written
as (see e.g., Mondal et al. 2016; Shaw et al. 2019):

Ci j = [P2
b (�ki ) + P2

N (�ki )]δK
i j + T (�ki , −�ki , �k j , −�k j )

V
.

(16)

Here, the Pb and PN , respectively, denote the 21-cm PS
and the system noise power spectrum. Note that Ci j has
contribution from the four-point statistics, trispectrum
T (�ki , −�ki , �k j , −�k j ), which would have been zero if the
signals were a Gaussian random field.

The trispectrum contribution in Equation (16) is
majorly a result of the formation of the ionized bub-
bles in the IGM. The non-zero trispectrum indicates that
the ionized bubble formation is not a random process,
therefore, different k modes have correlated informa-
tion. If the EoR 21-cm signals were a Gaussian random
field then the different k mode would have been uncor-
related, and we expect the signal-to-noise ratio (SNR)
for P(k) to scale as the square-root of the number of
Fourier modes Nk that are being averaged over. How-
ever, the study of Mondal et al. (2015) show that the
SNR saturates to a limiting value, even if one increases
the number of Fourier modes (Figure 11). In a follow-
up work, Mondal et al. (2016) presented a detailed and
generic theoretical framework to interpret and quantify

Figure 11. SNR as a function of
√
Nk . The 45◦ dashed line

shows the SNR expected for a Gaussian random field, and
‘Initial’ refers to the input linear density fluctuations used for
the dark matter N-body simulations. The other data points are
the SNR estimated for the different stages of reionization as
mentioned by x̄Hi in the legend. Credit: Mondal et al. (2015).

the effect of non-Gaussianity on the error estimates for
P(k) through the full error (cosmic) covariance matrix.
Notably, Mondal et al. (2017) studied how the effect
of non-Gaussianity on the reionization power spectrum
cosmic variance evolves as the reionization progresses.
These works collectively conclude that the effect of non-
Gaussianity is dominant on the large k modes (small
length-scales) and also towards the later stages of reion-
ization (x̄Hi ≤ 0.5) as seen in Figure 11. It is important
to note that all these three works do not included system
noise contributions in their error analysis.

The large system noise contribution to the signal can
wash out these non-Gaussian features in the observed
CD–EoR 21-cm signal. The system noise power spec-
trum PN (see Equation (1) of Shaw et al. 2019) scales
inversely proportional to the observation time tobs as
the Gaussian system noise will reduce down, if aver-
aged over larger number of time stamps. PN scales
inversely also with the distribution of baselines �U ∝ �k⊥,
i.e., the �k grids at which more baselines contribute will
have smaller PN value. Recently, Shaw et al. (2019)
presented a methodology for incorporating the non-
Gaussianity with the antenna baseline distributions and
system noise to make more realistic error predictions
for the future SKA-low observations. They have also
studied effectiveness of the inherent non-Gaussianity in
presence of the system noise by comparing the Gaus-
sian and the non-Gaussian error predictions. Figure 12
shows the percentage deviation of the non-Gaussian
error with respect to the Gaussian predictions for early
(top panel) and late (bottom panel) stages of reioniza-
tion for different tobs values. Note that the deviation �
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Figure 12. The % deviation of non-Gaussian error vari-
ance in observed EoR 21-cm power spectrum with respect to
the corresponding Gaussian predictions. Credit: Shaw et al.
(2019).

is the largest for the cosmic variance (CV) only and
it increases with k. However, system noise contribu-
tion in variance prevails towards the larger k modes
as the baseline density decreases for larger �U values.
Hence, the deviation � sharply decreases after the inter-
mediate k values in both the panels. It can also be
noted that increasing tobs, decreases the system noise
and the trispectrum contribution becomes more promi-
nent. Note that � is larger towards the later stages of
reionization (x̄Hi = 0.15) for any particular tobs as the
non-Gaussian effects are stronger (CV lines) and also
PN decreases towards smaller redshifts. The impact of
non-Gaussianity is significant at k � 0.1 Mpc−1 and
k � 1 Mpc−1 during the early (top panel) and late
stages (bottom panel), respectively. In a follow-up work,
Shaw et al. (2020) have studied the effect of the non-
Gaussianity on the errors in the inferred REIONYUGA
model parameters.

For other statistics, such as MAPS (Mondal et al.
2020a) and bispectrum (Mondal et al. 2021), one also
expects similar qualitative behavior of non-Gaussian
effects in presence of system noise in their error
covariances.

3.6 Impact of first sources on statistical estimators

Several studies have been performed so far to study
the impact of different kinds of first sources on the
IGM via its impact on the different statistical mea-
sures of 21-cm signal from the CD–EoR. Depending
on the length-scales of observations, the statistical mea-
sures, such as variance, skewness, and power spectrum
can distinguish ‘inside-out’ and ‘outside-in’ reioniza-
tion scenarios (Watkinson & Pritchard 2014; Majumdar
et al. 2016). These statistics can also distinguish the iso-
lated sources, such as Pop III stars, galaxies, mini-QSOs
and HMXBs by measuring their signature on the 21-cm
signal (Ghara et al. 2016; Ross et al. 2017, 2019; Islam
et al. 2019). It is possible to constrain these sources with
high SNR using ∼1000 h of SKA-low observations in
future (Ghara et al. 2016). The formation, growth and
percolation of Hii bubbles in the IGM during EoR car-
ries imprints of ionizing sources. However, the power
spectrum, being a two-point statistics, is unable to cap-
ture these important non-Gaussian features in the EoR
21-cm signal. The power spectrum can react to different
source properties only up to a certain extent by showing
the variation in its amplitude, which arises due to the
change in the Gaussian component of the signal.

Bispectrum is able to quantify some of the non-
Gaussian imprints of the first sources in the EoR 21-cm
field. It can respond to the signatures of different sources
and processes more efficiently than the power spectrum
by reflecting changes in both its sign and magnitude, as
illustrated in Figure 10 (Watkinson et al. 2019; Kamran
et al. 2021a). Further, the 21-cm bispectrum is also able
to probe the IGM physics during CD by quantifying the
non-Gaussianity invoked due to different astrophysical
processes (b). Apart from these, the 21-cm bispectrum
is also a robust way of distinguishing the dark matter
models and can put a better constraint on the nature of
dark matter in the future EoR observations as compared
to the power spectrum alone (Saxena et al. 2020).

3.7 Line-of-sight anisotropy effects

The observations of the redshifted CD–EoR 21-cm
signal along a particular line-of-sight (LoS) direction
(n̂) provide additional information related to different
unique local effects at the point of emission compared
to the other cosmological signals. As already stated in
Section 3.2, the major LoS effects are the redshift space
distortion (RSD) (Kaiser 1987; Hamilton 1998), light-
cone (LC) (Matsubara et al. 1997; Barkana & Loeb
2006), and Alcock–Paczynski (AP) (Alcock & Paczyn-
ski 1979) effects. The RSD comes into the picture due
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to the non-linear peculiar velocities of the gas parti-
cles that cause additional redshift or blueshift on top of
the cosmological redshift, and hence, distorts the sig-
nal along the LoS direction. The LC effect results from
the redshift evolution of the signal along the LoS, as the
21-cm signal coming from different redshifts essentially
belongs to different frequencies. The AP effect is quite
different from these two effects as it is truly related to the
geometry of the space-time, which is non-Euclidean.

These LoS effects imprint their signature on the sta-
tistical measures of the 21-cm signal by making the
signal anisotropic along the LoS axis. In the view of
the future SKA-low interferometric observations of the
CD–EoR, it is important to understand the impacts of
these crucial effects on the signal for its accurate detec-
tion and correct interpretation. Therefore, one needs to
consider these effects, while estimating the CD–EoR
parameters using various statistical estimates, such as
the power spectrum and bispectrum, etc.

Bharadwaj & Ali (2004, 2005), for the first time, ana-
lytically pointed out the RSD effects in the context of
the CD–EoR 21-cm signal. Their study showed that the
peculiar velocities significantly change the magnitude
and shape of the 21-cm power spectrum when computed
using visibilities measured in a radio-interferometric
observation. Using the inherent anisotropy in the 21-
cm power spectrum, it is possible to extract the matter
power spectrum during CD–EoR (e.g., Barkana & Loeb
2005; Shapiro et al. 2013). Majumdar et al. (2013)
are the first to properly implement RSD effects in the
simulations of the EoR 21-cm signal. They have quan-
tified the effect of RSD by estimating the monopole
and quadrupole moments of the 3D power spectrum.
The evolution in the quadrupole moment of the power
spectrum with the mean neutral fraction x̄Hi at large
length-scales (k ∼ 0.12 Mpc−1) can be used to track
the reionization history to a great degree (Majumdar
et al. 2016). Ghara et al. (2015a) and Ross et al. (2021)
quantified the effect of RSD on 21-cm power spectrum
during CD, when the fluctuations in the Ts control the
21-cm fluctuations. They have reported that the effect of
RSD on the CD 21-cm power spectrum is not too high as
compared to its effect on EoR 21-cm power spectrum.

Using a set of simulated 21-cm signal, Datta et al.
(2012b, 2014) have performed the first numerical inves-
tigation on the LC effect on the 21-cm power spectrum
from the EoR. They have found that the LC effect
significantly enhances the large-scale power spectrum
and suppresses the small-scale power spectrum. They
have also found that during the EoR, the LC effect has
the largest impact on the 21-cm power spectrum when
reionization is∼20% and another when it is∼80% com-

pleted. However, they did not find that the LC effect
introduces any significant LoS anisotropy to the power
spectrum. Ghara et al. (2015b) made the first numerical
study on the impact of the LC effect on the redshifted
21-cm power spectrum from CD. They have found that
the impact of the LC effect is more dramatic when one
considers the spin temperature fluctuations in the signal
compared to the case when it is ignored.

The Alcock–Paczynski effect is another anisotropy
in the signal. This makes any shape that is intrinsically
spherical in nature appear elongated along the LoS due
to the non-Euclidean geometry of the space-time. It is
not much significant at low redshifts, but at high red-
shifts (z � 0.1), this causes a substantial distortion in
the signal, making the CD–EoR 21-cm power spectrum
anisotropic along the LoS. Ali et al. (2005) was first to
consider the AP effect in the context of the EoR 21-cm
signal. They have quantified the relative contribution in
anisotropy due to the AP effect when compared with
the anisotropy due to the RSD and how they differ in
their nature.

Apart from the power spectrum, the LoS anisotropy
can affect the higher-order statistics too. Majumdar et al.
(2020) and Kamran et al. (2021a) for the first time quan-
tified the impact of the RSD on the CD–EoR 21-cm
bispectrum from the simulated 21-cm signal. They have
found that depending on the length scales of the observa-
tion, RSD significantly impacts the magnitude, sign and
shape of the bispectrum. The LC effect also shows its
significant impact on the 21-cm bispectrum during the
EoR (Mondal et al. 2021). The RSD and LC effects are
substantial enough and make them necessary to account
for the correct interpretation of the signal statistics.

3.8 Parameter estimation using models

We have seen in Section 2 that the astrophysical infor-
mation is embedded in the 21-cm signal through xHi
and Ts terms in the brightness temperature fluctuations
(Equation 1). However, the extraction of this informa-
tion from a measurement of the signal is not trivial
and an exploration of many theoretical models of the
expected Hi signal is necessary to interpret the mea-
surements from radio observations.

First of all, one should realize that it is not feasible
to perform a full pixel-by-pixel comparison between
the observed signal and theoretical models. Instead, the
observed signal is first characterized by one or a com-
bination of statistical estimators, such as mean signal
(see e.g., Singh et al. 2017; Ghara et al. 2022), variance
(e.g., Patil et al. 2014), power spectrum (e.g., Mertens
et al. 2020; Greig et al. 2021), bispectrum (e.g., Kamran
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et al. 2021a), bubble size distribution (e.g., Giri et al.
2018), topological measurements (e.g., Kapahtia et al.
2021), pattern recognition in 21-cm signal images (e.g.,
Gillet et al. 2019), etc., to perform a comparison with
theoretical models (see discussion in Section 3). Among
these, the 3D power spectrum has been frequently used
in many of the ongoing 21-cm observations. The pre-
ferred statistical measures often depend on instrumental
sensitivity and might differ from the optimal methods
that provide maximum information about the observed
redshifts.

The next thing required for the parameter estimation
is a fast method (see Section 2) that provides the above
mentioned statistical quantities of the signal for a set of
model parameters of our interest (e.g., the astrophysical
parameters). To obtain the probability distribution func-
tion (PDF) in the simulation model parameter space,
hundreds of thousands of models may be needed. In
case, running such a large number of models are com-
putationally expensive, alternative approaches based on
emulators (e.g., Ghara et al. 2020) neural networks
(Shimabukuro & Semelin 2017) etc., might be taken for
parameter inference. For example Ghara et al. (2020)
build emulators based on Gaussian process regression,
which generate power spectrum for a set of source
model parameters namely, ionization efficiency (ζ ),
minimum mass of the UV emitting halos (Mmin), min-
imum mass of X-ray emitting halos (Mmin,X ) and
X-ray heating efficiency ( fX ).

Finally, one needs to perform a robust probabilis-
tic exploration of the source model parameters to
unlock astrophysical information from the 21-cm mea-
surements. To explore and constrain the reionization
parameters, the signal prediction algorithms are often
combined with a Bayesian inference framework. The
likelihood used in the Bayesian analysis should take
into account all possible uncertainties, both from obser-
vational and theoretical sides. It should also distinguish
differences between an upper limit and a detection of the
signal. Ghara et al. (2020) combined GRIZZLY emu-
lators with the Monte Carlo Markov chains (MCMC)
to constrain the source parameters at z ≈ 9.1 using
the LOFAR upper limits on the 3D power spectrum
of the 21-cm signal (Mertens et al. 2020). Figure 13
shows the constraints on the astrophysical parameters
used in GRIZZLY as obtained from such an analysis.
In addition to constraining the simulation astrophysi-
cal model parameters, one can also constraint the IGM
quantities, such as average ionization fraction, average
gas temperature of the partially ionized IGM that char-
acterize size of the emission regions in the IGM, etc.,
(see e.g., Ghara et al. 2020, 2021).

3.9 Image-based statistics

Contrary to the currently operating radio interferome-
ters, which mainly focus to detect the signal statistically,
the second phase of upcoming SKA-low will be able
to produce tomographic images of the CD–EoR 21-
cm signal (Mellema et al. 2015; Ghara et al. 2017).
Thus, use of the CD–EoR tomographic images has been
the focus of several theoretical studies, which aim to
develop methods for extracting information from such
maps. Here, we briefly mention some of these methods.

The expected 21-cm signal from the CD–EoR can be
imagined as distributions of complex structures of ion-
ized/neutral or hot/cold regions in space (as can be seen
in Figure 5). Such complex topology is often studied in
terms of the excursion set F(�x, uth), which represents
the part of a given field with values larger than a cer-
tain field threshold uth . Such excursion sets of the EoR
21-cm signal have been studied using four Minkowski
functionals (MFs) to characterize the geometry of the
3D maps of reionization for different thresholds (see
e.g., Gleser et al. 2006; Friedrich et al. 2011; Chen
et al. 2019). Among the four Minkowski functionals,
three Vi=0,1,2(uth) stands for the total volume, total
surface and mean curvature of F(�x, uth), respectively.
The fourth functional V3(uth) is the integrated Gaussian
curvature over the surface of F(�x, uth). Studies such as
Yoshiura et al. (2016) show that these MFs are sensitive
to the variation in reionization scenarios due to varia-
tion of the background source model. This shows the
potential of using MFs in addition to the PS to tighten
the constraints on the reionization parameters.

These MFs calculations can be used to characterize
the shapes of compact surfaces. Shape-finder algo-
rithms, such as SURFGEN2 (e.g., Bag et al. 2019) use
these MFs to define thickness = 3V0/V1, breadth =
V1/V2, length = V3/4π to tract the evolution of the
ionized/heated regions. While the thickness and breadth
of the largest clustered region grow slowly during the
entire reionization process, the length evolves rapidly
showing the percolation of ionization regions into a fil-
amentary structure (Bag et al. 2018). Recently, Pathak
et al. (2022) studied the evolution of difference reioniza-
tion scenarios using the largest cluster statistics (LCS),
which can be defined as the ratio of the volume of the
largest ionized region and the total volume of all the
ionized regions. This study shows that the percolation
transition in the ionized regions, as probed by studying
the evolution of the LCS, can robustly distinguish the
inside-out and outside-in reionization scenarios.

Another generalization of the MFs is a rank-2 con-
tour Minkowski tensor, which can provide alignment
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Figure 13. Constraints on the GRIZZLY model parameters from the MCMC analysis using the LOFAR upper limit for
z ≈ 9.1. For this analysis, we assume uniform Ts for the neutral gas in the IGM. The color bar represents the probability
that models are ruled out by the upper limit. The 68(95)% credible intervals of the ruled out models are shown by the solid
(dashed) curves. The marginalized probability distributions are shown in the diagonal panels. See Ghara et al. (2020) for
details.

of 2D structures in F(�x, uth) and their anisotropy. The
two eigenvalues of the contour Minkowski tensor λ1
and λ2 can be combined to construct morphological
descriptors, such as the shape anisotropy parameter as
β = λ1/λ2, an effective radius of the enclosed curve
r = (λ1+λ2)/2π . A region formed by a bounded curve
enclosing a set of values larger than uth in the excursion
set is known as a connected region. On the other hand, a
hole represents a bound curve with values smaller than
uth . The count of these connected regions and holes
are Betti numbers. Kapahtia et al. (2021) explored the
prospects of constraining EoR scenarios using these
morphological descriptors, Betti numbers, and the areas
of structures in the connected regions and holes. The
study shows that these morphological descriptors are
sensitive to reionization parameters (Figure 14) and can
be used to constrain the source parameters as well as
can put a strong bound on the ionization fraction at the
probed reionization stage.

The complex structures in the ionization fraction
maps and 21-cm maps of the EoR are often character-
ized in terms of distributions of spherical regions (often
named as bubbles). Several studies using mean-free path
(Mesinger & Furlanetto 2007), granulometry (Kaki-
ichi et al. 2017), Watershed methods (Lin et al. 2016),
image segmentation method (Giri et al. 2018) have
aimed to study the complex morphology of the signal in
terms of the size distribution of these bubbles and their

evolution with time. As the size distribution of the
bubbles vary significantly with change in reionization
scenario, this in principle can be used for reionization
parameter inference.

In addition to these, study of the tomographic images
of the 21-cm signal using fractal dimension analysis
can also provide distinguishable information between
outside-in and inside-out reionization scenarios (see
e.g., Bandyopadhyay et al. 2017). In addition, applica-
tion of convolutional neural network constructed using
2D or 3D maps as training set is useful to distinguish
between reionization scenarios and constrain astrophys-
ical/cosmological parameters directly using a measured
21-cm input image (see e.g., Gillet et al. 2019; Hassan
et al. 2019).

4. Detection and challenges

Detection of the 21-cm signal and extraction of the
information content of it, thereafter will bring us a much
clearer picture of the evolution of the cosmic matter
since the epoch of recombination. In this section, we
discuss different challenges identified in the detection
of faint 21-cm signal along with some of the develop-
ments in literature that aim to resolve these problems.
The majority of these problems come from the fact that
the expected 21-cm signal is much fainter than other
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Figure 14. Variation of hole (right panels) and connected region (left panels) statistics with virial temperature Tvir for
different fixed values of the ionization efficiency ζ and mean-free path Rmfp. The simulations are done using 21cmFAST.
The top to bottom panels represent the threshold integrated number of distinct curves Nx , characteristic scale rchx , area Ach

x
and shape anisotropy parameter βch

x , respectively. Suffix x = con stands for connected regions, while x = hole refers holes.
Credit: Kapahtia et al. (2021).

signals present in continuum in the same observing
frequencies, termed collectively as foreground. Further-
more, the SKA-low and mid telescopes that would have
expected sensitivity to measure the 21-cm signals would
be able to only estimate statistical measure of the sig-
nals in its first phase. Considering the fact that these
telescopes measure visibilities with incomplete baseline
coverage, different unbiased estimators of the statistical
properties of the signal are designed and then tuned to
address the problems of mitigating the unwanted sig-
nals in these frequencies. Recently, the importance of
accurate calibration and the effect of uncalibrated part
of the visibilities in detection of 21-cm signals are also
being studied. We shall discuss these topics in this sec-
tion. This section is organized such that the reader is
informed about any challenge in the signal and the steps
taken to find a resolution.

4.1 Foregrounds

We refer to the radiation from different astrophysi-
cal sources, other than the cosmological Hi signal,

collectively as foregrounds. Foregrounds include extra-
galactic point sources, diffuse synchrotron radiation
from our galaxy and low redshift galaxy clusters; free–
free emission from our galaxy (GFF) and external
galaxies (EGFF). Extra-galactic point sources and the
diffuse synchrotron radiation from our galaxy largely
dominate the foreground radiation at 150 MHz and their
strength is ∼4–5 orders of magnitude larger than the
∼20–30 mK cosmological 21-cm signal (Ali et al.2008;
Ghosh et al. 2012). The free–free emissions from our
galaxy and external galaxies make much smaller contri-
butions though each of these is individually larger than
the Hi signal.

All the foreground components mentioned earlier are
continuum sources. It is well accepted that the frequency
dependence of the various continuum foreground com-
ponents can be modeled by power laws (Santos et al.
2005), and we model the multi-frequency angular
power spectrum (Datta et al. 2007) for each foreground
component as:

C�(ν1, ν2) = A

(
1000

�

)β (
ν f

ν1

)α (
ν f

ν2

)α

, (17)
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where A is the amplitude and β and α (spectral index)
are the power law indices for the � and the ν depen-
dence, respectively. In general, we are interested in a
situation where ν2 = ν1 + �ν with �ν � ν1, and we
have

C�(�ν) ≡ C�(ν1, ν1 + �ν)

≈ A

(
1000

�

)β (
ν f

ν1

)2α (
1 − α�ν

ν1

)
, (18)

which varies slowly with �ν. For the foregrounds, we
expect C�(�ν) to fall by <10%, if �ν is varied from 0
to 3 MHz, in contrast to the ∼ 90% decline predicted for
the Hi signal (Bharadwaj & Ali 2005; Ali & Bharadwaj
2014). The frequency spectral index α is expected to
have a scatter �α in the range of 0.1–0.5 for different
foreground components in different directions causing
<2% additional deviation in the frequency band of our
interest. We only refer the mean spectral indices for the
purpose of the foreground presented here. In a nutshell,
the �ν dependence of C�(�ν) is markedly different for
the foregrounds as compared to the Hi signal and would
be very useful to separate the foregrounds from the Hi
signal (Ghosh et al. 2012).

Extragalactic point sources are expected to domi-
nate the 150 MHz sky at the angular scales relevant for
redshifted 21-cm observations. The contribution from
extragalactic point sources is mostly due to the emis-
sion from normal galaxies, radio galaxies, star forming
galaxies and active galactic nuclei (Santos et al. 2005;
Singal et al. 2010; Condon et al. 2012).

There are different radio surveys that have been con-
ducted at various frequencies ranging from 151 MHz to
8.5 GHz, and these have a wide range of angular resolu-
tions ranging from 1′′ to 5′ (e.g., Singal et al. 2010 and
references therein). There is a clear consistency among
the differential source count functions (dN/dS ∝ S−ε)
at 1.4 GHz for sources with flux S > 1 mJy. The source
counts are poorly constrained at S < 1 mJy. Based on
the various radio observations (Singal et al. 2010) we
have identified four different regimes for the 1.4 GHz
source counts: (i) �1 Jy, which are the brightest sources
in the catalogs. These are relatively nearby objects and
they have a steep, Euclidean source count with ε ∼ 2.5;
(2) 1 mJy–1 Jy, where the observed differential source
counts decline more gradually with ε ∼ 1.7, which is
caused by redshift effects; (3) 15 μJy–1 mJy, where the
source counts are again steeper with ε > 2, which is
closer to Euclidean, and there is considerable scatter
from field to field; and (4) ∼15 μJy, the source counts
must eventually flatten (ε < 2) at low S to avoid an
infinite integrated flux. The cut-off lower flux, where

the power law index ε falls below 2 is not well estab-
lished, and deeper radio observations are required. The
first turnover or flattening flux in the 1.4 GHz differen-
tial source count has been reported at ∼1 mJy (Condon
1989; Hopkins et al. 2003; Owen & Morrison 2008)
and it is equivalent to ∼5 mJy at 150 MHz assuming a
spectral index of 0.7 (Blake et al. 2004; Randall et al.
2012).

The analysis of large samples of nearby radio-
galaxies has shown that the point sources are clustered
(Cress et al. 1996; Wilman et al. 2003; Blake et al.
2004). The measured two point correlation function
can be well-fitted with a single power law w(θ) =
(θ/θ0)

−β , where θ0 is the correlation length. We can
calculate w�, which is ∝ �β−2 and the Legendre trans-
form of w(θ). Using this and source counts, we have
modeled the angular power spectrum due to clustering
and Poisson contribution of point sources (Ali et al.
2008; Ali & Bharadwaj 2014).

The galactic diffuse synchrotron radiation is believed
to be produced by cosmic ray electrons propagating in
the magnetic field of the galaxy (Rybicki & Lightman
1979). Angular structure in the diffuse Galactic emis-
sion has been shown to be well described by a power-law
spectrum in Fourier space over a large range of scales.
La Porta et al. (2008) have determined the angular
power spectra of the Galactic synchrotron emission at
angular scales >0.5◦ using total intensity all sky maps
at 408 MHz (Haslam et al. 1982) and 1.42 GHz (Reich
1982; Reich & Reich 1986). However, there are only a
few observations, which have directly measured C� at
the frequencies and angular scales, which are relevant
to the EoR studies (Bernardi et al. 2009; Parsons et al.
2010; Ghosh et al. 2012; Iacobelli et al. 2013; Choud-
huri et al. 2020). They found that the angular power
spectrum of synchrotron emission is well described by
a power law (Equation 17) where the value of β varies
in the range of 1.8–3.0 depending on the galactic lati-
tude. La Porta et al. (2008) have analyzed the frequency
dependence to find A ∝ ν−2α with α varying in the
range of 2.8–3.2. There is a modest variation in the spec-
tral index as a function of direction and frequency. The
mean spectral index of the synchrotron emission at high
Galactic latitude has been recently constrained to be
α ≈ 2.5 in the 150–408 MHz frequency range (Rogers
& Bowman 2008) using single dish observations. In
general, it is steeper at high Galactic latitudes than
toward the Galactic plane. The GFF and EGFF com-
ponents, which are relatively much weaker foregrounds
as compared to earlier two. But both are stronger than
the redshifted 21-cm signal. Their α and β are presented
at 130 MHz (Santos et al. 2005).
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4.2 Statistical detection of 21-cm signal

Most of the radio interferometers measure visibility
function sampled at certain baseline positions. Here,
we discuss development of various visibility-based esti-
mators of the power spectrum of the sky signal. These
estimators are unbiased within the scope of the sig-
nal considered. Different estimators discussed here also
address and solve various challenges that one face for
21-cm detection.

4.2.1 Bare estimator The Bare estimator measures
the angular power spectrum (C�), which quantifies the
intensity fluctuations in the two-dimensional sky plane.
It uses individual visibilities to measure C�. As the visi-
bility Vi at a baseline �Ui corresponds to a Fourier mode
in the sky, the two visibility correlation straight away
gives the angular power spectrum, which can be written
as:

〈ViV∗
j 〉 = V0e

−|� �Ui j |2/σ 2
0 C�i + δi j2σ 2

n , (19)

where V0 = (πθ2
0 /2)(∂B/∂T )2, � �Ui j = �Ui − �Uj and

the Kronecker delta δi j is nonzero, only if we correlate
a visibility with itself. For the Gaussian approximation
of the primary beam θ0 = 0.6θFWHM, B is the Planck
function and (∂B/∂T ) = 2kB/λ2 in the Raleigh–Jeans
limit, which is valid at the frequencies considered here.
The σn is the rms of the real and imaginary parts of
noise in the measured visibilities. We thus see that the
visibilities at two different baselines �Ui and �Uj are cor-
related, only if the separation is small (|�U | ≤ σ0),
and correlation falls as the separation is beyond a disk
of radius σ0.

To avoid the positive noise bias in the second term of
Equation (19), we define the Bare7 estimator as:

ÊB(a) =
∑

i, j wi jViV∗
j∑

i, j wi j V0e−|� �Ui j |2/σ 2
0

= Tr(wV2)

Tr(wI2)
. (20)

The weight wi j = (1 − δi j ) is chosen, such that it is
zero when we correlate a visibility with itself, thereby
avoiding the positive noise bias. We have the matrices:
w ≡ wi j , V2 ≡ Vi V∗

j , I2 = V0e−|� �Ui j |2/σ 2
0 and Tr(A)

denotes the trace of a matrix A.
The variance of the Bare estimator can be simplified

to

σ 2
EB

(a) =
∑

i, j,k,l wi jwklV2il V2k j

[Tr(wI2)]2 = Tr(wV2wV2)

[Tr(wI2)]2 ,

(21)

7https://github.com/samirchoudhuri/BareEstimator.

under the assumptions thatw is symmetric. The detailed
formalism of the Bare estimator and the validation with
realistic simulations are given in Section 4 of Choudhuri
et al. (2014).

4.2.2 Tapered gridded estimator Point sources are
the most dominant foreground components at angular
scale ≤4◦ (Ali et al. 2008). Due to the highly frequency-
dependent primary beam, it is very difficult to remove
the point sources from the outer edge of the primary
beam. These outer point sources create a oscillation
along the frequency axis (Ghosh et al. 2011) and make
it difficult to remove under the assumption of smooth-
ness along with frequency. This issue is not addressed
in the bare estimator. The tapered gridded estimator
(TGE8) incorporates three novel features: First, the
estimator uses the gridded visibilities, which makes
it computationally much faster for large data volume.
Second, the noise bias is removed by subtracting the
auto-correlation of the visibilities from each grid point.
Third, the estimator also taper the FoV to restrict the
contribution from the sources in the outer regions and
the sidelobes. The mathematical formalism and the vari-
ance of the TGE are given in Equations (17) and (25)
of Choudhuri et al. (2016).

In Figure 15, we show the validation of the TGE
using realistic simulation of GMRT observations at 150
MHz . The red solid line shows the model power-law
power spectrum CM

� = A150 (1000/�)β used for the
simulation. Here, we have used A150 = 513 mK2 and
β = 2.34. The different color points are for different
types of the tapering values f = 10, 2 and 0.6. The
value of f = 10 essentially corresponds to a situation
with no tapering, and the sky response gets confined
to a progressively smaller region as the value of f is
reduced to f = 2.0 and 0.6, respectively. The points
here indicates the estimated values of the C� with 1σ

error bar after applying the TGE. We see that the TGE
is able to recover the input model CM

� quite accurately
for all values of tapering function f .

4.2.3 Image-based tapered gridded estimator The
effect of sources outside the field-of-view of an inter-
ferometric observations for the estimation of the power
spectrum of redshifted 21-cm emission is addressed in
TGE by introducing an analytical tapering function in
the visibility plane (Choudhuri et al. 2016). In such
observations of 21-cm signal, significant contribution
from localized foreground emission from within the
field-of-view also can overwhelms the Hi signal. These

8https://github.com/samirchoudhuri/TGE.
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Figure 15. Estimated values of C� from the simulated visi-
bilities using the TGE for different tapering of values f = 10,
2 and 0.6, with 1 − σ error bars estimated from Nr = 128
realizations of the simulations. We also show the input model
with red solid line for comparioson. This figure is adapted
from Figure 2 of Choudhuri et al. (2016).

localized emissions are often compact and can be sub-
tracted from the visibilities with a reasonable model by
the method of UVSUB. However, it is rather difficult
to sufficiently accurately model localized, but extended
sources and a simple UVSUB may not work. Address-
ing this issue with the TGE is also difficult owing to the
complicated nature of window that one need to model
analytically to reduce the foreground effects. It is pos-
sible to introduce an image-based tapering algorithm,
where a wide variety of non-trivial and non-analytical
tapering functions can be used. This method of esti-
mating the power spectrum directly from visibilities
with arbitrary tapering window implementation in the
image plane is implemented in the image-based tapered
gridded estimator (ITGE). A detailed discussion of the
algorithm along with diagnostics tests are discussed in
Choudhuri et al. (2019), and we give a brief description
here.

As for the case of TGE, the basic expression that coins
the estimation of power spectrum at a grid is given in
Equation (17) of Choudhuri et al. (2016). To use an
image-based tapering window, the following steps are
followed. First, the visibilities are gridded in baseline
plane with suitable choice of grid size and weighing
schemes. A dirty image is made from the gridded visi-
bilities and multiplied with the chosen tapering window
W (θ) in the image plane. An inverse Fourier transform
of this provides the tapered and convolved visibilities
in a grid. Apparently, these gridded visibilities then can
be squared to estimate the power spectrum. However, as
discussed for the TGE, this would introduce a large bias
from the noise contribution in the self visibility corre-
lations. To avoid the noise bias in the estimated power

Figure 16. Estimated and model C� using ITGE (Sec-
tion 4.2.3) for two different type of windows applied in the
image plane: (a) 2D annulus window and (b) mask window
with three holes present within the main lobe of the primary
beam. We also show the model CM

� with red solid lines. The
lower panel shows the fractional deviation between the esti-
mated and model angular power spectrum. The shaded region
in the lower panels show the expected statistical fluctuations
σ/CM

� . For more details, we refer the reader to Figure 4 of
Choudhuri et al. (2019).

spectrum, the TGE algorithm needs to estimate the self
correlations of tapered visibilities in each grid. In ITGE
algorithm, correlations of the visibilities in each grid are
estimated. In parallel to this, the Fourier transform of
the tapering window w̃g is evaluated at the grids of the
baseline plane. Two dirty images, one corresponds to
the visibility self correlation and other of |w̃( �U )|2 are
estimated and multiplied in the image plane. Inverse
Fourier transform of the later gives the self correlations
of tapered visibilities in each baseline grid. Rest of the
algorithm as well as the error estimation follows directly
from the original TGE.

Choudhuri et al. (2019) have also validated the
estimator for two window functions, namely, annulus
window and mask window. The annulus window allows
us to estimate C� only from the outer annular region,
where as the mask window has three holes within the
main lobe of the primary beam. The upper panel of
Figure 16 shows the estimated C� along with the input
modelC� for these two different windows applied in the
image plane. The results have been arbitrarily scaled for
clarity of presentation. The lower panel of Figure 16
shows the fractional deviation between the estimated
and model angular power spectrum. The shaded region
in the lower panels show the expected statistical fluc-
tuations σ/CM

� . We see that the fractional deviation is
<15% for whole � range, also within 1σ of the statistical
fluctuations.
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4.2.4 3D tapered gridded estimator The power spec-
trum estimator addressed so far estimates the power
spectrum on the sky plane at the same frequency chan-
nel. To measure the fluctuations along the line of sight
or, equivalently, along frequency directions, we have
further extended the two-dimensional TGE, to three-
dimensional TGE which measures the fluctuations from
a 3D cube. Here, we first multiply the data along the
frequency with a Blackman–Nuttall (Nuttall 1981) win-
dow function to make data periodic, and then use fastest
Fourier transform in the west (FFTW) (Frigo & John-
son 2005) algorithm along the frequency axis to convert
the visibilities in delay space (τ ), the Fourier conjugate
of frequency (ν). After conversion in delay space, we
apply the same 2D TGE (earlier section) in each slice of
τ , and further, we spherically bin the data to measure the
power spectrum as a function of k. The mathematical
expression for the 3D TGE (Equation 44 of Choudhuri
et al. 2016) is

P̂g(τm) =
(
MgBbw

r2r ′

)−1 (
|vcg(τm)|2

−
∑
i

|w̃( �Ug − �Ui )|2|vi (τm)|2
)

, (22)

where vi (τm) and vcg(τm) are the individual and
convolved-gridded visibilities in delay (τ ) space,
respectively, w̃( �U ) is the Fourier transform of the taper-
ing window function used to suppress the primary beam
side lobes in the sky plane, Mg is the normalization con-
stant and it depends on the baseline distribution and the
form of the tapering function. We used simulated visi-
bilities corresponding to an unit angular power spectrum
(UAPS) C� = 1 to estimate Mg. The Bbw is the band-
width of the observation, r is the co-moving distance
corresponding to the redshifted 21-cm radiation at the
observing frequency ν, r ′ = |dr/dν|.

Figure 17 shows the dimensionless spherically-
averaged power spectrum for the model P(k) = k−3.
The results are shown for the three different values of
tapering windows parametrized by f = 10, 2 and 0.6 to
demonstrate the effect of varying the tapering. For all the
values of f , we found that the estimated power spectrum
using the 3D TGE is within the 1 − σ error bars of the
model prediction for the entire k range considered here.

4.2.5 MAPS and power spectrum Nearly all the esti-
mators for P(k⊥, k‖) (Morales 2005; Parsons et al.
2012; Liu et al. 2014a, b; Trott et al. 2016; Mertens et al.
2020), including the 3D-TGE (see earlier sub-section),
consider a Fourier transform (FT) of the measured
visibilities Vi (ν) along the frequency ν to obtain the

Figure 17. Dimensionless power spectrum �2
b(k) for dif-

ferent values of tapering function f . The values obtained
using the 3D TGE are compared with model power spectrum
shown with red solid line. The 1 − σ error bars are estimated
using 16 different realizations of the simulated visibilities.
This figure is adapted from Figure 7 of Choudhuri et al. 2016.

visibilitiesVi (τ ) in the delay space τ , which is then used
to estimate the cylindrical power spectrum P(k⊥, k‖).
In a real observation, particularly at low frequencies,
quite often many of the frequency channels are flagged.
As the quantity Vi (τ ) is estimated by a direct Fourier
transform of the frequency axes of the visibilities, this
gives rise to a convolution with the FT of the frequency
sampling function, and thus introduces artifacts in the
measured P(k⊥, k‖). To mitigate this problem, Bharad-
waj et al. (2019) further developed the MAPS-based
TGE estimator that estimates the power spectrum of
the cosmological 21-cm signal by first estimating the
MAPS C�(�ν) and subsequently, by taking a FT of the
C�(�ν) along the �ν. Note that the MAPS-based TGE
estimator preserves all the salient features of the 2D and
3D TGE mentioned in the earlier subsection, while also
providing a way to eliminate the challenges presented
by flagging, usually prevalent in the observed radio data.

The details of the MAPS-based estimator can be
found in Bharadwaj et al. (2019) and Pal et al. (2021).
To summarize, we first estimate the gridded visibilities
Vcg(νa) at a grid point �Ug on a rectangular grid in the
UV plane, by convolving the visibilities Vi (νa) with
the window function w̃( �U ) at all the frequency chan-
nels νa , where 1 ≤ a ≤ Nc, Nc being the total number
of channels. The convolution of the visibilities in the
UV plane modulates the PB pattern by a multiplica-
tion in the image domain with the FT of the convolving
function w̃( �U ), which is suitably chosen to taper the
sky response away from phase center and especially,
outside the main lobe of the PB. We then have:

Vcg(νa) =
∑
i

w̃( �Ug − �Ui )Vi (νa)Fi (νa), (23)
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where the variable Fi (νa) incorporates the flagging, and
has a value ‘0’ for the flagged data and ‘1’ otherwise.
The TGE for C�(νa, νb) is then defined as:

Êg(νa, νb) = M−1
g (νa, νb)Re

[
Vcg(νa)V∗

cg(νb)

−
∑
i

Fi (νa)Fi (νb)|w̃( �Ug − �Ui )|2Vi (νa)V∗
i (νb)

]
,

(24)
where Re[..] denotes the real part of the terms within

[..] and Mg(νa, νb) are the normalization factors deter-
mined using simulations. Note that the second term in
the brackets denotes the self-correlation of the visi-
bilities, and are subtracted out to eliminate the noise
bias from the estimator considering that the noise in
the visibility measurements at different baselines and
timestamps are uncorrelated. The TGE described in
Equation (24) provides an unbiased estimate of the
C�g(νa, νb) at the angular multipole �g = 2πUg, i.e.,

〈Êg(νa, νb)〉 = C�g(νa, νb). (25)
The MAPS C�(νa, νb) does not assume any ergod-

icity of the sky signal along the LoS and can be used
to quantify the second order statistics of the cosmo-
logical 21-cm signal including the light-cone effect for
wide-bandwidth observations. Conversely, considering
a small observation bandwidth, the redshifted 21-cm
signal can be assumed to be statistically homogeneous
(ergodic) along the LoS (e.g., Mondal et al. 2018),
allowing us to express C�(νa, νb) (Equations 24 and
25) in terms of C�(�ν), where �ν = |νb − νa|. This
transformation implies that the statistical properties of
the signal depends only on the frequency separation and
not the individual frequencies. In the flat sky approxi-
mation, the power spectrum P(k⊥, k‖) of the brightness
temperature fluctuations of the redshifted 21-cm signal
is then given by Datta et al. (2007):

P(k⊥, k‖) = r2r ′
∫ ∞

−∞
d(�ν)e−ik‖r ′�νC�(�ν), (26)

where k‖ and k⊥ = �/r are the components of k,
respectively, parallel and perpendicular to the line of
sight, r is the co-moving distance and r ′ (= dr/dν),
both being evaluated at the central observation fre-
quency νc. Starting from Equation (26), Pal et al. (2021)
have shown that given the estimates of C�(n�νc), �νc
being the smallest channel separation with 0 ≤ n ≤
Nc −1, the maximum likelihood estimate (MLE) of the
cylindrical power spectrum P̄(k⊥, k‖m) is given by,

P̄(k⊥, k‖m) =
∑
n

{[A†N−1A]−1A†N−1}mnC�(n�νc),

(27)

Figure 18. Upper panel shows the estimated spherically-
binned power spectrum P(k) along with 1 − σ error-bars
obtained from the simulations with no noise and flagging and
also with noise and 80% flagging. The input model Pm(k) is
shown by the solid magenta line for comparison. The bottom
panel shows the fractional error δ = [P(k)− Pm(k)]/Pm(k)
(shown by the data points) and the relative statistical fluctua-
tion σ/Pm(k) (shown by the shaded regions). See Bharadwaj
et al. (2019) for details.

where A refers to the Nc × Nc Hermitian matrix
corresponding to the FT coefficients, N refers to the
noise covariance matrix and ‘†’ denotes the Hermitian
conjugate.

The MAPS-based TGE estimator has been validated
using realistic simulations of GMRT observations at
150 MHz. Using a power-law model power spectrum
PM(k), Bharadwaj et al. (2019) have shown that the
TGE can recover the input MAPS as well as the PM(k)
with an accuracy of 5–20% over a large k range, even
in the presence of the system noise and when 80% of
the data, chosen randomly, are flagged (Figure 18). The
signal in the visibility measurements Vi (νa) at different
baselines �Ui are not independent, and gets correlated at
baselines within a scale of D/λ due to the telescope’s
PB pattern, D being the antenna diameter. Similarly,
the visibility measurements Vi (νa) at different νa are
not independent and the signal gets correlated across
different channels, the width of the correlation depend-
ing on the value of �Ui (see Bharadwaj & Pandey 2003;
Bharadwaj & Ali 2005 for more details). The signal
contained in the flagged data, which is lost due to the
flagging thus also gets contained in the valid data, which
is available to us for the power spectrum estimation, and
consequently the MAPS-based TGE is able to recover
the power spectrum equally well even if 80% of the data
is flagged.
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4.3 Observations with GMRT

The Giant Metrewave Radio Telescope (GMRT) is one
of the largest and most sensitive fully operational low-
frequency radio telescopes in the world today (Swarup
et al. 1991) with 30 fully steerable 45-m diameter dishes
spread with maximum antenna separation of 25 km.
Recently GMRT has been upgraded to uGMRT with
some extra features, such as: (i) huge frequency cover-
age, from 120 to 1500 MHz; (ii) maximum bandwidth
available is 400 MHz instead of 32 MHz bandwidth of
original GMRT design; (iii) digital backend correlator
catering to 400 MHz bandwidth; (iv) improved receiver
systems with higher G/Tsys and better dynamic range
(Gupta et al. 2017). The uGMRT is considered as one
of the pathfinder of the SKA telescopes.

The expected brightness temperature of redshifted
Hi signal from the EoR and post-reionization epoch
is many orders of magnitude fainter than the radio
emissions from different galactic and extragalactic
foregrounds (Zaldarriaga et al. 2004; Bharadwaj &
Ali 2005; Santos et al. 2005). The challenges are
nearly identical for both EoR and post-reionization
experiments. So the knowledge of foregrounds at post-
reionization epoch can also help us to understand the
intricacies involved in detection of the Hi signal coming
from EoR. Accuracy of extraction of the cosmological
Hi signal strongly depends on the ability to character-
ize and remove the foregrounds from observational data
sets at the frequency of redshifted Hi 21-cm line. There
have been a considerable amount of efforts put for-
ward over the last decade in characterizing the statistical
nature of foregrounds, calibration issues, instrumen-
tal systematics and putting upper limits on Hi signal
both from EoR and post-EoR epochs using sensitive
low-frequency observations with GMRT. Here, we will
briefly mention different findings using low-frequency
radio observations so far with GMRT.

Ali et al. (2008) observed a field centered on
Upsilon Andromedae, an extra-solar planetary system,
at α2000 = 1h36m48s, δ2000 = 41◦24′23′′ for a total of
14 h using GMRT software backend (GSB) system. The
observation was conducted at 153 MHz, corresponding
to the redshift z ∼ 8.28, with 8 MHz bandwidth sub-
divided into 128 frequency channels, giving a spectral
resolution of 62.5 KHz. They have studied, for the first
time, the statistical nature of foregrounds on sub-degree
angular scales using this observation at a redshift corre-
sponding to the epoch of reionization. They have used
the correlations among measured visibilities to directly
determine the multi-frequency angular power spectrum
C� (�ν) (MAPS, Datta et al. 2007). The visibility cor-

relation as a function of baseline distance or the angular
scale l is shown in Figure 19. They have found that the
measured C� (�ν) before point source subtraction has
a value around 104 mK2. This is seven order of mag-
nitude stronger than the expected redshifted Hi signal.
After subtracting the point-source model from the data,
they have estimated the angular power spectrum of the
residual data, which shows a power-law-like feature cor-
responding to the diffuse galactic synchroton emisson
(DGSE). They have found that the DGSE is dominated
at short baselines (large angular scales), U < 150 and
the clustering of point sources dominate in the range
150 < U < 2 × 103 and the residual point source
Poisson fluctuations dominate at U > 2 × 103. For a
given angular multipole (�), the foreground signal is
expected to be smooth across frequency. However, Ali
et al. (2008) reported a oscillatory feature across fre-
quency, which is most likely due to calibration error.

Paciga et al. (2011) put the first upper limit on
the 21-cm power spectrum at redshift z ∼ 8.6, using
∼ 40 h of observation with the legacy GMRT. The cho-
sen field was centered around a pulsar B0823 + 26,
having a period of 0.53 s and an average flux of 350 mJy
at 150 MHz, whose on-pulse flux is about 6 Jy, brighter
than all other sources in the field, making it a good
calibrator. After calibration and RFI removal, they fit
a piece-wise linear function to each baseline at each
time stamp and subtract it to remove the contamination
by bright spectrally smooth foregrounds. After sub-
tracting the foregrounds, they cross-correlate multiple
night’s data set and estimate the power spectrum. The
2σ upper limit on Hi 21-cm power spectrum at redshift
z ∼ 8.6 is (70 mK)2 at k = 0.65 h Mpc−1 (Paciga et al.
2011).

A revised upper limit using the same data was
reported by Paciga et al. (2013). In the previous work,
they did not account the signal loss associated with their
foreground subtraction algorithm. In this work, they
used singular value decomposition (SVD). After remov-
ing the first 4 SVD modes, which are mostly dominant
by foregrounds, they quantified the signal loss by quan-
tifying the transfer function between observed power
after SVD modes subtraction and the fiducial 21-cm
signal model. They put a revised 2σ upper limit about
(248 mK)2 at k = 0.5 h Mpc−1 (Paciga et al. 2013).

Ghosh et al. (2012) have analyzed four differ-
ent fields: FIELD I (α2000 = 5h30m00s, δ2000 =
60◦00′00′′), FIELD II (α2000 = 6h00m00s, δ2000 =
62◦12′58′′), FIELD III (α2000 = 12h36m49s, δ2000 =
62◦12′58′′), FIELD IV (α2000 = 1h36m48s, δ2000 =
41◦24′23′′) using GMRT observations at 150 MHz
(z ∼ 8.4). They found that after subtracting the point
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Figure 19. Visibility correlation as a function of baseline distance for total data set (I ; left panel) and the residual data
set (R; right panel). For data I , the thin solid line shows the total model prediction for Sc = 900 mJy. Also shown are the
contributions from point source Poisson distribution (dash–doted), point source clustering (dot) and galactic synchrotron
(dash–dot–dot–dot). For data R, the thin solid line shows the total model predictions for Sc = 100 mJy and the long dashed
line for 10 mJy. The dash–dot–dot–dot curve shows the galactic synchrotron contribution.

sources from FIELD I data, the residual data is dom-
inated by galactic synchrotron radiation at � range
253 � � � 800, which they modeled as C� ∝ �−β .
The estimated fluctuations in the galactic synchrotron
emission is

√
�(� + 1)C�/(2π) ∼ 10 K at � = 800, cor-

responding to θ > 10′. The residual point sources and
artifacts dominate C� at smaller angular scales, where
C� ∼ 103 mK2 for � > 800. For other three fields, they
found that the data is dominated by residual artifacts and
they did not quantify the statistical properties of fore-
grounds for these fields. The point source subtracted
residual map is shown in the top panel of Figure 20.
Ghosh et al. (2012) also estimated the Euclidean nor-
malized differential source counts as a function of flux
density bins and found that the radio source popula-
tion in the field is dominated by radio-loud AGNs and
there is no signature of flattening in the source count
at low flux density regime. They also quantified the
spectral variation of angular power spectrum of fore-
grounds at a particular �, C� (�ν), using MAPS (Datta
et al. 2007). The measuredC�(�ν) as a function of l for
FIELD I is shown in the bottom panel of Figure 20. They
found that C� (�ν) shows a smooth frequency depen-
dence over 2.5 MHz �ν range with 20–40% variation.
However, in addition to this, they also found a oscil-
latory feature, similar to Ali et al. (2008), in the �ν

dependence of the measured C� (�ν). In contrast to Ali
et al. (2008), where point source model were subtracted
above a flux cut off, Ghosh et al. (2012) used a poly-
nomial fit across frequency to model and subtract the
foregrounds. However, if this oscillatory feature across
frequency remained in the data due to calibration error
or unknown systematics, then it will significantly affect
any attempt to detect cosmological Hi signal.

Choudhuri et al. (2017) have analyzed two different
pointings of TIFR all sky survey (TGSS; Intema et al.
2017 ) at 150 MHz near the galactic plane (9◦, +10◦)
and (15◦, −11◦) to characterize the statistical properties
of DGSE. They applied the novel 2-dimensional TGE to
the low-frequency observation (150 MHz) with GMRT
to quantify the angular power spectrum of the diffuse
foreground from the measured visibility data set. They
found that the measured angular power spectrum shows
a power law behavior in the � range 240 � � � 580
and 240 � � � 440 and the best fitted values of (A, β)
are (356, 2.8) and (54, 2.2) for two different fields,
respectively. Recently, Choudhuri et al. (2020) analyzed
the whole TGSS all sky data to find out the fluctua-
tions in brightness temperature of galactic synchrotron
radiation and to quantify the variation of amplitude of
fluctuation at different galactic latitudes and longitudes.
The rms fluctuation of the brightness temperature δTb
for the whole sky at angular scale l = 384, before
and after the point source subtraction is shown in the
Figure 21. This will essentially help us to understand
the relative contribution of synchrotron radiation at dif-
ferent parts of the sky. They found that C� decreases
significantly as we move away from the galactic plane
and C� is nearly symmetric in the northern and south-
ern hemispheres except in the latitude range of 15–30◦,
which is the transition region from the disc dominated
to the diffuse halo-dominated region.

Pal et al. (2021) have applied the MAPS-based TGE
to the FIELD I data at 150 MHz (z ∼ 8.2) of Ghosh
et al. (2012). They first estimated the MAPS C� (�ν)

and from that they estimated the 21-cm power spectrum
in P(k⊥, k‖) domain. They obtained the 2σ upper limit
on the dimensionless 21-cm power spectrum at k =
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1.59 Mpc−1, �2(k) = (72.66)2 K2. The spherically
averaged 3D power spectrum is shown in Figure 22.
The estimated power spectrum is consistent with the
expected noise, which shows that the analysis pipeline
correctly estimates and subtracts the positive noise bias
and giving a robust un-biased estimate of cosmological
Hi 21 cm power spectrum. They also showed that using

Figure 20. Top panel: The image of FIELD I (α2000 =
5h30m00s, δ2000 = 60◦00′00′′) after subtracting the point
sources and using a uv-taper at | �U | = 200. The synthesized
beam width is 620×540 arcsec2. The diffuse structure is vis-
ible on >10 arcmin scale. Bottom panel: The measured C�

(�ν) of FIELD I.

higher tapering of FoV, foreground contribution can be
suppressed at large angular separation from the phase
center.

In addition to these observations corresponding to
EoR redshift, quite a significant amount of work has
been done using GMRT at frequencies correspond-
ing to the post-EoR epoch. Ghosh et al. (2011) used
GMRT observation of the Hubble deep field north at
618 MHz to measure the fluctuations in the faint Hi
21-cm background. They, for the first time, put upper
limit on [x̄HibHi] ≤ 2.9 ([�HibHi] ≤ 0.11) at z ∼ 1.32,
where x̄Hi is the mean neutral fraction. Chakraborty
et al. (2019a, b) observed the ELAIS-N1 field using
upgraded wideband correlator of GMRT (uGMRT) at
300–500 MHz. They have characterized the spatial and
spectral variation of DGSE and point-sources using
this sensitive observation. Chakraborty et al. (2019b)
showed that how direction-dependent and -independent
calibration affects the estimation of the angular power
spectrum of DGSE in presence of bright point sources
far away from the phase center. After applying differ-
ent calibration techniques to the data, they showed that
using large tapering of the field-of-view (FoV), TGE can
still reconstruct the DGSE power spectrum even in the
presence of direction-dependent calibration errors. This
study proves the robustness and effectiveness of TGE
in presence of systematic calibration. For the first time,
Chakraborty et al. (2019a) have estimated the spectral
characteristics of the angular power spectrum of DGSE
over the wide frequency bandwidth of 300–500 MHz.
The estimated spectral index of DGSE is consistent
with previous all-sky monopole measurements, how-
ever, they also showed that there may be a possible break
in the DGSE spectrum at ∼400 MHz. But more sen-
sitive observations using much wider bandwidth data
is required to infer conclusively. Finally, Chakraborty
et al. (2021) divided the data in 8 MHz chunk and chose
four such relatively less RFI-dominated sub-bands to
estimate the Hi power spectrum. They found that the

Figure 21. The rms fluctuations of the brightness temperature (δTb) all over the sky at angular scale l = 384 (0.47 deg).
The left and right panels show the values of δTb before and after subtracting the point sources from the data, respectively.
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Figure 22. Mean square brightness temperature fluctua-
tions �2(k) shown as a function of k along with 2σ error bars.

spherically averaged power spectrum is close to the
theoretical thermal noise power, which shows that the
estimated Hi power is thermal noise limited. The lowest
limits, at k ∼ 1.0 Mpc−1, on spherically averaged Hi
21-cm power spectrum are (58.87 mK)2, (61.49 mK)2,
(60.89 mK)2 and (105.85 mK)2 at z = 1.96, 2.19, 2.62
and 3.58, respectively. Chakraborty et al. (2021) also
constrained the product of neutral Himass density (�Hi)
and Hi bias (bHi) to the underlying dark matter density
field using the best limit on the Hi power spectrum. The
upper limits on [�HibHi] are 0.09, 0.11, 0.12, 0.24 at
z = 1.96, 2.19, 2.62, 3.58, respectively.

4.4 Calibration error and residual gain effects

In an interferometric observation, the observed voltages
hides the sky signal over the instrumental and line of
sight effects. Various techniques with known sky mod-
els are used (Pearson & Readhead 1984; Wieringa 1992;
van der Tol et al. 2007; Wijnholds & van der Veen 2009)
to estimate the modification in the signal and hence, it
is calibrated. However, estimation of the instrumental
and ionospheric effects, and the gains, is subjected to
the accuracy of the sky model and the sensitivity of the
telescope. The residual gains are usually small and can
be ignored. For the detection of the cosmological 21-
cm signal, however, the residual gains can overwhelm
the signal due to the presence of much larger fore-
ground. Various calibration effects for LOFAR-EoR,
HERA and other experiments are discussed in Liu et al.
(2010), Vedantham & Koopmans (2015), Ali et al.
(2016), Mevius et al. (2016), Patil et al. (2016), Vedan-
tham & Koopmans (2016), Gehlot et al. (2018), Dillon
et al. (2020), Choudhuri et al. (2021). The effect of

Figure 23. Variation of BP (thin black) and σP (thin grey)
against different correlation times with σg = 0.1 and 1.0%.
This considers a bandwidth of 16 MHz, and an observation
time of 400 days. The plots are made at a baseline of 300 λ.
The thick black line corresponds to the expected EoR power
spectrum (Bharadwaj & Ali 2005).

inaccurate models for sky based calibrations and its lim-
itations are discussed in Barry et al. (2016), Ewall-Wice
et al. (2017) and Byrne et al. (2019). Other instrumen-
tal effects like antenna position errors and variations in
telescope beam with time and frequency on calibration
solutions are discussed in Joseph et al. (2018), Orosz
et al. (2019) and Choudhuri et al. (2021). Extragalac-
tic point source contamination due to position errors
in the sky model for bright sources, as well as the
frequency-independent residual gain errors in interfer-
ometric calibration are studied in Datta et al. (2009a,
2010).

A detailed investigation on the effect of time-
correlated residual gain errors in presence of strong
foreground is presented in Kumar et al. (2020a; 2020b,
2022). Using simulated observations for GMRT base-
line configuration, Kumar et al. (2020a) have shown
that even for a perfect foreground removal, the pres-
ence of time-correlated residual gain errors introduces
a bias and enhances the uncertainty in the 21-cm power
spectrum estimates. Further, with an analytical investi-
gation of the problem, in presence of strong foregrounds
and thermal noise, Kumar et al. (2022) explored the
importance to address this problem, while designing
the visibility-based power spectrum estimators.

Figure 23 show the bias BP and uncertainty σP in
the power spectrum at a fixed baseline of 0.3 kλ for
400 days observation at 150 MHz for various levels of
residual gains. The solid black line gives the expected
21-cm signal (Bharadwaj & Ali 2005). We see that for
small values of gain errors σg, σP is rather small and
does not vary much with Tcorr. For σg = 1%, we see
that both BP and σP increase with correlation time and
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Figure 24. Summery plot of the upper limits (in points) at k ∼ 0.1 Mpc−1, available to date, measured with the current
instruments. The solid black line is a theoretical power spectrum estimated from a typical GRIZZLY simulation.

BP dominates σP . This figure demonstrate that in case,
even if the error in the power spectrum is significantly
low, the bias BP can still be higher. Ignorance of the
bias originated from the residual gains, then can confuse
the scientific inference with a biased detection of the
signal.

In a nutshell, given the advancements in design of
estimators for the signal statistics, it is important to real-
ize that the calibration issues are expected to provide
further challenge in the detection of the 21-cm signal.
Various hybrid calibration approaches, to minimize the
effect of calibration errors, are also being developed
and applied in different EoR experiments. Byrne et al.
(2021) have presented a hybrid calibration framework
that unifies both sky-based and redundant calibrations
and they show an improvement in calibration per-
formance through simulations. A hybrid correlation
calibration (CorrCal) scheme, to address the issue of
sky-model errors and imperfect array redundancy, is
also presented and applied on PAPER experiments data
(Gogo et al. 2022). A similar calibration approach is
also discussed and applied on the MWA phase II data
in Zhang et al. (2020). A precision bandpass calibration
method namely CALAMITY is presented in Ewall-
Wice et al. (2021). On the other hand, it seems also
viable to design the statistical estimators of the 21-cm
signal, such that the calibration bias can be directly
avoided. We are working on these aspects.

5. Current upper limits and future prospects with
SKA-low

There are several sensitive upper limits (Figure 24)
placed on CD–EoR 21-cm power spectrum by current

radio interferometers, such as MWA, LOFAR, HERA,
using advanced data analysis algorithms and dedicated
observation campaigns. The knowledge acquired with
these observations will be used in future SKA-low to
detect the 21-cm power spectrum. Here, we briefly
discuss the current status of these telescopes.

LOFAR: Low Frequency Array (LOFAR)9 is a phased
aperture array with tiles or stations spread over nine
countries in Europe, centered in the Netherlands and
operates in the range of 30–240 MHz (van Haarlem
et al. 2013). Patil et al. (2017) placed the first upper
limit on EoR using 13 h of data on north celestial pole
(NCP) with LOFAR high band antenna (HBA) at red-
shift range z ∼ 7.9–10.6. The 2σ upper limit is (79.6
mK)2 at k = 0.053 h cMpc−1. Gehlot et al. (2019)
put the first upper limit on the power spectrum of Hi
21-cm brightness fluctuation from CD using 14 h of
LOFAR low band antenna (LBA). They used data on
two different fields centered around NCP and 3C220.3
radio galaxy. The 2σ upper limits on Hi power spec-
trum at redshift range z ∼ 19.8–25.2 are (14561 mK)2

and (14886 mK)2 at k = 0.038 h cMpc−1 for the
3C220 and NCP field, respectively. A more stringent
and deep upper limit at z ∼ 9.1 was placed by Mertens
et al. (2020) using 141 h of data obtained with LOFAR
HBA centered on NCP field. The best 2σ upper limit at
k = 0.075 h cMpc−1 is (73 mK)2. However, all these
results have also shown excess power above theoreti-
cal thermal noise due to residual foreground emission,
polarization leakage, chromatic calibration errors, iono-
sphere, or low-level radio-frequency interference, etc.,
(Patil et al. 2017; Gehlot et al. 2019; Mertens et al.
2020; Gan et al. 2022; Mevius et al. 2022).

9https://www.astron.nl/telescopes/lofar/.
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MWA: Murchison Widefield Array (MWA)10 is also an
aperture array, operational between 80 and 300 MHz,
consisted of 128 square ‘tiles’ of 4 m ×4 m, distributed
over ∼3 km, which later got upgraded to 256 tiles over
∼5 km (Tingay et al.2013; Wayth et al.2018). It is a pre-
cursor to the SKA-low located in the Murchison radio
observatory in western Australia. Dillon et al. (2015)
set a upper limit of 3.7 × 104 mK2 at k = 0.18 h
Mpc−1 around z ∼ 6.8 using 3 h of data with 128-tile
MWA. Ewall-Wice et al. (2016b) put upper limits on
21-cm brightness temperature fluctuation between the
redshift range z ∼ 11.6–17.9 using 3 h of observation
with MWA-128 tiles. They achieved an upper limit of
104 mK on co-moving scales k < 0.5 h Mpc−1. How-
ever, they found that their result is limited by calibration
systematic (Ewall-Wice et al. 2016b). Beardsley et al.
(2016) have improved their analysis pipeline and put
more stringent upper limit using 32 h of data at z ∼ 7.1.
They found that their estimated power spectrum is sys-
tematic limited and put a limit of 2.7 × 104 mK2 at
k = 0.27 h Mpc−1. Barry et al. (2019) used the same
data set as Beardsley et al. (2016) and presented much
improved results, lowering the systematic effects by a
factor of 2.8 in power. Using newly developed analysis
technique and RFI removal algorithm, they put a upper
limit of 3.9 × 103 mK2 at k = 0.2 h Mpc−1 around
z ∼ 7 using 21 h of MWA-128 data set. This improved
the upper limit by almost an order of magnitude from
their previous analysis. Li et al. (2019) improved their
calibration algorithm and RFI removal strategy and put
the best upper limit of 2.39 × 103 mK2 at k = 0.59 h
Mpc−1 around z ∼ 6.5 using 40 h of data set. Trott et al.
(2020) presented multi-redshift upper limits using four
seasons of data obtained with MWA. Their best mea-
surement yields 1.8 × 103 mK2 at k = 0.14 h Mpc−1

around z ∼ 6.5 using 110 h of data set. Yoshiura et al.
(2021) put an upper limit at higher redshifts, z ∼ 13–
17, using 15 h of MWA data set. The best upper limit
they got about 6.6 × 106 mK2 at k = 0.14 h Mpc−1

around z ∼ 15.2.

HERA: Hydrogen Epoch of Reionization Array
(HERA)11 is an interferometric array of zenith point-
ing fixed dishes of diameter 14 m located in Karoo
desert, South Africa. The dishes are packed in a hexago-
nal configuration with nearly continuous core of 300 m
across. HERA will operate in the range of 50–250 MHz
and will be built in a series of phases with simulta-
neous construction and observations. The full HERA

10https://www.mwatelescope.org/.
11https://reionization.org/.

will consist of 350 dishes spread out to ∼850 m, once
fully operational. Recently, The HERA Collaboration
et al. (2021) reported results with 18 nights of data (∼36
h) obtained with phase-I of HERA, which commenced
with 50 antennas. They have put upper limits on the
21-cm power spectrum of (30.76 mK)2 at k = 0.192 h
Mpc−1 at z ∼ 7.9 and also (95.74 mK)2 at k = 0.256
h Mpc−1 at z ∼ 10.4 (The HERA Collaboration et al.
2021).

In terms of sensitivity and resolution, SKA-low is
going to surpass its precursor telescopes, which are
mentioned earlier. It is planned to have ∼130,000 log-
periodic dipole antennas, distributed over 512 aperture
array stations, each having 256 dipole antennas. Con-
struction of the dipoles have already been started in the
Boolardy site in western Australia. Roughly, half of the
stations will be located in the dense core within 1 km
diameter and the rest would be distributed on the three
spiral arms around the central core, allowing the maxi-
mum baseline to extend up to 65 km. Each station will
be 35 m in diameter and the dipoles will operate within
frequency bandwidth of 50–350 MHz, which cover the
range of 21-cm signal from CD–EoR. Numerical pre-
dictions (Figure 25) indicate that ∼100 h of SKA-low
observations will be sufficient to measure the EoR 21-
cm power spectrum at k � 0.3 Mpc−1 with >5σ .
The SNR will increase rapidly for a longer observa-
tion (∼1000 h) thereby allowing >5σ detection within
a broader k range. The results in Figure 25 considers the
system noise contribution, assuming that foregrounds
have been completely removed. The foreground avoid-
ance decreases the overall SNR (see e.g., Shaw et al.
2019). A qualitatively similar prospect can be seen for
the EoR 21-cm MAPS (Mondal et al. 2020a). We refer
the readers to these articles for details of the prospects
with SKA-low. Based on an older configuration of SKA-
low, Koopmans et al. (2015) have shown that ∼ 1000
h of observations can detect the 21-cm power spec-
trum during mid and later stages of CD (z � 15) with
SNR as high as ∼70 at k ∼ 0.1 Mpc−1. The SNR
drops drastically towards the beginning of CD as the
system noise increases as well as the signal decreases
(see bottom panel of Figure 4) towards the larger
redshifts.

Although bispectrum carries more information of the
CD–EoR 21-cm signal as compared to the power spec-
trum, the measurement of bispectrum comparatively
suffers more from the statistical errors (Mondal et al.
2021; Watkinson et al. 2021). This is evident from Fig-
ure 26, which shows the SNR predictions of EoR 21-cm
bispectrum for all unique triangles of three different
sizes (k1), considering 1024 h of SKA-low observations.
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Figure 25. SNR predictions for measuring 3D EoR 21-cm power spectrum �2(k, z) using 128 h (left panel) and 1024 h (right
panel) of SKA-low observations. This predictions include the system noise contributions, however, ignores the foreground
effects. Credit: Shaw et al. (2019).

Figure 26. SNR for detecting the reionization spherically-averaged bispectrum for all unique triangle configurations for
three different triangle sizes. The predictions incorporate the system noise contribution of tobs = 1024 h of SKA-low
observations. Credit: Mondal et al. (2021).

A significant (>5σ ) detection will is possible only for
the squeezed limit (n → 1, cos θ → 1) bispectrum,
where the signal value is itself larger. A less significant
(>3σ ) is expected to be possible for all unique triangles
of intermediate sizes (k1 ∼ 0.1 Mpc−1). However, the
SNR drops for both the smaller (k1 � 0.1 Mpc−1) and
(k1 � 1 Mpc−1), respectively, due to prevailing cosmic
variance and the system noise. Hence, either a high-
resolution or a longer observation or a combination of
both will be needed for a reliable measurement of the
CD–EoR 21-cm bispectrum from the observations.

6. Summary and future scope

The most successful theory of structure formation states
that the Universe underwent changes in its thermal and

ionized phases during cosmic evolution. The adiabatic
expansion of the Universe made it cold and neutral from
a hot dense state at z ≈ 1100 for the first time. After-
wards, the matter perturbations grew under self-gravity
and eventually collapsed to form the first structures in
the Universe during the CD. The X-rays from the first
stars, quasars and galaxies propagated out and heated
the IGM during CD. This is followed immediately by
the EoR during which the UV photons from the first
sources traveled into the IGM and ionized the cold
atomic hydrogen (Hi). CD and EoR together marks
the last transition in the thermal and ionization states
of the Universe. The CD–EoR is also enriched with
information of the first sources, which evolved into the
structures, which we see today. Studying these epochs
will help us to bridge the gap in our understanding of
structure formation history. In this review,we discuss the
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importance of these epochs and understand the physical
processes and the sources which drive the phase change.
We also discuss the observational probes of CD–EoR,
challenges and remedies.

Our current understanding of CD–EoR is only lim-
ited by few indirect observations which provide some
loose constraints over the beginning and the end of
these epochs. A dedicated direct observation is manda-
tory to answer various fundamental questions regarding
these epochs, such as the exact timing of these epochs,
the properties of the sources involved and their evolu-
tion, how did reionization and heating progressed and
changed the topology of the IGM, etc. The redshifted
21-cm radiation emitted due to hyperfine transition in
the ground state of Hi, acts as the most promising direct
probe to CD–EoR. We aim to observe the fluctuations
in 21-cm brightness temperature and its evolution as
CD–EoR signal. The first sources leave their imprint
on the CD–EoR 21-cm signal on cosmological scales
by heating and ionizing the IGM. Several current tele-
scopes, such as uGMRT, LOFAR, MWA and HERA as
well as the future SKA-low aim to map this cosmologi-
cal signal from CD–EoR. However, the CD–EoR 21-cm
signal is inherently 3–4 orders of magnitude weaker as
compared to the contamination from the galactic and
extra-galactic foregrounds. A state-of-art methodology
and precise knowledge of foreground are required to
separate the signal. Also, the system noise, ionospheric
turbulence and other instrumental systematics adds up
to the foreground contamination making direct map-
ping of the CD–EoR 21-cm signal very difficult for
the current instruments we have. Therefore, the primary
goal of the current CD–EoR experiments, including first
phase of SKA-low, is to measure the signal using sta-
tistical estimators, such as variance, power spectrum,
bispectrum, etc.

A beforehand knowledge of the CD–EoR 21-cm sig-
nal and its hindrances are crucial for interpreting the
observed data. There have been several theoretical stud-
ies, which use analytical or numerical prescriptions
to simulate and understand the nature of the signal
and its dependence on the different source properties.
The state-of-art radiative transfer simulations model
the signal accurately by incorporating the detailed
physics during CD–EoR, but they are computationally
expensive. The approximate but faster semi-numerical
simulations provide a helpful alternative for exploring
vast range of CD–EoR models. These different mod-
els are based on our current understanding of CD–EoR
guided by indirect observations. Several previous works
have used simulations to make sensitivity predictions to
measure the CD–EoR statistics in the context of present

and future telescopes. These prediction studies are help-
ful in strategizing future observation.

Although the properties of cosmological 21-cm sig-
nal are believed to be well understood through the
state-of the art large-scale simulations, however, the
astrophysical foregrounds are poorly constrained. The
major challenge for ongoing experiments and upcom-
ing SKA-low is separating the cosmological signal from
foregrounds, which are 103–105 times larger. Almost all
foreground separation techniques use the fact that fore-
grounds are smooth as a function of frequency, whereas
cosmological 21-cm signal decorrelates rapidly as each
frequency corresponds to a different radial slice of the
Universe. However, real-world problems, such as gain
calibration errors, ionospheric fluctuations, variation of
beam, instrumental systematics, etc., make it difficult
to separate smooth foreground components from the
cosmological signal of interest. Hence, it is imperative
to characterize foregrounds and understand systemat-
ics through deep low-frequency observations with SKA
pathfinder telescopes, such as GMRT.

In addition, it is essential to develop a robust estima-
tor, which will give an unbiased estimate of the power
spectrum of the signal. We have developed different
visibility-based estimators over the past decade, which
can address most of the real-world challenges, such as
(1) reducing the noise bias by correlating the visibilities
in nearby baselines, (2) reducing the computation cost
by gridding the visibilities, (3) reducing the effect of the
compact sources outside the field-of-view by tapering
the response of the antenna, (4) a novel algorithm to
subtract effect of resolved compact sources in the field-
of-view by implementing complex tapering function in
image plane and (5) using a MAPS-based algorithm to
mitigate effect of flagged frequency channels. All of
these estimators are tested against simulated observa-
tions and have been used to estimate the power spectrum
of compact sources and galactic synchrotron radiation
at � 600 MHz frequencies.

Even if we are able to remove the foregrounds per-
fectly from the data set, the gain calibration error can
still pose a hindrance to detect the cosmological signal.
It is extremely challenging to calibrate the instrumental
and ionospheric effects at low-frequencies, the preci-
sion of which depends on the sky model and instrument
sensitivity. Since the dynamic range required to detect
the cosmological signal is huge, i.e., ∼105, any resid-
ual gain errors can overwhelm the 21-cm signal. We
have shown that time-correlated gain error, at the level
of a few percent, can give rise to a bias and enhances
the uncertainty in the 21-cm power spectrum estimates.
This signifies the fact that to have a statistically robust
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detection of the cosmological Hi signal, we should be
able to precisely calibrate all instrumental effects.

The SKA-low is going to be a giant leap in terms of
sensitivity as compared to the current radio interferom-
eters and its precursors. With its improved sensitivity,
SKA-low is expected to push the field of CD–EoR
cosmology towards a new edge in future. Also, a par-
allel development of efficient algorithms/estimators are
required to extract the CD–EoR signal statistics from the
contaminated data. One can also do a cross-correlation
study with other line emissions, such as Ly-α, Hα, CO
and CII, etc. This can provide additional constraints over
the different reionization models.
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