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Abstract 
Here the notion of geometric phase acquired by an electron in a one-dimens- 
ional periodic lattice as it traverses the Bloch band is carefully studied. Such a 
geometric phase is useful in characterizing the topological properties and the 
electric polarization of the periodic system. An expression for this geometric 
phase was first provided by Zak, in a celebrated work three decades ago. Un-
fortunately, Zak’s expression suffers from two shortcomings: its value de-
pends upon the choice of origin of the unit cell, and is gauge dependent. 
Upon careful investigation of the time evolution of the system, here we find 
that the system displays cyclicity in a generalized sense wherein the physical 
observables return in the course of evolution, rather than the density matrix. 
Recognition of this generalized cyclicity paves the way for a correct and con-
sistent expression for the geometric phase in this system, christened as Pan-
charatnam-Zak phase. Pancharatnam-Zak geometric phase does not suffer 
from the shortcomings of Zak’s expression, and correctly classifies the Bloch 
bands of the lattice. A naturally filled band extension of the Pancharatnam- 
Zak phase is also constructed and studied. 
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1. Introduction 

Recent years have witnessed rapid growth in applying the abstract concepts of 
topology in physics, particularly in condensed matter physics [1] [2] [3]. It has 
led to the discovery of a new type of material, for example, topological insulators, 
and the detection of hitherto unobserved Majorana and Weyl fermions as emer-
gent quasiparticles in low-energy condensed matter systems. The geometric 
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phase is a well-known example in physics where topological concepts enter in an 
essential way. The geometric phase was first anticipated by Pancharatnam [4] [5] 
and became prominent due to Berry [6]. The geometric phase provides insights 
into the curvature of the underlying Hilbert space of the quantum states. In 
many cases, it is found to act as a topological index, shedding light on the topo-
logical properties of the system [7]. 

In landmark papers, Thouless et al. [8] [9] showed that the electrical conduc-
tivity in a quantum Hall system could be understood in terms of a topological 
invariant known as the Chern number. It was soon realized that the Chern 
number was closely related to the geometric phase [10] acquired by the electron 
as it moved through the energy band. In the last three decades, the notion of 
geometric phase has been used to understand and classify the properties of sev-
eral condensed matter systems [7] [11] [12]. The geometric phase plays a central 
role in the understanding of materials like topological insulators and supercon-
ductors. Its value is inevitably found to govern the charge transport property in 
such systems [1] [2] [3] [13] [14]. 

In this paper, we provide a correct and consistent expression of the geometric 
phase acquired by an electron in a one-dimensional (1D) periodic lattice as it 
executes a circuit over the Bloch band, which we call the Pancharatnam-Zak 
phase. The earliest attempt to evaluate this geometric phase was due to Zak [15], 
and the expression obtained in that work is popularly called the Zak phase. Later, 
King-Smith and Vanderbilt [16] showed that the difference in the Zak phase 
between two different configurations manifests in the treatment of quantized 
particle transport in a 1D insulator, a phenomenon discovered earlier by Thou-
less [13]. Subsequently, the modern understanding of the change in electric po-
larizations in dielectric materials was formulated in terms of such a difference in 
the Zak phase [3] [16] [17] [18] [19]. The concept of the Zak phase has been 
further applied to study the dynamics of strongly coupled LC circuits [20] and 
waveguide lattices [21]. It has also been employed to classify the edge states in 
planar honeycomb lattice systems [22] [23]. 

Geometric phases have been observed and explored in several experiments in 
diverse areas of physics [7] [24]. The value of the geometric phase, a physically 
measurable quantity, can not depend upon choosing the origin of coordinates or 
gauge employed in evaluating it. There is a freedom to select the unit cell’s origin 
in periodic lattice systems, as discussed later in Section 5. All the physical obser-
vables are insensitive to such freedom of defining the unit cell, as it must be [25]. 
Nevertheless, it is a well-acknowledged fact in the literature that the Zak phase is 
a gauge-dependent object, and its value depends upon the choice of the origin of 
the unit cell [3] [15] [18] [19] [26] [27] [28]. As a result, it can attain any desired 
value by a suitable choice of the origin of the unit cell or an appropriate gauge 
choice for the Bloch states. To circumvent such an ambiguity of the Zak phase, a 
particularly preferred choice of gauge and origin of the unit cell has been em-
ployed [3] [26] [27] [28]. These observations only show that the Zak phase can 
not be a proper geometric object, let alone be physically observable. 
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The Zak phase difference between two different configurations/states of a sys-
tem is independent of the gauge and choice of the unit cell. Such a difference of 
the Zak phase was experimentally observed by Atala et al. [27], and manifests in 
the change of electric polarizations [3] [16]. Our main point in this paper is that 
the geometric phase itself is a well-defined and measurable quantity, and it is 
correctly captured in the Pancharatnam-Zak phase for a 1D periodic lattice. 

Motivated by the classic work of Berry [6], Zak, in his derivation, assumed 
that the adiabatic motion of an electron in a band was cyclic so that the recur-
rence of the initial state of the system (modulo an overall phase factor) happens 
over time evolution. However, we find that the underlying system displays cyc-
licity under time evolution in a generalized sense wherein the observables rather 
than the initial state or the density matrix return in the course of evolution. 

Following the notion of generalized cyclicity, we here carefully consider the 
concept of the geometric phase in its generality and find the geometric phase 
gained by (a) a single electron and (b) by electrons of a filled band of the lattice 
when influenced by a weak electromagnetic field. The geometric phase in the 
single electron case—Pancharatnam-Zak phase, possesses the essential inva-
riances under gauge transformation and unit cell reparametrization. The under-
lying geometrical and topological properties of the system are uncovered in the 
process. The Pancharatnam-Zak phase is found to act as a topological index for 
systems with inversion symmetry; it is either equal to 0 or π in the topologically 
trivial or non-trivial state, respectively. The geometrical phase for the filled band 
case is properly formulated, and its physical implications are discussed. In our 
other studies, a generalisation of the Pancharathnam-Zak phase has provided 
valuable insights and has captured the topological phases of the undriven and 
periodically driven non-Hermitian bipartite and multipartite Su-Schrieffer-Heeger 
(SSH) model [29] [30]. In summary, we argue in this paper a requirement of ge-
neralized cyclicity for adequately describing the geometric phase for particle(s) 
in the 1D periodic lattice and construct the gauge-invariant Pancharatnam-Zak 
phase whose absolute value for each band in topologically trivial and non-trivial 
phases is independent of the choice of the origin of the unit cell. 

The paper is organized as follows. In Section (2), the geometric phase concept, 
as defined in its generality, is briefly reviewed. Subsequently, the problem of a 
charged particle in a 1D periodic lattice, subjected to a weak electromagnetic 
field, is formulated, and its kinematic aspects are studied in Section (3), bringing 
out the underlying mathematical structure. In Section (4), the adiabatic quantum 
dynamics of such a motion is discussed in (a) single-particle case and (b) many- 
particle filled-band case; and the manifestation of the geometric Pancharat-
nam-Zak phase in both cases is found. An explicit calculation of the sin-
gle-particle Pancharatnam-Zak phase for the SSH model is provided in section 
(5), followed by the discussion in Section (6). We add two appendices for some 
details on the geodesic and mathematical structure behind the Pancharat-
nam-Zak phase. 
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2. Geometric Phase via Pancharatnam Route  

It has been long known that the notion of geometric phase gγ  can be best un-
derstood following the work of Pancharatnam [4] [31] [32]. Pancharatnam’s de-
finition of the geometric phase gγ  is given as an argument of a cyclic expres-
sion:  

 ( )0 1 2 1 1 0Arg .g M M Mγ ψ ψ ψ ψ ψ ψ ψ ψ−=              (1) 

It is well defined for any given ordered set of vectors jψ  for 0,1,2, ,j M=   
(e.g., cell-periodic Bloch states or photon polarization states), provided only that 
the quantity in angle brackets does not vanish. This definition shows that the 
geometric phase is a collective property of an ordered set of vectors jψ  for 

0,1,2, ,j M=  . The definition does not rely on any dynamical aspect of the 
underlying system, such as the Hamiltonian. Hence, one says that the notion of 
geometric phase is kinematic in nature. 

Clearly, gγ  can not be altered by any redefinition of states jψ :  

 e ,ji
j j

θψ ψ→                           (2) 

where jθ s are independent arbitrary real numbers. This property of (local) 
gauge invariance is a clear demonstration of the geometric nature of this phase. 
Evidently the geometric phase also remains invariant under unitary operations 
of the type:  

 ˆ ,j jUψ ψ→                           (3) 

which is the statement of basis independence of gγ . 
If the set of states ( )j jsψ ψ≡  describes some quantum system at times 

js jδ=  (δ  is an infinitesimal time interval), then gγ  is the geometric phase 
acquired by the system in course of evolution from time 0s  to Ms . In the con-
tinuum limit, gγ  takes a familiar form:  

 ( ) ( ) ( ) ( ) ( )
0

Arg 0 d ,
t

g st t i s s sγ ψ ψ ψ ψ= + ∂∫              (4) 

where Mt s= . This expression for the geometric phase and its proper generali-
zation encompassing the case of non-unitary evolution were obtained long back 
using a manifestly geometric route [31]. The existence of such a geometric phase 
is well established through several experiments [5] [7] [24] [33] [34]. 

The geometric phase also possesses an important property, that of reparame-
trization invariance. If a real parameter ( )r s , an increasing function of time s, 
relabels the states ( )sψ , so that ( ) ( )s rψ ϕ≡ , then one immediately sees 
that the geometric phase is invariant:  

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )
( ) ( ) ( )

0

0

Arg 0 d

Arg 0 d .

t
s

r t
rr

t i s s s

r r t i r r r

ψ ψ ψ ψ

ϕ ϕ ϕ ϕ

+ ∂

= + ∂

∫

∫
 

It is a well known fact, that two unit normalised states A  and ei Aλ  (for 
some arbitrary real λ ), which differ by a phase, actually depict the same physi-
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cal state of the quantum system [35]. Often it is beneficial to work with density 
matrix A A  to describe the system since it is immune to such phase ambigu-
ities. It is well known that there exists a notion of distance in the space of density 
matrices between any two density matrices [31] [32], which is summarised in 
Appendix A for the benefit of the readers. In fact a well known result of Ref. 
[31], dictates that there exists a unique shortest curve—a geodesic connecting 
any two non-orthogonal states. Invoking this treatment, one finds that the geo-
desic curve ( ) ( )s sψ ψ′ ′  (for 0 s≤ ≤ Λ ) connecting ( ) ( )t tψ ψ  and 

( ) ( )0 0ψ ψ  is constructible from the states:  

 ( ) ( ) ( ) ( ) ( )( )e sin e sin 0 .
sin

i s
is s t s

θ
θψ ψ ψ

Λ
−′ = Λ − +

Λ
        (5) 

Importantly the phase of the overlap ( ) ( )Arg 0 tθ ψ ψ= −  is expressible as a 
line integral of what is called the connection ( ) ( ) ( )sA s i s sψ ψ′ ′ ′= ∂ :  

 ( ) ( ) ( )
0

Arg 0 d .t s A sψ ψ
Λ

′= ∫                    (6) 

This shows that the geometric phase (4) comprises of two line integrals of the 
connection ( )A s : (a) along the time evolution curve defined by states ( )sψ  
connecting state ( ) ( )0 0ψ ψ  to ( ) ( )t tψ ψ  and (b) returning to  

( ) ( )0 0ψ ψ  along the geodesic curve ( ) ( )s sψ ψ′ ′ . So the expression (4) 
can now be written in a manifestly gauge invariant form as a closed line integral 
over the time evolution and geodesic curves:  

( ) ( ) ( ) ( ) ( )
( )

0 0
d d

= d .

t
g l s

C

t i l l l i s s s

s A s

γ ψ ψ ψ ψ
Λ

′ ′= ∂ + ∂∫ ∫
∫

        (7) 

It must be emphasised that while we are using states ( )lψ  and ( )sψ ′  to 
express the geometric phase, owing to the local gauge invariance one learns that 
it actually depends only on the respective density matrices. 

The notion of geometric phase as summarised here can also be understood in 
a rigorous mathematical manner using the language of fibre bundles as summa-
rised in the Appendix B. 

3. Periodic Potential Problem  

Consider a (spinless) charged particle of mass µ  and charge e in 1D under the 
influence of a periodic potential ( )V x  with lattice constant a. It is assumed 
that the periodic potential arises due to the ions, and we shall be working in the 
rest frame of ions. We are assuming a periodic boundary condition (PBC), so 
that the system can be thought of as forming a ring. We allow a linearly 
time-varying magnetic flux ( )B tΦ  to pierce the ring, while giving rise to a 
weak tangential electric field E (see Figure 1). The particle dynamics in such a 
system is described by the Hamiltonian:  

 ( ) ( )( ) ( )21ˆ ˆ ˆ ,
2tH p t V xα α
µ

= + +                   (8) 

where the time-dependent vector potential ( )A t Et= −  and ( ) ( )t eA tα = −  . 
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Figure 1. Schematic representation of the periodic lattice system studied in this paper. 
The cyan curve with blue solid circles represents the periodic lattice, whereas the black 
arrows depict the magnetic flux ( )B tΦ . The red arrows show the tangential electric field 

experienced by the electrons in the lattice. 
 

The problem of particle motion in a periodic potential in the presence of a 
uniform electric field E is a well studied one [25] [36] [37] [38]. In the literature, 
such a system is usually studied using the time independent Hamiltonian:  

 ( )21ˆ ˆ ˆ ˆ,
2

H p V x eExϕ µ
= + −                      (9) 

wherein one works in the gauge 0A =  with scalar potential Exϕ = − . Clearly 
this Hamiltonian does not respect the periodicity of the lattice potential, since  

the spatial translation operator over a unit cell ( )
ˆ

ˆ e
pi a

xT a =   does not commute  

with Ĥϕ . This fact leads to the well known k-acceleration theorem [25] [36] [37] 
in such a gauge. 

Motivated by Zak [15], here we work with the gauge ( )A t Et= −  and scalar 
potential 0ϕ = , so that the periodicity of potential ( ) ( )V x V x a= +  is res-
pected. As we will see below, the k-acceleration theorem takes on a more subtle 
aspect in this gauge. The Hamiltonian (8), while commuting with ( )x̂T a , ad-
mits normalized simultaneous instantaneous eigenstates 

mnk αΨ  which solve:  

 ( ) ( )ˆ ,
m m mnk nk nkH x E xα α α αΨ = Ψ                   (10) 

 ( ) ( ) ( )ˆ e ,m
m m

ik a
x nk nkT a x xα αΨ = Ψ                  (11) 

where n is the band index. Owing to PBC, we have ( ) ( )
m mnk nkx Na xα αΨ + = Ψ , 

so that each band consists of exactly N states with wave vector (quantum number)  
2

mk m
Na

=
π

, where 0,1, , 1m N= − . From (11), we immediately see that states  

( )
mnk xαΨ  and ( )

m Nnk xα+
Ψ  have the same ( )x̂T a  eigenvalue, which is e mik a . 

This in turn dictates that the normalized states ( )
mnk xαΨ  and ( )

m Nnk xα+
Ψ  

must be linearly dependent, so that [25]:  

 ( ) ( )e ,
m N m

i
nk nkx x χ

α α+
Ψ = Ψ                   (12) 

where χ  is some arbitrary real number. So the states ( )
m Nnk xα+

Ψ  and  
( )

mnk xαΨ  describe the same physical state, as the corresponding density ma-
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trices are identical. It is often assumed that 0χ = , a choice of convention which 
is referred to as the periodic gauge condition [18] [26]. Clearly, all the physical 
observables must be insensitive to the value of the unphysical phase χ , a re-
quirement not obeyed by the Zak phase, as we shall soon see. 

As noted above, by a judicious choice of gauge, which ensures that the spatial 
periodicity of the system is not spoiled by the electromagnetic field, we have 

( )ˆ ˆ, 0xH T aα  =  . This straight away shows that ( )x̂T a  is conserved quantity 
under time evolution. As a result, if the system is prepared initially in the state 
with wave vector lk , then it is forbidden to evolve into any other state with 
wave vector lk ′  in any band at any time t. This is a manifestation of the fact 
that the wave vector lk  is a conserved quantum number under evolution, in 
the present gauge choice wherein 0ϕ = . This is in sharp contrast with the well 
known result of k-acceleration theorem in the gauge 0A = . It must be noted 
that the k-conservation law does not prohibit the system from evolving to the 
state ( )ln k tα′Ψ  from the initial state ( )0lnk αΨ  in a different band n′  with 
energy 

l ln k nkE Eα α′ ≠ . However, if the external field is sufficiently weak, then the 
evolution to other band states is energetically suppressed, and such a transition 
can be ignored in the leading order. 

The Hamiltonian (8) has very interesting property under time evolution. The 
vector potential at certain discrete times t can be written as a gauge transforma-
tion:  

( ) ( ) ( ) ( )†0 , , ,x
iA t A U x t U x t
e

= + ∂


 

where  

( ), exp ,iU x t eEtx =  
 

 

and ( )0 0A =  by virtue of its definition. Under such a transformation, the 
momentum operator transforms as: ( ) ( ) ( )†ˆ ˆ, ,p eA t U x t pU x t− = , which allows 
the Hamiltonian at some time t and at 0t =  to be unitarily connected:  

 ( ) ( ) ( ) ( )†ˆ ˆ, 0 , .H t U x t H U x t=                   (13) 

The gauge transformation ( ),U x t  must respect the PBC: ( ) ( ), ,U x t U x L t= +  
in order to be a well defined operator. It is evident that only for time t jτ=  (j 
is an integer), is the PBC respected, where  

 
2 .
eEL

τ =
π

                        (14) 

This shows that the Hamiltonian ( )Ĥ jτ  (for different js) are physically the 
same (they are gauge equivalent), their spectra are identical. Moreover their in-
stantaneous eigenstates are related to each other by the gauge transformation:  

 ( ) ( ) ( ) ( ) ( )†
0,

m m jnk j nkx U x j xα τ ατ
+

Ψ = Ψ                (15) 

 ( ) ( )0
2exp ,

m jnk
xji x

L α+

 = − Ψ 
 

π            (16) 
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as also the energies ( ) ( )0m m jnk j nkE Eα τ α+
= . The gauge transformation factor  

( )
2

, e
xi j

LU x jτ
π

=  has a very interesting topological property. It is a function of  

x, albeit with the PBC, implying that the points 0x =  and x L=  are identified 
since ( ) ( )0, ,U j U L jτ τ= . This shows that it lives on a circle with circumfe-
rence L. Now, ( ),U x jτ  by definition is a phase and takes values only on the 
unit circle in the complex plane. So ( ),U x jτ  is a map from one circle (with 
circumference L) to the unit circle. Such maps are classified in terms of homo-
topy classes [39], with each of them characterized by an integer called the 
winding number, which measures the number of times one circle is wound on 
another. This shows that the integer j appearing in ( ),U x jτ  is actually the  

winding number; under one rotation in x space, the factor 
2

e
xi j

L
π

 completes j  
rotations of the unit circle. As a result, it is not possible to continuously deform 
( ),U x jτ  to some ( ),U x j τ′  for j j′≠ . The class of such gauge transforma-

tions, which can not be continuously deformed into the identity (gauge) trans-
formation, is often referred to as large gauge transformations. 

4. Geometric Phase in the Periodic Potential Problem  

As found earlier that if the system is initially prepared in the instantaneous ei-
genstate ( ) ( )00

lnk αΦ = Ψ , then it is constrained to evolve with the same 
quantum number lk  at any other time t. So the state of the system ( )tΦ  es-
sentially evolves adiabatically [35] [40] in the presence of a weak electromagnetic 
field, following the instantaneous eigenstate ( )lnk tαΨ  along with an overall 
phase:  

 ( ) ( )
( )e .

l

i t
nk tt φ

αΦ = Ψ                       (17) 

The phase factor is given by ( ) ( ) ( ) ( )0 0

1d d
l l l

t t

nk s nk s nk st i s s E
sα α αφ ∂

= Ψ Ψ −
∂∫ ∫



 [6] 

[35]. In the light of (15), this takes the form:  

 ( ) ( ) ( ) ( )
†

0
ˆe , ,

l j

i j
nkj U x jφ τ

ατ τ
+

Φ = Ψ                (18) 

which shows that the system, which was initially in the eigenstate with a wave 
vector lk , in the course of adiabatic evolution goes into the eigenstate with a 
wave vector l jk +  (in the same band) after time t jτ= , modulo a large gauge 
transformation with the winding number j− . The Figure 2 graphically depicts 
the adiabatic evolution of the system due to ( )tα . This remarkable result leads 
to the evaluation of the geometric phase acquired by the system in two distinct 
cases: the single-particle case and the filled band many-particle case. 

4.1. Single-Particle Case  

Relation (18) dictates that after time Nτ , the state of the system is:  

 ( ) ( ) ( ) ( )
†

0
ˆe e , ,

l

i Ni
nkN U x Nφ τχ

ατ τΦ = Ψ               (19) 
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Figure 2. Schematic representation of the change in energy of the particle in the course of 
adiabatic evolution. The red curve represents the dispersion curve ( )mnk tE α  for some ge-

neric band n. The black arrow depicts the change in the energy over time τ . Whereas 
the blue arrows indicate that the particle returns to its initial energy after time Nτ . 
 
indicating that the system returns to the initial state with a large gauge transfor-
mation. It may be noted that in general, ( ) ( ) ( )

†
0 0

ˆ , 1
l lnk nkU x Nα ατΨ Ψ ≠  

which indicates that the initial and final states are not colinear:  

 ( ) ( )e 0 ,iN θτΦ ≠ Φ                       (20) 

and the corresponding density matrices are not identical. Thus, strictly speaking 
the system does not return to its initial state after time Nτ . However, owing to 
the gauge transformation factor ( )† ,U x Nτ  it is straightforward to see that the 
average of any observable ( )( )ˆ ˆ ˆ,F x p eA t−  returns after time Nτ :  

( ) ( )( ) ( ) ( ) ( )( ) ( )0 0
ˆ ˆˆ ˆ ˆ ˆ, 0 , .

l l l lnk nk nk N nk NF x p eA F x p eA Nα α α τ α ττΨ − Ψ = Ψ − Ψ  

So the states ( )0Φ  and ( )NτΦ  while being non-colinear, nevertheless 
represent the same physical state of the system, albeit expressed in different 
gauges. Thus, the time evolution of the system in this case is found to be adia-
batic and cyclic kind. It must be mentioned that this notion of cyclicity genera-
lizes the existing notion in the literature [31] [32] based on the requirement of 
returning of the density matrix. 

This treatment immediately shows that:  

 ( ) ( )ˆ ˆ 0 ,x N xτ
Φ Φ
=                          (21) 

showing that the center of mass of the wavepacket ( )tΦ  indeed performs 
Bloch oscillation with time period Nτ 1. It is clear that such an oscillation pheno-
menon, consisting of cyclic acceleration and deceleration, would also be displayed  

by the average electric current ( )ˆe p tα
µ Φ

− +  . The existence of Bloch oscilla-

tion and its time period 
2N
eEa

τ π
=



, are in exact agreement with the well known  

 

 

1It must be noted that the notion of position operator x̂  in a system with PBC is well defined only 
when the system size Na →∞ . 
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findings in the usual 0A = , 0ϕ ≠  gauge [36] [37] [38]. 
The geometric phase gained by the system after such a cyclic adiabatic evolu-

tion then straight away follows from (17) and (4) and it reads:  

 ( ) ( ) ( ) ( ) ( )0 0
Arg d .

l l l l

N
g tnk nk N nk t nk tn i t

τ

α α τ α αγ = Ψ Ψ + Ψ ∂ Ψ∫       (22) 

Recollect that the Bloch state ( )lnk tαΨ  is not strictly periodic under spatial 
translation by a unit cell distance, but returns with a phase e lik a . The above 
geometric phase expression simplifies significantly if we employ cell periodic 
Bloch state, defined as:  

 ˆe ,l
l l

ik x
nk nku α α

−= Ψ                       (23) 

which is periodic under a unit cell translation. From (10), it follows that 
lnku α  

solves the eigenvalue problem for the driven Hamiltonian ˆ
lkH α+  so that:  

ˆ
l l l lk nk nk nkH u E uα α α α+ = . When we redefine lq k α= + , we see that the Ha-

miltonian ˆ ˆ
lk qH Hα+ ≡  is a function of q (following lk -dependence of the un-

driven Hamiltonian ˆ
lkH . The above argument further dictates that both the 

energy 
lnk nqE Eα ≡  and the cell periodic Bloch state 

lnk nqu uα ≡  of the dri-
ven Hamiltonian are also functions of q. From (12), a crucial relation for these 
Bloch states follows:  

 ( )
2 ˆ2 e e .

i xi a
n nu q u q

a
χ −

ππ 
 
 

+ =                 (24) 

We set 0lk =  without loss of generality, and employ the reparametrization in-
variance of the geometric phase, which enables us to express ( )g nγ  in terms of 

( )nu α  while treating α  as a parameter. This leads us to the expression for 
Pancharatnam-Zak phase ( )g nγ  which is one of the main results of this paper:  

 ( ) ( ) ( ) ( ) ( )
2

0
Arg 0 2 d .a

g n n n nn u u ia u uαγ α α α
π

= + ∂π ∫     (25) 

This geometric phase correctly and consistently characterizes the band. The 
Pancharatnam-Zak phase so obtained above is independent of the total number 
of cells N in the system, as it should be, since it captures the curvature of the 
state space of the system, which is solely determined by the Hamiltonian. 

Invoking the treatment presented in section (2), one sees that the geometric 
phase (25) comprises of twso line integrals of connection  

( ) ( ) ( )n n s nA s i u s u s= ∂  as shown in Figure 3: (a) along the adiabatic evolu-
tion curve ( ) ( )n nu q u q  defined by states ( )nu q  which solve  

( ) ( )ˆ
q n nq nH u q E u q=  (

20 q
a

≤ ≤
π

) connecting state ( ) ( )0 0n nu u  to  

( ) ( )2 2n nu ua aπ π , and (b) returning to ( ) ( )0 0n nu u  via the geodesic 
curve ( ) ( )n nu l lu′ ′  where  

( ) ( ) ( ) ( ) ( )( )e sin 2 e sin 0
sin

i l
i

n nu ll au l u
θ

θ
Λ

−′ = Λ − +π
Λ

 (here 0 l≤ ≤ Λ  and  

( ) ( )g 20Ar n nu auθ = − π ). The Pancharatnam-Zak phase can thus be repres- 
ented in a manifestly gauge invariant form as a closed line integral over adiabatic 
evolution and geodesic curves conjoint, to read:  
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Figure 3. Schematic depiction of the curve along which the geometric phase integral in 
(26) is defined. Here density matrices ( )jρ  ( 0,1,2, ,j N=  ) are the ones correspond-

ing to states 2
nu j

Na
π 

 
 

, specifying the adiabatic evolution (shown as brown curve). 

Whereas the density matrices ( )lρ′  correspond to the states ( )nu l′  which define the 

geodesic curve (shown as blue curve). 
 

 ( ) ( )d .g nC
n l A lγ = ∫                         (26) 

Owing to the fact that the state ( )nu q  and ( ) ( )ei q
nu qΛ , represent the 

same physical state of the system, since the corresponding density matrices are 
identical, one demands that a physically observable quantity must remain inva-
riant under a gauge transformation ( ) ( ) ( )ei q

n nu q u qΛ→  for any choice of 
( )qΛ . It can be clearly seen from the above relation and (25) that the Pancha-

ratnam-Zak phase is indeed insensitive to such a gauge transformation. 
The Pancharatnam-Zak phase can be viewed as a cell periodic version of the 

Pancharatnam geometric phase (1) by defining:  

 ,0 , , , 1 ,2 ,1 ,1 ,0 ,N n n N n N n N n n n nu u u u u u u u−∆ =           (27) 

where ,
2

n i n
iu u

Na
π≡ 

 
 

. Evidently the cyclic nature of N∆  ensures that ( )g nγ   

is invariant under local gauge transformations , ,e ji
n j n ju uΛ→  (here jΛ  

are some arbitrary real numbers). In the large N limit, one immediately sees that 
expression (25) is indeed:  

 ( ) lim Arg .g NN
nγ

→∞
= ∆                        (28) 

It is also invariant under any unitary operation Û  (such that 1ˆ ˆU U− = † ) of the 
kind: , ,

ˆ
n j n ju U u→ , since such an operation preserves the value of all the 

amplitudes in N∆ . This crucially shows that the value of ( )g nγ  can not be al-
tered by changing the gauge convention and by translating the origin of the unit  

cell 
ˆ

, ,e
i p

n i n iu u
ε

−
→   by distance ε . It is a geometric quantity that characte-

rises the band as a whole. 
The spatial inversion (unitary) operator Π̂  is defined such that †ˆ ˆˆ ˆx x− = Π Π  

and †ˆ ˆˆ ˆp p− = Π Π . So for the lattices which are inversion symmetric, that is 
( ) ( ) ( )†ˆ ˆˆ ˆ ˆV x V x V x− = Π Π = , one finds that ( ) ( )ˆ

n nu k u k− = Π  which fol-
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lows from the equation ( ) ( )ˆ
k n nk nH u k E u k= . Using this in (25) along with 

the reparametrization invariance of ( )g nγ , one finds that the Pancharat-
nam-Zak phase for such a system is quantized:  

 ( ) 0 or .g nγ = π                          (29) 

This shows that the Pancharatnam-Zak phase in inversion symmetric lattices 
becomes a topological index, whose non-zero value corresponds to a topologi-
cally non-trivial band. 

The idea of evaluating the geometric phase gained by an electron in a 1D pe-
riodic lattice potential in the presence of a weak electromagnetic field has a long 
history starting from the celebrated work of Zak [15]. The expression popularly 
referred to as the Zak phase [3] [18] [19] [26] [28] was obtained in this work, 
and it reads:  

 ( ) ( ) ( )
2

0
d ,a

Z n nn i k u k u k
k

γ
π ∂

=
∂∫                 (30) 

wherein the states ( )nu k  are required to obey the periodic gauge condition [3] 
[15] [18] [19] whereby 0χ = . 

It can be readily seen that the Zak phase (30) is not a gauge invariant object, 
and its value alters under a gauge transformation ( ) ( ) ( )ei q

n nu q u qΛ→ , for 
any general ( )qΛ . Furthermore even in the periodic gauge, Zak’s expression 
(30) does not yields the correct value for the geometric phase, since (30) is de-
void of the non-trivial contribution due to ( ) ( )0Arg 2n nu u aπ , which is 
captured by (25). 

The same conclusion can also be reached using a different representation of 
the Zak phase. As was shown by Resta [18] and recently by Vanderbilt [3], that 
the Zak phase (30) can be written as argument of a non-cyclic object:  

 ( ) ( ), , 1 ,2 ,1 ,1 ,0 0
lim Arg ,Z n N n N n n n nN

n u u u u u u
χ

γ −→∞ =
=       (31) 

where ,
2

n i n
iu u

Na
 π ≡  
 

 and 
2 ˆ

, ,0e e
i xi a

n N nu uχ
π

−
= . It can be readily seen that  

this expression readily reproduces (30), in N →∞  limit. This representation 
again shows that the Zak phase is a gauge dependent construct, and its value de-
pends on the choice of the unphysical quantity χ . This feature is very uncha-
racteristic of a geometric object as also of a physical observable, which is re-
quired to be independent of the choice of gauge. 

The operation of shifting the origin of the unit cell by ε  distance is implem-  

ented by the transformation 
ˆ

, , ,e
i p

n j n j n ju u u
ε

−
′→ =   (for  

0,1,2, , 1j N= − ). The Zak phase defined using the transformed states is given 
by:  

 ( ) ( ), , 1 ,2 ,1 ,1 ,0 0
lim Arg .Z n N n N n n n nN

n u u u u u u
χ

γ −→∞ =
′ ′ ′ ′ ′ ′ ′=        (32) 

In light of relation (24), the above expression reads:  
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 ( )
2 ˆ

,0 , 1 ,2 ,1 ,1 ,0lim Arg e
i x

a
Z n n N n n n nN

n u u u u u uγ −→∞

π 
′ ′ ′ ′ ′ ′ ′=   

 
         (33) 

 
2 2 ˆ

,0 , 1 ,2 ,1 ,1 ,0lim Arg e e .
i i x

a a
n n N n n n nN

u u u u u u
ε

−→∞

π π 
=   

 
    (34) 

The last expression clearly shows that under spatial translation of the unit cell by 
ε  distance, the value of the Zak phase indeed gets altered as:  

 ( ) ( ) ( ) 2 ,Z Z Zn n n
a

γ γ γ ε= +
π′→                  (35) 

which is a well known result [3] [15] [28]. So by a suitable choice of the origin of 
the unit cell, one can make the Zak phase attain any desired value. These obser-
vations ultimately overturn the assertion that the Zak phase is a geometric phase 
and a physical observable. The fact that the Zak phase depends on the gauge 
choice and the choice of the origin of the unit cell is well acknowledged in the li-
terature [3] [18] [19] [26] [27] [28]. 

In order to appreciate the construction of the Pancharatnam-Zak phase, it is 
instructive to consider its behaviour under spatial translation of the unit cell  

ˆ

, , ,e
i p

n j n j n ju u u
ε

−
′→ =   (for 0,1,2, , 1j N= − ). In terms of the trans-

formed states, the Pancharatnam-Zak phase is given by:  

 ( ) ( ),0 , , , 1 ,2 ,1 ,1 ,0lim Arg .g n n N n N n N n n n nN
n u u u u u u u uγ −→∞

′ ′ ′ ′ ′ ′ ′ ′ ′=     (36) 

Employing relation (24), the above expression reads:  

( )
2 2ˆ ˆ

,0 ,0 ,0 , 1 ,2 ,1 ,1 ,0lim Arg e e e e .
i x i xi ia a

g n n n n M n n n nN
n u u u u u u u uχ χγ

−

∞

π π
−

−→

 
′ ′ ′ ′ ′ ′ ′ ′ ′=   

 
 (37) 

The structure of the first and second amplitudes in the above expression clearly 
shows that ( )g nγ ′  is insensitive to the value of χ . Invoking the relation  

ˆ

, ,e
i p

n j n ju u
ε

−
′ =  , one immediately sees that the ε  dependent phase factors  

from the first and second amplitudes precisely cancel each other, so as to yield:  

( ) ( ).g gn nγ γ′ =                          (38) 

This is a clear demonstration of the gauge invariance of the Pancharatnam-Zak 
phase and its invariance under spatial translation of the unit cell. 

A careful observation shows that the expression (25) of the Pancharatnam-Zak 
phase coincides with the Zak phase (30), not in the periodic gauge 0χ = , but in 
the gauge wherein χ  is defined such that ( ) ( )Arg 2 00n nu u a =π . This 
gauge provides a way of using Zak’s formula to yield the correct value of the 
geometric phase, even though its original derivation was done within the 
framework of periodic gauge wherein ( ) ( )Arg 2 00n nu u a ≠π  [3] [15]. 

4.2. Many-Particle Case 

The Equation (18) states that if the system is prepared in the initial state ( )0lnk αΨ , 
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then after time τ  it adiabatically evolves as:  

 ( ) ( ) ( ) ( )1

†
0

ˆe , ,
l

i
nkU xφ τ

ατ τ
+

Φ = Ψ                 (39) 

and the Hamiltonian returns modulo a large gauge transformation:  
( ) ( ) ( ) ( )†ˆ ˆ ˆ ˆ, 0 ,H U x H U xτ τ τ= . This observation motivates one to consider the 

N-particle generalization of this problem, the case wherein the nth band is com-
pletely filled by N non-interacting spinless fermions. In the literature, the sin-
gle-particle case considered in the earlier section has attracted significant interest. 
The discussion of the many-particle case is essential for practical topological 
materials, such as 1D topological insulators and superconductors. It is the 
many-particle systems (e.g., filled bands of topological insulators) whose geome-
tric and topological features are probed experimentally. In such many-particle 
systems, the band-gap between the bands of topological insulators or the pairing 
gap in topological superconductors plays a vital role for the topological protec-
tion and the validity of adiabatic conditions in the definition of geometric phase 
[1] [2]. 

Let us consider the many-particle wavefunction nΦ  representing such a 
filled band at any time t in the adiabatic approximation, given by the Slater de-
terminant:  

 

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 1

0 1 1

0 1 1

1 2

1 1 1

2 2 2

, , , ;

1 .
!

N

N

N

n N

nk t nk t nk t

nk t nk t nk t

N N Nnk t nk t nk t

x x x t

x x x

x x x

N
x x x

α α α

α α α

α α α

α

−

−

−

Φ

Φ Φ Φ

Φ Φ Φ
=

Φ Φ Φ







  



       (40) 

Here, ( ) ( )
l ink t xαΦ  represents the ith particle wave function adiabatically evolv-

ing as per (17). From here it follows that the many-particle wavefunction at time 
jτ  can be straightforwardly written as:  

( )( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1

1 2 1 2

1 1 10 0 0

2 2 20 0 0

0 0 0

e, , , ; , , , ;
!

.

j j N j

j j N j

j j N j

i j

n N N

nk nk nk

nk nk nk

N N Nnk nk nk

x x x j G x x x j
N

x x x

x x x

x x x

τ

α α α

α α α

α α α

α τ τ

+ +

+ +

+ +

Γ

Φ =

Ψ Ψ Ψ

Ψ Ψ Ψ
×

Ψ Ψ Ψ

 





  



 

The N-particle large gauge transformation G is given by the product:  

 ( ) ( )†
1 2

1
, , , ; , ,

N

N j
j

G x x x U x jτ τ
=

=∏                  (41) 

whereas the phase factor ( )jτΓ  reads:  

 ( ) ( ) ( ) ( )

1

0
0

1d d .l j

ll

N k j
n n nk tk

l
j i u u t E

τ
α ατ α α α+

−

=

 Γ = ∂ − 
 

∑ ∫ ∫


         (42) 

The identity ( ) ( )e
N j j

i
nk i nk ix xχ

α α+
Ψ = Ψ  and the anti-symmetric nature of the 
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Slater determinant yield:  

 
( )( )

( ) ( ) ( ) ( ) ( )( )
1 2

1 2 1 2

, , , ;

1 e e , , , ; , , , ; 0 .

n N

j N j i jij
N n N

x x x j

G x x x j x x xτχ

α τ

τ α− Γ

Φ

= − Φ



 

  (43) 

Noting that the average of a single particle observable ( )( )ˆ ˆ ˆ,F x p eA τ−  evolves 
as ( ) ( )( ) ( ) ( ) ( )( ) ( )1 10 0

ˆ ˆˆ ˆ ˆ ˆ, , 0
l l l lnk nk nk nkF x p eA F x p eAα τ α τ α ατ

+ +
Ψ − Ψ = Ψ − Ψ , 

one sees that the average ( )( ) ( )( )ˆ
n nt tα αΦ ΦF  of any N-particle obser-

vables ˆF , for example the total Hamiltonian and momentum, return to itself 
after time τ . Generalizing the relation (4) for a filled band scenario, one finds 
that the geometric phase acquired by the band fermions evolving adiabatically 
till time jτ  reads:  

 ( ) ( ) ( ) ( ) ( )( )1

0
Arg d .l j

l

N k
g n l n l j n nk

l
j u k u k i u uατ α α α+

−

+
=

Γ = + ∂∑ ∫   (44) 

As noted above in this case the filled band system displays cyclicity even for time 
evolution τ . While each particle only traverses a segment of a closed curve over 
the band, the collective state in equation (40) traces a closed curve to return back 
to its original state, resulting in a multi-particle geometric phase (44). So the 
non-zero geometric phase acquired by the filled band state in an evolution for 
time τ  results from an addition of the geometric phases acquired by each con-
stituent single particle states. Evidently the phase acquired by the filled band 
state after evolution till time Nτ  reads:  

 ( ) ( ).g gN N nτ γΓ =                        (45) 

This is an expected result since each of the fermions is evolving independently in 
this non-interacting system, giving rise to Pancharatnam-Zak phase ( )g nγ , 
which all add up to yield this result. The geometric phase for filled bands has 
been studied for some time now [17] [18] [41]. We emphasize that the topologi-
cal properties of the bands is characterized by ( )g nγ  or ( )g NτΓ  per particle. 
Such many-particle geometric phase in optical systems has been studied earlier 
theoretically [42] and later confirmed experimentally [34] [43] using intensity 
interferometry. 

5. Explicit Example  

The SSH model is a 1D lattice of atoms with an unit cell consisting of two atoms, 
as depicted in Figure 4. This model is formulated within the tight-binding ap-
proximation with nearest-neighbour couplings between the atoms [2] [26]. In 
the recent years, there have been many experimental realizations of this model in 
various set-ups [27] [44] [45]. The Hamiltonian describing the model reads as:  

( )( )
2

2

ˆ 1 h.c. .
N

SSH
m N

H v ma r ma r w m a r ma rα β α β
=−

= − + + − + + + +∑  

Here, ,rα β  represent the coordinates of the two atoms respectively within the 
unit cell, whereas a  is the distance between the unit cells. The spatially localized 
electron state on atom in mth unit cell at site ,rα β  is described by ,ma rα β+ ,  
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Figure 4. Schematic representation of Su-Schrieffer-Heeger (SSH) model with a lattice 
constant a  and a unit cell consisting of two different atoms (shown as red and blue 
disks) separated by a distance b. Here, the intracell and intercell hopping amplitude are 
v  and w , respectively. The yellow and blue rectangles represent two different choices 
of defining the unit cell, whose origins are separated by a distance ε . 
 
whereas the distance between the two atoms in the unit cell is b r rβ α= − . The 
parameter v  is the intracell electron hopping amplitude, whereas w  is the in-
tercell hopping amplitude. The system consists of N cells with PBC. Going over to 
the momentum space allows one to define the free particle states 

,k
α β

 as:  

 ( ),
2

,,
2

1 e ,
N

ik ma r

m N
k ma r

N
α β

α βα β

+

=−

= +∑                (46) 

so that the above Hamiltonian reads:  

 ( ) ( )ˆ .SSH
k FBZ

k
H k k k

k
α

α β
β∈

 
=       

 
∑ H               (47) 

Here, the sum is over all the allowed values of k in the first Brillouin zone (FBZ). 
The 2 × 2 matrix ( )k  H  has only two non-vanishing off diagonal elements 

( ) ( ) ( )( )e eik b aikbx k iy k v wαβ βα
−∗= = + = − −H H . This can be diagonalized to find 

two eigenvalues ( ) ( )E k E k± = ± , where  
( ) ( )2 2 2 2 2 cosE k x y v w vw ka= + = + + . The corresponding eigenvectors 
( )u k±    are given by:  

 ( ) ( )
( )

( ) ( )
( )1,

2,

1 .
2

1

x k iy k
u k

u k E k
u k

±
±

±

 + 
±   = =       

   
 

            (48) 

Note that, there is an ambiguity (upto a local gauge transformation) in defining 
these eigenvectors, since ( )u k±    and ( ) ( )ei k u kθ

±    (where ( )kθ  is any 
general function of k ) both solve the eigenvalue problem for ( )k  H  for the 
same eigenvalues. It follows that the Hamiltonian (46) diagonalises in terms of 

( )k±Ψ :  

 ( ) ( ) ( )ˆ ,SSH
k FBZ

H E k k k± ± ±
∈

= Ψ Ψ∑                (49) 

which are defined as:  

( ) ( ) ( )1, 2, .k u k k u k k
α β± ± ±Ψ = +  

This allows one to determine the cell periodic Bloch states ( )u k±  as:  

 ( ) ( ) ( )1, 2,0 0 ,u k u k u k
α β± ± ±= +               (50) 

so that the Pancharatnam-Zak phase ( )gγ ±  from (25) is given by:  

https://doi.org/10.4236/am.2023.141005


V. M. Vyas, D. Roy 
 

 

DOI: 10.4236/am.2023.141005 98 Applied Mathematics 
 

 
( ) ( ) ( ) ( ) ( )( )

( )
1, 1, 2, 2,

2
1, 1, 2, 2,0

Arg 0 2 0 2

d .k k
a

g a au u u u

i k u u u u

γ ∗ ∗
± ± ± ±

∗ ∗
± ± ± ±

π

± = +

+ ∂ + ∂

π π

∫
      (51) 

Evidently, the ambiguity of local phase factor ( )ei kθ  in the definition of ( )u k±  
does not affect ( )gγ ± . It can be readily checked that the contributions from the 
first and second terms in the expression (51) arising from such a phase factor get 
exactly cancelled, displaying yet again the gauge invariance of the Pancharat-
nam-Zak phase. It can be immediately seen that the above expression is also in-
variant under spatial translation operation. 

This is to be contrasted with the range of values of the Zak phase ( )Zγ ±  re-
ported in literature [2] [19] [26] [27] which is arising due to the different choices 
in defining ( )u k±    and the choice of the origin of the unit cell. 

From relation (51), we find that ( )gγ ±  takes two values: (a) it is equal to π 
when 1v w < , and (b) it is equal to 0 when 1v w > ; when 2b a<  (see Fig-
ure 5). Interestingly, when 2b a> , the system resembles itself with 2b a<  
case, albeit with the roles of v  and w  now interchanged. Thus, one finds that 
(a) ( )gγ ± = π  when 1v w > , and (b) ( ) 0gγ ± =  when 1v w <  for 2b a> . 

This discussion shows that the two discrete phases in the SSH model are 
properly captured by the geometric phase gγ , the topologically trivial phase exists 
when ( ) 0gγ ± = , and the topologically nontrivial phase exists when ( )gγ ± = π . 
Interestingly, we find that the (non)trivial value of ( )gγ ±  also correctly identi-
fies the (presence) absence of the gapless edge states in the SSH model, when de-
fined with open boundary condition [2]. 

 

 
Figure 5. Gauge-dependence (invariance) of the Zak phase Zγ  (Pancharatnam-Zak 
phase gγ ) of the upper band of the SSH chain in the topologically trivial ( 1v w > ) and 

non-trivial ( 1v w < ) phases of the chain for 3b a=  and gauge ( ) 1k kθ λ= − . The val-

ues of ( )Zγ +  are different from those of the gauge-invariant ( )gγ +  except at some 

critical values of the gauge parameter 1λ . The difference in ( )Zγ +  between the topo-

logically non-trivial and trivial phases of the chain is equal to π, and is invariant to such 
gauge and unit cell parametrization. 
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It is worthwhile to consider the work of Atala et al., wherein the experimental 
observation of the Zak phase in this model was reported [27]. The SSH model in 
their experimental setup was realized in an optical lattice setup, and the differ-
ence in the geometric phase between the topologically trivial and non-trivial 
phase of the system was observed to be equal to π. The variability of the actual 
value of the Zak phase ( )Zγ ±  in the two phases of the model, due to depen-
dence on gauge and on the unit cell parametrization was acknowledged in this 
work [2] [19] [26] [27]. However it was also noted that the difference of the Zak 
phase between the topologically trivial and non-trivial phases of the system is 
equal to π, and is immune to such gauge and unit cell parametrization depen-
dence as shown in Figure 5. As a result the experimental measurement of the 
difference in the geometric phase was attributed to the observation of the differ-
ence in the Zak phase. Since the difference in the Pancharatnam-Zak phase be-
tween the topologically trivial and non-trivial phases of the model is also equal 
to π, the experimental measurement of Atala et al. is inconclusive in determining 
whether Zak phase or Pancharatnam-Zak phase is the correct expression for the 
geometric phase in such a system. These experiments are insensitive to the ab-
solute value of the geometric phase. 

6. Discussion 

In this paper, we provide a correct and consistent understanding of the notion of 
the geometric phase in 1D periodic lattice system weakly perturbed by electro-
magnetic field. The expression for the Pancharatnam-Zak phase, which is the 
geometric phase acquired by an electron traversing the Bloch band while moving 
in the lattice, is found, and the underlying mathematical structure is unveiled. 
Our work cures both the flaws of the popular Zak phase, its dependence upon 
the choice of origin of the unit cell and on the gauge choice. 

The Pancharatnam-Zak phase is a quintessentially geometric object insensi-
tive to the choice of gauge and unit cell origin. In the case of systems with inver-
sion symmetry, it is found that the Pancharatnam-Zak phase acts as a topologi-
cal index characterizing the band, which can either be equal to 0 or π. An explicit 
calculation of this geometric phase is demonstrated for the SSH model, and its 
absolute value is found to correctly predict the presence/absence of the gapless 
edge states. Our estimation of this geometric phase is also found to be in agree-
ment with the observation of Atala et al. [27] wherein the difference of the geo-
metric phases in the topological and trivial phases of the model was measured. 
Nevertheless, it would be exciting to experimentally confirm the calculated val-
ues of the single-particle Pancharatnam-Zak phase separately in the topological 
and trivial phases of the SSH model by generalizing the current experimental 
schemes [27] [46] [47] [48] [49] [50]. 

A many-particle generalization of this geometric phase for a filled band case is 
obtained, and its physical implications are highlighted. Our work would be use-
ful in unambiguous characterization of many physical properties including 
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quantized particle transport, edge modes and electrical polarization in 1D di-
electric materials in terms of the geometric phase. 
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Appendix 
Appendix A 

Let us consider a set of unit normalized states ( )y s , which are continuously 
parametrized by a monotonically increasing real parameter s ( 0 s≤ ≤ Λ ). Then 
the infinitesimal distance dl  between the states ( )y s  and ( )dy s s+  is 
defined as ( ) ( )2dl y s y sδ δ= , where  

( ) ( ) ( ) ( )d dsy s y s s y s y s sδ = + − ∂ . This can be rewritten to the leading 
order to read:  

 ( ) ( )2 2d d .s sl y s y s s= ∂ ∂                    (52) 

In quantum mechanics, the states ( )y s  and ( ) ( )ei s y sΛ  (for some arbitrary 
function ( )sΛ ) represent the same quantum state of the system, and hence any 
physically meaningful quantity must be insensitive to such a gauge transforma-
tion. Unfortunately the metric ( ) ( )s sy s y s∂ ∂  is not invariant under such a 
gauge transformation. It can be salvaged with the replacement of partial deriva-
tive s∂  with that of the covariant derivative, ( ) ( )s s sD y s y s= ∂ − ∂ . The 
gauge covariant metric then obtained is ( ) ( )s sD y s D y s , so that the covariant 
distance dl  is now defined as:  

 ( ) ( )2 2d d .s sl D y s D y s s=                     (53) 

This allows us to define a finite distance L between the states ( )0y  and 
( )y Λ , as one walks along the given curve ( )y s :  

 ( ) ( )
0

d .s sL s D y s D y s
Λ

= ∫                   (54) 

It must be mentioned that this distance is invariant under the gauge transforma-
tion ( ) ( ) ( )ei sy s y sΛ→  by design, and hence L is actually the distance be-
tween the two density matrices ( ) ( )0 0y y  and ( ) ( )y yΛ Λ , rather than 
the corresponding vectors. As shown in Refs. [31] [32], functionally extremising 
this distance provides us with the unique shortest distance geodesic curve 

( ) ( )y l y l  , which is defined by the states ( )y l  ( 0 l≤ ≤ Λ ):  

 ( ) ( ) ( ) ( ) ( )( )e sin 0 e sin ,
sin

i l
iy l l y l y

θ
θ

Λ
−= Λ − + Λ

Λ
       (55) 

connecting initial state ( )0y  to the final state ( )y Λ . Here, the angle θ  is 
the argument of the overlap ( ) ( )Arg 0y yθ = Λ . It must be noted that two 
curves ( )y s  and ( ) ( )ei s y sΛ

  represent the same geodesic curve ( ) ( )y l y l   
and the local gauge transformation factor can not change the distance L tra-
versed by them. These geodesic curves are of great interest in the context of 
geometric phase, since the phase ( ) ( )Arg 0y yθ = Λ  is expressible as a line 
integral along this geodesic curve:  

 ( ) ( ) ( ) ( )
0

Arg 0 d .ly y i l y l y l
Λ

Λ = ∂∫               (56) 

Note that in the above treatment, no restriction is assumed on the choice of the 
initial and final states, ( )0y  and ( )y Λ  respectively. Utilizing this freedom, 
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one can choose any two states in the Hilbert space as the initial and final states, 
implying that the phase of the overlap between any two such states is indeed given 
by the line integral of what is called the connection ( ) ( ) ( )lA l i y l y l= ∂  
evaluated along the geodesic connecting them. 

Appendix B 

The purpose of this appendix is to clarify the mathematical structure behind the 
Pancharatnam-Zak phase and some remarks regarding the ambiguities of the 
Zak phase. 

Consider some general quantum system at hand defined over the Hilbert 
space  . In the space of unit normalised states { }| 1ψ ψ ψ= ∈ =  , we 
identify all the states which satisfy ψ α ψ′ = , where α  is any complex 
number with unit modulus. This defines the projective Hilbert space, which is 
often called the Ray space  . It is evident that this ray space, is in fact, the 
space of density matrices corresponding to each normalized state. So we now 
have a ( )1U  fibre bundle { }, ,π=   , where :π →   is the projec-
tion that takes each element p∈  to the fibre on which it lies. Vectors in the 
tangent space pT   which project down to zero in   are called vertical vec-
tors. This defines a natural connection on the fibre bundle: Horizontal subspaces 
at p∈  are defined as those orthogonal to vertical vectors at p. This connec-
tion is often called the universal connection and has been studied in Ref. [51]. It 
is called the universal connection since any ( )1U  bundle over a manifold B can 
be obtained by embedding B in   and pulling back the structure on   [52]. 

Now given any smooth curve ( )c t  ( 0 t≤ ≤ Γ ) in   and an initial point 
( )( )1 0p cπ −∈  in  , we can define its unique lift say ( )c t  to  , given by 

vectors ( )y t , such that ( ) ( ) 0ty t y t∂ = . If ( )c t  is a closed curve in  , 
its lift ( )c t  in general may be open, that is, the two ends of ( )c t , specified by 
states say ( )0y  and ( )y Γ  are related by a unit modulus complex number 
δ : ( ) ( )0y y δΓ = . This defines the holonomy δ  of the universal connec-
tion along the curve ( )c t . 

The structure defined above is well studied in the mathematical literature. It is 
purely geometrical, and no reference to the dynamics has been made up till now. 
Invoking the discussion in Section (2) let us identify the closed curve ( )c t  de-
fined by ( ) ( )y t y t  with the closed curve formed by ( ) ( )t tψ ψ  as de-
fined by the time evolution, conjoint with the geodesic ( ) ( )t tψ ψ′ ′ . Then 
one immediately sees that the geometric phase (4) is intimately related to the 
holonomy Arggγ δ=  of the universal connection. 

One can naturally apply this notion further without any ambiguities to the 
quantum system discussed in Section (4) and identify the closed curve ( )c t  
with adiabatic evolution curve generated by cell periodic Bloch states  

( ) ( )n nu uα α  (for 0 2 aα≤ ≤ π ) conjoint with the geodesic curve  
( ) ( )n nu l u l′ ′  ( 0 l≤ ≤ Λ ), as shown in Figure 3. This shows that the Pancha-

ratnam-Zak phase as expressed in (26) measures the holonomy of the connec-
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tion, and is indeed a mathematically well defined object. 
Moore [53] had argued that the notion of the geometric phase in the periodic 

lattice problem is intrinsically ambiguous. He explores a mathematical structure 
in which a Hilbert space is attached to each k point of the Brillouin zone (which 
is considered as the parameter space). This structure results in an ambiguity in 
the connection of a bundle over the parameter space, which manifests as a coor-
dinate and gauge dependence of the geometric phase, coinciding with the find-
ings of Zak [15]. The author made a case for the justification of these ambigui-
ties on some physical grounds invoking the works of Resta [18], and King-Smith 
& Vanderbilt [16], on polarization. A moment’s reflection will convince the 
reader that there cannot be any physical ground justifying the gauge dependence 
of an observable physical quantity like the geometric phase, which has been 
measured in several experiments. 

From the treatment presented in this paper, it is amply clear that when one 
invokes the most general definition of the geometric phase, as summarised in 
Section (2), no ambiguities of any kind are encountered, as we have explicitly 
shown. 

 

https://doi.org/10.4236/am.2023.141005

	A Gauge-Invariant Geometric Phase for Electrons in a One-Dimensional Periodic Lattice
	Abstract
	Keywords
	1. Introduction
	2. Geometric Phase via Pancharatnam Route 
	3. Periodic Potential Problem 
	4. Geometric Phase in the Periodic Potential Problem 
	4.1. Single-Particle Case 
	4.2. Many-Particle Case

	5. Explicit Example 
	6. Discussion
	Acknowledgements
	Conflicts of Interest
	References
	Appendix
	Appendix A
	Appendix B


