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A B S T R A C T 

We present a Bayesian re-analysis of the sk y-av eraged 21-cm e xperimental data from SARAS2 using nested sampling 

implemented with POLYCHORD , spectrally smooth foreground modelling implemented with MAXSMOOTH , detailed systematic 
modelling and rapid signal emulation with GLOBALEMU . Our analysis differs from previous analysis of the SARAS2 data through 

the use of a full Bayesian framework and separate modelling of the foreground and non-smooth systematics. We use the most 
up-to-date signal models, including Lyman- α and CMB heating parametrized by astrophysical parameters such as star formation 

ef ficiency, X-ray heating ef ficiency, minimal virial circular velocity of star forming galaxies, CMB optical depth, and the low 

energy cutoff of the X-ray spectral energy distribution. We consider models with an excess radio background above the CMB 

produced via radio emission from early galaxies and parametrized by a radio production efficiency. A non-smooth systematic 
is identified and modelled as both a frequency damped sinusoid introduced by the electronics and separately from the sky. 
The latter is modulated by the total efficiency of the antenna and marginally fa v oured by the data. We consider three different 
models for the noise in the data. The SARAS2 constraints on individual astrophysical parameters are extremely weak, ho we ver, 
we identify classes of disfa v oured signals. We weakly disfa v our standard astrophysical models with high Lyman- α fluxes and 

weak heating and more confidently disfa v our exotic models with high Lyman- α fluxes, low X-ray efficiencies, and high radio 

production efficiencies in early galaxies. 

K ey words: cosmology: observ ations – dark ages, reionization, first stars – early Universe. 
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 I N T RO D U C T I O N  

he global (sk y-av eraged) 21-cm signal from Cosmic Dawn and the
poch of Reionization (EoR) is a theoretically observable average 
eviation between the spin temperature, T s , of neutral hydrogen 
nd the radio background, T r (typically assumed to be the Cosmic
icrowave Background (CMB)]. The spectral structure of the signal, 

haracterized by an absorption feature and potential emission, can be 
sed to infer information about the large-scale structure formation in 
he early universe, star formation, as well as thermal and ionization 
istories of the intergalactic medium (IGM; Furlanetto, Oh & Briggs 
006 ; Pritchard & Loeb 2012 ; Barkana 2016 ). 
Theoretical models of the global 21-cm signal (e.g. Visbal et al. 

012 ; Fialkov & Barkana 2014 ; Mirocha 2014 ; Cohen et al. 2017 ;
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eis, Fialkov & Barkana 2021 ) use a set of astrophysical parameters
o define the structure of the signal such as the star formation
fficiency, f ∗, the minimal virial circular velocity of star forming
alaxies, V c , the X-ray efficiency of sources, f X , the slope of the X-ray
pectral energy distribution (SED), α, the low energy cutoff of the X-
ay SED, E min , 1 the mean free path of ionizing photons, R mfp and the
MB optical depth, τ . The identification of a global signal and subse-
uent determination of these parameters is the subject of ongoing ex-
erimental work using a variety of different techniques: Shaped An- 
enna measurement of the background RAdio Spectrum (SARAS3; 
irish et al. 2020 ; Nambissan et al. 2021 ; Raghunathan et al. 2021 ),
xperiment to Detect the Global Epoch of Reionization Signature 

EDGES; Bowman et al. 2018 ), Radio Experiment for the Analysis
 This parameter has previously been referred to in the literature as νmin . We 
ake the change in notation here to clarify that this is an energy. 
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f Cosmic Hydrogen (REACH; de Lera Acedo 2019 ), Probing Radio
ntensity at High-Z from Marion (Philip et al. 2019 ), Large-aperture
xperiment to Detect the Dark Ages (LEDA; Price et al. 2018 ),
ark Ages Polarimeter PathfindER ( https://www.colorado.edu/pro

ect/dark- ages- polarimeter- pathfinder/), Mapper of the IGM Spin
emperature ( http:// www.physics.mcgill.ca/ mist/ ), among others. 
In 2018, the EDGES collaboration reported the detection of an

bsorption trough at 78 MHz (Bowman et al. 2018 ). Ho we ver, the
eported feature is approximately three times deeper 2 than the current
tandard theoretical predictions (Reis et al. 2021 ). While the excess
epth can be explained theoretically with an excess radio background
ERB) abo v e the CMB (Bowman et al. 2018 ; Ewall-Wice et al. 2018 ;
eng & Holder 2018 ; Jana, Nath & Biermann 2019 ; Mirocha &
urlanetto 2019 ; Fialkov & Barkana 2019 ; Reis, Fialkov & Barkana
020b ) or interactions between dark matter and baryons (Barkana
018 ; Fialkov, Barkana & Cohen 2018 ; Barkana et al. 2018 ; Berlin
t al. 2018 ; Ko v etz et al. 2018 ; Mu ̃ noz & Loeb 2018 ; Slatyer & Wu
018 ; Liu et al. 2019 ) there are concerns about the data analysis and
otential presence of systematics in the publicly available EDGES
ata (Hills et al. 2018 ; Bradley et al. 2019 ; Singh & Subrahmanyan
019 ; Sims & Pober 2020 ; Bevins et al. 2021a ). 
Sev eral e xperiments, both single antenna and interferometers, have

rovided constraints on the parameter space of the 21-cm signal at
edshifts corresponding to the EoR: Hydrogen Epoch of Reionization
rray (HERA; The HERA Collaboration 2022 ), LOFAR (Ghara et al.
020 ; Greig et al. 2020b ; Mondal et al. 2020 ), MWA (Greig et al.
020a ; Ghara et al. 2021 ), EDGES (Monsalve et al. 2017 , 2018 ,
019 ), and SARAS2 (Singh et al. 2017 , 2018b ). We note that the
arametrization and modelling of the signals, as well as the prior
anges, are not al w ays consistent across the literature. Ho we ver,
n general, the conclusions disfa v our signals with deep absorption
eatures, within the band of each instrument, from inefficient X-ray
eating and a sharp reionization feature. 
In this paper, we present a re-analysis of the SARAS2 data,

hich targeted the EoR at low redshifts (high frequencies). Previous
nalysis of 63 h of night-time observations, between October 2016
nd July 2017, at the Timbaktu Collective in Southern India with the
ARAS2 instrument concluded that scenarios with rapid reionization
nd weak X-ray heating were disfa v oured by the data (Singh et al.
017 , 2018b ). In this analysis, the authors used initially a Bayesian
ikelihood ratio test to determine whether the presence of particular
ignal models, from a simulated set of 264, were fa v oured in the data
r not (Singh et al. 2017 ). This was followed by a detailed frequentist
pproach that ruled out a larger number of simulated signals from
he same set of models and using the same data (Singh et al. 2018b ).
f the tested scenarios nine were disfa v oured by the data in Singh

t al. ( 2017 ) and 20, of which 15 were rejected with a significance
 5 σ , were rejected in Singh et al. ( 2018b ). There was no reported

etection from the analysis. In both cases, high-order polynomials
ere used to model the foreground and systematics, in the belief

hat any present in the data are smooth, in combination. A high level
ummary of the differences between the analysis in this paper and
he previous analysis of the SARAS2 data can be found in Table 1
nd these are further discussed below. 
NRAS 513, 4507–4526 (2022) 

 Note that this value is often reported as two times deeper and is based on the 
aximum predicted depth, ≈250 mK of the global signal from simulations 

ike those in Cohen et al. ( 2017 ). Ho we ver, more recent simulations, including 
yman- α and CMB heating, by Reis et al. ( 2021 ) report a maximum predicted 
epth of ≈165 mK approximately three times shallower than the reported 
500 mK signal from EDGES (Bowman et al. 2018 ). 
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Here, we determine parameter constraints o v er broad prior ranges
sing the latest astrophysical models of the global 21-cm signal
Reis et al. 2020b , 2021 ), representing an impro v ed understanding
f the standard astrophysical (STA) picture, and the nested sampling
lgorithm (Skilling 2004 ) POLYCHORD (Handley et al. 2015a , b ). We
se models that include Lyman- α heating (Madau, Meiksin & Rees
997 ; Chen & Miralda-Escud ́e 2004 ; Furlanetto & Pritchard 2006 ;
huzhoy & Shapiro 2007 ), CMB heating (Venumadhav et al. 2018 ),
nd multiple scattering of Lyman- α photons (Semelin, Combes &
aek 2007 ; Naoz & Barkana 2008 ; Baek, S. et al. 2009 ; Visbal &
cQuinn 2018 ; Molaro et al. 2019 ; Reis, Barkana & Fialkov 2020a ).

he effects on the global signal of these physical processes have
een understood for some time but the magnitude of those effects
 v er a larger parameter space were not understood until recently
Mittal & Kulkarni 2020 ; Villanue v a-Domingo, Mena & Miralda-
scud ́e 2020 ; Reis et al. 2021 ). Additionally, we study astrophysical
cenarios with a wide range of radio production efficiencies, f radio , for
arly galaxies. A subset of the latter models could explain EDGES
sing an ERB. This is the first time that a full Bayesian analysis of
ata from a global 21-cm experiment has been performed with these
pecific astrophysical simulations. We note, ho we ver, that the value
f f radio has previously been constrained using the amplitude of the
DGES absorption feature (Reis et al. 2020b ) 3 and more recently
sing upper limits on the power spectrum from the HERA (The
ERA Collaboration 2022 ). 
In this work, we use the recently developed emulator GLOBALEMU

Bevins et al. 2021b ) that we train on sets of signal models from
eis et al. ( 2020b , 2021 ). It has been shown that global signal
mulators, such as 21CMGEM (Cohen et al. 2020 ), can be used for
uick interpolation of the signal across the astrophysical parameter
pace (Monsalve et al. 2019 ). GLOBALEMU is a flexible framework
hat can easily learn different simulations of the global signal and
as been shown to be faster and more accurate than the previous
tate of the art (Cohen et al. 2020 ). We provide more details on the
ccuracy of each trained instance of GLOBALEMU in Section 3.4 . 

We illustrate the presence of a sinusoidal systematic in the data
nd attempt to physically model the structure in a manner which is
ndependent of the foreground model. We use two separate models
ach representing the introduction of a systematic at different points
n the SARAS2 experiment. The moti v ation for each model is
xplained in Section 3.3 . 

The identification of the systematic is driven by the application
f MAXSMOOTH (Bevins 2020 ; Bevins et al. 2021a ) to model the
oreground and smooth systematics in the data with a model that
as constrained deri v ati ves and resultant smooth properties based on
aximally smooth functions (MSFs; Sathyanarayana Rao et al. 2015 ,

017 ). The moti v ation behind the use of MAXSMOOTH is two-fold.
irst, the SARAS2 antenna is designed and has been shown to have
 maximally smooth reflection coefficient and efficiencies (Singh
t al. 2018a ). Secondly, the dominant foregrounds in global 21-cm
xperiments from Galactic and extragalactic synchrotron and free–
ree emitting sources are expected to be smooth power laws (Bernardi
t al. 2009 ; Sathyanarayana Rao et al. 2017 ; Ni t ¸u et al. 2021 ). 

In Section 2 , we discuss briefly the SARAS2 experiment and the
ata that we are analysing. This is followed by a more detailed
escription of the modelling that we perform in Section 3 , a
iscussion about the sensitivity of the data to specific models in
 For clarity, note that we assume the astrophysical scenario of enhanced radio 
mission from galaxies (Reis et al. 2020b ), and not the more exotic scenario of 
n external radio background from the dark ages (Fialkov & Barkana 2019 ). 

https://www.colorado.edu/project/dark-ages-polarimeter-pathfinder/
http://www.physics.mcgill.ca/mist/
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Table 1. A high level summary of the differences between the previous analysis of the SARAS2 data and the work performed in this paper. The differences are 
expanded on primarily in Section 3 . 

Singh et al. ( 2017 ) Singh et al. ( 2018b ) This work 

Analysis type Likelihood ratios testing preference 
of the data for the presence or 
absence of signals. 

Frequentist approach based on that 
used in Monsalve et al. ( 2017 ). 

Bayesian nested sampling using POLYCHORD 

(Handley, Hobson & Lasenby 2015a , b ). 

F ore ground modelling Unconstrained polynomials of varying orders [e.g. N = 4–8 in (Singh et al. 
2018b )]. 

Smooth foreground models based on 
Maximally Smooth Functions and 
implemented with MAXSMOOTH (Bevins et al. 
2021a ). 

Systematic modelling Assumed to be smooth and modelled with foreground model. Identified through use of smooth foreground 
model and separately modelled with 
physically moti v ated functions. 

Noise modelling Derived by accounting for RFI, 
system temperature, absolute 
calibration and differences between 
adjacent channels. 

Mock Gaussian distributed noise 
based on system attributes. 

A set of Gaussian models with constant, 
frequency damped and relative weights based 
amplitudes. 

Signal modelling A library of 264 STA models with no additional radio background abo v e the 
CMB (Cohen et al. 2017 ). 

Broader study sampling across large prior 
ranges, for both STA models (Reis et al. 2021 ) 
and exotic astrophysical models with ERBs 
(Reis et al. 2020b ), using the signal emulator 
GLOBALEMU (Bevins et al. 2021b ). 
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ection 4 , and a summary of our results in Section 5 . We draw
onclusions in Section 6 . 

 T H E  SARAS2  DATA  

ne of the primary causes of systematics in global 21-cm exper- 
ments is chromaticity in the typically very wide beam pattern of
he antenna. Further, sidelobes in the beam and complex reflection 
oefficients can also introduce frequency-dependent structures in the 
ata. The SARAS2 antenna is a short monopole designed to have an
chromatic response. 

In principle, the foreground and systematics in the data from 

he SARAS2 experiment should both be smooth in nature and 
ignificant efforts were made to ensure that the efficiency and 
eflection coefficients in the data were smooth functions (Singh et al. 
018a ). This has been explored further in Sathyanarayana Rao et al.
 2017 ), where it was shown that simulated observations with the
ARAS2 antenna of the foregrounds (produced with the Global 
odel for the Radio Sky Spectrum, Rao et al. 2016 ) in a global

1-cm experiment are smooth in structure to within a few mK. This
s also expected generally, in the absence of ionospheric effects (Shen 
t al. 2021 ), for an achromatic beam like SARAS2. 

SARAS2 is deployed in the remote radio quiet Timbaktu Collec- 
ive in Southern India (lat = + 14. ◦242328, long = 77. ◦612606E).
he antenna is comprised of a sphere mounted on top of an

nverted cone resting on a circular aluminium disc. The components 
re smoothly joined tangentially and placed abo v e the receiver 
lectronics at the site. The electronics are battery powered and the 
ite is flat and open. An optical fibre is used to connect the receiver
o a signal processing unit situated 100-m away. 

The beam pattern of the SARAS2 antenna is simulated, measured, 
nd shown to be frequency-independent (Singh et al. 2018a ). The 
attern is omni-directional and constant in azimuth, with nulls at 
enith and horizon, a peak at 30 degrees in ele v ation and a half-
ower beam width of 45 degrees in elevation. A 3D visualization can
e found in fig. 8 of Sathyanarayana Rao et al. ( 2017 ). 
The antenna temperature, assuming the presence of a global 21-cm 

ignal T 21 , would correspond to 

 A = ( T 21 + T gr + T fg ) ηt , (1) 

here T fg accounts for the Galactic and extragalactic foregrounds 
nd ηt corresponds to the total efficiency of the SARAS2 antenna. 
 gr refers to ground emission, and for the analysis presented here,
e assume that the ground emission is smooth or equi v alent that

he ground under the antenna is homogeneous. As a result, we can
ubsume the ground emission term into our smooth foreground model
nd treat the antenna temperature as being given by 

 A = ( T 21 + T fg ) ηt . (2) 

ote that the assumption of a homogeneous ground under the antenna 
ay not hold and that this may cause the introduction of non-

mooth systematics into the data (see Section 3.3 ). The sum T W 

=
 T 21 + T fg ) represents the beam-weighted sky power and ηt is the
roduct of the radiation and reflection efficiency (Singh et al. 2018a ).
t therefore accounts for the loss due to an impedance mismatch 
etween the antenna and the transmission line to the receiver, as
ell as the frequency-dependent coupling of the beam-weighted 

ky temperature to the antenna. Estimates of ηt are made using the
MOSS simulations and measurements of the differential antenna 

emperature as the sky passes through the beam. The calibration and
adio Frequency Interference (RFI) rejection are detailed in section 
 of Singh et al. ( 2018a ) and summarized in Singh et al. ( 2017 ). We
re assuming that the data have been calibrated to be in Kelvin units
f antenna temperature and that there is no residual RFI. 
The data can be seen in Singh et al. ( 2017 , 2018b ), and we discuss

he sensitivity of the data to the global 21-cm signal in Section 4 after
ntroducing the signal models in the following section. 

 M O D E L L I N G  

he Bayesian nested sampling tool, POLYCHORD (Handley et al. 
015a , b ), is used to fit two different systematic models and two
ifferent parametrizations of the global signal to the SARAS2 data. 
MNRAS 513, 4507–4526 (2022) 
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Table 2. The tested frequency-dependent and independent standard deviation 
models for the assumed Gaussian noise in the SARAS2 data. In the frequency 
damped noise model, ν0 is the central frequency in the band. The origin of 
the relative weights, W ( ν), is discussed in Section 3.1 . 

Noise model σ Prior Prior type 

Constant A σ A σ = 10 −3 –10 −1 mK Log uniform 

Frequency 
damped 

A σ

(
ν
ν0 

)−βσ

A σ = 10 −4 –10 −1 mK Log uniform 

βσ = 0–5 Uniform 

Relative weights A σ W ( ν) A σ = 10 −2 –10 −1 mK Log uniform 
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4 For clarity, the F in PSF and MSF stands for ‘function’ and elaborate MSFs 
can be designed with exponential or trigonometric basis functions. Ho we ver, 
the models are typically polynomial with a finite number of deri v ati ves. A 

discussion of this is found in section 2 of Bevins et al. ( 2021a ). 
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e model the foreground using the software MAXSMOOTH (Bevins
020 ; Bevins et al. 2021a ) and emulate physical models of the global
ignal with GLOBALEMU (Bevins et al. 2021b ). 

In practice, we model the foreground as T ∗fg = T fg ηt . Throughout
he rest of the paper, we generally assume, unless otherwise stated,
hat when discussing the foreground we are including in that
efinition ηt and any additive smooth systematics. We consider
he addition of non-smooth systematics, T NS , into equation ( 2 ) in
ection 3.3 . The details of the different components of our model are
iven in the following sections. 
The Bayesian modelling techniques used here are increasingly

ommon practice in 21-cm cosmology (e.g. Monsalve et al. 2019 ;
hara et al. 2020 , 2021 ; Mondal et al. 2020 ; Chatterjee, Choudhury &
itra 2021 ) and form the basis of the data analysis pipeline for
EACH [see Anstey, Acedo & Handley 2021 ; Sims et al. (in
reparation)]. We briefly discuss the nested sampling algorithm and
he reproducibility of our results in Appendix A . 

.1 Noise modelling 

or all of the fits performed in this paper, we assume that the noise
n the data is Gaussian distributed and use a Gaussian log-likelihood
unction 

log L = 

∑ 

i 

( 

−1 

2 
log 

(
2 πσ 2 

) − 1 

2 

(
T A ( νi ) − T M 

( νi ) 

σ

)2 
) 

, (3) 

here T M 

stands for the sum of the model components described
elow. Our assumption is supported by assessment of the noise,
hich shows a Gaussian distribution, in data that have passed through

he SARAS2 radiometer, using a series of different terminations
easured in the lab (Singh et al. 2018a ). Support is also given by

revious analysis of the data, in which the residuals after foreground
odelling with a high-order polynomial have been shown to be
aussian distributed (see Singh et al. 2017 , and Appendix B ). 
Typically, the noise is assumed to be frequency independent, how-

ver, in practice, the noise is dependent on the system temperature,
hich is dominated by the sky temperature and is a function of

requency. In this paper, we consider three different approximations
o the standard deviation, σ , of the assumed Gaussian noise, each
ith a different frequency dependence. The first is a constant value
f σ and the second is given by a frequency damped amplitude. The
atter comes from the naive expectation that σ should be proportional
o T W 

, which means that the standard deviation should decrease
ith increasing frequency, following the trend of the dominant

oregrounds. Our third model uses the relative weights, W ( ν), for
he data which are dependent on the RFI e xcision, inte gration time,
nd system temperature (see fig. 4 in Singh et al. 2018b ). The noise
odels are summarized in Table 2 , and we discuss the results when
tting with the proposed models in Section 5.1 . Previous analysis
NRAS 513, 4507–4526 (2022) 
as indicated that the standard deviation on the noise is likely to
e constant across the band in the calibrated and sk y-av eraged data
Singh et al. 2017 , 2018b ). 

A detailed study of likelihood and noise modelling in global 21-cm
xperiments is in preparation by Scheutwinkel et al. 2022 . 

.2 For egr ound modelling 

reviously, the foreground in the SARAS2 data set has been modelled
n combination with systematics, using a high-order polynomial ( N =
–8; Singh et al. 2017 , 2018b ). Ho we ver, while a polynomial will fit
ut both the foregrounds and smooth systematics, it could equally fit
ut part or all of any global signal and any non-smooth systematics
n the data. 

We model the foreground and smooth systematics using a variant
f an MSF (Sathyanarayana Rao et al. 2015 , 2017 ), called as partially
mooth function (PSFs; Bevins et al. 2021a ). An MSF has deri v ati ves
f order greater than or equal to two constrained so that the function
oes not hav e an y inflection points or higher order non-smooth
tructure (i.e. the constrained deri v ati ves do not cross zero in the
and). PSFs are closely related to MSFs but more general in their
efinition and can have an arbitrary set of constrained deri v ati ves. 4 

The SARAS2 data have both a turning point and inflection point
hat can be attributed to the foreground multiplied by ηt (Singh
t al. 2017 , 2018b ). We therefore model the PSF foreground with
eri v ati ves of order m ≥ 3 constrained according to 

d m T ∗fg 
dνm 

� 0 or 
d m T ∗fg 
dνm 

� 0 , (4) 

ith the software MAXSMOOTH . This prevents the introduction of
igh-order non-smooth structure into the model but allows the
oreground model to fit for a turning point (with d T ∗fg /d ν = 0 at some
requency, ν, in the band) and inflection point (with d 2 T ∗fg /dν2 = 0).

We test the range of built-in MAXSMOOTH foreground models (see
evins et al. 2021a ) and find that 

 

∗
fg = 

N−1 ∑ 

k= 0 

a k ( ν − ν0 ) 
k , (5) 

s the best-fitting model with N ≥ 10. Here, ν0 is the central
requency across the bandwidth. Note that MAXSMOOTH is not a
ayesian algorithm and the model parameters a k for the foreground
re not fitted by POLYCHORD . Instead, we wrap MAXSMOOTH inside
he call to POLYCHORD and at each sample point MAXSMOOTH fits the
oreground parameters, a k , to T A − T 21 ηt − T NS . 

Fig. 1 shows the resultant residuals, in orange, when fitting the
ata with the PSF model across the whole SARAS2 bandwidth. The
esiduals are large in magnitude and show a sinusoidal structure that
ay be the result of systematics in the data and/or of inaccurate

oreground modelling. 
In the previous analysis of the SARAS2 data, in which parameter

onstraints were determined from a discrete set of signal models,
he bandwidth used was optimized on a per-signal basis (Singh et al.
017 , 2018b ). In that work, it was frequently found that the bandwidth
10–180 MHz is the optimum to minimize the signal-to-noise ratio
or the 264 tested signal models 
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Figure 1. A comparison of the residuals when fitting the SARAS2 data 
with a 10th order partially smooth function with deri v ati ves of order m ≥
3 constrained across the full SARAS2 band (orange) and a set of reduced 
bandwidths. We achieve a significantly lower RMS in the reduced bandwidths 
potentially improving the signal-to-noise ratio in the data. This indicates 
either a poor foreground fit across the full bandwidth, which can introduce 
non-smooth structure, or the presence of multiple non-smooth systematics 
dominant at different frequencies. We proceed to perform our analysis in the 
reduced bandwidth 110–180 MHz based on the results presented in previous 
work (Singh et al. 2017 , 2018a ) and in order to retain as much data as possible. 
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In this work, the turning point and inflection point may be signif-
cantly distorting the foreground model leading to the introduction 
f spurious non-smooth structure in the residuals, 5 despite allowing 
or their presence in the modelling, and so we attempt to fit with a
SF in the reduced range ν = 110–180 MHz ef fecti v ely remo ving

he turning point. We achieve significantly smaller residuals when 
tting in this band, as shown in purple in Fig. 1 . The difference in
agnitude may suggest a better quality foreground fit in the band 

10–180 MHz, but it may also indicate the presence of multiple non-
mooth systematics in the data, each of which may dominate to a
ifferent degree at different frequencies. 
A further reduction in the upper bound on the frequency range 

eads to a further reduction in the RMS. Ho we ver, we still see the
ame sinusoidal structure at low frequencies. In practice, we could 
educe the band to 110–140 MHz, removing both the turning point 
nd inflection point, which approximates to one full cycle of the 
inusoidal structure in both sets of residuals in the two upper panels
f Fig. 1 and we would see a significantly lower RMS ( ≈12 mK,
hen fitting with the proposed PSF model as can be seen in the
 This is unlikely and it can actually be shown that PSFs can be effectively used 
o reco v er the noise in data sets that feature inflection points (see ‘Turning 
oints and Inflection Points’ in ht tps://maxsmoot h.readthedocs.io/en/latest /m 

xsmooth.html ). 

p

r
m
a  

i  
ottom panel of Fig. 1 ). This is because the systematic structure in
he data in this frequency range co v ers one period of oscillation and
s therefore smooth to a sufficient level that it is remo v ed by the
oreground model. Further, if we remove the inflection point in the
ata and fit in the range 160–200 MHz, we see a sinusoidal structure
hat is partially consistent with the purple residuals in Fig. 1 . 

Throughout the rest of the paper, in accordance with the previous
ARAS2 analysis, to simplify the modelling and to keep as much
ata as possible, we use the reduced bandwidth 110–180 MHz. The
odelling of the non-smooth systematic structure is considered in 

he following section. 
We note that contributions from foreground polarization can 

enerally be expected in the data. Modelling of the effects of
olarization is non-tri vial, ho we ver, the intensity of correspond-
ng contributions is dependent on a number of factors (Spinelli, 
ernardi & Santos 2018 ). In Spinelli, Bernardi & Santos ( 2019 ), the
uthors show that contributions from polarization have significant 
on-smooth structure, and we would expect that, if this was present
nd dominant in our data, it would be obvious after modelling the
oreground with a PSF. Ho we ver, this is not the case in our residuals.
urther, to a first approximation, we expect that the polarized signal
ill be proportional to 1/ ν2 (Spinelli et al. 2018 ) and larger at

o wer frequencies, follo wing the opposite trend to our residuals.
herefore, any contribution from foreground polarization in our 
ata can be considered subdominant and subsumed in our noise 
odelling. 
In comparison to the predicted maximum depth of the global 21-

m signal ( ≈165 mK for STA signals in the band 110–180 MHz; Reis
t al. 2021 ), the residual RMS, 19.8 mK, appears small in magnitude.
o we ver, as highlighted above and in Singh et al. ( 2017 , 2018b ), any

ignal in the data will be suppressed by the total efficiency of the
ntenna. This is discussed further in Section 3.4 . 

.3 Systematic modelling 

revious analysis has shown the potential presence of sinusoidal 
nd damped sinusoidal systematics in data from several global 
1-cm experiments, using a variety of different radiometers and 
nalysis techniques. One such example, previously mentioned in 
he introduction, is the EDGES data. Hills et al. ( 2018 ) used a
oreground model with spectral index characterized by a six-term 

nconstrained polynomial to identify a 60 mK sinusoidal structure 
n the EDGES data. A subsequent re-analysis of the data in Singh &
ubrahmanyan ( 2019 ) and Bevins et al. ( 2021a ), using MSFs to
odel the foregrounds, identified a similar sinusoidal structure. 

n Bevins et al. ( 2021a ), the authors also re-analysed data from
EDA and identified the presence of a damped sinusoidal systematic 
tructure using MSFs. This conclusion is supported by previous 
nvestigation of the LEDA data in Price et al. ( 2018 ), where the
uthors used a log-polynomial foreground model. 

Currently, systematics and the ambiguity of their causes pose a 
imiting factor in the detection and/or confidence of a detection in
lobal 21-cm experiments. We attempt to physically moti v ate our
odel for the systematic structure in the SARAS2 data and, as a

onsequence of detailed systematic modelling, derive astrophysical 
arameter constraints on the global signal. 
Specifically, we model the damped sinusoidal structure seen in the 

esiduals after foreground subtraction with two different physically 
oti v ated systematic models, representing the introduction of power 

t different points, (A) and (B), in the SARAS2 system as illustrated
n Fig. 2 . Any non-smooth systematic model can be included in
MNRAS 513, 4507–4526 (2022) 
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M

Figure 2. A simplified schematic of a global 21-cm experiment. The 
figure illustrates the two positions at which systematic power could be added 
into T A ; (A) prior to the antenna and (B) after the antenna in the receiver 
electronics denoted by the time dependent gain, G RX ( t , ν). Note, when 
modelling the systematic in the SARAS2 data, we are considering these 
scenarios independently. The former systematic arrives with the signal from 

the sky, T sky ( t , ν, 
), and global signal, T 21 ( ν) if present, and passes through 
the antenna where it is weighted by the beam directivity, D ( ν, 
). The angular 
dependence is integrated out and the systematic is then multiplied by the total 
efficiency of the antenna, ηt ( ν), giving T NS, 2 as detailed in Section 3.3 . The 
systematic introduced in the electronics corresponds to T NS, 1 in Section 3.3 . 
After passing through the electronics, the time dependence is also integrated 
out of the data leaving T A . Figure modified from fig. 2 of Cumner et al. ( 2022 ). 
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Table 3. The prior ranges and prior types used for the systematic and signal 
parameters fitted by POLYCHORD . Note that for the signal parameters the prior 
ranges are defined by the training data. For the excess radio background 
(ERB) signals R rmfp is fixed at 40 Mpc and the X-ray SED is a representative 
of that from X-ray binaries. See Section 3.4 for more details on each model 
component, the training data and the difference between the STA and ERB 

models. 

Parameter Prior Prior type 

Systematic αsys 0–10 Uniform 

A 0–1 K 

P 10–70 MHz 
φ 0–2 π rad 

Signal τ 0.026–0.1 (STA) / 0.035–0.077 
(ERB) 

Uniform 

α 1.3 (STA only) 
E min 0.1–3 keV (STA only) 
R mfp 30 (STA) / 40 (ERB) Mpc 

f ∗ 0.001–0.5 Log-Uniform 

V c 4.2–100 km s −1 

f X 0.0001–1000 
f radio 1–99 500 (ERB only) 
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quation ( 2 ) as an additive term 

 A = ( T 21 + T fg ) ηt + T NS . (6) 

he sinusoidal structure may be introduced by a poor estimate of
t . Ho we ver, when fitting the total efficiency with a best-fitting MSF
f the form given in equation ( 5 ), we find no sinusoidal structure in
he residuals. We also reiterate, for completeness, that the systematic
tructure may be being introduced by poor foreground modelling. 

Ho we ver, the first systematic model, which we refer to as the
amped systematic model, corresponds to power introduced after
he antenna and in the electronics (e.g. see fig. 2 in Singh et al.
018a ) 

 NS , 1 ( ν) = 

(
ν

ν0 

)αsys 

A sin 

(
2 πν

P 

+ φ

)
, (7) 

here αsys is a damping power, A is the amplitude of the systematic,
 is the period, φ is the phase, and ν0 is the central frequency in

he band. We note that the prior range of αsys ranges from 0 to 10
see Table 3 for all of the systematic prior ranges) and as a result
he model can also account for sinusoidal systematics. The fitted
arameters, A , αsys , P , and φ are constant across the band and the
requency dependence comes from the damping factor, ( ν/ν0 ) αsys . 

The second model, the efficiency systematic, is given by 

 NS , 2 ( ν) = ηt 

(
ν

ν0 

)αsys 

A sin 

(
2 πν

P 

+ φ

)
. (8) 

n this case, the systematic structure models are power introduced
rior to the antenna and mediated by the total efficiency which
rovides some damping. Such a systematic could be explained
y activity in the ionosphere o v er the observing period, RFI, or a
reviously unidentified non-smooth component of the foreground. 
The non-smooth structure in the data could also, as highlighted

reviously, be caused by emission from the ground if the assumption
hat this is smooth does not hold. Specifically, structure or layering
n the ground at depths larger than the wavelengths of operation and
elow the penetration depth computed for the soil properties could
ntroduce systematic structure. A discontinuity in the soil below the
ntenna, such as that between the loose top soil, caused by erosion
NRAS 513, 4507–4526 (2022) 
 v er time, and the rock of the Deccan Plateau or from a water table,
ould cause a damped sinusoidal structure to propagate through to
he receiver noise, total efficiency, and antenna temperature. 

Another possible origin of a damped sinusoidal systematic could
e a small clump of foliage or a root system, without significant
oliage abo v e ground, close to the deployment sight. In principle,
oth this and the abo v e ground emission are potential causes of
ystematics that will be mitigated in the latest iteration of the SARAS
xperiment, SARAS3, which has been deployed on a lake (Girish
t al. 2020 ; Nambissan et al. 2021 ; Raghunathan et al. 2021 ). 

It is well-known that the directivity of vertical monopoles (Train-
tti & Figueroa 2010 ) naturally experiences a sinusoidal like fre-
uency response. Such behaviour would correspond to T NS, 2 . We
ote, ho we ver, that the period of the sinusoidal-like structure visible
n the data is faster than what would be expected from a monopole.
he scale of the circular element of the antenna, 43.5 cm in radius,
as chosen such that any reflections from the edges of the disks would
ave a period of ≈350 MHz and the observing band falls within the
rst resonance at 260 MHz (Singh et al. 2017 , 2018a ). Any reflections

n the beam pattern from the edges of the disk would thus be smooth
cross the reduced SARAS2 band and ef fecti vely subsumed by our
mooth foreground model detailed in the previous subsection. 

If we consider the systematic to be real and not a spurious signal
ntroduced by an inaccurate foreground model, then our analysis
ould help to identify a cause because we have two distinct models
epresenting systematics introduced at different points in the experi-
ent. We note that there may be de generac y between the two different
odels but also that the efficiency is an inherent characteristic of the

xperiment and unlikely to mimic generic systematic properties. 

.4 Signal modelling 

he signal emulator GLOBALEMU provides a framework to train
eural networks on different sets of global 21-cm signals. We
an therefore use the latest simulations with the most up-to-date
nderstanding of the signal, and we can analyse parameter constraints
n different astrophysical models. 
The global 21-cm signal is determined by the contrast between the

pin temperature of neutral hydrogen, T s , and the radio background,
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Figur e 3. Top r ow, left to right: a set of 50 example signals that include Lyman- α heating and CMB heating, the equi v alent signals in the band 110–180 MHz, 
and the signals multiplied by the total efficiency of the SARAS2 antenna. Bottom row, left to right: 50 example signals with dif ferent le v els of ERB abo v e the 
CMB, the same signals in the reduced SARAS2 band, and finally the signals multiplied by the total efficiency of the SARAS2 antenna. 

T

T

w  

C
u  

c
C
s  

l  

C  

o  

e  

p
A  

a

3

I  

L
R  

s
b  

t  

g
c  

K  

b  

t
m  

s
a
t  

o
 

s  

E  

i  

a  

i

 

i
d  

w  

t

v  

s
(
f
t

 

l  

o  

r
o

 

o  

2
 

r  

o  

S  

s  

t
 

t
t  

P  

s  

m
 

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/3/4507/6575926 by R
am

an R
esearch Institute user on 08 June 2022
 r , as a function of redshift 

 21 = 

T s − T r 

1 + z 
(1 − e −τ21 ) , (9) 

here τ 21 is the 21-cm optical depth of the IGM (Mesinger 2019 ).
alculated realizations of the global 21-cm signal are achieved by 
sing hybrid techniques and either av eraging o v er large modelled
osmological volumes (2D simulations; e.g. Mesinger, Furlanetto & 

en 2011 ) or directly approximating that average over redshift (1D 

imulations; e.g. Mirocha 2014 ). In this analysis, we use the simu-
ations detailed in Visbal et al. ( 2012 ), Fialkov & Barkana ( 2014 ),
ohen et al. ( 2017 ), Reis et al. ( 2020b , 2021 ) and specifically the sets
f global 21-cm signals presented in Reis et al. ( 2020b , 2021 ). For
ach set of signals, exotic models with an ERB and standard astro-
hysics, respectively, we train neural network emulators with GLOB- 
LEMU . More details about the two sets of signal models we have used
re given in the following sections with examples shown in Fig. 3 . 

.4.1 Standard astrophysical signals 

n this paper, we use the recent simulations of the global signal with
yman- α heating, CMB heating, and multiple scattering presented in 
eis et al. ( 2021 ). We refer to these STA models in the text as the STA

ignals. As stars form in the early universe and Lyman- α coupling 
etween the spin temperature, T s , of the neutral hydrogen and kinetic
emperature of the gas, T k , begins to influence the structure of
lobal signal, Lyman- α, and CMB heating begin to counteract the 
ooling (Chuzhoy & Shapiro 2007 ; Venumadhav et al. 2018 ; Mittal &
ulkarni 2020 ; Reis et al. 2021 ). These heating mechanisms begin
efore the onset of X-ray heating and they lead to a reduction in
he theoretical maximum potential depth of absorption from ≈250 

K (Cohen et al. 2020 ) to ≈165 mK (Reis et al. 2021 ). Multiple
cattering influences the efficiency of Lyman- α coupling, has a weak 
ffect on the maximum depth of the signal, and primarily influences 
he structure of the power spectrum at z > 20 (Reis et al. 2021 )
utside the SARAS2 band. 
We train GLOBALEMU on a set of 5137 realizations of the STA

ignals and test the quality of emulation with a set of 570 models.
ach model spans the redshift range z = 6–39 and the redshift spacing
s given by δz = 0.1. The structure of the signals is determined by
 set of seven astrophysical parameters (further details can be found
n Cohen et al. 2020 ; Bevins et al. 2021b ; Reis et al. 2021 ): 

(i) The star formation efficiency, f ∗: determines the fraction of gas
n dark matter haloes that is converted into stars. The value of f ∗
rives the Lyman- α flux and influences the onset of X-ray heating,
hich determine the depth of the global signal absorption trough and

he ionizing efficiency of sources. 
(ii) The minimal circular velocity, V c : the threshold virial circular 

elocity is proportional to the cube root of the minimum halo mass for
tar formation. Its value is determined by different cooling channels 
molecular and atomic hydrogen) and star-formation-suppressing 
eedback mechanisms. It influences the timing of Lyman- α coupling, 
otal X-ray luminosity of haloes, and reionization. 

(iii) The X-ray efficiency, f X : The value of f X affects the X-ray
uminosity per star formation rate, which in turn influences the depth
f the absorption trough and amplitude of any emission abo v e the
adio background during reionization. Further, f X has a minor effect 
n ionization at recent times. 
(iv) The slope of the X-ray SED, α: the dependence of the structure

f the global signal on α is expected to be very weak (Monsalve et al.
019 ) and its value plays a small role at low redshifts. 
(v) The low energy cutoff of the X-ray SED, E min : this parameter

egulates the fortness of the X-ray SED, and thus has some influence
n the efficiency of X-ray heating at low redshifts co v ered by the
ARAS2 band. While it is not expected to affect the structure of the
ignal significantly, in some cases, it can have more of an impact
han α or R mfp . 

(vi) CMB optical depth, τ : the optical depth is directly related to
he ionizing efficiency of sources, ζ and its value strongly influences 
he redshift of reionization. The value of τ has been determined by
lanck Collaboration VI ( 2020 ) to be 0.055 ± 0.007, and Table 3
hows that this range is explored completely by the prior for the STA
odels. 
(vii) The mean free path of ionizing photons, R mfp : the value

f R mfp affects the rate of ionization of the neutral hydrogen gas
MNRAS 513, 4507–4526 (2022) 
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correcting for the total efficiency of the antenna. 
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orresponding to the gradient of the signal at low redshifts. The
f fects of v arying R mfp are also not expected to influence the structure
f the global signal significantly (see e.g. Monsalve et al. 2019 ). 

The primary reason E min , α, and R mfp are explored in the simula-
ions is because the simulations are also used to determine models
f the power spectrum on which they have a greater influence.
e train GLOBALEMU using all seven astrophysical parameters and

ubsequently perform fits with fixed values of R mfp = 30 Mpc and
= 1.3 (as was done with the EDGES High Band data in Monsalve

t al. 2019 , using the contemporary STA models and signal emulator).
e repeat the analysis in Appendix D , allowing POLYCHORD to fit

or all seven parameters, however, we do not discuss these results
n the main text as we find the effect of including the additional
arameters is minimal. The ranges, equi v alent to the priors, of all of
he parameters sampled in the training and test data sets are given in
able 3 . 
We assess the accuracy of the emulator across the band 110–

80 MHz (or equi v alently z ≈ 7–12). We use a pragmatic target
ccuracy when emulating the signals of on average approximately
0 per cent of the expected noise from a global 21-cm experiment
Bevins et al. 2021b ). This varies based on the experiment with a
alue of 2.5 mK for REACH, 2 mK for EDGES (Bowman et al. 2018 ),
nd approximately 1 mK for SARAS2. Therefore, when emulating
he STA models, we assume a target accuracy between 1 and 2.5

K and use the RMSE metric given by equation ( 7 ) in Bevins et al.
 2021b ). The mean, 95 th percentile and the worst RMSE values from
he test data set of 570 models, with sampling resolution equi v alent
o 0.122 MHz, are 0.8, 1.9, and 6.8 mK, respectively. We find that
nly 29 models have an RMSE larger than ≈1.9 mK, indicating a
igh degree of accuracy. We use a fully connected network with four
idden layers of 16 nodes each to emulate the STA models. 
In practice, a low RMSE in temperature does not necessarily

orrespond to an accurate reco v ery of the astrophysical parameters.
or the analysis performed in this work, this is not a significant

ssue because the reported constraints are weak. We leave a detailed
xploration of emulator accuracy and its affects on parameter
eco v ery for future work. 

.4.2 Excess radio background signals 

ypically, T r in equation ( 9 ) is assumed to be equal to the CMB
emperature. Ho we ver, one of the possible explanations for the larger
han expected absorption feature reported by EDGES (Bowman et al.
018 ) is an ERB abo v e the CMB. In addition, a population of radio
ources at high redshifts could naturally contribute to T r (e.g Feng &
older 2018 ). While there is some evidence for a larger than expected

adio background from ARCADE2 (Fixsen et al. 2011 ) and LWA
Dowell & Taylor 2018 ), there remain some concerns about the
alactic modelling in these works (Subrahmanyan & Cowsik 2013 ).
Reis et al. ( 2020b ) investigated the introduction of an ERB from

igh redshift radio galaxies, and we use the models presented there
n this work, in an attempt to constrain the parameter f radio with the
ARAS2 data. f radio denotes the radio production efficiency of early
alaxies, a value of one corresponds to the present day and the range
f f radio in our training data set is given in Table 3 . We refer to these
xotic astrophysical models throughout the rest of the paper as the
RB models. 
The simulations use a similar parameter description of the global

ignal presented in the previous subsection with the additional
arameter f radio . The value of R mfp is fixed at 40 Mpc when running
he simulations. The X-ray SED is assumed to be from X-ray
NRAS 513, 4507–4526 (2022) 
inaries (Fialkov, Barkana & Visbal 2014 ) and the simulations are
onsequently independent of α and E min . The models also include the
ffects of Lyman- α heating, CMB heating, and multiple scattering. 

The data set contains 4311 training models and 479 test models.
e train GLOBALEMU with the five parameters as inputs; f ∗, V c ,

 X , τ , and f radio . The mean, 95th percentile, and the worst RMSE
alues are 7.3, 27.3, and 125.9 mK, respectively. We use a network
ith four hidden layers, each with 16 nodes as was done with the
TA models and note that, with this training data set, the accuracy
oes not significantly impro v e if we increase the size of the network.
o we ver, the mean accuracy of emulation, 7.3 mK, is within an order
f magnitude of our target accuracy of 1–2.5 mK. The magnitudes of
he signals, after multiplication by ηt , with the largest RMSE values
re significant in comparison to the expected noise and as fractional
ccuracies the worst and 95th percentile results are reasonable. 

 SENSITIVITY  O F  T H E  SARAS2  DATA  TO  

STROPHYSI CAL  PA R A M E T E R S  

hen considering the sensitivity of the SARAS2 data to the global
1-cm signal, it is important to consider that any signal in the data will
e multiplied by the total efficiency of the antenna. As has previously
een discussed and shown in Fig. 3 , this significantly reduces the
agnitude of the signals in the data and given the expected noise 6 

f 11 mK results in a low signal-to-noise ratio. In turn, this would
ake any signal in the data hard to recover. 
Further, the observations co v er a bandwidth expected to include

he EoR that has implications for the types of signals that we expect
o be able to constrain. The EoR window is sensitive to the value
f τ which affects the redshift of reionization and as a result the
aximum amplitude of the global signal. For example, a high value

f τ can lead to an earlier reionization. In the absence of efficient
-ray heating and presence of a lo w Lyman- α flux, the ef fect of τ is

ess significant in the SARAS2 bandwidth. 
Similarly, the value of E min has a more significant effect on the

tructure of the global signal in the SARAS2 band if f X is high.
n this case, the value of E min affects the depth of the signal and
he efficiency of X-ray heating. If we maintain the Lyman- α flux,
.e. onset of Lyman- α coupling, and increase the value of E min , we
educe the efficiency of X-ray heating, move the minimum of the
ignal to lower redshifts, and can create a deep global signal inside
he SARAS2 band. A similar effect can occur if we decrease the
alue of f X from high to low and this is more prominent than that
ntroduced by variation in E min . The analysis should therefore be
ensitive to models with low values of f X and high values of E min . 

In addition, if f X is high, and to a lesser extent if E min is low,
hen we can expect that there will be significant ERB, which will
roduce a prominent and deep signal in the SARAS2 data even after
ultiplication by the total efficiency of the antenna. 
V c and f ∗ determine the strength of the Lyman- α flux, consequent

nset of Lyman- α coupling, and position of the signal minimum.
igh values of f ∗ correspond to a high fraction of the gas in dark
atter haloes being converted into stars, which leads to a high
yman- α flux. The top panels of Fig. 4 show that the strongest signals

n the SARAS2 band after multiplication by the total efficiency are
hose with low Lyman- α fluxes (high V c and low f ∗), whereas the
eakest signals are those with high Lyman- α fluxes (low V c and high

 ∗). Here, we have defined ‘high’ and ‘low’ values of the parameters
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bottom panel shows the previously classified 243 STA signals in grey, in comparison to a further 257 signals in black that do not meet our crude classification 
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indicating a more general sensitivity to the values of f ∗ and V c . 

w  

t
 

v  

s  

h  

t  

T  

t
fi  

α  

c
T
l
s

 

v  

o  

o  

L  

v

5

F
a  

p
h
a
c
s  

t
 

t  

d
f  

t  

I  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/3/4507/6575926 by R
am

an R
esearch Institute user on 08 June 2022
ith respect to the middle of the log-prior ranges. Our analysis should
herefore be more sensitive to models with low Lyman- α fluxes. 

Further dividing the two classes of signals in Fig. 4 based on their
alue of f X , we can see that we should also expect our analysis to be
ensiti ve to lo w v alues of f X , as expected from the discussion abo v e.

We should also consider our sensitivity to models that have both 
igh or both lo w v alues of V c and f ∗ in combinations that do not meet
he crude criteria for high and low Lyman- α fluxes defined abo v e.
hese models are shown in black in the bottom panel of Fig. 4 against

he backdrop of previously ‘classified’ models in grey. From the 
gure we can see that these models typically also have low Lyman-
flux es and hav e minima at more recent redshifts, particularly in

omparison to the ‘high’ Lyman- α flux signals discussed previously. 
hese signals therefore have dominant structures and relatively 

arge magnitudes in the SARAS2 band, indicating a more general 
ensitivity to the values of f ∗ and V c . 

Finally, the data are expected to be sensitive to ERB signals with
ery high values of f radio as these signals have deep absorption troughs
f a few hundred mK even after multiplication by the total efficiency
f the antenna. This is particularly true when there is also a high
yman- α flux and low X-ray efficiency, which results in a strong
ariation of the signal within the SARAS2 band. 

 RESULTS  

ig. 5 summarizes the different combinations of signal, systematic, 
nd noise models that were fitted to the SARAS2 data. For com-
leteness, we report fits without signals and/or systematics. The four 
ighest evidence fits are approximately equi v alent (within errorbars) 
nd the relative weights-based noise model is comparatively poor 
ompared to the two alternatives considered when we include a 
ystematic model in the fit. These points are further discussed in
he following sections. 

The evidence, Z , is a marginal likelihood integrated over all of
he fitted parameters. It quantifies the probability that the data are
escribed by the chosen model components and is the normalizing 
actor in Bayes theorem. A higher log ( Z ) indicates a preference for
hat model or hypothesis as a description for the data o v er alternativ es.
t is often used to determine the presence or absence of signals in
ata sets by comparing its value for fits with and without the rele v ant
MNRAS 513, 4507–4526 (2022) 
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odel components. An example of this, beyond the results presented
n this paper, can be found in Bevins et al. ( 2021a ) in which the
uthors fit the EDGES data set with signal and systematic models,
sing the evidence to determine which models are preferred by the
ata. A further brief discussion of the evidence and Bayes theorem
an be found in Appendix A . 

Of the tested combinations of model components, we find that
odelling with an STA signal and no systematic leads to only a
arginal increase in evidence in comparison to a foreground-only
t as can be seen in the bottom panel of Fig. 5 . The increase

n evidence is larger when we model an ERB signal, but this
s to be expected as these signals can have significantly deeper
bsorption features than the STA signals and as a result they are
etter able to fit out the larger systematic structure. Fits with
ystematic modelling have significantly higher evidences, regardless
f whether we include an STA, an ERB, or no global signal model,
han those without systematic modelling, � log ( Z ) ≈ 200 − 300.
he data therefore fa v our the presence of a systematic model but

here is no strong indication for the presence of a signal in the
ata. 
Appendix B shows the residuals found when fitting the data with

he PSF foreground model, the efficiency systematic and the constant
NRAS 513, 4507–4526 (2022) 
oise model (fit number 4) compared with the residuals from a
igh-order polynomial fit. The consistency between the two sets
f residuals suggests that the complexity of the modelling used here
s sufficient to describe the data. Although a signal may still be
resent with an absolute maximum magnitude less than the noise
fter multiplication by the total efficiency of the antenna. 

In the following sections, we discuss in more detail the results
ound when modelling with the different components outlined
n Section 3 . 

.1 Noise 

e would expect that the relative weights-based noise model would
rovide the best representation of the noise in the data as it has
een derived from system parameters. In the absence of systematic
odelling, this noise model performs comparatively well because the

esiduals after foreground modelling are larger at higher frequencies
ollowing the trend of the weights. However, from the top panel
f Fig. 5 , it is clear that the log-evidence for fits with this noise
odel and a systematic is much lower than for fits with the two

lternatives. This is likely due to some degeneracy that would be
ard to disentangle, between the systematic model and the weights
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ased noise model, which follow the same trend in the data (increas-
ng with frequency). Ho we ver, the systematic model, particularly 
he damped systematic, is designed to allow for no damping (i.e 
sys = 0 in equations 7 and 8 ), and we find that some damping

s typically fa v oured in our fits as in the presence of a systematic
odel. 
For some combinations of signal and systematic, we find that 

he log-evidence is comparable between the fits with constant and 
requency damped standard de viation. Ho we ver, in the majority of
ases, the constant noise modelling gives a higher evidence. In the 
ne case, where this is not true, fitting with a STA signal and the
fficiency systematic, the evidences are comparable indicating that 
either noise model is fa v oured o v er the other. 
For the fit with the efficiency systematic and STA signals we 

nd, with the frequency damped noise, log ( Z ) = 1684.5 ± 0.2.
n comparison, when modelling the noise with a constant standard 
eviation, we find log ( Z ) = 1684.4 ± 0.2. For these two fits, we
an look in more detail at the maximum likelihood noise models 
nd the posteriors for the noise model parameters are shown in 
ig. 6 . For the frequency damped model, the maximum likelihood 
arameters are A σ = 10.9 mK and βσ = 0.45 and for the constant
oise model the maximum likelihood amplitude is A σ = 11.0 mK. In
he former, the damping power is weak, recalling that the prior range
or this parameter is 0–5, and the maximum likelihood amplitude for
oth models is near identical with a similar posterior distribution. 
he weak damping is a consistent feature across all of the fits
ith the damped model as is the similarity in the amplitude of the
oise. 
To summarize, when comparing the two best noise models, 

onstant and frequency damped, we find an equality in log-evidence 
r preference for the former model, a consistent weak damping in 
he later and similarity in amplitude. This supports the expectation 
rom the literature that the noise should be uniform across the band
n the SARAS2 data (Singh et al. 2017 , 2018b ). 

.2 Systematics 

s discussed, we see a large increase in log-evidence, � log ( Z )
300, when joint fits with a PSF foreground and the efficiency

r damped systematic models are performed as shown in Fig. 5 .
omparing like for like fits with different systematic models we 
onsistently find that the efficiency systematic model is fa v oured
 v er the alternativ e by the data. Re gardless of noise modelling,
he five highest evidence models are all fits with the efficiency
ystematic. 

Both systematics rely on the same parametrization and so a direct
omparison can be made between fits with the same noise and signal
odelling but different systematic models. The posterior distribu- 

ions for each parameter are typically well-constrained Gaussian-like 
istributions. αsys is generally centred around 0 for the efficiency 
ystematic in comparison to a value of approximately 3 for the
amped systematic. This indicates that, in the case of the efficiency
ystematic, the data fa v our a sinusoidal systematic structure that is
amped predominantly by the total efficiency of the radiometer, ηt 

i.e. the term ( ν/ν0 ) αsys ≈ 1 in equation 8 ). 
For both systematic models the period, P , and phase, φ, have

imilar distributions suggesting that any systematic in the data has 
 period of approximately 32.5 MHz and phase of approximately 
 rad. This is true generally, regardless of noise and signal model,
ince the systematic dominates the residuals. The systematics also 
ave similar amplitudes but, while in the efficiency systematic this 
s mainly determined by A , in the damped systematic it is mainly
etermined by the term ( ν/ν0 ) αsys in equation ( 7 ). 
From the log-evidences, we can conclude that the data marginally 

a v our a sinusoidal systematic damped by the total efficiency of the
ntenna. Ho we ver, as with the noise modelling, the differences in
og-evidence between like for like fits with different systematics are 
mall and all of the fits with the different systematic models contain
otential information about the astrophysical parameter space. We 
an, therefore, use all of the samples from the different fits, weighted
y their evidences, in a combined analysis. This approach ef fecti vely
arginalizes o v er the systematic and noise model parameters and is

etailed in the following section. 

.3 Disfavoured 21-cm signals from combined samples 

e can use ANESTHETIC (Handley 2019 ) to combine the posterior
amples from POLYCHORD , weighted by the fit evidence, from the
arious nested sampling runs to determine the types of global 21-cm
ignals disfa v oured in our analysis. This is advantageous since it
rovides a method to deal with uncertainty in the modelling of the
tandard deviation on the noise and the systematic and should be
onsidered a conserv ati ve vie w of any constraints on the parameter
pace from the SARAS2 data. 

While we note that the fits in Fig. 5 do not indicate a preference
or the presence of a signal, we can still use the data to determine
onstraints on the parameter space of the global 21-cm signal as has
reviously been done with data from EDGES (Monsalve et al. 2019 ).
In the previous two sections, we have made the argument that

he amplitude of the noise is best described by a constant standard
eviation and the systematic is best modelled by the efficiency 
ystematic. While these statements are true to an extent, the range
n log-evidence between the corresponding fits with different model 
omponents is not significant. In fact, the former is largely moti v ated
MNRAS 513, 4507–4526 (2022) 
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y the fact that the constant noise model is simpler than the frequency
amped model and thus fa v ourable. In practice, the data do not tell
s which noise model is preferred. 
Since the 2D and 1D posteriors for the astrophysical parameters by

efinition marginalize o v er the systematic and noise parameters, we
an confidently combine the samples and draw conclusions from the
orresponding posteriors. As alluded to the posterior samples, P ( θ | D ,
 ), when combined using ANESTHETIC are weighted by weights, w,

hat are directly proportional to the fit evidence, Z 

 combined ( θ | D, M) = 

∑ 

i 

w i P i ( θ | D, M) , (10) 

here the weights w i = Z i / 
∑ 

j Z j , θ is a vector of parameters
ssociated with the fit components for fit i , D is the data and M
s the analytical model. In Appendix C , we show the values of w i for
ach of the different fits performed in this analysis separated by their
ignal type. 

In the following sections, we therefore discuss posteriors from
ombined samples for all of the fits containing STA signals (see
ppendix D for results with variable values of R mfp and α) and fits

ontaining ERB signals. 
We briefly compare our results with those previously reported in

ingh et al. ( 2017 , 2018b ) and with the recent results from HERA
n Section 5.3.3 . 
NRAS 513, 4507–4526 (2022) 

s  
.3.1 Excess radio background signals 

e can analyse combined samples from fit numbers 1, 5, 10, 12,
4, and 16, those containing ERB signals, as shown in Fig. 7 . The
eco v ered 1D histograms are generally flat and do not show any
ignificant constraints. Although regions of high f radio ( � 407 and �
07) in combination, separately, with low f X ( � 0.21) and high f ∗ ( �
.03) are disfa v oured at 68 per cent confidence. We also disfa v our
igh values of τ abo v e approximately � 0.06 in combination with f X 
 0.50 at 68 per cent confidence. 
We use histograms to illustrate the samples in the parameter space

ather than plotting posteriors, with confidence re gions, deriv ed using
ernel Density Estimation (KDE) as was done in Fig. 6 . This is
one because the application of a KDE to the samples can, in the
ase of flat distributions, lead to misleading features that suggest
pecific areas of the parameter space are more fa v ourable than others.
inning the raw samples across the parameter space gives a clearer

mpression of regions of the parameter space that the nested sampling
lgorithm explored in greater detail (i.e. those with higher likelihoods
nd combinations of parameters that are fa v oured by the data). For
xample, in Fig. 7 , fa v oured regions of the parameter space would be
ampled in greater detail and the corresponding bins in the 2D plots
ould be shaded in a lighter yellow. 
To quantify the strength of 2D constraints across the parameter

pace, the authors of The HERA Collaboration ( 2022 ) assess the
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atio of the minimum and maximum posterior probability ( ∝ height 
f the histogram bins) across the 2D space. A ratio of 1 would
ndicate a perfectly flat posterior and a low value indicates a non-
niform distribution. The metric is limited in that it does not indicate
he direction of any non-uniformity and is insensitive to any pseudo- 
andom scatter across the parameter space that may result from a fine
inning of a relatively flat distribution. 7 Ho we ver, in combination 
ith a visual inspection of a constrained parameter space it can 
e a useful metric to determine the magnitude of any directional 
on-uniformity. F or e xample, the ratio between the minimum and 
aximum posterior probability for f radio − f X in Fig. 7 is 0.10. In

omparison, the maximum ratio for Fig. 7 is 0.20 for V c − f radio and
he minimum ratio is 0.08 for f X − τ . 

Further, the deepest signals have high Lyman- α fluxes (high f ∗
nd low V c ), low X-ray efficiencies, f X , and high values of f radio .
fter multiplication by the total efficiency of the antenna, these 

ignals typically have magnitudes larger than the expected noise, and 
onsequently, we would expect to exclude these with the SARAS2 
ata. This can be seen clearly in Fig. 8 in which we plot the functional
osterior samples on top of the prior using the tool FGIVENX (Handley
018 ). The tool allows us to visualize the combined posterior samples
hown in Fig. 9 as a set of contours in the T 21 − z space. Note that
lthough the priors on our parameters are uniform, this does not 
ecessarily translate to a uniform prior in the global 21-cm signal. 

.3.2 Standard astrophysical signals 

istograms produced from the combined samples for the astrophys- 
cal parameters from fit numbers 2, 3, 9, 11, 13, and 18 from Fig. 5 ,
hose with STA signals, are shown in Fig. 9 . The histograms are flat,
ndicating that we do not significantly constrain the parameter space 
nd further indicating that there is no preference for a signal in the
ata. 
Fig. 10 shows the functional posterior (in red) along with the 

qui v alent for samples taken from the prior (in blue). There is
ome indication that the data disfa v our (lighter shaded red regions)
ignals with absorption features at high redshift. F or e xample, the
 The metric is also dependent on the number of bins into which the samples 
re separated and so comparison across experiments is difficult without fixing 
he number of bins in each set of analysis. 

f  

c  

m

m  
referred region (darker red and blue with significance < 1 σ ) around
he absorption minimum, where the sampling is highest, is larger, and
hifted to lower redshifts in the posterior than in the prior. However,
he contraction from the prior to the posterior is minimal as would be
xpected from the flat nature of the distributions in Fig. 9 . Therefore
ny conclusions we make about constraints on the STA priors are by
efinition weak. 
The contraction from prior to posterior can be quantified with the
 ullback–Leibler Div ergence and Bayesian Dimensionality (Hand- 

ey & Lemos 2019 ). Ho we ver, we are only interested in the con-
raction from specifically the astrophysical prior to the astrophysical 
osterior, and we do not want to include contributions to the statistics
rom nuisance parameters, like the systematic parameters, in our 
alculations. This requirement makes quantifying the contraction 
or the analysis performed here non-trivial. We therefore leave a 
etailed discussion of these marginal Bayesian statistics to future 
ork (Bevins et al. in preparation). 

.3.3 Results in the context of the previous SARAS2 analysis and 
he HERA results 

s discussed in Section 1 , previous analysis of the SARAS2 data,
ith STA signal models, led to the conclusion that a set of specific

strophysical models with rapid reionization and weak X-ray heating 
lo w v alues of f X ) were disfa v oured. We find that we weakly disfa v our
TA signals with high Lyman- α fluxes and weak heating and this
an be seen in Fig. 10 . Our constraints are stronger on the ERB
ignals in which we also find that we disfa v our signals with weak X-
ay heating, in particular, although these signals were not explored 
n the previous SARAS2 analysis. It is important to note that the
imulations used in this paper have different parametrizations of the 
-ray SEDs and the original SARAS2 analysis was confined to the

tudy of a limited sample of 264 models. 
Further, the signals used in each study have significantly different 

ependence on the Lyman- α flux with the introduction of Lyman- α
eating in the simulations used in this work. Additional heating 
rom the CMB is also included here, which will influence the
onclusions we make about the strength of the X-ray heating and
akes comparison between the two sets of analysis difficult. 
The additional heating mechanisms influence the position of the 
inima of the global signal with a higher heating shifting the minima
MNRAS 513, 4507–4526 (2022) 
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o higher redshifts outside the SARAS2 band and consequently
educing the magnitude of the signal at low redshift. This in turn
eads to a lower signal-to-noise ratio in the data and makes signals
ith high heating hard to rule out. In contrast, signals with weak
eating have minima at lower redshifts, larger absolute magnitudes
n the SARAS2 band, and higher signal-to-noise ratios making them
asier to rule out. 

Lyman- α and CMB heating, as discussed in Section 3.4 , actually
educe the maximum allowed depth of the global signal to approxi-
ately ≈165 mK in comparison to the predictions from the previous

tate of the art simulations, used in the original SARAS2 analysis,
hich could reach depths of 250 mK (Cohen et al. 2017 ). It is this
ifference in the maximum absolute magnitude between the two
ets of signals used in each set of analysis, which explains why the
revious analysis is able to rule out a set of signals with such high
onfidence ( > 5 σ in some cases), and in this paper, we are unable
o make any significant conclusions for STA signals. The majority
f the signals ruled out in the previous work have amplitudes � 125
K and so if present in the SARAS2 data would have a higher

ignal-to-noise ratio than the majority of the models analysed in this
aper with amplitudes � 165 mK, making them easier to identify or
ule out. 

Comparison with results from other experiments in the literature
s generally difficult because the analysis often uses contempo-
ary parametrizations of the global signal that are subsequently
NRAS 513, 4507–4526 (2022) 
uperseded by more astrophysically accurate models. Ho we ver, the
ecent upper limits on the 21-cm power spectrum at z ≈ 8 and
0 by the HERA collaboration have been used to derive parameter
onstraints on an ERB from high redshift radio galaxies using the
ame parametrization used in this paper across the band z ≈ 7–12
The HERA Collaboration 2022 ). 

As discussed, SARAS2 data are most sensitive to and able to
xclude the ERB signals with the largest radio backgrounds because
heir magnitudes within the SARAS2 band are larger than the
xperimental noise. In a similar way, the authors in The HERA
ollaboration ( 2022 ) are able to exclude models with high radio
ackgrounds because the corresponding power spectra are larger
han the upper limits provided by HERA. 

The authors perform parameter constraints using the likelihood
unction described in their section 3, the MCMC Ensemble sampler
MCEE (F oreman-Macke y et al. 2013 ) and a neural network emulator
f the power spectrum detailed in their appendix A. When investi-
ating the parameter constraints on the ERB models, the authors
ule out, with a higher significance, a similar region of the f radio −
 X 

8 parameter space as is done in this paper with the SARAS2 data.
pecifically, the authors rule out values of f X < 0.33 and f radio > 391

n comparison to our values of 0.21 and 407, respectively. 
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 C O N C L U S I O N S  

n this paper, we have reported constraints on the EoR using data
rom the SARAS2 experiment, the nested sampling algorithm POLY- 
HORD , the deri v ati ve constrained function fitting code MAXSMOOTH ,
nd the global signal emulator GLOBALEMU . 

We have fitted, to data from a global 21-cm experiment for the first
ime, STA signals with Lyman- α and CMB heating and exotic astro-
hysical models, with an ERB produced from high redshift galaxies. 
eneral conclusions from our analysis are summarized below; 

(i) We have found no conclusive evidence for the presence of 
 signal in the data and fits performed with and without signal
odelling have comparable evidences. 
(ii) The data generally fa v our the presence of noise with a constant

tandard deviation across the SARAS2 band o v er the two alternatives
ested in this paper. 

(iii) We have illustrated the presence of a damped sinusoidal sys- 
ematic in the data using the smooth foreground model implemented 
ith MAXSMOOTH . Our analysis suggests that this systematic is best 
odelled as a sinusoidal function that has been damped by the 

otal efficiency of the antenna. This implies that the systematic is
ntroduced as power external to the radiometer rather than via the 
lectronics in the receiver chain and back-end. However, we note 
hat the log-evidence difference between the fits performed with 
he two different systematic models is marginal and that the non- 
mooth structure may have been introduced by a poor foreground 
odel. If real, the systematic could be caused by discontinuities in 

he soil surrounding the antenna or shrubbery and root systems in 
lose proximity, both of which are issues that will be alleviated by
he deployment of SARAS3 on a lake. 
(iv) While we do not constrain individual parameters, for the ERB 

ignals, we disfa v our combinations of high f ∗ ( � 0.03 and high f radio 

 � 707) and low f X ( � 0.21) and high f radio ( � 407), which produce
he deepest absorption troughs as can be seen in Figs 7 and 8 . In
ddition, when fitting the ERB signals, we weakly disfa v our high
alues of τ and the combination of low τ and low f X . 

(v) For STA models, we weakly disfa v our signals with high
yman- α fluxes (high f ∗ and low V c ) and weak heating that have
eep absorption features at early times as can be seen in Fig. 10
with the aid of the gridlines). 

(vi) Both sets of analysis with STA and ERB signals disfa v our
odels with weak heating, particularly X-ray heating in latter case, 

n agreement with the SARAS2 data analysis in Singh et al. ( 2017 ,
018b ). 
(vii) We disfa v our a similar combination of low f X and high f radio 

or the ERB models as was recently done using the power spectrum
pper limits from HERA with an identically parametrized model of 
he EoR (The HERA Collaboration 2022 ). 

The analysis presented here serves to highlight that non-smooth 
ystematics, if ef fecti vely identified with tools like MAXSMOOTH 

nd modelled, do not prevent the deri v ation of constraints on the
strophysics of the early universe. 
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PPEN D IX  A :  REPRODUCIBILITY  O F  

ESU LTS  

he nested sampling algorithm used in this work is designed to 
umerically approximate the integral 

 ( D| M) = 

∫ 

P ( D| θ, M ) P ( θ | M )d θ, (A1) 

r equi v alently 

 = 

∫ 

L ( θ ) π ( θ )d θ, (A2) 

here Z = P ( D | M ) is known as the evidence, L ( θ ) = P ( D| θ, M)
s the likelihood, and π ( θ ) = P ( θ | M ) is the prior probability. The
vidence can be used to determine whether one model is a better
escription of the data than another (i.e. model selection), as is done
n the main text in this paper. The prior represents our knowledge of
he parameters in our model and typically is taken to be a uniform
r log-uniform probability distribution between a minimum and 
aximum value. Finally, the likelihood represents the probability 

hat we observe the data, D , given the choice of parameters and
odel or hypothesis, M , to describe the data. A complete discussion

f the algorithm can be found in Skilling ( 2004 ). 
Equation ( A1 ) can be derived from Bayes’ theorem 

 ( θ | D, M) = 

L ( θ ) π ( θ ) 

Z 

, (A3) 
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igure A1. The sample distribution for fit number 3 in Fig. 5 (STA signal, effi
emonstrating that the posterior sampling is high enough to lead to reproducible re
he fits performed in this paper. 
here P ( θ | D , M ) is the posterior probability used to determine
onstraints in the parameters θ , and the requirement that the posterior
hould integrate to 1. The posterior is therefore a byproduct of the
ested sampling algorithm and its accuracy is determined by the 
ccuracy of approximation of the integral in equation ( A1 ). 

The accuracy of the integral, in turn, is determined by the number
f likelihood samples taken when running the algorithm with tools 
ike POLYCHORD . The sampling rate in POLYCHORD is driven by the
arameter n live and a poor sampling leads to poor reproducibility of
he posteriors on repeated runs. 

For the analysis in this paper, we use n live = 500, which equates
o approximately 50 live points per dimension. We demonstrate 
hat this leads to reproducible sample distributions in Fig. A1 ,
hich shows histograms of the distributions for fit number 3 (STA

ignal, efficiency systematic, and constant noise) and a corresponding 
epeated run. In both cases, the reco v ered 1D histograms are flat with
nly minor differences. 
We can quantify the difference using the two sample Kolmogorov–

mirnov (KS) statistic, which returns the maximum difference 
etween two empirical cumulative distribution functions. The largest 
S statistic for the 1D distributions in Fig. A1 is 0.073 for log ( f X ).
or all other parameters, the KS statistic is smaller. For a given
arameter a low KS statistic, which ranges in value between 0 and
, indicates that the two 1D distributions are likely drawn from the
ame sample and consequently the results are reproducible. 
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ciency systematic, and constant noise) and a corresponding repeated run 
sults. The consistency between repeated runs shown here is typical for all of 
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M

Figure B1. The figure shows the residuals found when fitting the SARAS2 data, T A , with the PSF foreground, the efficiency systematic model and a constant 
noise model compared to the residuals from a high-order polynomial fit. The unconstrained polynomial fit is expected to model out all non-smooth structure 
in the data, including any systematics and signals revealing the noise in the data. The consistency between the two sets of residuals, which can be seen in the 
accompanying histogram, suggests that the complexity of our modelling (foreground, systematic, and noise) is sufficient to describe the data. The graph also 
shows that the noise in the data is Gaussian distributed. 
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PPENDIX  B:  M O D E L  COMPLEXITY  A N D  T H E  

XPEC TED  N OISE  

ig. B1 shows the residuals (top left) after fitting and subtracting the
SF foreground model and the efficiency systematic model from the
ARAS2 data compared with the residuals (bottom left) from a high
rder polynomial fit given by 

 = T 0 

9 ∑ 

i= 0 

p i 

(
ν

ν0 

)i 

, (B1) 

here ν0 ≈ 110 MHz, T 0 = T A ( ν0 ), and p i are the fitted coefficients.
n the right-hand panel, we show a histogram of the two sets of
esiduals with corresponding Gaussian fits. The standard deviation
rom both fits are equi v alent. 

The high-order unconstrained polynomial is expected to fit out
ny non-smooth structure in the data and as a result the residuals
re expected to be representative of the noise. The graph therefore
hows two things. First, that our assumption that the noise in the
ata is Gaussian distributed holds. Secondly, that the complexity
f our model (foreground plus systematic) is sufficient to describe
he SARAS2 data. Any signal in the data will have a maximum
bsolute magnitude less than the noise after multiplication by the
otal efficiency of the antenna, and as a result the noise floor allows
s to apply the constraints detailed in the text. 
NRAS 513, 4507–4526 (2022) 
PPENDI X  C :  SAMPLE  W E I G H T I N G  

sing equation ( 10 ), we are able to combine the samples with
ommon astrophysical signals in order to marginalize out our
ncertainty in the modelling of the noise and the systematic.
o take account for the dif ferent le vels of confidence in the
ifferent models, where the model refers to the combination
f foreground, signal, and noise model, we weight the sam-
les by their Bayesian evidence. The weights are given by
 i / 
∑ 

j Z j and in Fig. C1 , we show the weights for each signal
ype. 

From the figure it is evident, regardless of signal modelling, that
ts with the efficiency systematic model have a higher weighting

han fits with the damped systematic, indicating a preference for
he former. Additionally, the figure shows that the samples from
ts with the relative weights-based noise are down weighted sig-
ificantly so that they do not contribute to the calculation of the
ombined posteriors. We can see that this is the case by looking
t the betting odds between two of the ERB fits both with the
fficiency systematic but with constant and relative weights-based
oises. The difference in evidence for these two fits is given by
xp (1684.5–1678.6) ≈365 which corresponds to betting odds of
65:1 in fa v our of the fit with a constant standard deviation on the
oise. 
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Figure C1. The figure shows the relative weights applied to each set of samples when combining the posterior distributions using equation ( 10 ). The 
figure illustrates that the weights, which are based on the relative evidences of the fits, are significantly higher for fits performed with the efficiency systematic 
and fits performed with the constant or frequency damped noise model o v er the alternativ es. By combining the samples to draw conclusions about the astrophysical 
parameter space, we ef fecti vely account for any uncertainty in the systematic and noise modelling. 
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PPEN D IX  D :  DISFAVOURED  R E G I O N S  W H E N  

ITTING  WITH  STANDARD  ASTROPHYSI CAL  

I G NA L S  A N D  VARIABLE  R M F P A N D  α

or completeness, we can assess combined samples from model 
umbers D.1, D.2, D.3, D.4, D.5, and D.6 in Fig. D1 , those that
ontain STA signals with variable R mfp and α. Fig. D2 shows the
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igure D1. The evidence for fits containing STA signals when fitting for R mfp and
ittle effect on the o v erall patterns seen in preference for specific model component
D histograms from the combined samples and, as with the results
resented in the main text, we do not see any significant constraints.
Ho we ver, the e vidences presented in Fig. D1 show a similar

reference for different model components as that presented in the 
ain text. Specifically, the preference for the efficiency systematic 

nd for the frequency damped/constant noise models o v er the relativ e
eights-based noise. 
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 α rather than holding them constant. Allowing these parameters to vary has 
s. 
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Figure D2. The 1D and 2D histograms for the combined nested samples of all fits to the SARAS2 data containing STA signals when fitting for R mfp and α. 
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