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Synopsis

In the early universe there are two major transitions in the state of the baryonic mat-
ter: recombination and reionization. From the last scattering surface of the cosmic
microwave background (CMB) photons we know that the recombination of primordial
hydrogen took place at the redshift of z ' 1100. On the other hand, the reionization
process is expected to have occurred in the redshift range 10 & z & 6. However, the
physical processes responsible for the reionization are poorly constrained. In the re-
cent years there have been multiple efforts to directly probe the cosmic dawn (CD)
and epoch of reionization (EoR) with redshifted 21 cm signal of the neutral hydrogen
(HI) using radio telescopes designed to operate at low frequencies (50 MHz < ν <

200 MHz) (e.g. uGMRT, MWA, HERA, and LOFAR). Measurement of 21 cm signal
(also known as HI signal) from EoR is expected to tightly constrain various cosmolog-
ical and astrophysical phenomena including the formation and growth of large-scale
structures, properties of underlying dark matter distribution and first luminous sources
(stars and galaxies). According to current theoretical models, the strength of the 21 cm
signal (10 mK at z ' 8) is at least three to four orders of magnitude weaker than the
foregrounds (300 K) at 150 MHz. The major component of the foregrounds are ex-
tragalactic point-like radio sources and diffuse galactic emission. These foregrounds
are spectrally smooth unlike the 21 cm signal. This discriminator is used to isolate the
21 cm signal from bright foregrounds.

In this thesis I have extended the analysis of Paul et al. [2014a] and have developed
a theoretical and observational technique to extract the HI signal from low frequency
radio data and have applied it on the real datasets from Murchison Widefield Array
(MWA). I also provide a comprehensive framework to understand the underlying co-
variance of HI visibilities against the various observational parameters of the radio
telescope (latitude of the telescope, size of the primary beam, baseline components,
baseline length, and drift time).

In the drift scan mode of observation the beam of the telescope remains fixed in a
chosen direction of the local coordinate system (e.g. at zenith) as sky drifts during ob-
servation. This strategy is important because it offers better system stability, stationary
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primary beam, and smaller cosmic variance in comparison with the more conventional
tracking observation (e.g. Paul et al. [2014a], Trott [2014]). The theoretical formalism,
Drift Scan Formalism (DSF), developed in this thesis is based on the cross-correlation
of the HI visibilities in time. It avoids noise bias and also gives optimal power spectrum
estimate Patwa and Sethi [2019]. This formalism generalizes techniques based on the
tracking mode observations, as they are a special case of DSF (∆t = 0; see Patwa and
Sethi [2019]). For this endeavour, I studied the covariance properties of the HI visibil-
ity as a function of baseline length, its components (u and v), beam-width, latitude of
the instrument, drift time, and input power spectrum. I also applied the formalism on
the foregrounds and found that the time scale of the covariance properties of the point-
like radio sources are much shorter than that of the 21 cm signal. This can be used to
average out and thus mitigate the point-source contamination. This piece of work gains
substantial importance since it enables us to understand the underlying phenomenon
of covariance in the extraction of 21 cm power spectrum in a general framework. It
should also settle some of the data-averaging issues in the community which led to the
signal loss in the power spectrum estimate (e.g. Cheng et al. [2018]).

Based on DSF, a pipeline is developed to extract the HI power spectrum from drift scan
data. This pipeline is applied on the drift scan data observed with MWA (3 hours in
phase I and 55 hours in phase II) Patwa et al. [2021]. The covariance of a visibility pair
is computed using DSF and is used as inverse weight to estimate the cylindrically and
spherically averaged power spectra. I show that the RMS of mean power spectra in
noise dominated Fourier modes fall as 1/t as more data are integrated. This behaviour
is confirmed with the noise simulations with same configuration of the telescope. I also
show that the foreground wedge in the cylindrically averaged power spectra weakens
with the integration of data. This weakening of the foreground wedge is also predicted
from DSF Patwa and Sethi [2019] as the decorrelation time scale of the point-like radio
sources is predicted to be far shorter (. 1 min) than that of the HI signal in drift scan
observations.

At the end, I conclude with the salient points of the thesis, summarize them in brief,
and discuss some possible future direction to this work. The outline of the thesis is
given below.

• Introduction to the Science of the Epoch of Reionization

• Radio Astronomy in the EoR Observations

• Drift Scan Formalism (DSF): A Theoretical and Analytical Study

• Power Spectra of the Drift Scan data from MWA using DSF

• Summary and Conclusions
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Chapter 1

Introduction to the Science of the
Epoch of Reionization

Cosmology is the study of the Universe including its beginning, evolution, and its fu-
ture. Since the ancient times, human beings have tried to understand the world around
them using tools or methods they have at their disposal. The scientific understanding
of cosmology is achieved using physics, astrophysics, and related observations. In this
work we shall seek a scientific view of cosmology and will try to probe a key period in
the history of the Universe called the ‘epoch of reionization’ (EoR).

In the last century, our knowledge about the Universe has expanded exponentially. The
first building block of the modern physical cosmology was given by Albert Einstein
in 1917 when he applied the general theory of relativity on the scale of the Universe
which gave a model of a static Universe (with cosmological constant Λ) (original paper
is reproduced in Einstein [1952]). Since the ‘nebulae’ like celestial objects were al-
ready proven to be distant star-systems (galaxies) away from Milky Way (Shapley and
Curtis [1921]), in 1922 Alexander Friedmann predicted an expanding Universe based
on general theory of relativity (Friedmann [1922]). Few years later in 1927, the pre-
diction by Friedmann was independently confirmed by Georges Lemaı̂tre (Lemaı̂tre
[1927]). In 1929, the static model of the Universe was rejected in the favour of an
expanding one with the observations of receding galaxies by Edwin Powell Hubble
(Hubble [1929]).

The expanding Universe model implied that the Universe would have been much
denser and hotter in the past with a beginning or a singularity. This led to the for-
mulation of the ‘Big Bang theory’ according to which the Universe starts with an ‘ex-
plosion’ (big bang). The background model explains the expansion of the universe
while its fluctuations can explain the formation of galaxies due to the gravitational
instability. The next milestone in the support of the Big Bang theory and of broader
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understanding of the physical cosmology came with the accidental detection of the
‘cosmic microwave background radiation’ (CMB or CMBR) in 1965. Penzias and
Wilson [1965] found an excess of ∼ 3.5 K in the measurement of antenna noise tem-
perature of their radiometer. It was established that the unaccounted temperature was
of cosmological origin. Hence, the existence of CMB was confirmed and the Big Band
model of the Universe was widely accepted in the cosmology community.

Since 1990, there have been rapid developments in the area of observational cos-
mology, led by landmark cosmology experiments that include COsmic Background
Explorer (COBE; Mather et al. [1990], Fixsen et al. [1994]), Wilkinson Microwave
Anisotropy Probe (WMAP; Hinshaw et al. [2013]), Planck (Planck Collaboration et al.
[2020]), RELIKT-1 or RELICT-1 (Strukov et al. [1992]), Balloon Observations of Mil-
limetric Extragalactic Radiation and Geophysics (BOOMERanG; de Bernardis et al.
[2000]), etc (see Figure 1.1). These experiments have determined, with high preci-
sion, both the background dynamics and its parameters (e.g. cosmological parame-
ters Ωm,Ωb,ΩΛ,H0 etc) and the inhomogeneous universe (e.g. CMB angular power
spectrum and galaxy clustering) (Staggs et al. [2018]). With the observation of high-
redshift type-1a supernova, it has also been determined that the Universe is not only
expanding but also accelerating (Riess et al. [1998], Perlmutter et al. [1999]). The cul-
mination of these findings was that the old Big Bang model of the Universe was mod-
ified to include ‘dark energy’ (sometimes interpreted as Λ introduced by Einstein) and
cold ‘dark matter’ (CDM). The existence of CDM was also predicted from the galaxy
rotation curves and the Big Bang nucleosynthesis. This modified model, known as
Lambda-CDM model, is now considered the standard model of the Universe in phys-
ical cosmology. Some salient aspects of the model are discussed in the next section.

1.1 Thermal History of The Universe - I

A brief timeline of the Universe is given in Figure 1.2. The Universe came in to ex-
istence with an ‘explosion’ approximately 13.8 billion years ago. It underwent an
exponential expansion phase termed the ‘inflation’. During the inflation, the quan-
tum fluctuations created fluctuations which provided the seeds for the formation of
the large scale structure via gravitational instabilities.After the end of the inflation-
ary period, the universe reheats and makes a transition to radiation domination. The
radiation-dominated Universe consisted of photons, dark matter, and baryonic matter
strongly coupled to photons. The high temperatures and strong photon-baryon cou-
pling kept the baryons ionized and the Universe completely opaque. It also caused
baryonic temperature TK and radiation temperature TR to be equal, with both decreas-
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Figure 1.1: A comparison of results from successive CMB experiments - COBE,
WMAP and Planck. The color represent the CMB temperature anisotropies
(∼ 10−4 K). Credit: Roen Kelly, Astronomy.*

*https://astronomy.com/magazine/2018/07/decoding-the-cosmic-microwave-background

Figure 1.2: It displays the time evolution of the Universe from CMB to present.
Major cosmic events (e.g. dark ages, first stars etc.) are shown. Credit: Robertson
et al. [2010]
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ing as 1/(1+ z)1

1.2 Thermal History of The Universe - II

Next major event in the timeline of the Universe is the matter-radiation equality (∼
47,000 years after the Big Bang or z ∼ 3300). At this epoch, perturbations created
during the inflationary era begin to grow in the cold dark matter component, which
interact only via gravitational force. The dark matter perturbations create potential
wells which capture baryons in the post-recombination era.

The next important event (epoch of recombination) occurs nearly 370,000 years after
the Big Bang (z ∼ 1100). At this era, the universe makes a transition from ionized
to neutral, as the temperature and density of the Universe are such that the rate of
hydrogen ionization falls below the rate of electron-proton recombination. At the end
of the epoch of recombination, the Universe becomes (almost) completely neutral and
enters ‘Dark Ages’ (because there were no luminous sources). The decoupling of the
matter and radiation is almost complete and photons can now travel freely marking the
‘last scattering surface’ or ‘cosmic microwave background’ (CMB or CMBR).

In the redshift range 1100 . z . 150, the radiation and matter temperature are the
same, as the Compton scattering between residual free electrons and CMB photons
help maintain the coupling between CMB photons and kinetic temperature of neutral
hydrogen. Around z∼ 30, the first luminous sources (stars and galaxies) appear in the
universe; this phase transition is called ‘Cosmic Dawn’ (CD).

Although these sources emit in a wide spectrum like a blackbody, the UV photons,
X-rays, and Lyman-α photons are the most relevant: a) the UV photons reionize the
neutral hydrogen in the IGM and create HII bubbles (Strömgren sphere) around the
luminous source; b) the X-ray photons heat the neutral hydrogen in the IGM; c) the
Lyman-α photons couple the hyperfine line of neutral hydrogen with the kinetic tem-
perature in the universe (Wouthuysen-Field effect).

With time the ionized bubbles grow and eventually merge with other ionized bub-
bles resulting in a ionised Universe. Recent research suggest that the Universe was
mostly reionized in 10 . z . 6 except for the residual HI in dense, self-shielded clouds
(see for example Barkana and Loeb [2001], Sethi [2005], Fan et al. [2006], Furlanetto
et al. [2006b], Morales and Wyithe [2010]). The cosmic period during which the Uni-
verse underwent transition from neutral to ionized is known as ‘Epoch of Reionization’
(EoR).

Our understanding of the Universe has improved significantly in the last few decades.

1Here z denotes the redshift.
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CMB experiments revealed the details of the epoch of recombination while large scale
galaxy surveys (e.g. SDSS1 and 2dFGRS2) explored the Universe at lower redshifts.
The time period between these two eras, especially the EoR, is yet to be probed with
the same level of precision. The EoR is expected to give us insights into the duration
and the topology of the reionization process, details of its evolution, nature of first
luminous objects, hierarchy of structure formation, dynamical evolution of large scale
structures, etc (Furlanetto et al. [2006b], Pritchard and Loeb [2012], Zaroubi [2013]).
In the next section, we review the available evidence from the EoR.

1.3 Various probes of EoR

Above we discussed the evolution of physical cosmology in the last century. We also
reviewed the standard model of modern cosmology and mentioned few missing links
in the thermal history of the Universe. The epoch of reionization is one such missing
link holding a treasure trove of early cosmology. In this section, we provide various
probes to EoR and discuss corresponding findings.

1.3.1 Quasars: Gunn-Peterson Trough and Lyman-α Forest

The term “quasar” is the short form of “quasi-stellar radio source” (Chiu [1964]). They
were first discovered in early 1960s as star-like objects (quasi-stellar objects/QSOs) of
unidentified origins emitting at radio frequencies. One of the brightest sources in the
Universe, a quasar is an AGN which consists of a supermassive blackhole (mass of the
order 106−109 M�) surrounded by an accretion disk.

Interestingly, one feature of quasars is that they have a fairly smooth spectra irrespec-
tive of their location in the Universe. Any change in the characteristic spectrum of
a quasar can be used to study the IGM between the quasar and the observer. This
probe is very sensitive to the amount of neutral hydrogen (HI ) in the IGM owing to
the large cross-section of Lyman-series lines (e.g. the Lyman-α transition n = 2→ 1)
with rest frame wavelength (1216Å). Thus the photons emitted from QSOs close to
frequency of Lyman-α transition get absorbed by HI atoms and are re-emitted in a ran-
dom direction. Due to the expansion of the Universe and abundance of HI in IGM, this
process creates several absorption lines, called Lyman-α forest, in the observed spectra
of QSOs at wavelengths larger than the Lyman-α transition. Predicted by Gunn and
Peterson [1965], the strong expected absorption of all photons below the Lyman-α
wavelength by HI is called Gunn-Peterson (GP) trough. Becker et al. [2001] detected
the GP trough for the first time in the spectrum of a quasar at z = 6.28 suggesting that

1Sloan Digital Sky Survey Gunn et al. [2006]
22dF Galaxy Redshift Survey Colless et al. [2001]

5



Figure 1.3: This figure displays the spectra of 19 quasars studied using SDSS data.
The spectra at redshifts z > 6 show absorption due to HI at shorter wavelengths.
Credit: Fan et al. [2006].

the Universe was at least partly neutral z > 6. Later Fan et al. [2006] studied a sample
of 19 quasars in the redshift range 5.74 < z < 6.42 using high resolution SDSS data
and confirmed that reionization ended at z ∼ 6 (see Figure 1.3). The optical depth of
GP, a function of redshift (z), is given by (Eq. (2) of Fan et al. [2006])

τGP(z) = 1.8×105h−1
Ω
−1/2
m

(
Ωbh2

0.02

)(
1+ z

7

)3/2( nHI

〈nHI〉

)
, (1.1)

where angular brackets represent the spatial average, nHI is the number density of HI

, and Ωb, Ωm, and h have their usual meanings. As suggested from this equation, for
a small amount of HI present in the line-of-sight of a QSO the Gunn-Peterson optical
depth is large and thus enough to absorb the Lyman-α photons in the rest frame of HI

cloud. Thus the spectra from quasars present at high redshifts (z∼ 6) can be used as a
probe (but not a very good one) to study the reionization history of the Universe.
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1.3.2 Lyman-α Emitters and Lyman Break Galaxies

In the subsection 1.3.1 we studied how the characteristic spectra of high redshift quasars
provide a tool to understand the reionization history of the Universe. It is possible ow-
ing to the large optical depth of the absorption of Lyman-α photons in the IGM. The
probe described in this section is based on related processes based on two types of
galaxies: Lyman-α emitters and Lyman Break galaxies.

The Lyman-α emitters (LAEs) are galaxies which emit predominantly in narrow band
near Lyman-α transition. They are relatively young galaxies having low mass (108−
1010 M�), low metallicity, and high star-formation rate (Malhotra and Rhoads [2002,
2004]). In LAEs, recombination lines from HII regions in the ISM produce these
Lyman-α photons. This provides us a way to detect the young galaxies in the Universe
(Partridge and Peebles [1967]). The ionized ISM of LAEs allows Lyman-α photons to
escape the galaxy easily. However, the flux from LAEs is diminished in the presence
of neutral IGM because the escaping Lyman-α photons would be scattered by HI as
discussed in the subsection 1.3.1. This probe is sensitive to HI fraction of ∼ 30%−
50%. The observation of LAEs constrains the reionization to be mostly complete at
the redshift z∼ 6.5 (Malhotra and Rhoads [2004]). In other words, the LAEs probe the
mid to late and overlapping phase of the reionization which is complementary to other
probes discussed in this section.

The second type of galaxies which probe the reionization are Lyman Break Galax-
ies (LBGs). The LBGs are star-forming galaxies which are bright at wavelengths
greater than Lyman limit (rest frame wavelength 912 Å) but are very dim at wave-
lengths shorter than Lyman limit. This “break” or “dropout” is due to the presence
of HI in the IGM. The observation of spectroscopic spectra from high redshift LBGs
show that the number of such galaxies decrease in the redshift range z∼ 6−7 and that
the fall is smaller for brighter objects in the sample. It suggests two interesting points
about the reionization history of the Universe: first, the HI fraction increases in the
IGM in the redshift range z∼ 6−7 and, second, the hierarchy of the reionization was
from high to low density regions (inside-out model of reionization) (Ono et al. [2012]).
This drop in the number of LBGs can also be interpreted with the appropriate change
in the fraction of ionizing photons which escape the galaxy (Dijkstra et al. [2014]).

The constraints on the reionization history of the Universe, e.g. the redshift at which
the HI fraction ∼ 0.5, obtained from methods based on Lyman-α galaxies and quasars
(subsection 1.3.1) seem to be consistent with each other. These results along with
CMB-based probe (discussed in next subsection) are shown in Figure 1.4.
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Figure 1.4: It shows the constraints on the neutral hydrogen fraction (xHI) against
redshift (z) derived using three different observations. Credit: Dijkstra [2016]

1.3.3 Cosmic Microwave Background

One major evidence of the epoch of reionization of the Universe comes from the CMB
temperature and polarization anisotropies (e.g. Rees [1968], Hu and White [1997],
Bennett et al. [2013], Planck Collaboration et al. [2020]). Most of the CMB photons
last scattered at z ∼ 1100. However, a small fraction (less than 10%) of these pho-
tons re-scattered during the epoch of reionization. Therefore, CMB contains crucial
signatures of this era.

The free electrons created during the epoch of reionization interact with incoming
CMB photons via Thompson scattering. There are two main effects owing to this
scattering. First, the anisotropies on scales smaller than the horizon at the epoch of
the scattering are diminished. Second the scattering introduces secondary anisotropies
on top of (primary) anisotropies of background (CMB) radiation field (Rees [1968],
Hu and White [1997]). While these secondary anisotropies have negligible impact of
temperature anisotropies, they can substantially alter the polarization angular power
spectrum, creating a bump (called ’reionization bump’) on large scales (multipoles l

corresponding to angular scales larger than roughly the horizon at the epoch of reion-
ization; see Figure 1.5). Given the number density of the free electrons and history
of the reionization, it is possible to calculate the optical depth (τreion) of Thompson
scattering:

τreion =
∫

ne(z)σT ds =
∫ zLSS

0
nH,0(1+ z)3 fi(z)σT

cdz
(1+ z)H(z)

, (1.2)

where ds = cdz
(1+z)H(z) is the physical infinitesimal path length traveled by photons, σT
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Figure 1.5: It shows the E-mode (zero-curl) polarization power spectra of CMB. The
reionization bump at small l (or large scales) arises due to the Thompson scattering of
the CMB photons by free electrons in IGM introduced during reionization. Credit:
Reichardt [2016]

is the Thomson scattering cross-section, ne(z) = nH,0(1+ z)3 fi(z) is the free electron
number density, fi(z) is a function which characterizes the progress of reionization,
nH,0 is the hydrogen number density at z = 0 and zLSS is the approximate redshift of
the last scattering surface. The contribution of free electrons from the ionization of
Helium (He) atoms is ignored for the simplicity. To solve the integral analytically,
reionization history ( fi(z)) has to be assumed. In the simplest case an instantaneous
reionization is considered (a step function) i.e. fi(z≤ zre) = 1 and fi(z > zre) = 0. With
this value of fi(z) and H(z) = H0

(
ΩΛ +(1+ z)3Ωm

)1/2, the optical depth in Eq. (1.2)
is found to be

τreion =
2cσT nH,0

3ΩmH0

[(
ΩΛ +Ωm (1+ zre)

3
)1/2
− (ΩΛ +Ωm)

1/2
]
. (1.3)

Using the above equation it is possible to compute the value of zre from CMB data. The
recent Planck Collaboration et al. [2020] results yield zre ' 8.6. In other words, if the
Universe was to be reionized instantaneously given current observations it would be at
the redshift zre ' 8.6. It can be noticed that the derived redshift of reionization with a
simple toy model of the reionization history (instantaneous; step function) is close to
what is found from other experiments (6≤ zre ≤ 7 e.g. Fan et al. [2006], Malhotra and
Rhoads [2004]). It can be further refined by taking in to account the following: free
electron contribution from the ionization of Helium, a detailed and realistic model of
the history of reionization, kinetic Sunyaev-Zeldovich effect (discussed below), lens-
ing effects, BAO etc. With these additional factors Planck Collaboration et al. [2020]
derive the redshift of (mid-) reionization to be zre = 7.82±0.71. It matches better with
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other probes as the reionization is expected to be a extended process.

Another probe of reionization utilizing CMB radiation is the kinetic Sunyaev-Zeldovich
(kSZ) effect. In the thermal SZ effect the CMB spectrum is distorted via inverse Comp-
ton scattering by hot electrons in IGM. Predicted by Sunyaev and Zeldovich [1972],
the thermal SZ effect boosts the energy (frequency) of low-energy CMB photons. This
effect is second order in v/c and depends on the temperature difference between elec-
trons and CMB. In the kinetic SZ (kSZ) effect, the CMB photons are scattered off elec-
trons with bulk velocity with respect to the comoving frame (Sunyaev and Zeldovich
[1980], Ostriker and Vishniac [1986]). This effect is linear in v/c where v corresponds
to the bulk velocity of electrons and does not result in spectral distortion of CMB
but gives either enhancement or decrement of CMB temperature. The kSZ effect for
the patchy distribution of ionizing regions creates small (arcminute) scale temperature
anisotropies in the CMB. The measurement of these small scale secondary anisotropies
provides another key to understand the reionization process (Carlstrom et al. [2002],
McQuinn et al. [2005]). In 2015 the South Pole Telescope (SPT) lead SPT-SZ survey
covering 2500 deg2 of sky studied these secondary anisotropies (tSZ and kSZ both) on
small angular scales 1′ . θ . 5′ and put the upper limit on the duration of reionization,
∆z < 5.4, with 95% confidence level (George et al. [2015]).

1.3.4 The 21 cm Line of Neutral Hydrogen

The 21 cm line of HI is one of the most promising probe of the CD/EoR. It is a direct
probe using which one can study the HI distribution of the Universe both spatially and
temporally, time period and details of the reionization process, hierarchy of the large
scale structure formation, nature of the first sources, etc. The 21 cm line (in vacuum,
rest frame frequency ≈ 1420.4 MHz and wavelength ≈ 21.1 cm) corresponds to the
transition between the triplet and the singlet hyperfine levels of the ground state of the
neutral hydrogen. Due to the expansion of the Universe the 21 cm line emitted during
the Cosmic Dawn and epoch of Reionization redshifts to meter wavelengths which can
be observed in frequency range 50-200 MHz using modern radio telescopes. Since this
thesis is dedicated to study a particular observation method of 21 cm from EoR using
radio interferometers, the next subsection seeks to elaborate the physics of 21 cm line,
with particular focus on cosmology.

1.4 The 21 cm Cosmology

The 21 cm cosmology is a subset of modern cosmology in which the early Universe is
studied using the 21 cm line of the neutral hydrogen. In this section we have taken an
inside-out approach: we go from atomic level, to local, and eventually to cosmological
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scale. We discuss, in detail, the physical origin of the 21 cm line, its sensitivity to other
physical parameters, and how it allows us to study the cosmic dawn and the epoch of
reionization.

1.4.1 Origin of the 21 cm Radiation

In this subsection the origin of 21 cm line is discussed, based on the quantum mechan-
ics of the hydrogen atom in the ground state.

Both electrons and protons are fermions with “spin” angular momentum h̄/2 each. The
magnetic moments of these particles created by their intrinsic spin angular momenta
are:

µp =
gpe
2mp

Sp, µe =−
gee
2me

Se , (1.4)

where the variables in bold letters are vector quantities, g is the g-factor accounting
for quantum effects, mp and me are masses of proton and electron, respectively, e is
the electronic charge, S represent the spin operator of the particles. In the electron’s
rest frame, the electron experiences a magnetic field,Bp ≡Bp(µp), owing to proton’s
magnetic moment. The spin magnetic dipole moment of the electron interacts with
this magnetic field. Since the magnetic field Bp is a function of µp which in turn is a
function of spin of the proton, this spin-spin interaction perturbs the Hamiltonian of the
hydrogen atom by a small amount (−µe ·Bp). According to perturbation theory of the
quantum mechanics, the expectation value of the perturbing Hamiltonian is equal to
the correction in the energy levels. For our work, the only non-zero term for the spin-
spin interaction is the ground state (orbital angular moment l = 0) of the hydrogen
atom (Eq. (6.89) of Griffiths [2005]). Thus the energy correction is given by:

Ess =
µ0e2gpge

6πmpmea3 < Sp ·Se > (1.5)

where µ0 is the permeability of free space, a is the Bohr radius, and <> represent
expectation value of a quantum operator. In the coupling of angular momenta, it is
convenient to write: Sp ·Se =

(
S2−S2

p−S2
e
)
/2 where S = Sp + Se. The eigenvalue

s of S are |sp− se|, |sp− se|+ 1, ...,sp + se i.e. 0 and 1 since sp = se = 1/2 in units
of h̄. For a given value of s the eigenvalues of z-component of S range from −s to
s for which the number of z-component eigenvalues are 2s+ 1. From the number of
allowed eigenvalues of S it can be noted that the spin-spin coupling of electron and
proton breaks the degeneracy of the ground state of hydrogen atom and splits it into
two hyperfine levels: the lower state corresponds to 0 (“anti-parallel” which is singlet
since 2×0+1 = 1) and upper state to 1 (“parallel”, a triplet since 2×1+1 = 3).
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Further, since the electron and the proton both are spin half particles:

< S2
p >=< S2

e >=
1
2

(
1+

1
2

)
h̄2 =

3
4

h̄2. (1.6)

With this information, the energy levels in Eq. (1.5) is given by

Ess =
µ0e2gpgeh̄2

6πmpmea3 (s(s+1)/2−3/4) (1.7)

≈ (s(s+1)/2−3/4)×5.88×10−6 eV, (1.8)

where we have put the respective values of physical constants in the equation. Hence,
the energy difference between the singlet state (s = 0) and the triplet state (s = 1) is

∆Ess = Ess(s = 1)−Ess(s = 0) = 5.88×10−6 eV. (1.9)

The frequency and wavelength corresponding to the energy gap ∆Ess are

ν21 ≡ ν = ∆Ess/h≈ 1420.4 MHz

λ21 ≡ λ = c/ν ≈ 21.1 cm.

Hence, if the electron makes a transition from triplet to singlet state in a neutral hy-
drogen atom, a photon of wavelength 21 cm would be emitted. The Einstein A co-
efficient which characterizes the rate of probability of spontaneous transition (A10) is
2.85× 10−15 sec−1 for the triplet to singlet state. It implies that the lifetime (1/A10)
of a hydrogen atom in the triplet state is approximately 11 million years which is very
long in human timescales. Hence, in the lab conditions this transition is practically
forbidden. However, in the astrophysical and cosmological settings the neutral hydro-
gen is the most abundant element (∼ 74%) out of all the visible matter. In 1945, H. C.
Van De Hulst predicted that the 21 cm radiation from neutral hydrogen atoms might be
observable in the ISM (Van de Hulst [1945], Van De Hulst [1982]). The 21 cm emis-
sion line was discovered, for the first time in 1951, in the Milky-Way illuminating its
spiral arms (Ewen and Purcell [1951]). Since the 21 cm line is very rare and weak in
intensity, there are many physical processes in the early Universe which can affect the
relative number densities of the triplet and singlet states of HI , thus affecting the 21 cm
radiation observable on the earth. In the next subsection these physical processes are
discussed.
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1.4.2 Spin Temperature (Ts): Processes affecting the 21 cm Radia-
tion

In the previous subsection (1.4.1) we discussed the origin of the 21 cm hyperfine ra-
diation. Here, we study the physical processes which regulate this emission in some
details. A 21 cm photon is emitted when a neutral hydrogen makes the transition from
triplet to singlet state. The number of emitted photons depends on the relative number
densities of HI gas in triplet and singlet states. These number densities are controlled
by a characteristic temperature, called “spin temperature”, of the HI gas. It is defined
as:

n1

n0
=

g1

g0
exp
(
−T∗

Ts

)
, (1.10)

where n1 and n0 are the number densities of HI in the triplet and singlet states respec-
tively, T∗ = hν/kB = 0.068 K, g1 and g0 are degeneracy of triplet (3) and singlet (1)
states, and Ts is the spin (or excitation) temperature.

The spin temperature Ts is the temperature the HI gas would have in the thermodynamic
equilibrium if the number densities of triplet and singlet states (n1 and n0 respectively)
were related according to Eq. (1.10). The spin temperature (Ts) is not the physical
temperature of the HI gas but a constructed quantity which helps us understand the
HI emission in the early Universe where multiple processes play role in affecting the
number densities of triplet and singlet states. There are three processes of relevance
in this context, namely - interaction with background radiation (usually CMB), in-
teraction with the Lyman-α photons, and collisions of HI atoms with other particles.
We investigate them one by one below. Before we proceed further, it should be men-
tioned that the 21 cm radiation comes under low energy radio waves in which case the
Rayleigh-Jeans limit, hν � kBT , almost always holds. Under this limit it is conve-
nient to represent a specific intensity (I) of a source with a linearly related temperature
(T ), called “brightness temperature”, as T = (λ 2/2kB)I, which is the temperature of a
blackbody emitting same specific intensity I.

1. Background Radiation: The neutral hydrogen distributed in early Universe has
a supply of CMB photons coming from very high redshift (1100). The CMB
photons follow the blackbody (Planck’s) distribution which is a continuous func-
tion at all frequencies. The CMB photons whose redshifted frequencies matches
with 1420 MHz can either get absorbed or cause stimulated emission in the HI

clouds along their path. It should be emphasized that such interaction with HI

cloud is valid not only for CMB but also for any type of background radiation
at relevant frequency. Hence, the following equations are written for a general
background radiation. The transition probabilities of these transitions (absorp-
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tion and spontaneous and stimulated emissions) due to a background radiation
are (Field [1958]):

PR
01 =

g1

g0

TR

T∗
A10, PR

10 =

(
1+

TR

T∗

)
A10

where g1 and g0 are degeneracy of triplet (3) and singlet (1) states, TR is the
temperature related to the background radiation, and T∗ = hν/kB = 0.068 K.
The expression of PR

01 is self explanatory - it represents absorption in terms of
Einstein A coefficient. In the equation of PR

10, the first term shows spontaneous
emission and the second term stimulated emission. On combining above two
equations in first order of T∗/TR, we get

PR
01

PR
10
' g1

g0

(
1− T∗

TR

)
. (1.11)

2. The Lyman-α Photons:

The interaction of the Lyman-α photons emitted from luminous astrophysical
objects (e.g. first stars or galaxies) with HI atoms is another way to change
the number densities of the neutral hydrogen in the triplet and singlet states.
In this interaction, a neutral hydrogen atom can absorb a Lyman-α photon, go
to excited state (n : 1⇒ 2), and then may de-excite (n : 2⇒ 1) to a different
hyperfine level in the ground state (n = 1). Due to the large cross section of
the Lyman-α photons, they undergo a large number of scattering in HI regions
before being redshifted out of the resonance width. Therefore, the colour tem-
perature of the Lyman-α photons Tα approaches the kinetic temperature of the
medium TK . Due to the same mechanism, The excitation (or spin) temperature
(Ts) of HI relaxes to Tα . Hence, the Lyman-α photons couple the spin tempera-
ture to the kinetic temperature of the medium (Ts→ TK). This physical process,
called “Wouthuysen-Field effect or coupling” was first suggested by Wouthuy-
sen [1952] and was extended by Field [1958, 1959]. For this interaction, the
ratio of transition probabilities are computed assuming the thermodynamic equi-
librium of two hyperfine states (Field [1958, 1959]). It is given by

Pα
01

Pα
10

=
n1

n0
' g1

g0

(
1− T∗

Tα

)
. (1.12)

3. Collisions: The third and the last physical process which alters the number den-
sities of the triplet and singlet states is the collision of the neutral hydrogen
atoms with other particles (hydrogen atom, protons, or electrons). Since the en-
ergy level gap of 21 cm radiation is very small (∼ 5.88× 10−1 eV), atoms can
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receive and give this small energy via kinetic collisional process. It is described
by the gas kinetic temperature TK and the ratio of transition probabilities is given
as:

Pc
01

Pc
10

=
n1

n0
' g1

g0

(
1− T∗

TK

)
, (1.13)

where thermodynamic equilibrium and T∗� TK are assumed (Field [1958]).

Above we discussed the three physical processes which compete with each other given
the conditions in the early Universe. Together they redistribute the HI atoms in its
triplet and singlet states resulting the variation of spin temperature of HI gas. The
concept of “detailed balance” says that these physical process are not only at equilibria
individually but also collectively - the net rates of singlet-to-triplet and triplet-to-singlet
transitions are equal at equilibrium. That is

(
PR

10 +Pα
10 +Pc

10
)

n1 =
(
PR

01 +Pα
01 +Pc

01
)

n0. (1.14)

Using Eqs. (1.10), (1.11), (1.12), (1.13) in (1.14) and assuming T∗� Ts, the expression
for spin temperature Ts is found to be (Field [1958])

Ts =
TR + yαTα + ycTK

1+ yα + yc
(1.15)

with yα =
T∗
Tα

Pα
10

A10
, yc =

T∗
TK

Pc
10

A10
, (1.16)

where yc and yα are collisional and Lyman-α coupling coefficients respectively. In
some literature (e.g. Pritchard and Loeb [2012]), above equation of Ts is written in a
slightly different form as:

T−1
s =

T−1
R + xαT−1

α + xcT−1
K

1+ xα + xc
(1.17)

with xα =
T∗
TR

Pα
10

A10
, xc =

T∗
TR

Pc
10

A10
. (1.18)

For our discussion we will use the expression of Ts given in Eq. (1.15). The background
radiation whose effect on Ts is given by TR is usually considered to the CMB radiation
(TR = TCMB). However, in the case of some unknown background radiation having
brightness temperature TX , its effect can be easily incorporated using TR = TCMB +TX

in the expression of Ts in Eq. (1.15).
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1.4.3 Radiative transfer of the 21 cm Radiation

Till now we discussed the origin of the 21 cm radiation and what physical processes
affect this emission. In this section we will study how the 21 cm radiation is transferred
from their place of origin in the early Universe to the observers.

Consider a blob of gas having optical depth τν and brightness temperature Tsource. This
blob is illuminated by a constant source in background having brightness temperature
TB. The photons from the background source traverse through the blob of gas and get
absorbed, scattered, or/and re-emitted depending on their frequencies. The brightness
temperature of the radiation received by an observer at the other end of the blob would
be ([Rybicki and Lightman, 1979])

dTB

dτν

=−TB +Tsource (1.19)

where the specific intensities are written in terms of temperatures assuming the Rayleigh-
Jeans limit (hν� kBT ). Above equation is a simple linear differential equation of first
order. The solution is given by

TB(τν) = Tsource(1− e−τν )+TB(τν = 0)e−τν . (1.20)

This is a solution to radiative transfer applicable to any type of medium and constant
background source (under the Rayleigh-Jeans limit). From the solution two extreme
cases can be analysed. First, in the case of optically thick medium (τν � 1⇒ e−τν →
0), the solution reduces to TB(τν) ≈ Tsource. It implies that the background source is
almost fully suppressed by the optically thick medium (blob) and the observed emis-
sion is simply the source function of the medium itself. In the second extreme case,
consider the medium is optically thin (i.e. τν ≈ 0⇒ e−τν → 1) which suggests the solu-
tion would be TB(τν)≈ TB(τν = 0). In this scenario, the medium would be transparent
to the background source and the observer would receive the unaffected background
emission.

In the context of the 21 cm cosmology, the background source is usually CMB (TB =

TCMB) and Tsource = Ts, the spin temperature of the 21 cm line. From the observa-
tional point of view, it may not always be possible to measure TCMB on the absolute
scale. Often it is the temperature contrast, with respect to background CMB, which is
measured with radio telescopes. Thus, a differential brightness temperature is defined
as

∆T ≡ TB(τν)−TB(τν = 0) = (Ts−TCMB)(1− e−τν ) (1.21)
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where TB = TCMB is used. Due to expansion of the Universe, the HI emission would
be redshifted by a factor of (1+ z) for an observer on the earth. The optical depth
(τν ) is very small in comparison with unity, hence, on substituting 1− e−τν ' τν and
with proper variable dependence (e.g. 3-D space coordinate r), the redshifted 21 cm
differential brightness temperature would be

∆T21(r,z)'
Ts(r,z)−TCMB(z)

1+ z
τν(r,z). (1.22)

The last unknown variable in the above equation is τν which is a function of the po-
sition and redshift of the HI cloud. Its derivation requires formulating the absorption
coefficient (as τν(r,z) =

∫
αν(r,z)dl) in terms of Einstein coefficients and cosmolog-

ical parameters. From Zaroubi [2013], we write the final expression for the redshifted
21 cm differential brightness temperature as

∆T21(r,z)' 28 mK(1+δ )xHI

(
1− TCMB

Ts

)(
Ωbh2

0.0223

)√(
1+ z
10

)(
0.24
Ωm

)(
H(z)/(1+ z)

dv‖/dr‖

)
,

(1.23)
where xHI is the HI neutral fraction, δ is the mass density contrast, h is the Hubble
constant in units of 100 kms−1 Mpc−1, dv‖/dr‖ is the line-of-sight velocity gradient
, and other symbols have their usual meanings. The effect induced by line-of-sight
velocity gradient is called ‘redshift-space distortion’.

From Eq. (1.23) it can be noticed that ∆T21 is a complicated function of redshift
and position capturing the effects of astrophysics and cosmology. The physical pro-
cesses like reionization, cosmic expansion, temperature, evolution of matter distribu-
tion etc. compete with each other to influence the 21 cm signal (∆T21). It suggests that
∆T21 consists of global (sky-averaged) and fluctuating components both (discussed in
next subsection). While the global signal (〈∆T21〉) can be detected using a monopole
radio antenna (e.g. Pritchard and Loeb [2010], Bowman et al. [2018]), a low fre-
quency (∼ 100−200 MHz) radio interferometer is employed to measure the fluctuat-
ing component in the form of 21 cm power spectra at various spatial scales (Bharad-
waj and Sethi [2001], Morales and Wyithe [2010]). The strength of ∆T21 is very weak
(. 250 mK) in comparison with systematics and other unwanted sources (e.g. fore-
ground sources). Although a challenging endeavour, detection of both of these compo-
nents are necessary to give us the complete picture of the reionization process. Hence,
the 21 cm radiation of HI provides us a rich probe to study the early Universe.
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Figure 1.6: It shows a cartoon picture of the global 21 cm signal 〈∆T21〉 as a function
of redshift and observing frequency (ν = ν21/(1+ z)). The profile of the signal
depend on the various astrophysical and cosmological events. Credit: Pritchard and
Loeb [2012]

1.4.4 The Global 21 cm Signal

Here we compute the the global 21 cm signal from the derived differential brightness
temperature in Eq. (1.23). It probes the temperature evolution of the IGM in the early
Universe. The line-of-sight velocity gradient term is ignored for simplifying the so-
lution. Taking the global spatial volume average (also known as ‘sky-averaged’ or
monopole component) of ∆T21 in Eq. (1.23), we find

〈∆T21(r,z)〉 ' 28 mK〈xHI〉
〈

Ts−TCMB

Ts

〉√(
1+ z
10

)
, (1.24)

where the cosmological parameters from Planck Collaboration et al. [2020] are used
and mean of density fluctuation is zero (〈δ 〉 = 0). On of the possible profiles of the
global signal is given in Figure 1.6.

Profile of the Global 21 cm Signal

The cosmic events (e.g. cosmic dawn, heating or reionization of IGM) leave their sig-
natures on the global 21 cm signal. Since these features come from different epochs of
the Universe, they affect the signal at different redshifts. A cartoon figure of the differ-
ent cosmic intervals which we discuss below is shown in Figure 1.7. Before we proceed
to discuss the shape of the global signal, it is important to keep in mind the variables
in the expression of the 21 cm signal. In Eq. (1.24), the global 21 cm signal depends
on the mean HI neutral fraction 〈xHI〉 and spin temperature. The spin temperature Ts is
itself a function of various temperature couplings as discussed in subsection 1.4.2. In
case where the spin temperature Ts is totally coupled to the background radiation i.e.
Ts = TCMB, the global signal 〈∆T21〉 is expected to be zero. For the cases Ts > TCMB and
Ts < TCMB, the global signal would be seen in emission and absorption respectively.
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Figure 1.7: It shows different periods of the cosmic history. These events imprint their
respective signatures on the global 21 cm signal. Credit: Pritchard and Loeb [2012]

• 1100 &&& z &&& 200 : This interval of the cosmic history begins at the last scatter-
ing surface of CMB which also coincides with the epoch of recombination. The
residual free electrons from recombination maintain the thermal coupling of hy-
drogen atoms to background radiation (CMB) (TK = TCMB) via Compton scatter-
ing. Since the HI number density has not fallen enough, collisional process fur-
ther couples the spin temperature to the background radiation (i.e. Ts = TCMB).
It implies that the mean differential brightness temperature 〈∆T21〉 = 0, hence
there would not be HI radiation. Thus this regime is also called dark ages.

• 200&&& z &&& 30 : The residual free electrons are no longer effective and hydrogen
decouples from the background radiation (CMB). The HI gas cools adiabatically
(TK ∝ (1+z)2) while TCMB ∝ (1+z). Collisional process couples Ts to TK which
gives Ts < TCMB and thus 〈∆T21〉< 0. In this case the global 21 cm signal would
be seen in absorption.

• 30 &&& z > z∗ : The HI gas density is now low enough rendering the collisional
coupling ineffective. The HI gas again couples to background radiation (Ts =

TCMB) and hence 〈∆T21〉= 0.

• z∗ &&& z &&& zh : The first luminous sources (e.g. stars and galaxies) form at
redshift z∗ which also emit X-rays and Lyman-α photons. With production of
more Lyman-α photons from newer luminous sources, the neutral hydrogen gets
strongly coupled via Lyman-α coupling to the gas temperature (Ts→ TK). Since,
Ts = TK < TCMB an absorption trough is expected in the global signal. Further,
X-rays will heat the HI gas eventually causing gas temperature TK to approach
TCMB by the redshift zh.

• zh &&& z > zre : Due to X-ray heating, the HI gas gets hotter than background
radiation (Ts = TK > TCMB), and hence the global signal is seen in emission
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(〈∆T21〉> 0).

• zre &&& z : The ultraviolet (UV) photons from luminous sources ionize the HI gas
surrounding them in IGM. These ionized bubbles keep growing and eventually
get merged with each other. By the redshift zre the Universe gets (almost) com-
pletely ionized. Since in this situation the HI neutral fraction becomes zero,
〈xHI〉= 0, the global 21 cm signal vanishes according to Eq. (1.24). After reion-
ization of the Universe, residual neutral hydrogen HI is mostly trapped in pockets
of damped Lyman-α systems.

The spin temperature Ts is the dominant variable in shaping the 21 cm signal in the
early Universe (z & zh), while HI neutral fraction xHI plays prominent role toward the
last phase of the reionization (z . zh).

Experimental Efforts to detect the Global 21 cm Signal

There are many running and planned single-dish radio telescopes which aim to detect
the global 21 cm signal from the early Universe. Some of them include:

• Shaped Antenna measurement of the background Radio Spectrum [40-200 MHz]
(SARAS; Patra et al. [2013], Singh et al. [2017, 2018a])

• Experiment to Detect the Global EoR Signature [50-200 MHz] (EDGES; Bow-
man et al. [2008], Bowman and Rogers [2010], Bowman et al. [2018])

• The Large-Aperture Experiment to Detect the Dark Age [30-85 MHz] (LEDA;
Price et al. [2018])

• Probing Radio Intensity at high-Z from Marion [50-130 MHz] (PRIzM; Philip
et al. [2019])

• Radio Experiment for the Analysis of Cosmic Hydrogen [50-200 MHz] (REACH1)

• Mapper of the IGM spin Temperature (MIST2)

Even though the amplitude of the 21 cm signal is low, the required sensitivity for
monopole experiments is not the issue. These endeavours are mostly limited by fore-
ground and ionospheric contaminations and systematics. Some of these experiments
put upper limits on astrophysical and cosmological parameters (e.g. Monsalve et al.
[2017], Singh et al. [2017, 2018b], Bowman et al. [2018]). Bowman et al. [2018]
claimed to have detected an ‘absorption trough’ from dark ages (z ∼ 17) at 78 MHz
(see Figure 1.8). The amplitude of the observed trough (∼ 530 mK) is almost double of
maximum expected from the standard models of the global 21 cm signal. While some

1https://www.astro.phy.cam.ac.uk/research/research-projects/reach/reach
2http://www.physics.mcgill.ca/mist/
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Figure 1.8: The ‘absorption trough’ detected by EDGES team. The depth and shape
(flatness) of the signal are unexpected from the known theoretical understanding of
the 21 cm cosmology. Credit: Bowman et al. [2018]

raised concerns at the detected signal (Hills et al. [2018], Sharma [2018], Singh and
Subrahmanyan [2019]), others gave alternative theoretical interpretation to the anoma-
lous profile using exotic physics and non-conventional cosmology (Barkana [2018],
Fraser et al. [2018], Ewall-Wice et al. [2018]).

1.4.5 The 21 cm Power Spectrum

In the previous subsection we discussed the global (sky-averaged) 21 cm signal from
high redshifts. The differential brightness temperature ∆T21 varies with spatial coor-
dinates (r) and redshift (z) (or observed frequency). The global signal is obtained by
averaging over all space coordinates to retain only the redshift dependence of IGM
temperature i.e. 〈∆T21〉(z). In this process the spatial details of the HI signal are av-
eraged out. However, inhomogeneities of HI carry crucial information about structure
formation and thermal and ionization history, which makes their study of paramount
interest. For doing so we assume ∆T21 is a random variable representing a real field,
then we can employ the tools of autocorrelation function in real space (r) and power

spectrum in Fourier space (k). The random variable ∆T21 can be seen as a linear sum
of all types of inhomogeneities or fields (Furlanetto et al. [2006a]) and hence it can be
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decomposed into several sub-components as:

∆T21 = βbδb +βxδx +βαδα +βT δT −δ∂v, (1.25)

where β ’s are constants and δb,δx,δα ,δT ,δ∂v denote spatial inhomogeneities in the
baryon density, HI neutral fraction, Lyman-α radiation, kinetic temperature, and line-
of-sight peculiar velocity gradient respectively. The autocorrelation function of ∆T21

is defined as
ξ (r1,r2) = 〈∆T21(r1)∆T21(r2)〉 . (1.26)

Using that the Universe is statistically homogeneous and isotropic at large scales, the
autocorrelation function ξ (r1,r2) reduces to ξ (r) where r = |r2−r1|. The autocor-
relation function ξ (r) of 21 cm emission encodes the information about correlation or
‘sameness’ of HI radiation at two points separated by a physical distance r. Statistical
quantities similar to ξ can be defined in related ways depending upon the case at hand
and convenience - e.g. the mean from ∆T21 can be subtracted before correlating and/or
ξ can be normalized normalized with variance of ∆T21. In this work we will use the
definition given in Eq. (1.26).

The power spectrum of a scalar field represents the ‘power’ contained in each spatial
‘frequency’ (k) - basically it tells us which and how many physical scales are available
in the given field. If the scalar field is denoted as ∆T21(r) and its Fourier transform as
δ21(k), then the power spectrum P(k) of ∆T21(r) is defined as

〈δ21(k1)δ21(k2)〉= (2π)3
δ

3(k2−k1)P21(k) (1.27)

where the angular brackets denote ensemble average and δ 3 is the Dirac delta func-
tion in 3-D. It can be proven that the power spectrum P(k) is the spatial 3-D Fourier
transform of the autocorrelation function (Wiener-Khinchin theorem):

P21(k) =
∫

ξ (r)eik·rd3r. (1.28)

Above two expressions can be further simplified by invoking the cosmological prin-
ciple (statistical homogeneity and isotropy of the Universe) in which case P(k) =

P(|k|) = P(k). However it is not correct for observations if a very large volume of the
Universe is selected as the peculiar velocities and temporal evolution of the Universe
break this symmetry along the line-of-sight direction.

N-body simulations, analytic and semi-analytic methods are employed to model and
predict the HI signal (global and power spectrum both) from the early Universe (e.g. Mc-
Quinn et al. [2007], Santos et al. [2008], Raste and Sethi [2018], Kapahtia et al.
[2018]). A typical simulated model of the HI power spectrum P21(k) is shown in
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Figure 1.9: Based on simulations, the expected HI power spectrum from the early
Universe is shown for many Fourier modes k against redshift (observing frequency)
and ionization fraction (1− xHI). On large scales (small k-modes), P21(k) has three
prominent peaks due to inhomogeneities in (peaks from left to right) ionization,
heating of IGM, and Lyman-α radiation respectively. Credit: Santos et al. [2008]

Figure 1.9 for many Fourier modes (k). One interesting feature of P21(k) is that it
is expected to have three peaks on large scales (small k-modes) due to fluctuations in
ionization, heating of IGM, and Lyman-α radiation. On small scales (large Fourier
modes), however, the power spectrum roughly follows the square of global signal
〈∆T21〉2 (Santos et al. [2008]).

Many studies say that P21(k) from the early Universe can be observed with low-
frequency radio interferometers (e.g. Morales and Hewitt [2004], Sethi [2005]). Be-
low, we list radio telescopes which have been constructed and are planned for the near
future to detect the 21 cm power spectrum P21(k) from the EoR.

• Giant Metrewave Radio Telescope [50-1500 MHz] (GMRT; Paciga et al. [2011])

• Hydrogen Epoch of Reionization Array [50-250 MHz] (HERA; DeBoer et al.
[2017])

• Low-Frequency Array [30-240 MHz] (LOFAR; van Haarlem et al. [2013])

• Murchison Widefield Array [80-300 MHz] (MWA; Tingay et al. [2013])

• Square Kilometre Array [50-350 MHz] (SKA; Koopmans et al. [2015a])

The output of a radio interferometer is a 3-D data cube known as visibility which
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has one real axis (observing frequency as line-of-sight direction) and two Fourier axis
(baselines; on the plane of sky). Under appropriate assumptions it can be shown that
the power spectrum of the redshifted HI emission from EoR is proportional to the
square of frequency Fourier transform of visibility (Morales and Hewitt [2004], Par-
sons et al. [2012b]). The proof, corresponding assumptions etc. are discussed in detail
in the next chapter.

1.5 Plan of the Thesis

The primary goal of this thesis is to develop a power spectrum analysis technique for
the drift scan observations. In this chapter, we reviewed the 21 cm cosmology and de-
scribed the physics behind the HI signal and how it gets affected by various effects. In
the chapter 2, the observational aspects of the 21 cm cosmology are discussed includ-
ing the measurements in the radio astronomy, relations between the HI power spectrum
and the observation from a radio telescope, primary challenges in the detection etc. In
the chapter 3, we develop a formalism to study the HI power spectrum in the drift scan
observations. Next, in the chapter 4, we discuss a technique based on the results of
this formalism and apply it on the drift scan data from phase I and II of the Murchison
Widefield Array (MWA). In the last chapter, we summarise the thesis, make important
concluding remarks, and point to the future directions of this work.
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Chapter 2

Radio Astronomy in the EoR
Observations

In the previous chapter we studied the epoch of reionization, its significance in cosmol-
ogy, its evidence, and the 21 cm cosmology in detail. In this chapter, we will elaborate
on the HI power spectrum from an observational perspective and various challenges in
its detection.

2.1 Basics of Radio Astronomy

Radio astronomy is a branch of astronomy in which celestial objects and the Universe
are studied at radio wavelengths (λ & 1 cm). Since radio emission is at low energies,
the wave nature of light is key to analysing these signals. Radio emission from an
astronomical source was first detected by Jansky [1933]1. Radio telescopes consist of
single or multiple antennas (or elements) to collect light from the sky. The latter case
utilizes the techniques of aperture synthesis and interferometry.

2.1.1 Radio Interferometry

The principle of radio interferometry is very similar to that of a Young’s double-slit
experiment: antennas and radio source in the sky are analogous to slits and coherent
source in the double-slit experiment, respectively. Consider a plane wave from a distant
source that arrives at two antennas denoted by i and j at times t and t + τg. In radio
interferometry, the electric fields of the incident wave measured by the antennas are
interfered electronically. In practice, the process of digital interference involves the

1 In radio astronomy, the unit of flux density, jansky or Jy, derives its name from Karl G. Jansky.
1 Jy = 10−26 W m−2 Hz−1. It is an appropriate unit to quantify radio emission from celestial sources
which are usually very weak.
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cross-correlation of the electric fields in time. This cross-correlation function, known
as visibility, is given by:

V i j
ν (τg)≡

〈
Ei(ν , t)E∗j (ν , t + τg)

〉
t , (2.1)

where angular brackets represent averaging in time, ν is the observing frequency, τg

is the geometric delay between arrival times of the wave at two antennas, and V i j
ν is

the visibility measured by the antenna pair i− j. In general, Vν contains not only the
emission from the target field but also various systematics effects, e.g. chromaticity,
thermal noise, complex antenna gains, etc. The electric fields Ei and E j are the electric
fields of the same wavefront as the cross-correlation function between two different
wavefronts would be zero. It should be clarified that the raw electric fields are recorded
at small time intervals (typically inverse of the bandwidth) and the visibility data are
output at larger intervals (say at each 0.5 s) after performing cross-correlation and time
averaging defined in Eq. (2.1). The output time interval is called integration time or
cadence in radio astronomy. The two processes, cross-correlation and time averaging,
reduce the incoherent systematic features and thermal noise in the data.

The visibility defined in Eq. (2.1) can be related to the intensity pattern as: (Taylor
et al. [1999]):

Vν(ri−r j) =
∫

Aν(σ)Iν(σ)e−2πiν(ri−r j)·σ/c dΩ, (2.2)

the integral is all over the sky, c is the speed of light, dΩ is the infinitesimal solid
angle on the sky, ri and r j are the position vectors of the antennas, σ = s−s0 is the
angular separation from phase tracking center s0, Iν(σ) is the specific intensity of the
sky which is a function of frequency ν and the angular position vector σ, and Aν(σ)

is the power pattern or the response of the antennas called antenna beam. Aν(σ) is a
dimensionless function (e.g. a Sinc2 function or a Gaussian) on the sky intensity distri-
bution which is normalized to one at the center (σ= 0) and goes to zero away from the
center. Theoretically, Aν is the absolute-value-squared of the Fourier transform of the
aperture illumination (Christiansen and Hoegbom [1969]). It should be noted that the
visibility Vν(ri− r j) depends on the physical separation of the two antennas, not on
their absolute positions. In Figure (2.1) a two-element interferometer is shown along
with relevant variables.

Next, it is often convenient to rewrite Eq. (2.2) in terms of direction cosines (l,m,n) as
shown in Figure (2.1). It is given by (Taylor et al. [1999]):

Vν(u,v,w) =
∫ dldm

n
Aν(l,m)Iν(l,m)e−2πi(ul+vm+(n−1)w), (2.3)
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Figure 2.1: It shows the setup of the two antenna interferometer measuring intensity
Iν in the sky. Variables are given in slightly different form: baseline b= ri−r j;
Credit: Taylor et al. [1999].
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where n=
√

1− l2−m2, dΩ= dldm/n, w= b ·s0/λ , and ul+vm+wn= b ·s/λ . This
equation captures the detail of the sky intensity distribution over the full curved sky.
(u,v,w) are the components of the baseline vector b in units of observing wavelength.
To avoid the clutter in the equation, here we have suppressed their frequency (or wave-
length) dependence - e.g. u = (u0/ν0)ν - but we will use them when it is needed. The
baseline components (u,v) are in the plane perpendicular to s0 and point towards local
east and north respectively; w-term is along the line-of-sight (LoS) s0. In a radio in-
terferometric observation, even though (u,v,w) may change due to the earth’s rotation
(see subsection 2.1.2), u2 + v2 +w2 remains invariant because the physical length of
the baseline between antennas i j is fixed in the coordinate transformation.

Eq. (2.3) is the fundamental equation of the radio interferometry. It relates the sky
brightness Iν(l,m) with the observed visibility Vν(u,v,w) in terms of instrumental pa-
rameters like baseline and antenna beam. It can be further illustrated assuming the flat

sky approximation in which n' 1 or a small primary beam (main lobe of Aν(l,m)). In
that case Eq. (2.3) becomes:

Vν(u,v)'
∫

dldm Aν(l,m)Iν(l,m)e−2πi(ul+vm). (2.4)

On looking carefully, we notice that the equation above is a 2-D (spatial) Fourier trans-
form relation in which (u,v) and (l,m) are Fourier conjugate variables or duals. It
indicates that the observed visibility Vν(l,m) is the Fourier transformation of the sky
intensity distribution Iν(l,m) weighted by the antenna beam Aν(l,m). Since the inte-
grand in RHS is a product of Iν and Aν , convolution theorem can be applied: Vν is the
Fourier transform of Iν convolved with the Fourier transform of Aν .

Another point to notice is that Iν(l,m) and Aν(l,m) are real space functions as (l,m)

are real space (angular) coordinates which means the visibility Vν(u,v) exists in the
2-D Fourier space - its third axis frequency ν is still in real space. Thus, there must be
a relation between baseline (u,v) and Fourier modes (k⊥1,k⊥2) on the plane of the sky.
We will come back to this point a later stage when we will discuss the 21 cm power
spectrum measurements.

2.1.2 Aperture Synthesis

In radio interferometry, one of the principle goals is to image the sky from the observed
visibility data. These images are further used to do science of the target field e.g. study-
ing the dynamics of neutral hydrogen gas. In principle, the imaging or map-making
can be done by simply inverting the Fourier relation in Eq. (2.3). However, in reality it
is not a straightforward process as it may seem and it requires some techniques.
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To elucidate the concept of the aperture synthesis, we ignore Aν in Eq. (2.3) and invert
the Fourier relation. We get:

Iν(l,m) = ∆u∆v∑
u,v

Vν(u,v)e2πi(ul+vm), (2.5)

where we have written the equation in the discrete form and summation is over all
available values of u and v. Thus, if the visibilities are measured in the uv plane, we can
compute the sky intensity distribution using Eq. (2.5). Sampling of uv plane on regular
grids helps in faster computation (e.g. using Fast Fourier Transform) of this equation.
However, in practice, visibilities are not sampled (observed) in full uv plane due to
the limited number of baselines, and hence there are gaps and irregularity in the uv

space. In other words, the sampling function of the visibility is irregular and its Fourier
transform1 is convolved with the true image2. Along with the inverse Fourier transform
(from (u,v) to (l,m) coordinates), the imaging process also involves deconvolution of
the synthesized beam. The most famous algorithm for the deconvolution is CLEAN
(Högbom [1974]). Hence, a good knowledge of the sampling function is required to
construct a ‘faithful’ image from the observations.

To mitigate this problem of undersampling of uv space, the rotation of the earth is
utilized to increase the number of unique baselines in the uv space. In tracking radio
observations, the target field is tracked as the earth rotates about its axis. Since the
baseline components (u,v) are projections of antenna separation vector b on to the
plane perpendicular to s0 (LoS), baseline components (u,v) also change during the
course of the (tracking) observation (see Figure (2.2)). Thus, the technique of aperture
synthesis allows sampling of visibilities at larger number of baselines in the uv space
which helps make superior images of the target field.

2.2 The HI Visibility

At this point we are equipped with the basics of radio astronomy. Now, we can apply it
to the problem of the detection of the HI power spectrum from EoR. We first construct
the visibility of the redshifted HI emission from EoR.

The HI emission I(r) received from high redshifts depends on the position (r) of the
HI cloud in the Universe. Essentially, the emission is a 3-D real field (or a function):
two spatial coordinates on the plane on the sky and third along the line-of-sight (LoS).
The HI emission I(r) is modelled as a statistically homogeneous and isotropic process

1In the language of radio astronomy, the Fourier transform of the sampling function or baseline
distribution is called the synthesized beam.

2 A true image convolved with the Fourier transform of the sampling function is called a dirty image.
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Figure 2.2: In panel (a), the physical positions of the GMRT antennas are shown. The
instantaneous baseline distribution constructed from the antennas is displayed in
panel (b). Due to rotation of the earth, the baselines populate the uv plane in an hour
long tracking observation (panel (c)). In general better uv coverage is desired for
making better images. Credit: Kiehbadroudinezhad et al. [2014].

32



1. We decompose the function characterizing the field into the mean and fluctuating
components as (Bharadwaj and Sethi [2001]):

I(r) = Īν +∆Iν(θ) (2.6)

and Īν =
A21hpc〈nHI〉

4πH(z)
, (2.7)

where Īν is the mean and isotropic HI emission at frequency ν , ∆Iν is the fluctuation
on top of the mean Īν , A21 is Einstein’s coefficient for HI transition, H(z) is the Hub-
ble’s parameter in the matter dominated Universe, hp and c are Planck’s constant and
the speed of light respectively. In our analysis we ignore the peculiar motion of the
sources. The observing frequency ν is the proxy for the LoS position or redshift as
ν = ν0/(1+ z). The angular vector θ ≡ (l,m) is position on the plane perpendicular
to LoS measured with respect to the phase tracking center or the center of the antenna
beam.

A radio interferometer measures only the fluctuating components of the sky, the mean
HI intensity Īν does not appear in the expression of the visibility. Thus, using Eq. (2.4)
we write the visibility for HI emission as:

Vν(uν)'
∫

d2θ Aν(θ)∆Iν(θ)e−2πi θ·uν , (2.8)

where uν ≡ (u,v) is the baseline vector (frequency dependence is made explicit here).
Further, the fractional intensity fluctuation ∆Iν/Īν can be expanded in terms of its
Fourier components as (Bharadwaj and Sethi [2001], Morales and Hewitt [2004]):

∆Iν(θ)

Īν

=
∫ d3k

(2π)3 δ21(k)eik·r =
∫ d3k

(2π)3 δ21(k)eirν (k‖+k⊥·θ) (2.9)

where δ21(k) is the same Fourier variable defined in Eq. (1.27) in section 1.4.5 which
encompasses every kind of fluctuations responsible for the HI emission. The variable
r is the vector position of the HI cloud in the Universe which is split into two mutually
perpendicular components – along the line of sight (k‖) and on the plane of the sky
(k⊥). On using the expression of ∆Iν(θ) in Eq. (2.8), we find:

Vν(uν) = Īν

∫ d3k

(2π)3 δ21(k)eirν k‖
∫

d2θ Aν(θ)e−2πi θ·(uν−rνk⊥/2π)

Vν(uν) = Īν

∫ d3k

(2π)3 δ21(k)eirν k‖Qν (uν − rνk⊥/2π) (2.10)

with Qν (x)≡
∫

d2θ Aν(θ)e−2πi θ·x (2.11)

1The Gaussianity of the signal is not assumed and we expect the HI signal to be non-Gaussian (e.g.
Wyithe and Morales [2007]).
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where Qν , called Fourier beam, is the response of the antenna beam in the Fourier
space. Notice that the Fourier beam is a function of baseline and is maximum when
the exponent is zero: k⊥ = (2π/rν)uν . This relation indicates that a baseline uν of a
radio interferometer can probe a Fourier mode near k⊥ = (2π/rν)uν . In other words,
a visibility Vν(uν) measured with a given baseline uν contains the information of the
sky in 2D Fourier space near the Fourier mode k⊥ = (2π/rν)uν . Thus, the visibility,
a data product of the radio interferometer, may be used to estimate the spatial power
spectrum of the sky which we discuss in the next subsection.

2.3 The HI Power Spectrum

In the previous subsection, we derived the expression of the visibility for the HI emis-
sion. Here we will show how it can be used to construct the HI power spectrum of
the same scalar field under some simplifying assumptions. First we recall that the
expression of the spatial power spectrum which was defined in Eq. (1.27) as:

〈δ21(k1)δ21(k2)〉= (2π)3
δ

3(k2−k1)P21(k), (2.12)

where P21(k) is the quantity that we want to estimate from the radio interferometric
data. Since the power spectrum exists in the 3D Fourier space, we need to transform
the observed visibility into full 3D Fourier space. The only axis of the visibility Vν(uν)

data-cube which is in the real space is the frequency ν (in cosmology, the observing
frequency is the proxy for the LoS distance or the redshift). We take the Fourier trans-
form of the visibility Vν(uν) given in Eq. (2.10) along the frequency axis1. We find:

Vτ(u0) =
∫

ν0+B/2

ν0−B/2
dν Vν(uν)e−2πiτν

=
∫ d3k

(2π)3 δ21(k)
∫

ν0+B/2

ν0−B/2
dν Īνeirν k‖−2πiτνQν (uν − rνk⊥/2π)

where ν0 and B denote the central frequency and the bandwidth of the observation
respectively, τ is the geometric delay (in Figure (2.1) it is denoted as τi) and is the
Fourier conjugate variable of frequency ν . Vτ(u0) is in 3D Fourier space and u0 rep-
resent the baseline at the central frequency ν0, The Universe evolves with respect to the
observing frequency. However, in a small bandwidth (B . 10 MHz), we may assume
that it remains approximately constant. It allows us to Taylor expand the frequency de-
pendent terms about the central frequency ν0 in the first non-zero order. Furthermore,
since the aim of this section is to demonstrate that the 21 cm power is related with
visibilities, we also assume that the Fourier beam Q is constant in the given bandwidth

1This frequency Fourier transform is also called delay transform (Parsons et al. [2012b], Paul et al.
[2014a]).
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B. We get:

Vτ(u0)' Īν0

∫ d3k

(2π)3 δ21(k)Qν0

(
u0−

r0k⊥
2π

)
ei(r0−ṙ0ν0)k‖

∫
ν0+B/2

ν0−B/2
dν eiν(ṙ0k‖−2πτ)

(2.13)

= BĪν0

∫ d3k

(2π)3 δ21(k)Qν0

(
u0−

r0k⊥
2π

)
ei(r0k‖−2πτν0) sinc

[(
ṙ0k‖−2πτ

)
B/2

]
(2.14)

where subscript ‘0’ under a variable denote the value of that variable at the central
frequency, ṙν = drν

dν
= c(1+z)2

ν21H(z) , and sincA = sinA
A is the sinc function.

Now, we have a data product Vτ(u0) which is in the 3D Fourier space. Next, we
compute the amplitude square of this quantity and use the definition of the power
spectrum given in Eq. (2.12) to get:

|Vτ(u0)|2 ' (BĪν0)
2
∫ d3k

(2π)3 P21(k)

∣∣∣∣Qν0

(
u0−

r0k⊥
2π

)
sinc

[(
ṙ0k‖−2πτ

)
B/2

]∣∣∣∣2 .
In the above equation we note that the power spectrum is convolved with the Fourier
responses of the beam and frequency band1. Usually these response functions are
sharply peaked in the Fourier domain for the wide antenna beams. The power spectrum
does not vary much over such sharp response functions. So, we can take it out of the
integral2:

|Vτ(u0)|2 ' (BĪν0)
2P21(k0)

∫ d3k

(2π)3

∣∣∣∣Qν0

(
u0−

r0k⊥
2π

)
sinc

[(
ṙ0k‖−2πτ

)
B/2

]∣∣∣∣2 ,
where the vector k0 =(2πu0/r0,2πv0/r0,2πτ/ṙ0) is the measured Fourier mode (Bharad-
waj and Sethi [2001], Morales and Hewitt [2004], Parsons et al. [2012b], Paul et al.
[2014a]). Hence, if the antenna beam and frequency window function are known with
accuracy, in principle, we can estimate the power spectrum on the Fourier mode k0

using the equation above.

The antenna beam Aν(θ) and the frequency window function (above, a rectangular
function is used) both taper the HI intensity field along the three mutually perpendicu-

1In practice, often a frequency window/tapering function is used before the frequency Fourier trans-
form to avoid the discontinuity at the end points of the visibility which otherwise causes the power
leakage (Press et al. [1992]). In that case, the used frequency window function should be Fourier trans-
formed in Eq. (2.13). An example of this is given in Eq. (3.41) where we derived a correlation function
of visibilities of diffuse foreground with a Gaussian window function.

2Convolution with a sharply peaked function:

f ∗δ (x) =
∫

f (y)δ (x− y)dy = f (x)
∫

δ (x− y)dy = f (x)
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lar axes - the frequency window function along the LoS axis and the antenna beam on
the plane perpendicular to the LoS. In other words, they introduce ‘scales’ in the prob-
lem. The consequence of this is that the triplet (u,v,τ) is not uniquely sensitive to the
triplet (2πu0/r0,2πv0/r0,2πτ/ṙ0) in Fourier domain but also in small vicinity around
them. This correlation can be estimated analytically or numerically given the tapering
functions mentioned above. It can be shown that the two baselines are correlated if
|u2−u1|. θ

−1
0 (Bharadwaj and Sethi [2001], Paul et al. [2014a]) and two delay bins

are correlated if τ2− τ1 . B−1 - where θ0 is the size of the primary beam. It is worth
noting that the scales of the correlations in Fourier space are inverse of the respective
scales in the real space.

To clarify the point about the correlation scales, we use a simple case. The Fourier
response of a constant function ( f (x) = 1) is a Dirac δ function δD(k). The scale of the
constant function is infinite (extends from −∞ to +∞), so in Fourier domain its scale
is infinitesimally small. Now, we introduce a scale d in the real space by imposing a
rectangular function: f (x) = 1 for x ∈ [−d/2,d/2] and 0 elsewhere. It can be easily
checked that the new Fourier response would be a sinc function with the width/scale
proportional to d−1.

In this section we made some simplifying assumptions to demonstrate that one can
estimate the 21 cm power spectrum from EoR using a radio interferometer. However, it
might not possible to show this analytically where the relevant assumptions break down
- e.g. large bandwidth of data or very chromatic (frequency dependent) antenna beam.
The chromaticity of the antenna beam and baselines also cause mode mixing in the
power spectrum (see e.g. Vedantham et al. [2012], Parsons et al. [2012b], Thyagarajan
et al. [2013], Hazelton et al. [2013], Liu et al. [2014a]). In such cases one needs to
study the correlation properties of the HI visibilities against various parameters and
then use them to extract the 21 cm power spectrum from the EoR data accurately.

2.4 Sensitivity

In this section, we will discuss the sensitivity of a given radio interferometer to detect
the 21 cm power spectrum. The power spectrum sensitivity of an interferometer is
the quantification of the minimum power the instrument can measure. Since the 21 cm
power spectrum is derived from the HI visibility, the sensitivity depends on the thermal
noise in the visibility and the array configuration.

The thermal noise in the visibility measured by two identical antennas is independent
of the baseline but depends on the amount of radio signal collected by the antennas. It
is a random variable which follows a Gaussian distribution. The standard deviation of
this Gaussian distribution is given by (Wrobel and Walker [1999], Taylor et al. [1999]):
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σth =
2kBTsys

Aeff
√

2∆ν tint
, (2.15)

where ∆ν is the frequency channel width, tint is the integration time, kB is the Boltz-
mann constant, Aeff is the effective collecting area of the antenna, and Tsys is the system

temperature.

The system temperature is the sum of the total sky temperature (Tsky) and the antenna
receiver temperature (Trec): Tsys = Tsky+Trec. Trec and Tsky both increase with decreas-
ing frequencies. However, Tsky sharply varies with frequency as ν−(2+α) where α is
the spectral index of the total sky emission1 (typically α ' −0.8). Tsky encompasses
contribution from all types of emission other than from the instrument - e.g. atmo-
spheric emission, galactic background, cosmic background etc. (Wrobel and Walker
[1999]). It dominates over Trec at lower frequencies (. 200 MHz) and thus is a major
source of noise in EoR observations: for example Trec ' 50 K and Tsky ' 350 K at
150 MHz for MWA (Tingay et al. [2013]).

The HI power spectrum sensitivity ∆2
N is a function of multiple parameters which can

be tuned while designing the telescope and during the observation to achieve the better
results. It is given by (Parsons et al. [2012a]):

∆
2
N(k)' 60

[
k

0.1h Mpc−1

]2.5[6 MHz
B

]0.5

[∆ lnk]−0.5

×
[

Ω

0.76 str

][
Tsys

500 K

]2[ 6 hrs
tper−day

]0.5[120 days
tdays

][
32
N

][
104 f0

f

]0.5

mK2, (2.16)

where k is the observing mode, ∆ lnk is the bin-size in k-space for averaging, Ω denote
the antenna beam size, tper−day and tdays are the duration of observation per day and
total number of such days respectively, N represent the number of non-overlapping
antennas in the array, and f/ f0 account for the redundancy of a baseline (see Parsons
et al. [2012a] for more detailed discussion). As it can be noticed from Eq. (2.16),
the EoR sensitivity of a radio interferometer can be improved by a larger collecting
area, larger bandwidth, larger integration time, redundant baselines, smaller system
temperature, etc.

Using Eq. (2.16) one can estimate the order of observation time required to detect the
HI power spectrum from EoR. With ∼ 6 hours per day and 120 days of observations,
under ideal conditions for PAPER, we get ∆2

N(k)' 33 mK2 (Parsons et al. [2012a]) for

1 In Rayleigh-Jeans limit, the total sky specific intensity is:

Iν ∝ Tν/λ
2⇒ Tν ∝ ν

−(2+α),

if Iν ∝ ν−α from the observation.
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∼ 720 hours of data. For other telescopes also, similar numbers have been computed:
nearly ∼ 1000 hours of data is needed to detect the HI signal.

However, the detection is made even harder owing to strong foreground emission from
galactic and extragalactic sources, radio frequency interference (RFI), ionosphere, and
systematics.

2.5 Challenges in the 21 cm Power Spectrum detection

As discussed in the previous chapter, the magnitude of the HI signal is around 10 mK
(z∼ 8) and to this level nearly∼ 1000 hours of integration would be needed even in the
ideal case with currently operational telescopes. In this section, we briefly highlight
other sources of contamination which make the detection even harder.

2.5.1 Foreground

The foregrounds are 4 to 5 orders of magnitude brighter than the HI signal. They can
be broadly divided into the following categories:

• Extragalactic Sources: The sources of extragalactic foreground are distant ra-
dio galaxies which emit in the frequency band of our interest. The majority of
the extragalactic foreground consist of unresolved point-like sources and a few
resolved extended sources. Their spatial distribution on the sky-plane follow a
nearly Poissonian distribution. In radio interferometers, the long baselines are
needed for the better angular resolution which help image the point sources and
calibrate the data 1.

• Diffuse Galactic Emission: All diffuse galactic emission, such as synchrotron,
free-free emission etc., are grouped together. The observations show that this
combined radiation field can be described by a Gaussian random field with a
smooth 2-D power spectrum in the Fourier space.

Both of the foregrounds mentioned above share a few common properties on the scales
of our interest. The specific intensity from both vary smoothly along the frequency
axis (e.g. Ghosh et al. [2012], Rogers and Bowman [2008], and references therein).
It suggests that even though the sky-plane spatial distribution of the foregrounds are
randomly distributed, they are highly correlated along the LoS direction.

On the other hand, the HI signal from EoR fluctuate in all three dimensions and thus
are not strongly correlated along any axis. The distinct behaviour along the LoS is

1The shorter baselines are used for HI power spectrum estimation as usually they are higher in
number and the HI power spectrum is expected to be stronger at those baselines.
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exploited to distinguish between the HI signal and foreground emission: a Fourier
transform along the frequency axis would limit the Foreground contamination at small
k‖ modes.

The Foreground Wedge: The foreground emission are primarily concentrated at
small k‖ values after the delay transform. However, since the baselines (uν ,vν ) are
chromatic and increase with frequency, the response of the foregrounds also widens
contaminating the higher k‖ modes at larger baselines. In the corresponding power
spectrum plot, this effect creates a bright wedge like structure of the foreground emis-
sions (see Figure (2.3) and Liu et al. [2014b]). This phenomenon can be understood
with a sinc function (an approximate response of a single point source) whose central
lobe becomes wider at larger baselines. It can be shown analytically for the extra-
galactic point sources and the diffuse foregrounds both (see chapter 3 for detailed and
general calculations). For a given baseline, the power response of a point source lo-
cated at position θ will be maximum when:

k‖ '
r0

ṙ0ν0
k⊥ ·θ, (2.17)

where the symbols have their usual meanings defined earlier. It is a equation of a plane
in 3-D which reduces to a line (k‖ ∝ k⊥) in 2-D Fourier space (see Figure (2.3). Since
the foreground populate all sky, the maximum slope of the line, which is the boundary
of the wedge, is created by the foreground sources located at the horizon or at the end
of the beam in a realistic case.

The EoR Window: Once the foreground contaminations are concentrated in the fore-
ground wedge, the rest of the Fourier space (called EoR window) remains relatively
free of the foregrounds (Figure (2.3)). In the foreground avoidance technique, only the
clean modes in the EoR window are used to estimate the HI power spectrum (e.g. Chap-
man et al. [2014], Liu et al. [2014b]).

2.5.2 Other Challenges

Ionosphere: The ionosphere of the earth contains a layer of charged particles which
interact with the incident radio waves and distort them. The opacity of the ionosphere
increases at the lower frequency. The properties of the ionosphere varies across the sky
and on the timescales of a few minutes to hours. This variation is higher during the
day due to ionization of the particles by the radiation from the sun - this is the reason
why the observations during the night time are preferred. It further implies that the
telescopes with wide antenna beams require careful observation strategy. Some recent
studies of the ionosphere in the context of the 21 cm cosmology can be found in Datta
et al. [2014], Sokolowski et al. [2015], Arora et al. [2015], Loi et al. [2015, 2016],
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Figure 2.3: Left: The typical foreground dominated modes are shown in gray in 3-D
Fourier space. Right: The 3-D space depicted in the left is averaged cylindrically for
each k⊥ =

√
k⊥ ·k⊥. The foreground wedge and the EoR window are also marked.

Credit: Thyagarajan et al. [2013].

Jordan et al. [2017], Gehlot et al. [2018].

Radio Frequency Interference (RFI): In the frequency band of our interest (70-
300 MHz), there are many sub-bands which are used for communication purposes
(FM radio, mobile networks, satellites, military and aircraft related communications).
Their strengths are many orders of magnitude stronger than the HI signal and fore-
grounds both. RFIs are dealt with by building the telescope at a radio quiet site where
human activity is very low. Even in radio quiet zones, RFIs are never absent. The
RFI affected frequency channels in the data are flagged before performing any kind of
analysis (e.g. using AOFlagger - Offringa [2010]). The residual or ultra faint RFI in
data should be mitigated for the EoR data analysis (Wilensky et al. [2019]).

Systematics: Systematics are the responses of the telescope itself. For the detection
of the HI power spectrum, these systematics should be be minimal and stable. The
stability of the instrument help us in dealing with the systematics in a relatively easier
way. They can be largely divided into following:

• Complex Gain Calibration: Each antenna in a radio interferometer has a com-
plex gain which gets multiplied to the true visibilities before they are recorded.
The solutions to these antenna based complex gains are found using a sky-based,
redundant-baseline, or hybrid of both calibration approaches. The sky-based cal-
ibration requires long baselines to accurately locate the point sources in the sky
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so that the closure phase property using three antennas can be exploited (Wilkin-
son [1989]). On the other hand, the redundant-baseline calibration method uses
identical baselines as they would measure the same signal with different complex
gains (Liu et al. [2010]). For the HI power spectrum detection, the calibration
solutions are needed to be accurate to the levels lower than the expected signal.
Some conventional and novel calibration algorithms are discussed in Cornwell
and Fomalont [1999], Fomalont and Perley [1999], Liu et al. [2010], Grobler
et al. [2018], Li et al. [2018] and references therein.

• Bandpass Calibration: Another source of the frequency dependent system re-
sponse is the frequency bandpass. Generally, the frequency channels of the
bandpass are not equally sensitive to the input signal which results in the mod-
ified flux/spectrum of the target field. This issue is remedied by performing the
bandpass calibration on the data using a calibrator. For this purpose, a well
studied, strong, and unresolved radio source (called calibrator) is observed at
start/during/at end of the target observation. Since the properties of the cali-
brator is already known, the change in its observed spectrum is used to do the
bandpass calibration in the data.

2.6 The Murchison Widefield Array (MWA)

To avoid RFI, radio telescopes are built in the remote places which have minuscule
human activities. It is particularly necessary for the telescopes dedicated for the EoR
science. Some of those instruments are listed in the section 1.4.5. One of the science
goals of the Square Kilometer Array (SKA), the largest radio interferometer planned
for the next decade, is the EoR science (Koopmans et al. [2015b]). The MWA and the
MeerKAT are the precursors of the SKA1-Low (Australia) and the SKA1-Mid (South
Africa) respectively. Already operational and built at the respective sites of SKA1-Low
and SKA1-Mid, the precursors are providing us invaluable lessons for the SKA. In this
work, we will test our power spectrum estimation technique on the MWA data.

The Murchison Widefield Array (MWA) is a radio interferometer located in a desert of
the Western Australia (26.7◦S,116.7◦E). It has 128 antennas (called tiles) and each tile
consists of 16 crossed dipoles placed on a square mesh of side∼ 4 m in a 4x4 arrange-
ment (see Figure 2.4). Due to the relatively small size of the tiles, the power response
or the primary beam of a tile (after combining each dipole on a tile) is approximately
27◦.

The MWA operates in the frequency range of 80-300 MHz with the observation band-
width of 30 MHz and raw frequency resolution (channel width) of 40 kHz. It records
visibility data files at an interval of 2 minutes with the temporal resolution of 0.5 s. In
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Figure 2.4: A tile of the Murchison Widefield Array (MWA) consisting of 16
crossed-dipoles placed on a wired mesh. Credit: MWA Collaboration.

each 2-minute snapshot, the actual observation is taken for 112 s.

In the initial phase of the array (2013), the tiles were distributed in the 1/r2 configu-
ration optimized for the multiple science goals. It had a compact core of the diameter
∼ 100 m dedicated for the EoR science and the rest of the tiles were spread over the
radius of ∼ 1.5 km for other science goals and data calibration. The top panel of Fig-
ure 2.5 shows the antenna positions in the phase I. The phase I design and the science
objectives are discussed in Tingay et al. [2013] and Bowman et al. [2013] respectively.

The phase II of the MWA became operational in 2016, in which 64 tiles were placed
into two compact Hex configuration primarily to increase the sensitivity to the EoR
power spectra measurements (see the bottom panel of Figure 2.5). This configuration
resulted in a larger number of short baselines at the expense of the angular resolution.
Wayth et al. [2018] and Beardsley et al. [2019] give details of the phase II modifications
and its science goals respectively.

2.7 Summary

We conclude the ongoing chapter by summarising some of the important ideas in the
observational 21 cm cosmology. In this chapter, we started with the basics of radio
astronomy and discussed how a radio signal originating in the space is measured using
a pair of radio antennas. We then applied the tools of radio astronomy on the redshifted
HI emission from EoR and showed that a baseline is sensitive to a Fourier mode of the
HI fluctuations δ21(k). In principle, it is possible to measure the HI power spectrum
by performing a Fourier transform (along the frequency axis) of the HI visibilities and
taking the amplitude square: |Vτ(u0)|2 ∝ P21(k). But there are multiple challenges
before the detection. First, the thermal noise of the telescope (in a few observation
hours) is orders of magnitude stronger than the HI signal. This problem can be over-
come by integrating > 1000 hours of EoR data. Second, the foreground emission from
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Figure 2.5: The locations of the 128 tiles in the phase I (top) and II (bottom)
configurations of MWA are shown with respect to the center of the array. The phase I
configuration has a compact core while other tiles are spread over a radius of
∼ 1.5 km. The phase II has two compact hex arrangements for the redundant
baselines and rest of the tiles extend upto about 400 m from the center.
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the galactic and the extragalactic radio sources are extremely bright. Fortunately, the
smooth frequency-spectra of the foregrounds allow us to separate them from the HI

signal. Moreover, any imperfection in the telescope contaminates the EoR window by
mode-mixing. Thus the precise treatment of the contamination—either by subtraction
or avoidance— is very important. Third and the last, various systematics (chromatic
complex gains of the antennas, uneven bandpass, lack of system stability etc.) should
also be dealt with for the accurate treatment of foregrounds and, consequently, for the
detection of the HI signal.

There are multiple theoretical models of the EoR, most of which are loosely con-
strained. A positive detection of the HI power spectrum is necessary to break the
degeneracy of the models and constrain the EoR. However, its detection is a challeng-
ing task as the expected signal is extremely faint (∼ 10 mK) in comparison with the
foreground contaminations (> 100 K), the chromatic and unstable systematics, and the
thermal noise of the telescope. A detection would require multiple efforts and different
techniques to build the credibility in the results. In the next chapter, we develop a novel
analytical formalism technique for the drift scan observation. This formalism is then
applied on the drift scan data (154 MHz) from phase I and II of MWA to estimate the
HI power spectra.
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Chapter 3

Drift Scan Formalism (DSF): A
Theoretical and Analytical Study 1

3.1 Introduction

Given the weakness of the HI signal, strong foregrounds, and the requirement of hun-
dreds of hours of integration for detection, one needs extreme stability of the sys-
tem, precise calibration, and reliable isolation of foregrounds. Drift scans constitute
a powerful technique to achieve instrumental stability during an observational run.
During such a scan the primary beam and other instrumental parameters remain un-
changed while the sky intensity pattern changes. Interferometers including MWA,
HERA, CHIME, and Tianlai work in this mode while the others can also acquire data
in this mode. Different variants of drift scans have been proposed in the literature:
m-mode analysis (Shaw et al. [2014, 2015], applied to OVRO-LWA data in Eastwood
et al. [2018]), cross- correlation of the HI signal in time (Paul et al. [2014a]), drift and
shift method (Trott [2014]) and fringe-rate method (Parsons et al. [2016], applied to
PAPER data). Trott [2014] provided a framework to estimate the uncertainty in mea-
surement of HI power spectrum based on visibility covariance. Using simulations of
visibility covariance, Lanman and Pober [2019] have shown that the sample variance
can increase up to 20% and 30% on the shortest redundant baselines of HERA and
MWA respectively. Owing to changing intensity pattern, it is conceptually harder to
extract the HI signal from drift scans. As the HI signal is buried beneath instrumen-
tal noise, it is imperative that correct algorithm be applied to retain this sub-dominant
component and prevent its loss (e.g. Cheng et al. [2018]).

In this chapter, we extend the work of Paul et al. [2014a] to delay space and, addition-
ally, identify the effects of phase covariance and primary beam size. We also apply

1Based on Patwa, A. K., Sethi, S. 2019, The Astrophysical Journal, 887, 52
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our formalism to foregrounds by considering a set of isotropically-distributed point
sources and statistically homogeneous correlated diffuse emission. We work in both
frequency and delay space, the preferred coordinate for separating foregrounds from
the HI signal (e.g. Datta et al. [2010], Parsons et al. [2012b]). Our primary aim is to
determine the correlation time scales of time-ordered visibilities of HI signal in drift
scan observations. This information can be used to establish how the HI signal can be
extracted from drift scans using correlation of visibilities measured at different times.

In the next section, we motivate the issue, develop our general formalism, and apply it
to the HI signal in frequency and delay space. We use primary beams of PAPER, MWA,
HERA, and SKA1-Low for our work. We discuss in detail analytic approximation of
numerical results in the section and Appendix B. In section 3.3 we discuss the nature of
foregrounds and compute the visibility correlation functions for a set of point sources
and diffuse foregrounds. In section 3.4, we elaborate on how our formulation can be
applied to drift scan data. We discuss many different approaches to the analysis of data
including comparison with earlier attempts. In the final section, we summarize our
main results.

Throughout this work, we use spatially-flat ΛCDM model with H0 = 100h Km/sec/Mpc,
h = 0.67, ΩΛ = 0.6911 (Planck Collaboration et al. [2016]).

3.2 HI visibility correlation in Drift scans

The measured visibilities are a function of frequency, baseline, and time. The aim of
this section is to determine the correlation structure of visibilities in these domains. In
particular, our focus is on the correlation structure of visibilities as a function of time
as the intensity pattern changes, for a fixed primary beam, during a drift scan.

This information allows us to average the data in the uv space with optimal signal-to-
noise and prevent possible HI signal loss. The signal loss could occur if the data is
averaged over scales larger than the scales of correlation (see e.g. Cheng et al. [2018]).
For instance, the visibilities owing to HI signal are correlated for baselines separated
by roughly the inverse of primary beam, so averaging data over pixels larger than the
inverse of primary beam would result in the loss of HI signal. However, if the data is
averaged using pixels much smaller than the correlation scale then it would result in
sub-optimal signal-to-noise.

In this chapter, we determine the time scales over which measured visibilities (for
a given baseline, etc.) are coherent in time and therefore could be averaged in a drift
scan to yield optimal signal-to-noise without any loss in HI signal. For this purpose, we
derive the correlation function of visibilities, arising from the EoR HI signal, measured
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at two different times in a drift scan.

A pair of antennas of a radio interferometer measures the visibility Vν , which is related
to the sky intensity pattern as (Eq. 2.21 of Taylor et al. [1999]):

Vν(uν ,vν ,wν) =
∫ dldm

n
Aν(l,m)Iν(l,m)exp [−2πi(uν l + vνm+wν(n−1))] (3.1)

Here ν is the observing frequency. (uν ,vν ,wν ) are the components of the baseline
vector between two antennas measured in units of wavelength. (l,m,n) define the
direction cosine triplet in the sky with n =

√
1− l2−m2. Aν(l,m) is the primary beam

power pattern of an antenna element and Iν(l,m) is the specific intensity pattern in
the sky. We further define vectors uν = (uν ,vν) and θ = (l,m). The intensity pattern
owing to the EoR HI gas distribution Iν(θ) can be decomposed in mean and fluctuating
components as:

Iν(θ) = Īν +∆Iν(θ) (3.2)

As an interferometer measures only fluctuating components of the signal, we can write:

Vν(uν ,wν) =
∫ d2θ

n
Aν(θ)∆Iν(θ)exp [−2πi(uν ·θ+wν(n−1))] (3.3)

The HI inhomogeneities δHI(k) arise from various factors such as HI density fluctua-
tions, ionization inhomogeneities, etc. The fluctuation in the specific intensity ∆Iν(θ)

can be related to the HI density fluctuations in the Fourier space, δHI(k):

∆Iν(θ) = Īν

∫ d3k
(2π)3 δHI(k)exp [ik·r] (3.4)

Here r is the three-dimensional (comoving) position vector and its Fourier conjugate
variable is k; k, the magnitude of the k vector, is k= |k|=

√
k2
⊥+ k2

‖=
√

k2
⊥1 + k2

⊥2 + k2
‖,

where k⊥ and k‖ are the (comoving) components on the plane of the sky and along the
line of sight, respectively. The position vector r can be written in terms of the line of
sight (parallel) and perpendicular components as r = rν n̂+ rνθ; rν is the comoving
distance. Eq. (3.4) reduces to:

∆Iν(θ) = Īν

∫ d3k
(2π)3 δHI(k)exp

[
irν

(
k‖+k⊥·θ

)]
(3.5)

As the HI fluctuations are statistically homogeneous, we can define the HI power spec-
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trum PHI(k) as 1:

〈
δHI(k)δ ∗HI(k

′)
〉
= (2π)3

δ
3(k−k′)PHI(k) (3.6)

In tracking observations, the primary beam of the telescope follows a particular patch
of the sky. In a drift scan, the sky pattern moves with respect to the fixed primary beam.
This change of the sky intensity with respect to the fixed phase center introduces a
time dependent phase ϑ(t) in the expression of ∆Iν(θ) in Eq. (3.5), which gives us the
fluctuating component of the specific intensity as a function of time:

∆Iν (θ, t) = Īν

∫ d3k
(2π)3 δHI(k)exp

[
irν

(
k‖+k⊥·(θ−ϑ(t))

)]
(3.7)

In Eq. (3.3) we use the expression of ∆Iν (θ, t) and expand terms containing n up to
first non-zero order 2 as d2θ/n' d2θ and wν(n−1)'−

(
l2 +m2)wν/2 =−θ 2wν/2.

This gives us:

Vν(uν ,wν , t)' Īν

∫ d3k
(2π)3 δHI(k)exp

[
irνk‖

]∫
d2

θAν(θ)

× exp
[
−2πi

((
uν −

rν

2π
k⊥
)
·θ+ rν

2π
k⊥ ·ϑ(t)−

1
2

wνθ
2
)]

(3.8)

Next we compute the two-point visibility correlation function between two different
frequencies, baselines, and times:

〈
Vν(uν ,wν , t)V ∗ν ′(u

′
ν ′,w

′
ν ′, t
′)
〉
' Īν Īν ′

∫∫ d3k
(2π)3

d3k′

(2π)3

〈
δHI(k)δ ∗HI(k

′)
〉

× exp
[
i
(

rνk‖− rν ′k
′
‖

)]∫
d2

θAν(θ)
∫

d2
θ
′Aν ′(θ

′)

× exp
[
−2πi

[(
uν −

rν

2π
k⊥
)
·θ−

(
u′

ν ′−
rν ′

2π
k′⊥
)
·θ′+ rν

2π
k⊥ ·ϑ(t)−

rν ′

2π
k′⊥ ·ϑ′(t ′)−

1
2

wνθ
2 +

1
2

w′
ν ′θ
′2
]]

(3.9)

Using Eq. (3.6) in Eq. (3.9) gives the two-point correlation function in terms of the HI

power spectrum PHI(k). We first note that the time dependence of Eq. (3.9) occurs as
the time difference, ∆t in just one term ϑ′(t ′)−ϑ(t) = ∆ϑ(∆t) which is obtained by
dropping the frequency dependence of rν . This approximation is discussed in detail
in the next subsection. Eq. (A.4) is used to express the time-dependent part of the

1We also assume here that the HI signal is statistically isotropic which allows us to write the power
spectrum as a function of |k|. Statistical isotropy is broken owing to line of sight effects such as redshift
space distortion and line-cone anisotropies, which would make the power spectrum depend on the angle
between k and the line of sight.

2As discussed below, we use primary beams corresponding to many ongoing and future radio tele-
scopes for our analysis. For all the cases, this approximation holds for the main lobe of the primary
beam, which means, as we show later, that our main results are unaffected.
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correlation function explicitly in terms of change in the hour angle ∆H (for details see
Appendix A). This gives us:

〈
Vν(uν ,wν , t)V ∗ν ′(u

′
ν ′,w

′
ν ′, t
′)
〉
= Īν Īν ′

∫ d3k
(2π)3 PHI(k)exp

[
ik‖ (rν − rν ′)

]
exp [irνk⊥1 cosφ∆H]

×Qν(k⊥,uν ,wν ,∆H = 0)Q∗
ν ′(k⊥,u

′
ν ′,w

′
ν ′,∆H) (3.10)

Here φ is the latitude of the telescope and the Fourier beam (or 2D Q-integral) is
defined as:

Qν(k⊥,uν ,wν ,∆H) =
∫

d2
θAν(θ)exp

[
−2πi

(
xu ·θ−

1
2

yθ
2
)]

(3.11)

with xu = uν −
rν

2π
(k⊥1 + k⊥2 sinφ∆H) (3.12)

xv = vν −
rν

2π
(k⊥2− k⊥1 sinφ∆H) (3.13)

y = wν +
rν

2π
k⊥1 cosφ∆H (3.14)

Here we consider only the zenith drift scan. Non-zenith drift scans can be treated by
replacing φ with φ +χ , where χ is the angle between the latitude of the zenith and the
phase center of the observed field (for details see Appendix A in Paul et al. [2014a]).
This doesn’t impact our main results. Eq. (3.10) can be numerically solved for a given
primary beam pattern Aν(θ). We next discuss the visibility correlation in delay space,
the preferred coordinate for analysing the data.

3.2.1 Visibility Correlation in Delay Space

To compute the HI visibility correlation function in delay space (τ) we define:

Vτ(u0,w0, t) =
∫

ν0+B/2

ν0−B/2
dνVν(uν ,wν , t)exp [2πiτν ] (3.15)

Throughout this thesis the subscript ‘0’ under any variable denotes the value of that
variable at the central frequency. Here we use: ν0 ' 154 MHz and bandpass B '
10 MHz. Its cross-correlation in delay space can be expressed as:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
=
∫∫

ν0+B/2

ν0−B/2
dνdν

′
〈

Vν(uν ,wν , t)V ∗ν ′(u
′
ν ′,w

′
ν ′, t
′)
〉

e−2πiτ∆ν

(3.16)

Eq. (3.16) can be reduced to a more tractable form by making appropriate approxima-
tions. We expand frequency-dependent variables in exponents around ν0 up to the first
order. Thus (rν − rν ′)'−ṙ0∆ν , denoting (drν/dν)

ν0
= ṙ0, ν ′−ν = ∆ν . To the same
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order, the approximation made following Eq. (3.10) is also valid. We further approxi-
mate uν ' u0 and drop the weak frequency dependence of the mean specific intensity
and primary beam within the observing band-width B. We discuss the impact of these
approximations in section 3.2.2. This gives us:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
= Ī2

0

∫ d3k
(2π)3 PHI(k)exp [ir0k⊥1 cosφ∆H]×(∫∫

ν0+B/2

ν0−B/2
dνdν

′ exp
[
−i∆ν

(
k‖ṙ0 +2πτ

)])
Qν0(k⊥,u0,w0,∆H = 0)Q∗ν0

(k⊥,u′0,w
′
0,∆H)

(3.17)

The integrals over ν and ν ′ can be solved in two ways. They can be solved by changing
the variables from (ν ,ν ′) to (x,y). x = ν ′− ν = ∆ν and y = (ν ′+ν)/2. They can
also be solved by separating ∆ν = ν ′− ν and integrating over ν and ν ′ individually.
The resulting function peaks sharply at τ = −ṙ0k‖/(2π). The major contribution to
the integral in Eq. (3.17) occurs when k‖ = −2πτ/ṙ0, which gives us the well-known
correlation scale along the line-of-sight direction (e.g. Paul et al. [2016]). We use the
δ -function approximation for frequency integrals:

∫∫
ν0+B/2

ν0−B/2
dνdν

′ exp
[
−i∆ν

(
k‖ṙ0 +2πτ

)]
= B2 sinc2

[
πB
(

τ +
ṙ0

2π
k‖

)]
' 2πB
|ṙ0|

δ

(
k‖−

2πτ

|ṙ0|

)
(3.18)

This approximation preserves the area under the curve. We note that the delta function
approximation used in Eq. (3.18) could break down if B is small. For B = 10MHz, we
use in the work, it is an excellent assumption. For a much smaller B, the sinc function
in the equation can be directly integrated without making any difference to our main
results. We denote ṙ0 =−|ṙ0| because the comoving distance decreases with increasing
frequency. Using this in Eq. (3.17) we find, with k‖ = 2πτ/|ṙ0|:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
'Ī2

0
B
|ṙ0|

∫ d2k⊥
(2π)2 PHI(k)exp [ir0k⊥1 cosφ∆H]

×Qν0(k⊥,u0,w0,∆H = 0)Q∗ν0
(k⊥,u′0,w

′
0,∆H) (3.19)

Here k =
√

k2
⊥1 + k2

⊥2 +(2πτ/|ṙ0|)2. Eq. (3.19) generalizes the results of Paul et al.
[2014a] to delay space and also accounts for the impact of the w-term. To further
simplify Eq. (3.19) we need an expression for the primary beam pattern. We consider
four radio interferometers in our analysis.

MWA: MWA has square-shaped antennas called tiles. Each tile consists of 16 dipoles
placed on a mesh and arranged in a 4x4 grid at spacing of roughly 1.1 meters. Effective
area of a tile Aeff = 21.5 m2 at 150 MHz (Tingay et al. [2013]). The square of the
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absolute value of the 2D Fourier transform of the antenna shape gives the antenna
power response. For MWA Aν(l,m) = sinc2(πLν l)sinc2(πLνm). Here Lν = L(ν/ν0);
L
(
≡
√

Aeff/λ0 ' 2.4
)

is the length of the square tile in units of central wavelength
(λ0 ' 1.95m). Therefore, the 2D primary beam response Aν(l,m) can be represented
as a product of two independent 1D patterns; Aν(l,m) = Aν(l)Aν(m).

PAPER, HERA and SKA1-Low: Individual element in PAPER, HERA, and SKA1-
Low correspond to dishes of diameter 2 meters, 14 meters, and 35 meters, respectively.
The beam pattern at a frequency ν can be expressed as:

Aν = 4

∣∣∣∣∣ j1(πdν

√
l2 +m2)

(πdν

√
l2 +m2))

∣∣∣∣∣
2

, (3.20)

where j1(x) is the spherical Bessel function and dν is the diameter of the dish in the
units of wavelength. Unlike MWA, this primary beam pattern is not separable in l and
m. Or the double integral over angles in Eq. (3.11) cannot be expressed as a product of
two separate integrals over l and m. We do not consider LOFAR in our analysis as its
core primary beam, suitable for EoR studies, is close to SKA1-Low 1. For MWA and
SKA1-Low: φ =−26.7◦ and for HERA and PAPER: φ =−30.7◦.

In Figure 3.1 we show the amplitude of the correlation function (Eq. (3.19)), normal-
ized to unity for ∆t = 0, as a function of the time difference, ∆t ≡ t ′−t in a drift scan. In
the Figure, we use the HI power spectrum PHI(k) given by the simulation of Furlanetto
et al. [2006b]; we discuss the dependence of our results on the input power spectrum
below in subsection 3.2.2. The figure displays numerical results for different primary
beams as a function of baselines length |u0| =

√
u2

0 + v2
0, for w0 = 0 and τ = 0. Our

numerical results further show that the visibility correlation function in time domain is
nearly independent of τ . This is discussed and justified in Appendix B using analytic
approximations. Figure 3.2 complements Figure 3.1 and allows us to study the change
in decorrelation time when the primary beam is changed for a fixed baseline; it will be
discussed in detail in the next sub-section.

To get analytic insights into the nature of numerical results displayed in Figures 3.1
and 3.2, we consider a separable and symmetric Gaussian beam.

Fourier Beam and HI Correlation with Gaussian Beam

The Fourier Beam introduced in Eq. (3.11) is the response of the primary beam in
the Fourier domain. It has two useful properties which makes the computation of the
Fourier beam easier. If the primary beam is separable, Aν(l,m) = Aν(l)Aν(m), then

1http://old.astron.nl/radio-observatory/astronomers/lofar-imaging-capabilities-sensitivity/lofar-
imaging-capabilities/lofa
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Figure 3.1: The figure displays the amplitude of the visibility correlation function as a
function of ∆t, normalized to unity for ∆t = 0. The quantity plotted in the figure is
〈Vτ(u0,w0, t)V ∗τ (u0,w0, t ′)〉/〈Vτ(u0,w0, t)V ∗τ (u0,w0, t)〉 as a function of baseline

length |u0|=
√

u2
0 + v2

0 and ∆t = t ′− t, for u0 = v0, w0 = 0, and τ = 0. The amplitude
of the correlation function decorrelates mainly due to the rotation of the intensity
pattern. However the impact of the traversal of the intensity pattern becomes
important for smaller primary beams on small baselines. As seen in the figure, for all
baselines for PAPER and large baselines for MWA, HERA, and SKA1-Low, the
decorrelation time scales are proportional to 1/|u0| and 1/

√
Ω. This effect is

discussed in subsection 3.2.1 (point (b)). On smaller baselines in MWA, HERA, and
SKA1-Low panels, the traversal of the intensity pattern starts dominating the
decorrelation. This effect is discussed in subsection 3.2.1 (point (a)).
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Figure 3.2: Left Panel: The amplitude of the visibility correlation function is shown
as a function of ∆t for a fixed baseline for different primary beams. Right Panel: The
isocontours of the decorrelation time are shown in the primary beam–baseline plane;
the decorrelation time is defined as ∆t such that the amplitude of correlation function
falls to half its value as compared to ∆t = 0. The Figure assumes Gaussian beams
(Eq. 3.22) with FWHM = 2

√
loge(2)Ω0g. The region on the left bottom is excluded

because the shortest baseline
√

u2
0 + v2

0 = d0, where d0 is the primary element of the
telescope in units of the central wavelength, λ0. There could be minor differences
between this figure and Figure 3.1 because we use a fixed telescope latitude
φ =−26.7 for all primary beams. The primary beams of the four interferometers
studied in this work are marked on the figure. The White line demarcates the regions
dominated by rotation (above the line) and traversal of intensity pattern (for further
discussion see the text).
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the Fourier beam is also separable, Qν(uν) = Q1
ν(uν)Q2

ν(vν). And if the 1D primary
beam response, Aν(l), is an even function then the 1D Fourier beam, Q1

ν(uν), satisfies
the following relations.

Q1
ν(−xu,y) = Q1

ν(xu,y)

Q1
ν(xu,−y) = Q1∗

ν (xu,y) (3.21)

The expressions above are also valid for Q2
ν(vν). This shows that it is sufficient to

calculate Fourier beam for only xu,y ≥ 0. The variables xu,xv, and y are defined in
Eqs. (3.12)–(3.14). xu and xv determine the correlation scales in the neighbourhood of
the Fourier mode, 2πu0/r0, at which the Q-integral receives maximum contribution.
The variable y can be viewed as an effective w-term. We note that when y is small
Q1

ν(xu,y) is large but falls very rapidly along xu. For larger values of y, Q1
ν(xu,y) is

smaller and goes to zero slowly along xu. This behaviour can be understood as follows:
the effective beam size shrinks for larger value of w-term, resulting in a decrease in
signal strength but an increase in the correlation scale (e.g. Paul et al. [2016], Cornwell
et al. [2008]).

The discussion also applies to 2D Fourier beams. The 2D Fourier beam is a func-
tion of Fourier coordinates xu,xv and parameter y. The point (xu,xv) = (0,0) receives
the maximum contribution and picks out Fourier modes, k⊥1,k⊥2. Large beams have
smaller Fourier beams e.g. for PAPER the Fourier beam is the smallest of all the cases
we consider. The width of the Fourier beam decides the range of correlation scales of
the HI signal. This range is roughly on the order of 2/

√
Ω' 2d where Ω is the primary

beam solid angle and d is the antenna size in the units of wavelength. The amplitude
of the Fourier beam is more sensitive to y if the beam is larger (PAPER, MWA).

To gain further analytic insights into the HI correlation function, we use a Gaussian
primary beam in our formalism to compute the Fourier beam. For illustration, we
choose Gaussian primary beam of solid angle Ω0g at ν0 = 154.24MHz (Ω0g = 0.25/L2

roughly matches the MWA primary beam). This gives us:

Aν0(l,m) = e−(l
2+m2)/Ω0g (3.22)

To compute the Fourier response of a Gaussian beam analytically, we extend the limits
of the integral from [−1,1] to [−∞,∞], which is a valid procedure as the integrand falls
rapidly outside the support of the primary beam. Using Eq. (3.11), we obtain:

Qν0(k⊥,u0,w0,∆H) =
πΩ0g

1− iπyΩ0g
exp
[
−

π2Ω0g(x2
u + x2

v)

1− iπyΩ0g

]
(3.23)
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We assume u0 = u′0 and k⊥ = (2π/r0)u0 to study the time behaviour of the correlation
function relevant in a drift scan. The time-dependent part of the visibility correlation
function is determined by the product of two Fourier beams separated by drift time ∆H

in Eq. (3.19). For Gaussian beam this product is:

Qν0(∆H = 0)Q∗ν0
(∆H) =

(πΩ0g)
2

(1− iπΩ0gw0)(1+ iπΩ0gy)
exp

[
−

π2Ω0g|u0|2 sin2
φ∆H2

1− iπyΩ0g

]
(3.24)

where only the dependence on the time variable is retained in the LHS for brevity. As
discussed above, y = (w′0 +u0 cosφ∆H) acts as an effective w-term. For a zenith drift
scan we study in this work, the w-term is small, so we put w0 = w′0 = 0. We find the
amplitude of the product of the Fourier beams to be:

|Qν0(∆H = 0)Q∗ν0
(∆H)|=

(πΩ0g)
2√

(1+π2Ω2
0gu2

0 cos2 φ∆H2)
exp

[
−

π2Ω0g|u0|2 sin2
φ∆H2

1+π2Ω2
0gu2

0 cos2 φ∆H2

]
(3.25)

Eq. (3.25), along with Eqs. (3.19) and (3.24), allows us to read off several salient
features of the visibility correlation function in a drift scan.

Due to the rotation of the earth on its axis, the sources in the sky move with respect
to the fixed phase center (l = 0, m = 0) of a telescope located at latitude φ . The
changing intensity pattern is a combination of two motions: rotation around a fixed
phase center and the east-west translation of the pattern with respect to the fixed phase
center (Eq. (A.2)). In Fourier space, the rotation causes a time-dependent mixing of
Fourier modes in the plane of the sky, while the translation introduces a new time-
dependent phase which is proportional to k⊥1, the component of the Fourier mode in
the east-west direction (Eq. A.4)). In addition to these two effects, which are linear in
the angle, we also retain a second order term which becomes important for large beams
(Eqs. (A.2) and A.4)). The impact of each of these effects on the visibility correlation
function is discussed next:

(a) Traversal time of coherence scale: The phase term proportional to exp(ir0k⊥1 cosφ∆H)

in Eq. (3.19) represents this effect. ∆H ' 1/(r0k⊥1 cosφ) is the time over which
a coherent feature of linear size 1/k⊥1 is traversed in the east-west direction. As
r0k⊥1 ' 2πu0, ∆H ' 1/(2πu0 cosφ) appears to give a rough estimate of the time
over which the decorrelation occurs for a given u0, the east-west component of
the baseline. However, it doesn’t give a reasonable estimate for the decorrela-
tion time scale of the amplitude of the correlation function as Eq. (3.19) can be
multiplied and divided by exp(i2πu0 cosφ∆H) which allows us to absorb the
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fastest changing term as the phase term of the correlation function. The cor-
relation time scale of the amplitude of the correlation function depends on the
slow phase exp(i(r0k⊥1− 2πu0)cosφ∆H) whose contribution to the visibility
correlation is determined by the primary beam as we discuss below.

(b) Rotation of intensity pattern: This effect is captured by the numerator in the
Gaussian in Eq. (3.25), which shows that the decorrelation owing to the rotation
of the intensity pattern is proportional to 1/(Ω1/2

0g |u0||sinφ |). This effect, un-
like (a), depends the magnitude of the baseline and not its east-west component.
Eqs. (3.11)–(3.13), along with Eq. (A.2) and Eq. (A.4), allow us to understand
this effect. When visibilities at two times are correlated for a given baseline,
they respond to different Fourier modes of the HI power spectrum owing to the
rotation of intensity pattern in a drift scan (Eqs. (3.11)–(3.13)). The extent of
correlation of visibilities which get contribution from different Fourier modes
depends on the primary beam: the smaller the primary beam the larger is the
range of Fourier modes that contribute to the correlation. Therefore, the decor-
relation time is proportional to Ω

−1/2
0g .

(c) Large field of view: The terms proportional to Ω2
0g in Eq. (3.25) (or more gen-

erally the terms proportional to y in Eq. (3.23)) are responsible for this effect.
These terms correspond to an effective w-term, a part of which arises from w0

and the remaining is the higher-order time-dependent phase in a drift scan. This
effect is important when the primary beam or w0 is large. 1

We next discuss the relative importance of (a), (b), and (c) in understanding Figures 3.1
and 3.2. We first note that (c) doesn’t play an important role in explaining qualitative
features seen in the Figures. Its impact is only mildly important for PAPER at the
smallest baselines we consider.

For PAPER, the decorrelation time in the Figure scales linearly as the inverse of the
length of the baseline 1/|u0|. Figure 3.1 shows only the case u0 = v0. We have checked
that the behaviour seen in the figure is nearly independent of the individual components
of the baseline. Also a comparison of decorrelation times between PAPER and MWA
shows that the decorrelation times scale as Ω

−1/2
0g for baseline |u0|& 25. A comparison

of these two cases with large baselines |u0| & 150 for HERA and SKA1-Low also
shows the same scaling with the primary beam. This means that (b) is the dominant

1Here we assume w0 = 0 and we only consider the impact of the time-dependent term. Our as-
sumption would be valid for a zenith drift scan, which we assume, for a near-coplanar interferometric
array. Coplanarity is generally a good assumption as our focus for the detection of the HI signal is short
baselines, e.g. for MWA w0� |u| for a zenith scan. We can gauge the quantitative impact of non-zero
w0 using Eq. (3.24). The main effect of non-zero w0 is to yield a smaller effective primary beam (Paul
et al. [2016, 2014a], Cornwell et al. [2008]) and to introduce additional phase in the visibility correlation
function (Eq. (B.4)).
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decorrelation mechanism in all these cases.

For short baselines for MWA, HERA, and SKA1-Low the behaviour is markedly dif-
ferent. If (b) alone determined the decorrelation in these cases, the decorrelation time
would be longer as the primary beam is smaller in these two cases, but this behaviour
is seen only for longer baselines. Therefore, (a) plays an important role in these cases.
For large primary beams, (a) is unimportant because the slow phase discussed above
is closer to zero, as it gets contribution from a small range of Fourier modes. How-
ever, for narrower primary beams, this term gets contribution from a larger range of
Fourier modes which results in cancellation when integration over k⊥1 is carried out.
This results in a reduction of correlation time scale. This effect is more dominant
for smaller baselines for the following reason: for a given u0, the range of Fourier
modes that contribute to the visibility correlation function is ∆k⊥1 ' 1/(r0Ω

1/2
0g ) (i.e.

size of the Fourier beam) centered around k⊥1 = 2πu0/r0 (e.g. Eqs. (3.11)–(3.13)). It
should be noted that ∆k⊥1 is only determined by the size of the primary beam while
k⊥1 scales with the east-west component of the baseline. This implies that for long
baselines, k⊥1 � ∆k⊥1. In this case, the visibility correlation function is dominated
by the contribution of a single Fourier mode, which suppresses the impact of possible
cancellation that occurs owing to the mixing of Fourier modes, diminishing the impact
of (a) for long baselines. However, when ∆k⊥1 ' k⊥1, the effect becomes important
and it determines the decorrelation time scale for shorter baselines.

For small baselines and narrower primary beams, both (a) and (b) play an important
role so it is worthwhile to investigate the dependence of the decorrelation time on
the components of baselines (Figure 3.1 assumes u0 = v0). We have checked many
different combinations of u0 and v0 and find that the qualitative features of Figure 3.1
are largely determined by the the length of the baseline. But, as discussed below,
the phase of the correlation function is dominated by the east-west component of the
baseline.

The correlation structure in the primary-beam–∆t–baseline space is further explored
in Figure 3.2. In the left panel, we show the amplitude of the correlation function
as a function of ∆t for a fixed baseline for different primary beams. The right panel
shows the isocontours of the decorrelation time in the primary beam–baseline plane;
the decorrelation time is defined as the time difference ∆t at which the amplitude of
the correlation function falls to half its value at ∆t = 0. For each baseline, the decor-
relation time reaches a maximum value as a function of the primary beam. Our for-
malism allows us to understand this general behaviour: for smaller primary beam, the
Fourier beam is large which causes decorrelation owing to mode-mixing in the trans-
verse motion of the intensity pattern (point (a)). For larger primary beam, the rotation
of intensity pattern is responsible for the decorrelation (point (b)). The decorrelation
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time scales inversely with the baseline length and could reach an hour for the shortest
baselines and large primary beams, in agreement with Figure 3.1. A notable feature
of Figure 3.2 is the alignment of the isocontours of decorrelation time. Its shape is
determined by the interplay of decorrelation owing to the rotation and the traversal of
the intensity pattern and can be derived analytically.

For large primary beams, the decorrelation time is ' 1/(|u0|Ω
1/2
0g |sinφ |) (point (b),

(Eq. (3.25)); the decorrelation profile for large primary beams is seen to follow this
function. For small primary beams, the decorrelation time is ' Ω

1/2
0g /cosφ , nearly

independent of the length of the baseline (point (a)). Equating these two expressions
gives us: Ω0g| tanφ | |u0| ' 1. This relation is shown in Figure 3.2 (White line) and
it separates the regions dominated by decorrelation owing to the rotation (above the
White line) from the regions in which the translation plays the dominant role. Fig-
ure 3.2 shows the White line adequately captures the essential physics of the separation
of the two regions. We note that the large field of view (point (c) above) does not play
an important role in our study because of the range of telescope latitudes we consider,
which is motivated by the location of radio interferometers studied here. For φ ' 90◦,
both translation and large field of view effects are negligible while, for φ ' 0, the im-
pact of rotation is negligible while translation and wide field of view effects dominate
(Eq. (3.25)).

The phase of visibility correlation function

In the foregoing we studied the amplitude of the correlation function. As the correla-
tion function (in either frequency or delay space Eq. (3.10) or Eq. (3.16)) is a complex
function we need to know the correlation properties of its phase in addition to complete
the analysis.

In Appendix B, we discuss how suitable approximations allow us to discern major con-
tributors to the phase of the correlation function. Eqs. (B.3) and (B.4) show that the
phase angle is 2πu0 cosφ∆H +ψ1+ψ2. The term 2πu0 cosφ∆H has already been dis-
cussed above (point (a) on traversal time of coherence scale). It follows from Eq. (B.4)
that both ψ1 and ψ2 are small as compared to 2πu0 cosφ∆H as ψ1 ∝ Ωg and ψ2 ∝ Ω2

g

for π2Ω2
gy2 < 1. ψ2 can only be significant when effects arising from large field-of-

view become important (Eq. (B.4) and discussion on point (c) above), which is not the
case for w0 = 0 and the primary beams we consider in our analysis. The dominant
phase angle 2πu0 cosφ∆H can be explicitly identified in Eq. (B.3) in this case.

Motivated by our analytic results, we define the phase angle as:

ψ(u, t ′− t) = Arg
(

exp(−i2πu0 cosφ∆H)
〈

Vτ(u0,w0, t)V ∗τ (u0,w0, t ′)
〉)

(3.26)
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Figure 3.3: The figure shows the absolute value of the phase angle of the visibility
correlation function (Eq. (3.26)) as a function of ∆t = t ′− t. This figure illustrates that
the rapidly fluctuating component of the phase of the complex correlation function
(Eq. (3.19)) can mostly be removed by multiplying it with exp(−i2πu0 cosφ∆H).
This allows us to determine the time scales for averaging the time-ordered visibilities
in drift scans (section 3.2.1 and 3.4).
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The multiplication by the additional phase allows for near cancellation of the phase
term exp(ik⊥1r0 cosφ∆H) in Eq. (3.16) (or a similar term in Eq. (3.10) for correlation
in frequency space if u0 and r0 are replaced by uν and rν , respectively). In Figure 3.3
we present our numerical results. We notice that the phase angle defined by Eq. (3.26)
is small for a wide range of ∆t, as suggested by our analytic results. This means, as
anticipated, that the phase of the correlation function is nearly exp(i2πu0 cosφ∆H) 1.
The implication of this result for drift scan data analysis will be discussed below.

3.2.2 Approximations and input quantities

Our results use an input HI power spectrum, different primary beams, and a set of
approximations to transform from frequency to delay space. We discuss the impact of
these approximations and input physics on our analysis.

Dependence on input power spectrum and the shape of primary beam

The results shown in Figure 3.1 were derived using the HI power spectrum, P(k) '
1/kn, with n' 2, for a range of scales (Furlanetto et al. [2006b]). We tested our results
with different power-law HI power spectra with spectral indices in the range n = 1–3
and found our results to be insensitive to the input power spectra.

The lack of dependence of the visibility decorrelation time on the input HI power
spectrum follows from our analysis. Eqs. (B.2) and (B.3) show that relevant approx-
imations allow us to separate the input power spectrum from the time-dependent part
of the correlation function, which means Figure 3.1 is independent of the HI power
spectrum. These equations show that the time dependence of the correlation function
is essentially captured by the response of the primary beam in Fourier space. Similar
expression was derived in Parsons et al. [2016] (their equation 9) for cases when the
Fourier beam (Eq. (3.11)) has a narrow response (e.g. PAPER).

The only cases not covered by this approximation are small primary beams and small
baselines. However, for the limiting cases we discuss here, |u| & 20 and SKA1-Low
primary beam, our numerical results show that the impact of the input HI power spec-
trum on the decorrelation time scale is negligible.

Our results are insensitive to the shape of the primary beam. We compare our numeri-
cal results for instrumental primary beams with a symmetric, separable Gaussian beam
by roughly matching Ω0g and the main lobe of the instrumental primary beam. We

1The origin of this phase can partly be explained by considering a simpler case: a single point
source of flux Fν at the phase center. In this case, the visibility Vν(u) = Fν Aν(0), where Aν(0) defines
the primary beam response at the phase center, l = 0 and m = 0. The correlation between visibilities
separated by ∆H in time in a drift scan is Vν(u)V ∗ν (u)' F2

ν A2
ν(0)exp(i2πuν cosφ∆H). As discussed in

section 3.3.1 the same factor scales out of the correlation function for a set of point sources also.
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find excellent agreement in explaining the main features of Figures 3.1, 3.2 and 3.3.
Eq. (B.3) adequately explains Figure 3.1, except for small baselines for HERA and
SKA1-Low.

Approximations in transforming from frequency to delay space

Following Eq. (3.16) we discuss various approximations used in making the correla-
tion function in delay space more tractable. In the tracking case, these approximations
allow us to find a one-to-one linear relation between the Fourier modes of the HI sig-
nal with the variables of radio interferometers (e.g. Paul et al. [2016] and references
therein). However, owing to the frequency dependence of the primary beam, the co-
ordinate distance, and the baseline, these commonly-used relations are approximate.
We assessed the impact of these approximations in Paul et al. [2016] for the tracking
case. For a bandwidth B = 10 MHz (ν0 = 154 MHz) and MWA primary beam, the
error in these relations is less than 5% for k‖ & 0.1Mpc−1. The modes correspond-
ing to k‖ . 0.1Mpc−1 are buried in the foreground wedge and therefore do not play
a role in the detection of the HI signal (e.g. Paul et al. [2016]). The error increases
with bandwidth and primary beam and therefore is expected to be smaller for HERA
and SKA1-Low for the same bandwidth. As we also use these approximations in our
work to separate the variables on the sky-plane from those along the line-of-sight, we
re-assess these approximations for a drift scan and find these errors to be of similar
magnitude for the drift scan. As in the tracking case, these approximations allow us to
derive the relation between baseline and delay space parameter τ and Fourier modes
of the HI signal. This simplification allows us to write the frequency-dependent terms
in the form expressed in Eq. (3.17).

One outcome of this approximation for drift scans is that the functional form of the
decorrelation time shown in Figure 3.1 is nearly the same in frequency and delay space.
Therefore, Figure 3.1 can be interpreted as displaying the decorrelation time at the
center of the bandpass. This assertion is borne out by Eq. (B.2).

Our study is based on the assumption ν0 ' 154MHz and B ' 10MHz. It can readily
be extended to a different frequency/bandpass by using Eqs. (B.2) and/or (B.3).

We discuss the approximation in transforming from frequency to delay space further
with regard to foregrounds and the analysis of drift scan data in later sections (see
footnote 1).

It is worthwhile to reiterate the scope of the main approximations we use: (a) For large
primary beams and baselines, Eq. (B.2) provides an excellent approximation, (b) for
small bandwidths and primary beams, Eq. (B.2) can readily be extended to Eq. (B.3),
(c) for small baselines and primary beams, Eq. (B.2) might not be valid and Eq. (3.19)
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has to be computed numerically.

3.3 Foregrounds in drift scans

In the tracking mode, the foregrounds can be isolated from the HI signal (‘EoR win-
dow’) by transforming to delay space if the two-dimensional foregrounds are spectrally
smooth and therefore their correlation scales differ from the three-dimensional HI sig-
nal along the line of sight. However, in tracking mode, we cannot use the difference
between correlation properties of foregrounds and the HI signal on the sky plane. In
a drift scan, it is possible that the decorrelation time of the HI signal is different from
components of foregrounds, which might give us yet another way to mitigate fore-
grounds.

The aim of this section is to study the decorrelation time scales of two components
of foregrounds: near-isotropic distribution of point sources of flux above 1 Jy and
statistically homogeneous and isotropic diffuse foregrounds. In our analysis, the delay
space approach continues to be the primary method used to isolate foregrounds from
the HI signal and we therefore present all our results in this space.

3.3.1 Point Sources

In a drift scan the phase center is held fixed while the intensity pattern changes. The
changing intensity pattern owing to a set of point sources can be written as:

Iν(θ, t) = ∑
m

Fm
ν δ

2(θ−θm(t)) (3.27)

Here Fm
ν is the flux of the mth source and θm(t) its angular position at time t. Here

all the angles are measured with respect to the phase center which is assumed to be
fixed at θ0 = 0. The visibility (retaining the w-term) can readily be derived from the
expression above:

Vν(uν ,wν , t) = ∑
m

Fm
ν Aν(θm(t))exp [−2πi(uν ·θm(t)+wν(nm(t)−1))] (3.28)

To discern the main results of this section, we ignore the frequency dependence of
source fluxes and primary beam, even though we allows these quantities to be fre-
quency dependent in our simulations 1. Using Eq. (3.15) the visibility of point sources

1We neglect the frequency dependence of the intensity pattern and the primary beam in this work.
As we compare our analytic results against simulations in this section, it allows us to verify this assump-
tion more explicitly. We find this assumption to be extremely good for bandwidth B ' 10MHz around
a central frequency of ν0 ' 154MHz. This approximation can be understood by considering a simpler
case: a flat spectrum source at the phase center. While transforming to delay space, this source receives
contribution from only the τ = 0 mode. If the source is now assumed to have a spectral index, more
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in the delay space is:

Vτ(u0,w0, t)'∑
m

Fm
0 A0(θm(t))Bsinc(πBτ̄

m(t))e2πiν0τ̄m(t) (3.29)

where, τ̄
m(t) = τ− 1

ν0
(u0·θm(t)+w0(nm(t)−1)) (3.30)

The correlation function of the visibilities in delay space can be written as:

〈
Vτ(u0,w0, t)V ∗τ (u0,w0, t ′)

〉
' B2

∑
m

∑
n

Fm
0 Fn

0 A0(θm(t))A0(θn(t ′))

× sinc(πBτ̄
m(t))sinc(πBτ̄

n(t ′))e2πiν0(τ̄
m(t)−τ̄n(t ′)) (3.31)

Here the ensemble average implies averages over all pairs of baselines and times for
which |u0| and t ′− t are held fixed. To understand Eq. (3.31) we first consider the
tracking case in which source positions are independent of time. In this case the dom-
inant contribution comes from τ = 2πu0.θm/ν0. This defines the so-called foreground
wedge which is bounded by the maximum value of θm which is given approximately
by the size of the primary beam. It also follows from the equation that the sum is dom-
inated by terms for which m = n because for m = n the phase term (exponent term)
becomes small and thus causing lesser cancellations in the summation.

In a drift scan the source position changes with respect to the primary beam. It means
the value of τ for which the sum in Eq. (3.31) peaks changes with time. While the
broad wedge structure is the same in this case as in the tracking case as the dominant
contribution comes from sources within the primary beam, the correlation structure be-
comes more complicated. As θn(t ′)−θm(t) remains unchanged during a drift scan, the
summation in this case would also generally be dominated by m = n terms. However,
it is possible that a source at one position at a time drifts close to the position of another
source at another time. Even though the contribution of this pair could be negligible in
tracking mode, it would not be if the visibilities are correlated at two different times.
The impact of this effect requires details of point source distribution which we model
using a simulation in this study.

For the case of m = n, the same source is correlated at two different times. In this
case, it follows from Eq. (3.31) that the visibility correlation diminishes as the time
separation increases due to the larger and different arguments of the two Sinc functions.
As the additional time-dependent phase acquired in the drift is proportional to the

delay space modes close to τ = 0 begin to contribute. We find that these modes do not contaminate the
EoR window as they lie well within the wedge given the bandwidth and spectral index of interest. The
leakage into the EoR window owing to finite bandwidth can be assuaged by using a frequency-space
convolving function such as Blackman-Nuttall window or a Gaussian window we discuss in the section
on diffuse foregrounds. The frequency dependence of baselines in the phase plays a more important role
and is needed to explain the wedge structure for foregrounds (e.g. Paul et al. [2016]).
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length of the baseline, the decorrelation time scale is expected to be shorter for longer
baselines.

Point source simulations: We generate 15067 point sources brighter than 1Jy dis-
tributed isotropically on the southern hemisphere (Hopkins et al. [2003]). We assume
the spectral index of sources to be −0.71 For this source distribution we compute the
power spectrum in delay space as a function of drift time. In a drift scan, the coor-
dinates of these sources evolve according to Eq. (A.2) with respect to the fixed phase
center.

We compute visibilities in delay space for a one-hour drift scan in the steps of 30 sec-
onds. The visibilities are then correlated in time and the visibility correlation function
is computed by averaging over the number of correlation pairs for which t ′− t and |u0|
are held fixed:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
=

1
N|u0|

N|u0|

∑
|u0|

1
Ntt ′

Ntt′

∑
t,t ′

Vτ(u0,w0, t)V ∗τ (u
′
0,w
′
0, t
′) (3.32)

Here N|u0| and Ntt ′ and the number of baseline pairs for fixed |u0| and t− t ′, respec-
tively.

To establish how the amplitude of the visibility correlation behaves as a function of
time, baselines, and the number of points over which the average is computed, we
choose two representative baselines |u0|= 20,100. We carry out averages in a ring of
width ∆|u0| = 4 at every 30 seconds; each of these rings is populated, randomly and
uniformly, with N|u0| = 25,50,100,200,400. The observed uv-field and its baseline
distributions of MWA phase I and II drift scan data are given in Figures (4.2) and (4.3)
respectively.

In Figure 3.4, the visibility correlation functions are plotted for the two cases using the
instrumental parameters of MWA (primary beam and φ ) for τ = 0 and w0 = 0. We no-
tice the following: (a) averaging over more baselines causes the correlation function to
decorrelate faster when the number of baselines are small but the function converges as
the number of baselines is increased, (b) the correlation function decorrelates faster for
larger baselines, as anticipated earlier in the section based on the analytic expression,
Eq. (3.31), (c) a comparison between Figures 3.4 and 3.1 shows the decorrelation time

1Foreground components from both the point sources and diffuse galactic emission are expected
to be dominated by synchrotron radiation from power-law energy distribution of relativistic electrons.
The galaxy is optically thin to these photons, therefore, the observed spectrum retains the form of the
emitted spectrum, which is featureless. The main mechanism of the absorption of radio photons in the
interstellar medium is free-free absorption off thermal and non-thermal electrons. The optical depth of
free-free absorption: τ = 3.3× 10−7(T/104)−1.35ν−2.1EM, where ν is in GHz and EM, the emission
measure, is observationally determined to be: EM = 5pccm−3 (e.g. Haffner et al. [1999]); the optical
depth is negligible at frequencies of interest to us.
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Figure 3.4: The visibility correlation function (Eq. (3.32)) is shown as a function of

∆t (normalized to unity for ∆t = 0) for two baselines
√

u2
0 + v2

0 = 20,100 for u0 = v0,
for MWA primary beam and latitude. The visibility correlation function is seen to fall
to half its value in a few minutes.

scale for the HI signal is much larger than for a set of point sources. For |u0| = 100,
the point sources decorrelate to 50% of the peak in less than a minute while this time
is nearly 10 minutes for the HI signal.

The structure of the foreground wedge in a drift scan is expected to be similar to the
tracking mode; we verify it using analytic estimates and simulations but do not show
it here.

3.3.2 Diffuse correlated foregrounds

An important contribution to the foregrounds comes from diffuse galactic emission
(DGE) which is correlated on the sky plane; this component of the foregrounds is
dominated by optically-thin galactic synchrotron emission. The spatial and frequency
dependence of this emission is separable if the emission is optically thin, which, as
noted above, is a good assumption and is key to the separation of foregrounds from
the HI signal. We consider statistically homogeneous and isotropic component of the
diffuse foreground here. This case differs from the HI signal only in different frequency
dependencies of the two signals. Therefore, the formulation is similar to the case of HI

signal discussed above.

As we assume the DGE to be statistically homogeneous and isotropic, the two-point
function of fluctuations on the plane of the sky in Fourier space could be characterized
by a power spectrum Cq such that and q = |q|=

√
q2

1 +q2
2, where q = (q1,q2), with q1

and q2 being the two Fourier components on the sky plane. Cq can be expressed as:

〈
Iν(q)Iν ′(q′)

〉
= (2π)2Cq(ν ,ν

′)δ 2(q−q′) (3.33)
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For our analysis we adopt the following form and normalization of Cq, as appropriate
for ν ' 150 (e.g. Ghosh et al. [2012] and references therein):

Cq(ν ,ν
′) = a0

(
ν

ν0

)−α(
ν ′

ν0

)−α ( q
1000

)−γ

(3.34)

where α = 0.52 (Rogers and Bowman [2008]) is the spectral index and γ = 2.34
(Ghosh et al. [2012]) is the index of spatial power spectrum. The value of a0 =

A0
(
2kBν2

0/c2)2 is 237 Jy2 at ν0 = 154MHz. It rescales the amplitude factor, A0 =

513mK2, given in Ghosh et al. [2012] from (mK)2 at 150 MHz to Jy2 at ν0. For a
single polarization this factor should be divided by 4.

Using the formalism used for analysing the HI signal it can readily be shown that the
visibility correlation function in frequency space can be related to Cq as:

〈
Vν(uν ,wν , t)V ∗ν ′(u

′
ν ′,w

′
ν ′, t
′)
〉
=
∫ d2q

(2π)2Cq(ν ,ν
′)eiq1 cosφ∆H

×Qν(q,uν ,wν ,∆H = 0)Q∗
ν ′(q,u

′
ν ′,w

′
ν ′,∆H) (3.35)

where the Fourier beam of DGE is:

Qν(q,uν ,wν ,∆H) =
∫

d2
θAν(θ)exp

[
−2πi

(
xu ·θ−

1
2

yθ
2
)]
(3.36)

with xu = uν −
1

2π
(q1 +q2 sinφ∆H) (3.37)

xv = vν −
1

2π
(q2−q1 sinφ∆H) (3.38)

y = wν +
1

2π
q1 cosφ∆H (3.39)

In Eq. (3.36) we have used Q-integrals (or 2D Fourier beam) defined for the HI cor-
relation function (Eq. (3.11)). Comparing Eq. (3.36) and Eq. (3.11) we note that the
following relation between the Fourier modes of correlated diffuse foregrounds and the
HI signal: q' r0k⊥.

As already shown for the HI signal, Eq. (3.36) can be made more tractable by assuming
the primary beam to be separable and symmetric. To establish general characteristics
of DGE foreground we carry out analytical calculations with a symmetric Gaussian
beam: e−(l

2+m2)/Ωg , which allows us to extend the integration limits from −∞ to +∞.
Following the HI analysis, we also expand n to the first order. This gives us:

Qν(q,uν ,wν ,∆H) = πΩ
′
g exp

[
−π

2
Ω
′
g
(
x2

u + x2
v
)]

(3.40)
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where Ω′g = Ωg/(1− iπyΩg). It should be noted that these variables can be read off
directly from Q-integrals defined for the HI signal by putting r0k⊥ ' q. This shows
the equivalence of the HI signal and diffuse foregrounds in the Fourier domain on the
plane of the sky.

We next carry out frequency integrals to transform to delay space. As already discussed
in section 3.3.1, the main results in the delay space can be obtained by retaining only
the frequency dependence of baselines because the foregrounds wedge in the two-
dimensional power spectrum of foregrounds arises largely due to the chromaticity of
baselines (e.g. Paul et al. [2016]).

The frequency integral can be computed numerically for a finite bandpass. To carry
out analytical calculations, the limits of the frequency integral can be extended to in-
finity. However, under this assumption, the baseline (uν = u0ν/ν0) also becomes
infinity and the integral does not converge 1. To correctly pick the relevant scales
of diffuse foregrounds, we apply a Gaussian window function in frequency space
(exp

(
−c2(ν−ν0)

2)) which allows us to pick the relevant scales within the bandwidth
(B) of the instrument and also enables us to extend the limits of integration. 2 This
gives us:

Q̃(q,u0,w0,∆H) =
∫

ν0+B/2

ν0−B/2
dνe2πiτνe−c2(ν−ν0)

2
Qν(q,uν ,wν ,∆H)

= πΩ
′
g

√
π

c1 + c2
exp
[
− π2τ2

c1 + c2

]
exp
[

2πiτν0

(
1+

c1

c1 + c2

1
|qu|

(a1 +a2 sinφ∆H)

)]
×exp

[
−

Ω′g
4

(
c2

c1 + c2
(a1 +a2 sinφ∆H)2 +(a2−a1 sinφ∆H−|qu|sinφ∆H)2

)]
(3.41)

where c1 = (|qu|/ν0)
2

Ω′g/4,c2 = 1/(bB2),qu = 2πu0,a1 = q1−2πu0,a2 = q2−2πv0.
The parameter b is a numerical factor which can be tuned to get the desired width of
the Gaussian window function. The argument of the factor exp

[
−2π2τ2/(c1 + c2)

]
in

Eq. (3.41) yields the linear relation corresponding to the foreground wedge.

We can read off the correlation scales for diffuse correlation foregrounds from Eq. (3.41).
A baseline u0 is most sensitive to the Fourier mode qu. As in the case of the HI signal,
the decorrelation time scale for a drift scan can be estimated readily by putting q = qu

1This highlights the main difference between the HI signal and the two-dimensional diffuse fore-
grounds. In the former, the frequency integral picks the scale along the line-of-sight k‖ while no such
scale exists for diffuse foregrounds

2A similar window (e.g. Blackman-Nuttall window, e.g. Paul et al. [2016]) is applied to the data to
prevent the leakage of foregrounds from the foreground wedge to the clean EoR window.
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Figure 3.5: In the left panel, we show two-dimensional power spectrum of DGE
(∆H = 0) in the k‖–k⊥ plane in units (mK)2(h−1Mpc)3. The figure assumes
ν0 = 154MHz and bandwidth B = 10MHz. The relation applicable to the HI signal is
used to transform from the telescope variables (u0,v0, τ) to the Fourier modes (k⊥,
k‖), and to convert the power spectrum to the appropriate units (e.g. Paul et al.
[2016]). The Figure highlights the separation of foregrounds from the EoR window;
the bandwidth determines the extent of the flat region parallel to the k‖ axis. In the
right panel, the visibility correlation function (normalized to unity for ∆t = 0) for

DGE is shown for three baselines
√

u2
0 + v2

0 = 25,50,100 (Eq. (3.42)). We also show
the HI and point source visibility correlation functions for comparison.

and simplifying the expression. We finally obtain:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w′0, t

′)
〉
=
∫∫

ν0+B/2

ν0−B/2
dνdν

′
〈

Vν(uν ,wν , t)V ∗ν ′(u
′
ν ′,w

′
ν ′, t
′)
〉

=
∫ d2q

(2π)2Cq(ν0,ν0)eiq1 cosφ∆HQ̃(q,u0,∆H = 0)Q̃∗(q,u′0,∆H) (3.42)

Eq. (3.42) gives the general expression for visibility correlation function in delay
space for a drift scan observation. It can be computed by using Eqs. (3.34), (3.41) in
Eq. (3.42). It reduces to the relevant expression for tracking observation for ∆H = 0. In
Figure 3.5 we show numerical results obtained from solving Eq. (3.42) for a Gaussian
primary beam matched to the main lobe of MWA primary beam and φ =−26.7◦. We
display the power spectrum in k‖–k⊥ plane for ∆H = 0 and the correlation of diffuse
correlated foregrounds as a function of time. Our main conclusions are:

1. Like the point sources, diffuse correlated foregrounds are confined to a wedge
and the EoR window is clean for the detection of the HI signal.

2. The diffuse foregrounds decorrelate on time scales comparable to the HI signal.
(We note that the difference between the two cases for the shortest baseline is
partly because we use the exact MWA beam for the HI case while we use the
Gaussian beam for diffuse foreground.) This should be contrasted with point-
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source foregrounds that decorrelate on a much shorter time scale as compared to
the HI signal.

3.4 Analysing drift scan data

Our study allows us to address the following question: over what time period can the
time-ordered visibility data be averaged without diminishing the HI signal. We further
seek optimal signal-to-noise for the detection of the HI signal. We computed two-
point visibility correlation function to assess the coherence time scale of visibilities.
Our results are shown in Figures 3.1–3.2 (amplitude of the correlation function as a
function of ∆t, baseline and primary beam) and 3.3 (the phase of the complex correla-
tion function). Our study shows that the range of time scales over which time-ordered
visibilities can be averaged without the loss of HI signal lies in the range of a few
minutes to around 20 minutes.

Motivated by our theoretical analysis, we define the quantity:

Cτ(u0,w0, t ′− t)≡ exp(−i2πu0 cosφ∆H)
〈

Vτ(u0,w0, t)V ∗τ (u0,w0, t ′)
〉

(3.43)

Notice that Cτ(u0,w0, t ′− t) = C∗τ(u0,w0, t− t ′). Our analysis shows that the complex
number Cτ(u0,w0, t ′− t) is dominated by its real component with a phase which re-
mains small over the coherence time scale of the amplitude (Figure 3.3 and Figure 3.2).
Our aim is to extract Cτ(u0,w0, t ′−t) from the data and then suitably weigh it to extract
the HI signal, optimally and without the loss of HI signal1. We discuss two possible
ways to extract the HI signal. The first is based on averaging the visibilities before
computing the correlation function.

We consider visibilities measured with time resolution ∆H (∆H is assumed to be much
smaller than the coherence scale of visibilities for any baseline of interest to us, e.g.
∆H = 10sec). Let us denote the measured visibilities as, Vn, where n corresponds to
the time stamp; each visibility is a function of baseline and either ν or τ . As noted
above, we could use data in either frequency or delay space. For the discussion here,
we consider delay space and express all quantities as functions of ν0. For brevity, we

1To prevent the HI signal loss, the simplest way to extract the HI signal from drift scans would be
to not use the coherence of visibilities in time. Assuming visibilities are measured with time resolution
much shorter than the coherence time scale, visibilities with identical time stamps can be squared (after
averaging over redundant baselines) to compute the power spectrum. This gives an unbiased estimator
of the HI signal. However, in such a procedure, visibilities measured at two different times are treated
as uncorrelated which results in an estimator with higher noise as compared to what is achievable using
further information regarding coherence of visibilities in time. If the time resolution of visibilities is
around 10 seconds and the coherence time is around 10 minutes, then the noise RMS of the visibility
correlation is higher by roughly the square root of the ratio of these two times.
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only retain the time dependence of measured visibilities. We define:

V=
N

∑
n=1

exp(i2πu0 cosφ∆Hn)Vn (3.44)

The total time of over which the visibilities are averaged T = N∆H should be small
enough such that the signal decorrelation is negligible (Figure 3.1). For instance,
we could choose N such that the decorrelation is 0.9, which corresponds roughly to
10 minutes for MWA for

√
u2

0 + v2
0 ' 20. It also follows that if the visibilities are aver-

aged for a period much longer than the correlation scale of the signal, there would be
serious loss of the HI signal. Even though we define V for a single baseline u0, it can
also be obtained by averaging visibilities over all redundant baselines. The correlation
function that extracts the HI signal |〈Vτ(u0,w0, t)V ∗τ (u0,w0, t)〉| then is:

CHI '
1

N2VV
∗ (3.45)

Notice that CHI is nearly the same as the expression in Eq. (3.43) in this case. A longer
stream of data of length, K� N, can be divided into time slices of N∆H. The corre-
lation function can be estimated for each slice using this method (coherent averaging
as the number of pairs is ' N2) and then averaged further over different time slices
(incoherent averaging over K/N slices). CHI is also optimal as the noise RMS is nearly
the same for each pair of correlated visibilities. We note that the HI signal is mostly
contained in the real part of this resulting function, as the phase angle is small for time
scales over which the visibilities are averaged (Figure 3.3).

A much better method to utilize the functional form shown in Figure 3.1 is to use the
estimator:

CHI '
1

N2 ∑
n′

∑
n

exp(−i2πu0 cosφ∆H(n′−n))VnV ∗n′g
−1(n′−n) (3.46)

Here g(n′−n) corresponds to the time decorrelation function shown in Figure 3.1; by
construction, g(n′−n) is real, g(n−n) = 1, and g(n′−n) = g(n−n′). The difference
between this approach and the first method is that visibilities are correlated first and
then averaged. This yields the same final expression as the first method if g(n′−n) is
applied for a suitable time interval such that it is close to unity. A distinct advantage
of this method is that we could only retain cross-correlations such that n′ 6= n, which
allows us to avoid self-correlation or noise bias; the total number of cross-correlations
are ' N2/2 in this case. This estimator is unbiased with respect to the detection of
HI signal but does not minimize noise RMS. The following estimator is both unbiased
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and optimal:

CHI =
∑n′∑n exp(−i2πu0 cosφ∆H(n′−n))VnV ∗n′g(n

′−n)
∑n′∑n g2(n′−n)

(3.47)

The estimator is unbiased for any choice of g(n′−n). However, for using this estimator,
small values of g(n′−n) (e.g. g(n′−n)< 0.3) should be avoided to prevent averaging
over very noisy visibility pairs. As in the first method, the real part of this function
dominates the HI signal.

The amplitude of CHI for both the proposed estimators extracts the visibility correlation
function at equal time, 〈Vτ(u0,w0, t)V ∗τ (u0,w0, t)〉, which is real. The estimation of HI

power spectrum from this function has been extensively studied in the analysis of EoR
tracking data (e.g. Paul et al. [2016]).

Our method has similarities with other approaches proposed to analyze the drift scan
data. In Parsons et al. [2016], the fringe-rate filters have been applied on the visibility
data. We apply a similar filter to reduce rapid oscillations of the phase of the correla-
tion function. We note that the filter applied in Parsons et al. [2016] takes into all the
components of earth’s rotation (Eq. (A.4)). In our analysis, we identify the different
roles played by these components. We show how the components responsible for the
rotation and translation of the intensity pattern cause the decorrelation of the amplitude
of the correlation function while the component that gives rise to the translation dom-
inates the phase of the correlation function. In m-mode analysis (Shaw et al. [2014,
2015]) the intensity pattern is expanded using spherical harmonics and the time vari-
ation of the intensity pattern is solely owing to the the change in the azimuthal angle
φ . This time variation can then be Fourier transformed to extract m-modes of the data.
The filter we apply in Eq. (3.44) corresponds to a similar process. Eq. (3.44) can be
viewed as a Fourier transform in which a single mode is extracted for a time-window
of the duration given roughly by the decorrelation time of the amplitude of the correla-
tion function. Our analysis shows that such a procedure, directly applied on measured
visibilities, can extract the relevant information of the HI signal.

3.4.1 Impact on foregrounds

The measured visibilities are a linear sum of the HI signal, foregrounds, and the noise,
which are uncorrelated with each other. In this study, we also compute the time scale of
the decorrelation of a set of point source and statistically-homogeneous and isotropic
diffuse foregrounds. Does our method allow us to mitigate foregrounds?

First, we notice that the phase factor exp(−i2π cosφu0∆H) we apply to curtail rapid
oscillations of the correlation function of the HI signal has the same form for fore-
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grounds (Eqs. (3.35) and (3.31)). Hence, it doesn’t play a role in separating fore-
grounds from the HI signal.

However, the decorrelation time scale of point sources is smaller than the HI signal.
In this case, the following situation is possible: two visibilities separated in time are
correlated such that the HI component is fully extracted (g(n′− n) = 1) but the point
source component is uncorrelated. This means that there would be partial decorrelation
of this component of foregrounds when either of the two methods discussed above are
used to extract the HI signal. But this argument doesn’t apply to diffuse foregrounds.

Therefore, it is possible to partly reduce the level of foregrounds in a drift scan but the
primary method of separating foregrounds from the HI signal remains transforming to
delay space, as in a tracking observation.

3.5 Summary

In this chapter, we address the following question: over what time scales are time-
ordered visibilities coherent in a drift scan for the EoR HI signal, set of point sources,
and diffuse correlated foregrounds. This is an extension of our earlier work (Paul et al.
[2014a]) and has similarities with other approaches in the literature (Shaw et al. [2014],
Parsons et al. [2016]). Our main theoretical tool is the complex two-point correlation
function of visibilities measured at different times. We consider the primary beams
of PAPER, MWA, HERA, and SKA1-Low for our analysis. Our main results can be
summarized as:

• Figure 3.1 shows the amplitude of the correlation function of HI visibilities in
time for four interferometers. The correlation time scales vary from a few min-
utes to nearly 20 minutes for the cases considered. We identify the three most
important factors that cause decorrelation: (a) traversal time across a coherent
feature, (b) rotation of sky intensity pattern, and (c) large field of view.

• The time variation of the phase of the HI correlation function is dominated by
a filter function which is determinable in terms of measurable quantities (com-
ponent of east-west baseline, latitude of the telescope, etc.). This filter function
can be absorbed into an overall phase. The phase angle of the resultant func-
tion is small, which means the complex correlation function is dominated by its
real part. The phase angle remains small over the coherence time scale of the
amplitude of the correlation function (Figure 3.3).

• Our results are valid in both frequency and delay space and are insensitive to
the input HI power spectrum. By implication they are directly applicable to the
analysis of EoR drift scan data.
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• The nature of foregrounds in a drift scan is different from the tracking mode
owing to the time dependence of the sky intensity pattern. We consider two
components of foregrounds for our analysis: set of point sources and statisti-
cally homogeneous diffuse correlated emission. The decorrelation time scales
for these components are displayed in Figures 3.4 and 3.5. The point sources
decorrelate faster than the HI signal. This provides a novel way to partly miti-
gate foregrounds using only information on the sky plane. However, the diffuse
foreground decorrelation time scale is comparable to that of the HI signal and the
contamination from this component cannot be removed in a drift scan on the sky
plane. By implication, the delay space formalism remains the principal method
for isolating foregrounds from the HI signal (Figure 3.5).

We discussed in detail how our formalism can be used to extract the HI signal from the
drift scan data. We argued many different approaches might be possible for the lossless
retrieval of the HI signal while optimizing the noise. In the next chapter, we apply our
formalism to drift scan data from MWA.
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Chapter 4

Power Spectra of the Drift Scan data
from MWA using DSF 1

4.1 Introduction

In the section 1.4.5 we have listed several existing and upcoming radio telescopes
which aim to detect both the sky-averaged and the fluctuating component of the red-
shifted HI signal from EoR. Here, we focus on the fluctuating component of the HI sig-
nal. There are considerable difficulties in the detection of this signal. As mentioned the
chapter 1, the theoretical studies suggest that the strength of the signal is of the order
of 10 mK while the foregrounds are brighter than 100 K at 150 MHz. These contam-
inants include diffuse galactic synchrotron, extragalactic point, and bright, extended
radio sources. Current experiments can reduce the thermal noise of the system to suit-
able levels in many hundreds of hours of integration. The foregrounds can potentially
be mitigated by using the fact that the HI signal and its correlations emanate from the
three-dimensional structures of mega-parsec scales at high redshifts. On the the other
hand, the foreground contamination is dominated by spectrally smooth sources. This
means that even if foregrounds can mimic the HI signal on the plane of the sky, the
third axis, corresponding to the frequency, can be used to distinguish between the two.
All ongoing experiments exploit this spectral distinction to isolate the HI signal from
the foreground contamination (e.g. Parsons and Backer [2009], Parsons et al. [2012b]).

Many image and visibility-based pipelines have been developed to analyze the inter-
ferometric data. These have yielded upper limits on the HI signal (Paciga et al. [2011],
Ali et al. [2015], Dillon et al. [2015], Paul et al. [2016], Beardsley et al. [2016], Choud-

1Based on:
Patwa, A. K., Sethi, S. 2019, The Astrophysical Journal, 887, 52
Patwa, A. K., Sethi, S., & Dwarakanath, K. S. 2021, MNRAS, 504, 2062
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huri et al. [2016], Trott et al. [2016], Patil et al. [2017], Li et al. [2019], Barry et al.
[2019], Kolopanis et al. [2019], Trott et al. [2020], Mertens et al. [2020]). The cur-
rent best upper limits on the HI power spectrum lie in the range: ' 50–75(mK)2 for
k ' 0.05–0.2 hMpc−1 in the redshift range 6.5–10. Bowman et al. [2018] reported
the detection of an absorption trough of strength 500mK in the global HI signal in the
redshift range 15 < z < 19.

In this chapter, we present the results of the analysis of 7.5 hours of phase I and
55 hours of phase II EoR drift scan from MWA. The data were taken over 1 night
in phase I and 10 nights in phase II with repeated scans of duration 5.5 hours over
the same region of the sky. The feasibility of drift scan using MWA has been studied
theoretically (Trott [2014], Paul et al. [2014a], Patwa and Sethi [2019]). We develop
a pipeline for measuring the 21 cm power spectrum for drift scan observations in de-
lay space. For this purpose, we use the Drift Scan Formalism (DSF) developed in
the chapter 3 based on Patwa and Sethi [2019]. We work in delay space, which iso-
lates foregrounds from the EoR window is therefore is the natural domain of power
spectrum measurement (e.g. Datta et al. [2010], Parsons et al. [2012b]).

In the section 4.2, we describe the MWA EoR datasets and its pre-processing, e.g.
flagging, time-averaging, and processing using CASA. We first characterize the noise
properties of the data and study the stability of the system over the duration of the scan
by comparing the data power spectrum with noise simulations. We then extract the HI

power spectrum from the data in different representations of the HI signal in Fourier
space. We finally study the behaviour of the foreground-dominated modes of the data
in a drift scan. We summarize our results with concluding remarks in section 4.6.

As before, we use spatially-flat ΛCDM model for our work with h = 0.67, ΩΛ =

0.6911,Ωm = 0.3089,Ωk = 0.0 (Planck Collaboration et al. [2020]).

4.2 Drift Scan Data

Murchison Widefield Array (MWA) is a radio interferometer located in Western Aus-
tralia at a latitude of −26.7◦ and longitude of 116.7◦. MWA has 128 tiles (a tile would
be referred to as an antenna in the paper) and each tile consists of 16 crossed dipoles
placed on a square mesh of length ∼ 4 m in a 4x4 arrangement. It operates in a fre-
quency range of 80–300 MHz with the observational bandwidth of 30 MHz and fre-
quency resolution (channel width) of 40 kHz. The visibility data is recorded at an
interval of 2 minutes with the temporal resolution of 0.5 s. In each 2-minute snapshot,
the duration of observation is 112 s. The phase I of MWA design has tightly packed
core in the diameter of 100 m and full array extends upto 1.5 km. In the phase II design,
64 antennas are placed in a compact Hex configuration to increase the number of short
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and redundant baselines primarily for EoR studies (Figure 2.5). The instantaneous
baseline distributions of both configurations for a zenith scan is shown in Figure 4.2
(e.g. see Tingay et al. [2013], Wayth et al. [2018] for the detailed description of the
design of MWA).

4.2.1 Metadata

In Figure 4.1 we display the region of the sky covered by the both scans. The scanned
region covers a portion of the sky roughly from the position of the EoR0 (0h,−27◦)
to the EoR1 (0h16m12s,−27◦) fields of the MWA. In the phase I, the one night scan
spanned for 7 hrs 29 minutes on 2013-12-03 from 11:40 UTC to 19:09 UTC. In the
phase II, each scan lasted 5 hours 24 minutes and was repeated across the same region
of sky for 10 consecutive nights from 2016-Oct-03 to 2016-Oct-12. Each night scan
was carried out between 14:39 UTC and 19:28 UTC. On the sixth night, the first two
hours of data was missing and the scan lasted only 3 hrs 10 minutes.

The reported sky temperature in the regions covered by the scan varies between 210 K
to 267 K. The observation also passes over Fornax A which is an extended radio source
with a core and two radio lobes. Its angular extent spans the region, RA 3h25m
to 3h20m30s and Dec −37◦30′ to −36◦54′. The total flux density of this source at
154 MHz is 750 Jy (McKinley et al. [2015]).

4.2.2 Flagging, calibration, and averaging

Cotter is a pre-processing pipeline which flags RFI, bad antennas, and channels (Of-
fringa et al. [2015]). It also does cable correction, can average data, and produce
CASA readable Measurement Sets (called MS tables or files). We apply COTTER on
all 2 minute snapshots individually and average them to 10 s time resolution, with the
frequency resolution kept intact (40 kHz). In each 2-minute data file, as noted above,
the observation span is 112s. Thus, after time-averaging there are 11 data chunks in
each 2-minute data file. We then apply bandpass and flux calibration with a strong and
unresolved calibrator source Pictor A.1

The calibration solution tables also help in identifying and flagging unresponsive or
irregularly behaving antennas and baselines manually. Next we flag the channels situ-
ated at the either ends of the coarse bands of MWA bandpass. 2

1 Based on Jacobs et al. [2013], Pictor A has (RA, Dec) = (5h20m22s,−45.8◦), flux density Sν =
(381.88±5.36) Jy at 150MHz, and flux spectral index α =−0.76±0.01.

2MWA’s frequency band consists of 24 coarse bands, giving total observing bandwidth of 30.72
MHz. Each coarse band has 32 channels. MWA by design has missing frequency channels in each
coarse band. In all data files, we flag 4 channels at both ends and 1 channel at center of each coarse
band. That is if we number channels from 0 to 31, channel number 0, 1, 2, 3, 16, 28, 29, 30, 31 are
flagged.
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Figure 4.1: This figure displays the Haslem map scaled to 154 MHz assuming the
brightness temperature spectral index α =−2.52 (Rogers and Bowman [2008]). The
big circles correspond to the main lobe of the MWA primary beam at ν = 154MHz.
The scan starts roughly at the location of the big circle on the right and lasts until the
big circle on the left. The sky covered in the phase I and II are shown using big white
and yellow circles, respectively. The smaller white circle shows the angular position
of Fornax A.
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These processes yield calibrated time-ordered visibility data-sets of 10 nights (phase II)
and 1 night (phase I). For the phase II, we then performed averaging over data from
different nights. Since the drift scans cover the same region of the sky, we carry out
LST stacking (this is the usual procedure to add data for all transit radio telescopes e.g.
Bandura et al. [2014]) which constitutes aligning and averaging data snapshots with
the same tracking centers, baseline bins (see below for more details), and frequency
channels observed on different nights. After LST stacking, we obtain the equivalent of
5 hrs of phase II drift scan data over the same region of the sky which are suitable for
the EoR power spectrum analysis.

4.3 Data analysis methodology

Many operational radio interferometers rely on drift scans to extract the power spec-
trum of the intensity of redshifted HI line from the EoR and low redshift data (Bandura
et al. [2014], Kolopanis et al. [2019], Parsons et al. [2016], DeBoer et al. [2017]).
CHIME adopt m-mode decomposition of the time-ordered visibility data, which relies
upon Fourier transforming the data stream. PAPER and HERA use weighted aver-
ages of the visibility data. In Patwa and Sethi [2019] (hereafter PS19), we proposed
many different approaches to analysing the drift scan data and showed similarities and
differences between existing methods. In this paper, we adopt a method based on
cross-correlating time-ordered visibilities (for details see PS19).

The main aim of all the analysis pipelines is to construct an unbiased and optimal
estimator to extract the HI power spectrum from the visibility data in frequency or
delay space. Unlike the tracking data, the intensity pattern in a drift scan changes,
and the analysis of these time-dependent visibilities arising from a changing intensity
pattern presents new challenges.

All the methods of extracting the HI power spectrum directly from the visibility data
are based on the correlation properties of the measured visibility, Vν(uν ,wν , t) in dif-
ferent domains. These properties have been well studied for the tracking data for fre-
quency and baseline domains and can readily be extended to the drift scan data (e.g.
PS19). Here our focus is the correlation of measured visibilities in the time domain.
PS19 derived the decorrelation profile for the primary beams of many operational and
future interferometers. Even though this behaviour is a complex function of baseline
length, the de-correlation time varies between a few minutes to 10 minutes for most
interferometers. As the visibility data generally has higher time resolution, e.g. we use
MWA data with 10 second resolution in this paper, multiple methods can be used to
analyse the data. In the analysis of PAPER data, a time filter is used to average over
visibilities which contribute coherently to the HI data (e.g. Kolopanis et al. [2019]
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uses 43-second time filters). As already noted above, CHIME data analysis is based
on Fourier transforming time-ordered visibility data (for details see PS19).

In our work, we adopt the method based on cross-correlation of visibilities in time
(PS19). This method is applicable to both frequency and delay space data. In this
work, we transform visibility to delay space to isolate foregrounds. The HI power
spectrum is extracted using the estimator (Eq. (45) of PS19):

Cτ(u0,w0, t ′− t) =
∑t ′∑t exp(−i2πu0 cosφ∆H)Vτ(u0,w0, t)Vτ(u0,w0, t ′)∗g(t ′− t)

∑t ′∑t g2(t ′− t)
(4.1)

Here g(t−t ′) is the function that captures the de-correlation of visibilities as a function
of the time difference t − t ′ (Figure 1 of PS19). g(t − t ′) is nearly unity for t − t ′ '
20 minutes for the shortest baselines we consider in this paper,

√
u2 + v2 ' 4λand this

decorrelation time scale falls to around 5 minutes for the longest baselines,
√

u2 + v2'
300. ∆H is the difference of the hour angle between times t and t ′. τ is the delay space
parameter and u0 ≡ (u0,v0) and w0 are the baselines and the w-term at the center of the
band. As shown in PS19, this estimator is both unbiased and optimal for the extraction
of the HI signal1. The measured quantity (Eq. (4.1)) is converted to the variables of the
HI signal using relations given below.

4.4 Normalization

Here we describe briefly the conversion of measured quantity (Eq. (4.1)) to the vari-
ables of the HI signal. The parameters of the radio interferometer can be related to the
Fourier variables of the HI signal as (e.g. Bharadwaj and Sethi [2001], Morales and
Hewitt [2004], Morales and Wyithe [2010]):

k⊥1 =
2π

r0
u0,k⊥2 =

2π

r0
v0,k‖ =

2π

|ṙ0|
τ (4.2)

Here k⊥1 and k⊥2 are the Fourier components on the sky plane while k‖ lies along the
line of sight. r0 is the coordinate distance to the location from which the observed
redshifted frequency is ν0 and ṙ0 = dr/dν at ν = ν0. MWA has a wide primary beam
(∼ 26◦) which allows us to use the δ -function approximation for its Fourier beam in
Eq. 3.19. With this assumptions, the HI power spectrum can be written in terms of the

1Eq. (4.1) can be understood more easily by assuming g(t− t ′) to be unity for t− t ′ ≤ t0, where t0
is some fixed time that depends on the baseline, and zero for t− t ′ > t0. All the cross-correlation for
t− t ′ ≤ t0 can be used for computing the HI power spectrum (or equivalently visibilities can be averaged
over this time interval using a filter e.g. Kolopanis et al. [2019]). This process will yield an unbiased
and optimal estimator. If the time over which the visibilities are cross-correlated is shorter than t0, then
the estimator is still unbiased but it is not optimal. If the time is chosen to be longer than t0, then the HI
signal gets uncorrelated and consequently, the estimator is neither unbiased nor optimal.
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visibility correlation function using:

PHI(k)'
9|ṙ0|r2

0

4Ī2
0 BΩ0

〈
Vτ(u0,w0 = 0, t)V ′∗τ (u0,w0 = 0, t)

〉
(4.3)

Here Ω0 =
λ 2

0
Aeff

is the solid angle of the primary beam of MWA (the effective area of
an MWA tile, Aeff = 21.5m2 at ν = 154MHz; for details see Tingay et al. [2013]) and
k =

√
k2
⊥1 + k2

⊥2 + k2
‖. Ī is the mean intensity of the HI signal. For a single polarization

(either XX or YY correlation), Ī0 = kBTB/λ 2
0 , where TB is the mean HI brightness

temperature and kB is the Boltzmann constant. For computing the mean intensity, we
assume a neutral hydrogen fraction of 0.5 at z = 8.21 (154.24MHz), which yields
TB = 12.6 mK. This gives us the normalization needed to convert visibility correlation
from (JyHz)2 to (mK)2(h−1Mpc)3, the units of the HI power spectrum:

9λ 4
0 |ṙ0|r2

0

4k2
BBΩ0

= 4.18×10−3 (mK)2(h−1Mpc)3

(JyHz)2 (4.4)

The factor of 9/4 in the normalization is specific to the MWA primary beam. We use
Eqs. (4.4) and (4.3) for the analysis of data.

4.5 Data Analysis

As noted above, we work in the delay space to isolate foregrounds from the EoR win-
dow. The visibilities in delay space can be derived from the visibilities in the frequency
space by performing a discrete Fourier transform:

Vτ(u0,w0, t) = ∆

ν0+
B
2

∑
ν0−B

2

Vν(uν ,wν , t)Bνe2πiτν (4.5)

For our analysis, the central frequency, ν0 = 154.24MHz and B = 10.24MHz, which
yields 256 channels of channel width ∆ = 40KHz. Bν corresponds to Blackman-
Nuttall window (Nuttall [1981]), which helps reduce power leakage from one delay
bin to another. Our analysis is entirely based on analysing visibilities and their corre-
lations and at no stage do we transform to the image domain.

4.5.1 Gridding of uv field and power spectrum estimation

In Figure 4.2, we display the baseline distribution of MWA phase I and II for our
observational setting (zenith scan). In a drift scan, uv distribution and the w-term are
left unchanged. For zenith scans, the w-term is generally small, |w0| ≤ 3λ0 in the data,
and its impact on the interpretation of data can be neglected (for details e.g. see PS19).
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We select a square uv field with u0 and v0 in the range [−250λ0,+250λ0]. This allows
us to include all the uv regions in which the density of baselines is large for MWA
phase-II in comparison with phase I baselines (Figure 4.2).

For analysing the data, we grid the uv field, with the size of a pixel determined by
the expected behaviour of the HI signal. It can readily be shown that, for MWA, the
HI signal de-correlates for visibilities separated by baselines that differ by more than
few wavelengths (e.g. Morales and Hewitt [2004], Paul et al. [2016] and references
therein). We choose a square pixel of 0.5λ0 so that the equal-time visibilities are
coherent inside a grid; the baselines are assigned the same value inside a pixel. We
also assume inter-pixel visibilities to be uncorrelated. Each uv pixel also has non-
zero width (1/∆) along the line of sight owing to finite bandwidth. For every uv grid,
the HI signal is coherent within this width (e.g. PS19, Paul et al. [2014a], Parsons
et al. [2016] and references therein) We refer to this three-dimensional grid, labelled
by u0,τ , a voxel in the rest of the paper.

We populate the gridded uv field (for a given τ) with visibility data (each data point
corresponds to an integration time tint = 10s). The number of occupied grids and max-
imum occupancy for the data are 5427 & 55 (phase II) and 3330 & 3 (phase I), respec-
tively (Figure 4.2).

Figure 4.2: MWA phase I and II uv distribution for a zenith drift scan (in units of
λ0 = 1.945 m). In phase II, 64 antennas are placed in two compact hex configuration
to increase the number of short and redundant baselines.

The correlation function (Eq. (4.1)) (or the power spectrum) can be computed from
the gridded data. This procedure allows us to compute: (a) the mean power spectrum
for one voxel, (b) a set of voxels for a given k‖ and |k⊥| or (c) a set of voxels for a

fixed |k| =
√

k⊥2 + k2
‖. All these quantities can be estimated as a function of inte-
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Figure 4.3: The baseline distribution of phase I (top) and II (bottom) drift scan data
used in this work. MWA phase II configuration has compact hex arrangement which
creates a lot of short redundant baselines suited for EoR studies.

gration (or drift) time1. These averages are in units of (JyHz)2; they are converted to
(mK)2(h−1Mpc)3 using Eq. (4.3). The estimated power spectrum is a complex num-
ber. Throughout this paper, while displaying the power spectrum, we plot the absolute
value of this complex number.

1In this paper we use terms integration time and drift time interchangeably and plot power spectra
and their RMS as a function of drift time. These concepts do not necessarily mean the same thing
and therefore further clarification is needed. The occupation of a grid increases with the time of the
drift scan. For a scan of duration t ′ all cross-correlations of time difference ∆t < t ′ are included in our
analysis. An increase in the number of realizations (cross-correlation plus incoherent averaging over
different grids) causes, for noise-dominated data, a decrease of the mean power spectrum and its RMS
as a function of time which is similar to the outcome of integrating longer in a tracking observation.
One case in which drift time and integration time differ is when there is missing data, e.g. on the sixth
night, two hours of data is missing. In all the figures, the x-axis denotes the drift time.
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4.5.2 Noise characteristics

Given that the expected HI signal can be only be detected after hundreds of hours of
integration, it is imperative that the noise of the instrument is characterized precisely—
this allows us to gauge the stability of the system, e.g. primary beam and bandpass,
and the extent of foreground contamination. In this paper, we analyze multi-night drift
scan data and expect the data (the cleanest modes in delay space) to be dominated by
noise. We attempt to verify this hypothesis in this section.

There are multiple ways to compare the data with noise simulations. The most straight-
forward would be to compare the HI power spectrum extracted from data against sim-
ulated visibilities. We do not adopt this method for the following reason. If there
are N visibility measurements in a pixel, there could be a total of N(N− 1)/2 cross-
correlations. However, the HI power spectrum is based on only a fraction of these
cross-correlations as the HI signal decorrelates for t ′− t exceeding 20 minutes for even
the shortest baselines we study here. For noise characterization, we give equal weight
to all cross-correlations, which is equivalent to g(t − t ′) = 1 in Eq. (4.1). This also
allows us to use the pipeline developed for the extraction of HI signal with minor mod-
ifications on the data and simulated visibilities.

We perform this test on both phase I and II data-sets. For comparison with data, we
simulate visibility data using Gaussian random noise. In this case, each visibility cross-
correlation has zero mean (because all visibilities are uncorrelated), and an RMS σ

given by (Christiansen and Hoegbom [1969]):

σ =
1
ηs

2kBTsys

Aeff
√

∆νtint
(4.6)

For our simulation, we assume MWA system parameters for our the scan: Aeff =

21.4m2, ∆ν = 40 kHz, tint = 10 s. Further, we assume: ηs = 1 and Tsys = 400 K
which gives σ = 81.8 Jy. We note that the comparison of noise simulations with data
allows us to determine ηsTsys

1. We transform these simulated visibilities to delay do-
main for the baseline distribution of MWA Phase II. Since the cross-correlation is a

1Noise simulations allow us to establish the extent to which the data behaves like thermal noise. In
the ideal case of equally filled grids it also allows us to get analytic estimates of the projected noise.
Let us assume the total number of visibilities is N (each visibility corresponds to an integration time
of 10 s) distributed in M grids, or the occupancy of each grid is K = N/M. Let us further assume
the signal adds coherently in each grid and incoherently across grids. Neglecting self-correlation, the
number of cross-correlations in each grid are R ' K2/2, which gives the expected RMS for each grid
to be σpix = σ/

√
R. If these cross-correlations are further averaged incoherently across M grids, the

final expected RMS is σfin = σpix/
√

M. We do not reach this noise level for a multitude of theoretical
and experimental reasons. First, each cross-correlation inside a grid doesn’t receive the same weight for
the expected theoretical HI signal, as already discussed above. Second, the occupancy of each grid is
determined by the baseline distribution of the interferometer (Figure 4.2) and it is not uniform. Third,
we expect foreground contamination which is expected to increase the RMS above the Gaussian noise.

86



a [1010 (mK)2(h−1Mpc)3] XX YY
Night 1 5.9 7.4
Night 2 5.3 6.9
Night 3 7.3 9
Night 4 5.6 7.4
Night 5 6.4 8.3
Night 6 4.2 5.4
Night 7 6.3 8
Night 8 5.8 7.3
Night 9 6.2 8.1

Night 10 5.8 7.5

Table 4.1: The table displays the normalization defined in Eq. (4.7) for the 10-night
data for both XX and YY polarizations.

product of two visibilities, the RMS is proportional to σ2, which scales as 1/
√

N, with
N being the number of total cross-correlations. In a given pixel, the number of cross-
correlations increase as t2. Therefore, the RMS of the power spectrum computed from
all cross-correlation within a pixel is expected to scale as 1/t. This motivates us to
define the following function for comparing the simulated noise with the data:

f (t) = a
(

2
t

)
(4.7)

where a and t are in units of (mK)2(h−1Mpc)3 and minutes, respectively. In Table (4.1)
we display the results of 10 nights of data. The coefficient a in Eq. (4.7) is computed
using the first half an hour data on every night. Night 6 data gives a smaller value
because there is no data on that night for the first two hours and the data flow starts
from a slightly cooler region of the sky. From simulated visibilities we obtain a '
11.7× 1010, which is higher than the data for ηsTsys = 400K. A comparison with
data allows us to infer 250K < ηsTsys < 330K. For ηs ' 1, the estimated system
temperature is in good agreement with the reported range of system temperatures in
the scanned region of the sky.

When the data from all the nights is combined, we obtain a = 8.4× 109 (XX) and
a = 10.4× 109 (YY). A comparison with the values in Table (4.1) shows that the
improvement for combined 10 nights of data is nearly a factor of 7 while the decrement
under the ideal conditions would be closer to a factor of 10.

Figure 4.4 shows both the simulated noise and the data as a function of drift time. The
figures display the mean power spectra and the RMS of mean power spectra for Gaus-
sian Noise (GN) simulations and the combined data sets of 10 nights. Different lines
(129 lines) in the figures correspond to the values of the delay parameter τ (including
τ = 0). The data is also compared to the expected analytic function (Eq. (4.7)).
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Figures 4.4 also show that the RMS in noise simulation and the lower envelope of the
data (both XX and YY polarizations) fall as expected from Eq. (4.7). For the lower
envelope of the data which correspond to the cleanest delay parameters, there is reduc-
tion of noise by nearly two orders of magnitude over nearly 5 hrs, as anticipated by the
analytic fit (Eq. (4.7)). The excellent agreement between the data and the simulated
noise shows that nearly 30% of the data is noise-dominated while the remaining likely
suffer from some level of foreground contamination.

The second notable feature in the data is a bump in the mean power and the RMS to-
wards the end of the scan. This increase can be understood from Figure 4.1. It is caused
when the strong radio source Fornax A enters the main lobe of the primary beam and
the primary beam sidelobes get contaminated by the emission from the galactic plane.

To test the hypothesis that this increase in the power towards the end of the scan is
caused by extended sources such as Fornax and the galactic plane, we re-analyse data
by excluding smaller baselines (< 100λ0). We find that this procedure removes the
bump. This shows that extended sources, even with complex structures, can be re-
moved if small baselines are ignored in power spectra computation. However, since
the HI signal is expected to be stronger on smaller baselines, this procedure is only
used for testing and not for the final analysis of data.

In the foregoing, we performed all the visibility cross-correlations (with the same
weight) inside a pixel and computed the average and the RMS of this quantity over
all the pixels (5427 pixels for a given delay parameter τ). This yields the mean power
spectrum and the RMS of the power spectrum of a pixel as a function of drift time. We
show that this quantity has the behaviour expected of noise. We also carry out the noise
test at the second level. At this level, all the pixels are divided into sets of randomly-
selected 100 pixels. This yields 54 sets for a given τ . The power spectrum is computed
for each set and then the mean and RMS is computed by performing weighted averag-
ing over all the sets. For pure noise, we expect the RMS to reduce by a factor of

√
100.

Figure 4.6 shows the RMS after this procedure. The ratio of the new to the other lower
envelope is nearly a factor of 10, in consonance with the expected decrement. We do
not show the mean of the signal in Figures 4.6 because the computation of the mean
involves a linear process so it does not matter whether it is computed using all the grids
or first computed over 100 grids and then averaged over the remaining grids.

We performed the noise tests on both observations. Both data-sets show similar noise
behaviour. It allows us to use only phase II data to explain the general features in the
noise characterisation. Further, the second test provides further evidence that a fraction
of the data is uncorrupted by either systematic errors or foregrounds and therefore is
useful for the detection of the HI signal. Another interesting feature of the figures is
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gradual decrease in the power for the modes that are contaminated by foregrounds.
This will be discussed in detail in the next section.
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Figure 4.4: Phase II: The mean and RMS of power spectra of one uv pixel is
displayed as a function of drift time. The Left column shows the outcome of Gaussian
noise (GN) simulations for the baseline distribution of MWA Phase II. The second
and third columns give results for XX and YY polarization, respectively. The first row
shows the mean power spectrum while the second row shows the RMS of the power
spectra. The horizontal axis in all the plots correspond to drift time. There are 129
curves in every panel, each corresponding to a different value of the delay space
parameter τ (including τ = 0). The dark and the light red coloured curves represent
the wedge and horizontal bands (including two modes on either side of the band,
respectively. The rest of the ’clean’ modes in the EoR window are divided in two
colours: intermediate values of τ in green and the cleanest modes corresponding to
τ ≥ 22 (in units of B−1) in light blue. Thick black line in the RMS plots correspond to
the function 2a/t, where t and a are in units of minutes and (mK)2(h−1Mpc)3,
respectively.

4.5.3 The HI power spectrum

In this section again, we analyze both data-sets and present the resultant figures and
values. We use only the phase II analysis to keep the narrative cleaner.
As explained above, the HI power spectrum can be estimated from the gridded visibil-
ity data using Eq. (4.1) and the relations given in section (4.4). The main input into this
estimation is the function g(t− t ′) which determines the time dependence of the co-
herence of the HI signal, as a function of baseline, for the primary beam of MWA (for
further details see PS19). In this section we present results for the HI power spectrum
and its RMS for the combined 10-night data.

In Figure 4.8, we show the mean of the HI power spectrum for a voxel as a function of
the drift time. The mean HI power spectrum is computed by carrying out a weighted
average over 5427 voxels for a fixed delay parameter τ .
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Figure 4.5: Phase I: It displays the counterpart of Figure 4.4 for phase I data-sets.
The RMS plots in the lower row panels clearly show the 1/t fall (lower black
envelope) as per our expectations from simulations (left panels). For phase I, on
comparison with the corresponding noise simulations, we find a = 592×1010 (XX)
and a = 472×1010 (YY).

Figure 4.10 shows the RMS for a voxel and for a set of 100 voxels. The RMS of the
power spectrum in the latter case is computed by first defining the power spectrum as
weighted average over 100 randomly chosen voxels (for a fixed τ) and then using these
sets (54 sets) to compute the RMS. As noted above the mean is left unchanged by the
second level of averaging as it only involves linear operations on the data. The lower
envelope of the Figure 4.6 is plotted in the RMS plot for comparison.

Based on the discussion in the previous section, in which g(t− t ′) was assumed to be
unity, we can anticipate the behaviour of the the RMS of the HI power spectrum as
a function of the drift time. Even for the shortest baselines we consider, the function
g(t − t ′) falls sharply after t − t ′ ' 20min. Therefore, we expect the following time
dependence of the RMS: for a period of time for which g(t− t ′)' 1, all the visibilities
inside a pixel can be considered coherent. During this period, the RMS falls as 1/t, for
the reasons discussed in the previous section. The other limiting case occurs for t− t ′

such that g(t− t ′) ' 0. A pair of visibilities that satisfy this condition are incoherent.
In this case, the RMS is expected to fall as 1/

√
t. As the period of the drift scan far

exceeds the coherence time scale of visibilities, the time dependence of visibilities is
expected to make a transition for 1/t to 1/

√
t. Figure 4.10 demonstrates this transition.

Also, a comparison between the upper and the lower panels of the figures shows that
the decrement in the RMS from a single voxel to 100 randomly chosen voxels is nearly
a factor of 10 for the cleanest delay parameters. This result provides further proof that
these delay parameters are noise dominated.
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Figure 4.6: Phase II: These plots display the RMS of the power spectrum by
re-defining the power spectrum as the average over randomly-chosen 100 grids which
yields 54 data sets. The RMS is computed from these sets. The mean power spectrum
is left unchanged by this procedure. The colour scheme is the same as in Figure 4.4.
These plots enable us to distinguish between modes which are dominated by thermal
noise from those that are not: the expected decrement in RMS for thermal noise is
approximately a factor of 10, which is seen in clean modes; the wedge and the
horizontal bands which are foreground dominated show a more complicated
behaviour.

4.5.4 The 2-D Power Spectra and the Foreground Wedge

Figures 4.8 and 4.10 adequately capture the time-dependence of the power spectra for
different delay parameters and the separation of foreground-dominated modes from
noise-dominated modes. To further analyze the complex structure of the signal in
the Fourier domain, we show the signal in the usual k⊥–k‖ domain in Figures 4.12

and 4.13. In these figures, cylindrical averaging for a fixed k⊥ =
√

k2
⊥1 + k2

⊥2 is per-
formed.

We notice the characteristic features of delay space power spectra for MWA: fore-
ground dominated wedge, cleaner EoR window, and the horizontal bands owing to
missing MWA spectral channels. As we already noted above, to reduce power leak-
age between k‖ bins we apply Blackman-Nuttall window on visibilities before taking
Fourier transform along the frequency axis (Eq. (4.5)). While the application of this
window reduces the leakage and therefore the EoR window is cleaner, it thickens the
horizontal bands.

The two-dimensional power spectrum should be viewed alongside Figure 4.8. Fig-
ure 4.8 shows the mean power spectrum computed by averaging over all the baselines
of fixed k‖ while the two-dimensional power spectra provide additional information for
a given |k⊥|. The time dependence in both the cases is similar: as the drift scan time is
increased from 2 minutes to 120 minutes, the EoR window gets cleaner by up to two
orders of magnitude owing to the reduction of noise.
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Figure 4.7: Phase I: This figure is the counterpart of Figure 4.6 for phase I data-sets.
After the second level of averaging, it again follows the expected 1/t profile and we
find a = 50.2×1010 (XX) and a = 42.2×1010 (YY). The ratio of old to new a values
are 11.8 and 11.2.
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Figure 4.8: The mean of the HI power spectra for a voxel are shown for the MWA data
for both XX and YY polarizations. The mean power spectra are computed using 5254
pixels for a given delay parameter τ . The colour scheme is the same as in Figure 4.4.

4.5.5 Foregrounds in the Drift Scans

The focus of this subsection are modes dominated by foregrounds. As shown in PS19,
the behaviour of foregrounds in a drift scan could be markedly different from tracking
observations (for another perspective on foregrounds in a drift scan see Shaw et al.
[2014]). The coherence time scale of the HI signal is larger than the extragalactic
point sources while it is comparable to the coherence time scale of the diffuse sources
(modelled as a statistically homogeneous process in PS19). This means point sources
can get uncorrelated in the process of extracting the HI signal.

We first consider Figure 4.4 which assumes g(t− t ′) = 1. In this case, all the cross-
correlations within a voxel are assigned equal weight. As the time of the scan is much
larger than the coherence scale of all the components, we expect partial decorrelation
of point sources, the HI signal, and diffuse foregrounds. We notice a decline of power
by nearly an order of magnitude in the foreground-dominated modes until late in the
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Figure 4.9: The counterpart of Figure 4.8 for MWA phase I data-sets.

scan when Fornax/galactic plane start contributing significantly. This behaviour should
be compared to Figure 4.8 in which g(t− t ′) corresponds the coherence function for
HI signal for MWA. In this case, only a fraction of cross-correlations inside a voxel
are carried out, which prevents the decorrelation of the HI signal. In this case, the
decrement of the power in foreground dominated modes is also shallower because this
process also prevents the decorrelation of diffuse foregrounds.

The complexity of the time-dependence of foregrounds in a drift scan is further re-
vealed in Figures 4.12 and 4.13. In these figures, the power in Fourier modes in the
plane of the sky is separated from the modes along the line of sight. Unlike Figure 4.8
which displays the power spectra averaged over all |k⊥| for a given k‖, Figures 4.12
and 4.13 show the results a fixed |k⊥|. This allows us to discern the baseline depen-
dence of the decorrelation process in a drift scan. From Figure 1 of PS19, we note that
the decorrelation time of the HI signal varies from nearly 20 minutes to 5 minutes from
the shortest to the longest baselines we consider in our study,

√
u2 + v2 ' 20–300.

Figure 4.12 clearly show the depletion of power in foreground-dominated modes as the
drift time increases from 2 minutes to 120 minutes. However, it is difficult to get more
precise information from the figures, which underlines the complexity of the structure
of foregrounds, in particular the diffuse foregrounds.

Spherically averaged 1-D Power Spectrum: The information displayed in Fig-
ures 4.8 and 4.13 can be partially summarized with one-dimensional power spectrum
defined as: ∆2(k) = k3P(k)/(2π2) with k =

√
k2
⊥+ k2

‖. For the EoR window, MWA
baseline distribution gives k‖� |k⊥| and therefore the one-dimensional power spec-
trum can be computed by averaging over all k⊥ for a fixed k‖ (it is partly the motivation
of using the format of Figure 4.8). The one-dimensional power spectrum as a function
of time can be read off from Figure 4.8 (or Figure 4.13). The best data is obtained for
nearly 200 minutes of integration as clearly seen in Figure 4.13. The contamination
from Fornax/galactic plane prevent any further improvement.
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Figure 4.10: These plots are obtained from further averaging the power spectra shown
in Figure 4.8 over randomly-chosen 100 grids which yields 54 sets the MWA Phase II
data. The mean power spectrum is left unchanged by this procedure. The colour
scheme is the same as in Figure 4.4.

Figure 4.13 shows that the largest scales in the EoR window that can be probed with
MWA correspond to k ' 0.2hMpc−1, which gives us ∆2(k) ' (1000 mK)2 for both
XX and YY polarizations. Figure 4.13 also shows that the cleanest modes are obtained
for much smaller scales. For k ' 1hMpc−1, the one-dimensional power spectrum
∆2(k)' (1000 mK)2, comparable to the value at larger scales.

The RMS of the HI power spectrum can be computed from Figure 4.10. It is based
on 54 sets with each set obtained from weighted average over 100 voxels. This yields
an RMS of ' (1000 mK)2 for clean modes in the range k ' 0.02–1 hMpc−1. The
RMS estimate can be further improved by averaging over all the data for a fixed τ (this
leaves the mean unchanged for reasons outlined in the foregoing) and then computing
the RMS using bootstrapping (e.g. Kolopanis et al. [2019]).

We plot the power spectra for both the XX and YY polarizations in the same figure
to emphasize the long-term system stability in a drift scan. Our calibration doesn’t
involve a polarized source so both the polarizations are assigned equal weight in the
beginning of the scan. Our results show that no significant deviation emerges after
nearly 5 hrs. As the HI signal is unpolarized, the power spectra for the two polarizations
can be added in quadrature to yield a further improvement in RMS by nearly a factor
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Figure 4.11: The phase I counterpart of Figure 4.10.

of
√

2.

4.6 Summary

The use of drift scan data to extract the HI power spectrum from high and low redshift
data is an established method (e.g. Bandura et al. [2014], Kolopanis et al. [2019],
Parsons et al. [2016], DeBoer et al. [2017]). Drift scans are expected to yield superior
system stability which is one of the key requirements for the detection of the weak HI

signal. In this paper we report the analysis of nearly 7.5 hours of phase I and 55 hours
of phase II publicly-available MWA EoR drift scan data. Our analysis is based on a
novel method proposed in PS19, which is an extension of formalism given by Paul
et al. [2014a]. We develop a pipeline which works in two modes: (a) noise testing:
the aim of this mode is to test system stability by comparing the data power spectrum
against uncorrelated noise as a function of the drift time, (b) HI mode: the HI power
spectrum is computed in this mode. We summarize our main results and findings:

• Noise testing: Figures 4.4 and 4.6 show the main results. The figures demon-
strate that the data agree with the behaviour of the thermal noise for a drift scan
of nearly 5 hrs—the RMS falls as 1/t during this period. The provides reason-
able proof that the system parameters (primary beam, bandpass) are stable over
the duration of the scan. This test also allows us to estimate the mean system
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Figure 4.12: 2D Power spectra
[
(mK)2(h−1Mpc)3] of 2- and 120-minute drift scans

of MWA phase II.

Figure 4.13: The 10-night combined data are displayed for 200 minutes and
326 minutes of drift scan.

temperature during the scan, which is in agreement with the reported values.

• HI power spectrum: The main results are shown in Figures 4.8 and 4.10. The
two-dimensional plots (Figures 4.12 and 4.13) show the HI power spectrum in
k⊥–k‖ space. These results are in line with the expectations: the RMS of the
mean HI power spectrum initially falls as 1/t and then as 1/

√
t for the cleanest

modes. This transition occurs when the drift time exceeds the coherence time of
the HI signal.

The detection of the HI signal from the epoch of reionization remains a challenge.
Given the small HI signal buried under strong foregrounds and hundreds of hours of
integration time needed to reduce the thermal noise to acceptable levels, it is perhaps
imperative that multiple approaches are employed to understand and analyse the signal.
Drift scans exploit the stability of the system.
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Figure 4.14: 2D Power spectra
[
(mK)2(h−1Mpc)3] of 2- and 120-minute drift scans

of MWA phase I. With the data integration the noise reduces in the EoR window.
However, the modes k⊥ > 0.1hMpc−1 appears to be contaminated.
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Chapter 5

Summary and Conclusions

The CD/EoR is the part of the history of the Universe when the first luminous sources
formed and the electromagnetic radiation from these sources changed the state of the
IGM by ionizing and heating it. The signatures of this phase transition are imprinted
on the redshifted HI signal, which can give us insight into the formation and growth
of large scale structures and the astrophysics of the first stars and galaxies, etc. The
detection of the HI signal, both the global and the fluctuating component, remains an
outstanding problem in the modern cosmology due to various challenges such as strong
foreground contamination and lack of precise calibration of the instrument, etc. In this
thesis we focused on the detection of the HI power spectrum using the drift scan mode
of observation with existing and planned radio interferometers. We summarize the
thesis and mention the main results below.

In the first chapter we reviewed the early developments of cosmology and then gave a
detailed introduction to the 21 cm cosmology. In the spectra of 19 quasars in the red-
shift range 5.74 . z . 6.42, Fan et al. [2006] showed the presence of Lyman-α forest
which was predicted by Gunn and Peterson [1965] (section 1.3.1). It suggested that the
reionization of the Universe was complete by z ∼ 6. The Lyman-α emitters and Ly-
man Break galaxies are additional probe to observe the evolution of neutral hydrogen
in the redshift range 6 . z . 8.5 (section 1.3.2). In Malhotra and Rhoads [2004], the
constraints on reionization redshift derived using LAEs agree with the findings of Fan
et al. [2006]. Another evidence of reionization of the IGM come from the CMB obser-
vations (section 1.3.3), in which the optical depth integrated along the line-of-sight is
measured and is used to estimate the mid-reionization redshift (zre ' 7.8 Planck Col-
laboration et al. [2020]). As discussed in detail in the section 1.4, the 21 cm emission
of the neutral hydrogen is expected to be the richest probe of the EoR. The brightness
temperature measured with respect to the microwave background radiation (CMB), the
HI signal traces the evolution of the fluctuations in the baryonic matter density, heat-
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ing caused by X-rays, and the Lyman-α radiation (section 1.4.1). Within the standard
framework of the 21 cm cosmology, the HI signal is very faint (-200 mK to 20 mK
in the redshift range 25 > z > 8), while the foreground contamination and the system
noise are of the order of 100s of Kelvins in the same frequency band (Madau et al.
[1997], Tozzi et al. [2000], Morales and Wyithe [2010]). This makes the detection an
extremely challenging task.

In theory, while a single antenna is sufficient to measure the full sky averaged global
component of the HI signal (〈∆T21〉(z)), an antenna array is required to estimate the
fluctuating component, e.g. the power spectrum P21(k), of the HI signal (section 2.3).
The output of a radio interferometer array, visibility V (u,ν), maps the 3-D Universe
and captures information in the 2-D Fourier space (k⊥ = 2πu/r) and 1-D real space
(ν). In a visibility based formalism, the visibilities are taken to 3-D Fourier space by
performing a Fourier transform along the frequency axis, and the amplitude-squared
of these visibilities give the power spectrum of the matter distribution in the observed
field (section 2.3). It is well established in the 21 cm cosmology literature that a base-
line vector u in an array is primarily sensitive to a Fourier mode k⊥ in the sky (e.g.
Bharadwaj and Sethi [2001], Morales and Hewitt [2004]). However, for a small pri-
mary beam, (section 3.2.1), the two closely spaced baselines (|u1−u2|. FWHM−1)
can be correlated to measure the power spectrum (Bharadwaj and Sethi [2001], Paul
et al. [2014b], Patwa and Sethi [2019]).
The detection of the HI power spectrum is complicated owing to the weakness of the HI

signal, the presence of the strong foreground contaminations, the thermal noise of the
system, and the frequency dependent systematics (section 2.5). Each of these obstacles
require dedicated treatment as discussed in this thesis and in the literature. The thermal
noise is the easiest to deal with in principle as the reduction of thermal noise requires
only the large integration time (& 1000 hrs). The foregrounds, galactic (resolved and
diffuse) and extragalactic (unresolved and point-like), have smooth spectra with differ-
ent spectral indices unlike the HI signal (section 3.3). The smoothness of the spectra
put the foreground contaminations in the low k‖ modes in Fourier domain (the fore-
ground wedge) as shown by various simulations (e.g. Datta et al. [2010]) and the real
data (e.g. MWA Beardsley et al. [2016]). The foregrounds are treated by avoidance,
subtraction, or a mix of both. Further, the missing or flagged frequency channels leak
the foreground contamination from the wedge to the EoR window. Such systematics
can be improved with better instruments. An ideal telescope and observational setting
for measuring the EoR power spectrum would have, but not limited to, the following
properties—no RFI and ionospheric distortions, minimal flagging, excellent uv cov-
erage from short to long baselines, identical antennas, stable and achromatic system
response (beam and bandpass), coplanar array, etc.
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In the chapter 3, we extended the formalism introduced in Paul et al. [2014a] to de-
lay space. The drift scan formalism (DSF) offers advantages (smaller w-term, system
stability etc.) over tracking observations to deal with the some of the challenges. In
Eq. (3.19), we computed a general visibility correlation function in the delay space (τ)
as a function of drift time (∆t), the antenna beam, and the latitude (φ ) of the telescope.
The amplitude and phase of the correlation function are plotted in Figures 3.1 and 3.3
for PAPER, MWA, HERA, and SKA1-Low. We found that the coherence/decorrelation
time scales of the amplitude and the phase of the correlation function are affected by
different system parameters: e.g. the baseline length (|u| =

√
u2 + v2) and the rota-

tional motion of sky affect the amplitude (section 3.2.1) while the east-west compo-
nent u and the traversal motion of sky influence the phase of the correlation function
(section 3.2.1). We discovered and explained a turn-around feature, which demarcates
the rotation and the translation dominated regimes, in the decorrelation time plots (see
Figures 3.1 and 3.3). Since, our formalism is analytical, we were able to derive a com-
pact formula for this demarcation. The decorrelation times scales of the telescopes
like MWA and HERA was found to range from a few to 20 minutes depending on the
baselines.
Further, in section 3.3, we applied the drift scan formalism on diffuse galactic fore-
ground and extragalactic point-like sources with their respective power laws for spec-
tra and derived analytical expressions for the correlation functions. The point source
foregrounds get decorrelated within a few minutes regardless of the baselines but the
decorrelation time scales for the diffuse sources are of the order of that of the HI sig-
nal (Figure 3.5). Based on this study, one could suggest that a part of the foreground
contamination (point sources) can be mitigated in the power spectrum analysis of drift
scan observations.

The drift scan formalism developed in this thesis is applied on the EoR drift scan data
from MWA phase I (1 night) and phase II (10 nights). The visibility data obtained on
different nights are averaged in the same LST bins to reduce the thermal noise while
keeping the HI signal intact. The cross-correlation of visibilities in our work make
sure that the noise bias are removed. We used the correlations calculated from DSF
as weights for each visibility pairs to retain the HI signal (Eq. 4.1). The cylindrically
averaged 2-D power spectra (Figures 4.13 and 4.14) clearly show the reduction of the
thermal noise in the EoR window. We also performed some noise characterization
tests on the data along with a realistic Gaussian noise simulations. The behaviour of
noise in the noise dominated modes in EoR window match with our expectations and
are consistent with the Gaussian noise simulations (Eq. 4.4). Finally, we computed the
spherically averaged 1-D power spectra by avoiding the foreground dominated modes
and found the lowest estimate to be (1000 mK)2 at k = 0.02–1 hMpc−1 and z = 8.2.
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MWA has a good bandpass and is a stable system (see Figure 4.4). However, the
main issue in the current datasets is the periodic missing frequency channels, which
may be removed in the phase III of the design. So, even though we chose only the
noise dominated modes to calculate the 1-D power spectra, the results have foreground
residuals and systematics.

5.1 Current Upper Limits on The HI Power Spectrum

For the sake of completion, we include the latest upper limits on the HI power spectrum
from EoR. Although each experiment given below has published a range of results,
here we mention only the lowest estimates from the running experiments because they
are primarily limited by systematics and foreground contaminations at the moment.

• GMRT: ∆2(k)≤ (248 mK)2 at k = 0.5h Mpc−1,z = 8.6 (Paciga et al. [2013])

• PAPER: ∆2(k) ≤ (200 mK)2 at k = 0.37h Mpc−1,z = 8.4 (Kolopanis et al.
[2019])

• MWA: ∆2(k)≤ (43.1 mK)2 at k = 0.14h Mpc−1,z = 6.5 (Trott et al. [2020])

• LOFAR: ∆2(k)≤ (73 mK)2 at k= 0.075h Mpc−1,z= 9.1 (Mertens et al. [2020])

5.2 Concluding Remarks and Future Works

The 21 cm cosmology has grown rapidly in the last two decades. However, our un-
derstanding of the Epoch of Reionization is still limited. Currently, there are multiple
theoretical models of the EoR which are plausible, many of which would be ruled out
with future telescopes like the SKA. The EoR community has learnt a lot from the
first generation telescopes. MWA is expected to improve its shortcomings in the next
phase of its design. The lessons learnt from PAPER and its power spectrum pipeline
are incorporated in HERA which will put better upper limits on the HI power spectrum
given its highly redundant array configuration and large number of short baselines.
LOFAR has gone deeper with their newly developed technique (GPR) to mitigate the
foreground residuals. These experiments and their data analysis pipelines continue to
provide unique insights which are helpful to other efforts as well.

In the same direction, our work in this thesis is a contribution to the 21 cm cosmology,
in which we studied the underlying time correlations in the drift scan observations.
This formalism can be applied on data from other telescopes with smooth bandpass
(e.g. HERA, LOFAR). It should be emphasized that the DSF is a general formalism
to study the last scale matter distribution with an interferometer. Thus, even though
we applied DSF to study the HI distribution in EoR, it can readily be applied to post-

102



EoR HI distribution for telescopes like CHIME, HIRAX, and Tianlai with a few minor
changes. With statistical methods such as cross-correlations, auto-correlations, and
stacking, the delay spectrum based DSF provides us another technique to probe the
post-EoR Universe.
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Appendix

A Coordinate Transformation

Here we discuss sky coordinate system (l,m,n) in terms of (δ ,φ ,H) with δ ,φ ,H rep-
resenting the declination, the terrestrial latitude of the telescope, and the hour angle,
respectively. From Eq. (A4.7) of Christiansen and Hoegbom [1969]:

l = cosδ sinH

m = cosδ cosH sinφ − sinδ cosφ

n = cosδ cosH cosφ + sinδ sinφ

(A.1)

In a drift scan, the primary beam remains unchanged with respect to a fixed phase
center chosen to be l = m = 0. The coordinates of intensity pattern (l,m,n) change
with time, in the first order in ∆H, as:

∆l = (msinφ +ncosφ)∆H

∆m =−l sinφ∆H

∆n =−l cosφ∆H

(A.2)

The change in hour angle, ∆H, can be expressed in terms of radians as:

∆H[in rad] =
π

12
∆t[in min]

60
(A.3)

We use Eq. (A.2) to express the time-dependent part of Eq. (3.10) explicitly in terms
of change in hour angle ∆H. Eq. (A.3) can be used to express ∆H in terms of drift time
∆t for a zenith scan.

− r0

2π
k⊥ ·∆ϑ(∆t) =− r0

2π
(k⊥1∆l + k⊥2∆m)

=− r0

2π
(k⊥1 (msinφ +ncosφ)∆H− k⊥2l sinφ∆H)

'− r0

2π
(k⊥1 cosφ∆H +(−lk⊥2 +mk⊥1)sinφ∆H)+

1
2
(
l2 +m2) r0

2π
k⊥1 cosφ∆H

(A.4)

We use the flat-sky approximation n' 1− 1
2

(
l2 +m2) in writing Eq. (A.4).
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B Further simplification of visibility correlation func-
tion

In this appendix we discuss how the visibility correlation function can be further sim-
plified for large primary beams and long baselines. This allows us to discern several
generic properties of the correlation function. We start with the HI visibility correlation
function in frequency space (Eq. (3.10)):

〈
Vν(uν ,wν , t)V ∗ν ′(u

′
ν ′,w

′
ν ′, t
′)
〉
= Īν Īν ′

∫ d3k
(2π)3 PHI(k)eik‖|ṙ0|∆ν

eirν k⊥1 cosφ∆HQν(k⊥,uν ,wν ,∆H = 0)Q∗
ν ′(k⊥,u

′
ν ′,w

′
ν ′,∆H)

The Fourier beam can be expressed as (Eq. (3.11)):

Qν(k⊥,uν ,wν ,∆H) =
∫

d2
θAν(θ)exp

[
−2πi

(
xu ·θ−

1
2

yθ
2
)]

(B.1)

with

xu = uν −
rν

2π
(k⊥1 + k⊥2 sinφ∆H)

xv = vν −
rν

2π
(k⊥2− k⊥1 sinφ∆H)

y = wν +
rν

2π
k⊥1 cosφ∆H

We consider a Gaussian beam: A(l,m) = e−(l
2+m2)/Ωg to compute the Fourier beam:

Qν(k⊥,uν ,wν ,∆H) = Q(xu,xv,y) =
πΩg

1− iπyΩg
exp
[
−

π2Ωg(x2
u + x2

v)

1− iπyΩg

]
For Ω′g ≡Ωg/(1− iπyΩg)

Qν(k⊥,uν ,wν ,∆H) = Q(xu,xv,y) = πΩ
′
g exp

[
−π

2
Ω
′
g(x

2
u + x2

v)
]

If Ωg is large, e.g. PAPER or MWA beams, we can use δ -function approximation for
solving Qν(k⊥,uν ,wν ,∆H = 0), which gives us:

Qν(k⊥,uν ,wν ,∆H = 0) = δ

(
uν −

rν

2π
k⊥1

)
δ

(
vν −

rν

2π
k⊥2

)
Qν(k⊥,uν ,wν ,∆H = 0) =

(
2π

rν

)2

δ
2
(

k⊥−
2π

rν

uν

)
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This allows us to express HI visibility correlation function in frequency space as:

〈
Vν(uν ,wν , t)V ∗ν ′(u

′
ν ′,w

′
ν ′, t
′)
〉
=

Īν Īν ′

r2
ν

e2πiuν cosφ∆HQ∗
ν ′(k⊥,u

′
ν ′,w

′
ν ′,∆H)∫ dk‖

2π
PHI(k)eik‖|ṙ0|∆ν (B.2)

In the previous equation we have used, k⊥= 2πuν/rν . Eq. (B.2) gives an excellent ap-
proximation for MWA and PAPER, and for HERA and SKA1-Low for long baselines
in frequency space. This can be readily be computed at any frequency and explains the
features seen in Figure 3.1.

We can extend our analysis to HI visibility correlation function in delay space (Eq. (3.16)):

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
=
∫∫

ν0+B/2

ν0−B/2
dνdν

′
〈

Vν(uν ,wν , t)V ∗ν ′(u
′
ν ′,w

′
ν ′, t
′)
〉

e−2πiτ∆ν

Here B is the observational bandwidth. We make the same approximations discussed
in section 3.2.1, which gives us:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
=

Ī2
0

r2
0

e2πiu0 cosφ∆HQ∗ν0
(k⊥,u′0,w

′
0,∆H)∫ dk‖

2π
PHI(k)

∫∫
ν0+B/2

ν0−B/2
dνdν

′ei∆ν(k‖|ṙ0|−2πτ)

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
'

Ī2
0

r2
0

e2πiu0 cosφ∆HQ∗ν0
(k⊥,u′0,w

′
0,∆H)∫ dk‖

2π
PHI(k)

2πB
|ṙ0|

δ

(
k‖−

2πτ

|ṙ0|

)
In deriving this equation, we use the following result from section 3.2.1:

∫∫
ν0+B/2

ν0−B/2
dνdν

′ei∆ν(k‖|ṙ0|−2πτ) = B2 sinc2
[

πB
(

τ− |ṙ0|
2π

k‖

)]
' 2πB
|ṙ0|

δ

(
k‖−

2πτ

|ṙ0|

)

The HI signal is strongly correlated when |u0−u′0|. 2/Ω
1/2
g , which allows us to use

u′0 ≈ u0. This gives us:

〈
Vτ(u0,w0, t)V ∗τ (u

′
0,w
′
0, t
′)
〉
'

Ī2
0 B

r2
0|ṙ0|

e2πiu0 cosφ∆HQ∗ν0
(k⊥,u0,w′0,∆H)PHI(k) (B.3)

where k =

√
(2πτ/|ṙ0|)2 +(2πu0/r0)

2 +(2πv0/r0)
2. Though Eq. (B.3) was derived

using a Gaussian beam, it is in excellent agreement with the numerical results for MWA
and PAPER and for HERA and SKA1-Low for longer baselines (|u|& 150) shown in
Figure 3.1. Eq. (B.3) also shows that the decorrelation time is expected to be nearly
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independent of the delay parameter τ .

We next give explicit forms of the amplitude and the phase of the Fourier beam. We
have:

Qν(k⊥,uν ,wν ,∆H) = Q(xu,xv,y) =
πΩg

1− iπyΩg
exp
[
−

π2Ωg(x2
u + x2

v)

1− iπyΩg

]
where x2

u + x2
v = |uν |2 sin2

φ∆H2 and y = wν +uν cosφ∆H. Then,

Qν(k⊥,uν ,wν ,∆H) = πz1z2 = πa1eiψ1a2eiψ2 = πa1a2ei(ψ1+ψ2)

Amp [Qν(k⊥,uν ,wν ,∆H)] = πa1a2

Arg [Qν(k⊥,uν ,wν ,∆H)] = ψ1 +ψ2

z1 = a1eiψ1 =
Ωg

1− iπyΩg

z2 = a2eiψ2 = exp
[
−

π2Ωg(x2
u + x2

v)

1− iπyΩg

]
On solving a1,ψ1,a2,ψ2 in terms of known quantities, we find;

a1 =
Ωg√

1+π2Ω2
gy2

ψ1 = arctan(πΩgy)

a2 = exp
[
−π

2(x2
u + x2

v)a1 cosψ1
]
= exp

[
−π

2(x2
u + x2

v)
Ωg

1+π2Ω2
gy2

]

ψ2 =−π
2(x2

u + x2
v)a1 sinψ1 =−π

2(x2
u + x2

v)
Ωg

1+π2Ω2
gy2 (πΩgy)

Hence,

Amp [Qν(k⊥,uν ,wν ,∆H)] = πa1a2 =
πΩg√

1+π2Ω2
gy2

exp

[
−π

2(x2
u + x2

v)
Ωg

1+π2Ω2
gy2

]

Arg [Qν(k⊥,uν ,wν ,∆H)] = ψ1 +ψ2 = arctan(πΩgy)−π
2(x2

u + x2
v)

Ωg

1+π2Ω2
gy2 (πΩgy)

(B.4)

The total phase acquired by the HI visibility correlation function is 2πu0 cosφ∆H +

ψ1 +ψ2.
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