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Transmission in a Fano-Anderson chain with a topological defect
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The Fano-Anderson chain consists of a linear lattice with a discrete side-unit, and it exhibits Fano-resonant
scattering due to coupling between the discrete states of the side-unit and the tight-binding continuum. We study
Fano-resonance-assisted transport for the case of a topologically nontrivial side unit. We find that the topology
of the side-unit influences the transmission characteristics, which thus can be an effective detection tool of the
topological phases of the side unit. Furthermore, we explore the role of dual links between the linear tight-binding
chain and the side unit. The secondary connection between the main chain and the side-unit can modify the
position or width of the Fano resonance dip in the transmission probability, and thus can yield additional control.
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I. INTRODUCTION

Fano resonance [1,2] is a quantum phenomenon arising
from the interaction between a continuum band of states
and discrete states. It has been explored in a wide variety
of settings, ranging from nuclear, atomic, molecular, and
condensed-matter systems [3,4] to electronics [5,6] and op-
tics [7–9]. Linear wave equations on Hamiltonian lattices can
also give rise to Fano resonances if local defects are present
[3,10]. The Fano-Anderson chain made up of a linear chain
interacting with a single defect site is the simplest example
for such a system [11]. The discrete state introduced by the de-
fect allows additional propagation paths for scattering waves,
which interfere constructively or destructively. This discrete-
state-assisted interference may lead to perfect transmission or
perfect reflection along with an asymmetric resonance profile.

Recent years have seen quickly growing interest in the
exploration of Fano resonance associated with many different
kinds of modified Fano-Anderson chains. Examples include
systems with a single defect site [12,13], a linear chain [14],
and a Fibonacci chain [15]. One common observation in
all these structures is that the Fano resonance profile in the
transmission probability shows a dip at the eigenenergies of
the side unit interacting with the main chain. Since topo-
logical systems [16,17] are naturally endowed with isolated
energy states, one expects interesting Fano scattering proper-
ties. Nonetheless, Fano resonances in such topological models
have only very recently drawn attention [18], and it was shown
that the Fano resonance profile could inherit topological pro-
tection against disorder. We study quite different aspects of
such a setup, and we show that the topological features of the
scattering side unit are reflected in the resonance profile, and
this can in turn be utilized as a detection tool for topological
systems.

Choosing the Su-Schieffer-Heeger (SSH) chain, which is
a prototype example of a topological model as the side unit,
we demonstrate how the Fano transmission profile is affected

by the topological-to-trivial phase transition. The main mo-
tivation of our work is to explore the impact of edge states
forming at the boundary between a trivial and a topological
chain on the transport in the trivial chain. The SSH chain
can be smoothly tuned across the trivial-to-topological phase
with the aid of a control parameter in the Hamiltonian. In
the trivial phase, we observe a perfect transmission at ener-
gies close to zero. As the SSH Hamiltonian is tuned to the
topological phase, the isolated edge state emerging in the
topological phase induces a Fano resonance and leads to a
dip in the transmission profile at the energy of the edge state.
One remarkable feature of the structure chosen is that the
trivial-to-topological transition can be identified from the dip
emerging in the transmission profile. This intriguing feature of
the transmission profile may potentially lead to applications in
switching devices [19,20].

Moreover, the fact that the boundary conditions of the
topological systems modify the edge states naturally acts as
an incentive to explore the effect of boundary conditions
on transport. We observe that indeed the boundary condi-
tions of the SSH chain alter the transmission profile in a
striking manner. This concept can be further extended to
two- or three-dimensional topological systems. We also ex-
plore the possibility of connecting the trivial and topological
systems using two connections, and we observe that the sec-
ond connection further produces characteristic changes in
the transmission profile. Moreover, the second connection
introduces additional possibilities of controlling the resonance
width of the dips in the transmission profile. This feature may
be potentially exploited in sensing devices [21].

In this article, we employ the transfer-matrix method
(TMM) to study the transmission profile [11,22] of the Fano-
Anderson chain, which allows for exact analytical expressions
describing the transmission characteristics. The method has
been used in the past to explore the Fano-Anderson chain with
one connection to the side unit [3]. We focus on a linear chain
with two connections to a topological side unit. We derive
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FIG. 1. (a) Schematic of the setup with two adjacent connections
between the main chain (C) and the pth and qth sites of the side
unit (S). These connections have hopping strengths v1 and v2. The
hopping amplitude in the main chain is set to v with on-site wave
function � and hopping in the side unit t . We mark the left and
right parts of the main chain as CL and CR and the side-unit as S
for clarity. (b) Schematic representation of the Fano-Anderson chain
with effective potentials V1 and V2 at sites � = 1 and 2, respectively,
which result after elimination of the side-unit. The effective hopping
between these two sites becomes v + V ′.

the exact expression for the transmission coefficient, and we
obtain the conditions for perfect reflection. Our methods are
general enough to be applicable to any kind of finite-sized side
unit, which may be quasi-one-dimensional, two-dimensional,
or even three-dimensional.

The manuscript is arranged as follows. In the next section,
we describe the Fano-Anderson model, which is linked to
a side unit with two adjacent connections. This section also
describes how the transfer-matrix method can be used to ob-
tain the conditions needed for Fano resonance. In Sec. III, we
present the topological properties of the SSH model consider-
ing all possible structures. Further, in Sec. IV, we study Fano
resonance in different cases of the SSH model taken as the
side unit. Finally, we collect and summarize our findings in
the Conclusion.

II. MODEL

We consider a linear tight-binding chain connected to a
Fano defect chain with two connections between them as
shown in Fig. 1. The Hamiltonian for this system is

H = Hc + Hs + Hcs, (1)

where Hc is the Hamiltonian corresponding to the linear
chain C,

Hc = v
∑

�

(�∗
�+1�� + �∗

���+1). (2)

Here, �� is the complex wave amplitude at the site �, and v is
the coupling strength. Hs corresponds to the Hamiltonian for
the side chain S with N sites, and it reads

Hs =
N∑

i, j=1

hi, j�
∗
i � j, (3)

where �i is the complex wave amplitude at the site i on the
side chain, and hi j is the coupling strength connecting the sites
labeled i, j. The third term in the Hamiltonian Hcs corresponds

to the coupling between the main chain and the side chain, and
it is given by

Hcs = v1�
∗
1�p + v2�

∗
2�q + H.c., (4)

with v1 and v2 being the coupling strengths between the main
chain and the side chain. Sites p and q are arbitrary and can
even be the same. In the absence of the side unit, Bloch’s theo-
rem can be applied to the translationally invariant linear chain
C described by Eq. (2). For states φ� = eιk� one finds energies
of propagating waves E = 2v cos k, where k is the wave num-
ber. The side unit acts as a scatterer and introduces extra paths
for an incoming wave. This resonant scattering due to the side
unit controls the wave propagation in the main chain, and we
employ the transfer-matrix method to obtain the transmission
and reflection coefficients associated with the propagation in
the main chain C in the presence of a side unit S.

The time (τ ) dependence from the Schrödinger equation is
eliminated using the ansatz

�(�, τ ) = A�e−ιEτ , (5)

�( j, τ ) = Bje
−ιEτ . (6)

The time-independent Schrödinger equation corresponding to
the Hamiltonian (H) can be written as

EA� = v(A�+1 + A�−1) + v1Bpδ�,1 + v2Bqδ�,2, (7)

EBi =
N∑

j=1

hi, jB j + v1δi,pA1 + v2δi,qA2, (8)

where Eqs. (7) and (8) correspond to sites in the main
chain and the side unit, respectively. To obtain the trans-
mission characteristics in the main chain, the two cou-
pled equations must be solved simultaneously. The com-
plex amplitudes Bi in the side unit can be written in
terms of the amplitudes A� in the main chain as fol-
lows. Using Eq. (8), the relation between Bi and A�

can be written as HNBN = AN , where HN (E ) = [EI −
Hs]N×N , BN = [B1, . . . , Bp, . . . , Bq, . . . , BN ]T , and AN =
[0, . . . , v1A1, . . . , v2A2, . . . , 0]T , with I the identity matrix
and N the size of the side chain (S). Inverting the matrix HN

[23], the expressions for Bp/q now become

Bp = v1αppA1 + v2αpqA2, (9)

Bq = v1αqpA1 + v2αqqA2, (10)

where αi j (E ) = [H−1
N (E )]i j . The Hermiticity of the Hamil-

tonian guarantees that αi j = α∗
ji. These equations can be

substituted back into Eq. (7) to obtain the wave propagation
in the main chain in terms of the amplitudes Al as

EA� = (
αppv

2
1δ�,1+αqqv

2
2δ�,2

)
A�+(v+v1v2αpqδ�,1)A�+1

+ (v+v2v1αqpδ�,2)A�−1. (11)

Equation (11) is the modified lattice equation for the main
chain incorporating the effects of the scatterer in terms of ef-
fective energy-dependent potentials V1(E ) = αppv

2
1 , V2(E ) =

αqqv
2
2 , and V ′(E ) = v1v2αpq as sketched in Fig. 1(b). The en-

ergy dependence of the effective potentials allows for resonant
scattering and can cause complete transmission or complete
reflection of the incoming wave as well as an asymmetric
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FIG. 2. Representation of the site amplitudes of wave functions,
with the side unit described by a SSH model with intercell hopping
t ′ and intracell hopping t . The main chain (C) hopping and the
two connection hoppings are set to v, v1, and v2, respectively. The
presence (absence) of the extra hopping t2 = t ′ with a dash-dotted
magenta line turns the side unit into a closed (open) chain.

resonance profile. From Fig. 1(b), the condition for perfect
reflection can be identified as v = −V ′(E ) since the effective
hopping between sites � = 1 and 2 would then vanish. In
the limit v2 → 0, i.e., with just a single connection between
the main chain and the side unit, V2(E ) and V ′(E ) van-
ish. Perfect transmission in this case occurs when |HN−1| =
0 or V1 = αpp = 0, which results in a translationally invariant
tight-binding chain with no effective scattering and therefore
unit transmission. Perfect reflection is instead realized when
|HN | = 0 or V1 = αpp = ∞, i.e., an infinite on-site potential
leads to full reflection or zero transmission [11].

Employing the transfer-matrix method (Appendix A) for
Eq. (11), the transmission coefficient in terms of the energy of
the incoming wave can be written as

T = v2(4v2 − E2)|v + V ′|2
[βv2 + γ vE − E2M ′

11M ′
22]

, (12)

where β = (M ′
11 + M ′

22)2 + (M ′
12 − M ′

21)2 and γ =
(M ′

11 − M ′
22)(M ′

12 − M ′
21) with M ′

11 = [(E − V1)(E − V2) −

|v + V ′|2], M ′
12 = −v(E − V2), M ′

21 = v(E − V1), and
M ′

22 = −v2. When two side chain sites are simultaneously
connected to the main chain, perfect reflection is possible if
the energy is tuned in such a way that the condition

v + V ′ = 0 (13)

holds, as can directly be seen in Eq. (12), besides the intuitive
way of obtaining it from Fig. 1(b). The condition given in
Eq. (13) is a consequence of destructive interference of the
different paths available for the wave, which results in zero
hopping amplitude for transmission across the scattering zone,
leading to perfect reflection of the wave.

III. SSH CHAIN AND TOPOLOGY

In the discussion so far, details of the side unit did not enter.
Now we choose the Su-Schieffer-Heeger (SSH) model as the
side unit because of its interesting topological properties. The
SSH model consists of a network of sites with alternating
hopping amplitudes with the Hamiltonian given by

HSSH
s =

L∑
i=1

(t�∗
i χi + t ′χ∗

i �i+1) + H.c., (14)

where �i, χi are the particle wave functions on two adjacent
sites of the ith unit cell. For the case of our side unit, this is
sketched in the dotted box of Fig. 2. The intracell coupling is
labeled as t , whereas intercell coupling is t ′.

The SSH model is known for its topological features.
The winding number changes from 0 to 1 as the system
is tuned from t ′ < t to t ′ > t , indicating a phase transition
from the topological phase to a trivial phase. The dispersion
spectrum of the SSH model for a different total number of
sites N = 2L ± 1 or 2L is depicted in Fig. 3. A chain with an
odd number of sites is incompatible with periodic boundary
conditions. On the other hand, an open chain may have an
odd or even number of sites and always gives rise to an edge
state with energy E ≈ 0 in the topological phase. The number
of zero-energy edge states residing on the ends of the chain
depends on the way the chain is terminated at the boundaries.

For an odd number of sites [Fig. 3(a)], there is always an
edge state in the system. When t ′ < t the edge state lies at
the end with the hopping t ′, whereas for t ′ > t the edge state
lies at the end with the hopping t of the SSH chain. The ratio
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FIG. 3. The energy spectrum for the isolated SSH model with different intercell hopping t ′ and a constant intracell hopping t = 1.0 with red
lines showing the energy of edge states. We show the spectrum for (a) N = 2L ± 1 = 41 sites and (b) N = 2L = 40 sites with open boundary
conditions and (c) N = 2L = 40 sites with periodic boundary conditions.
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of the intracell to the intercell hopping ( t
t ′ ) of the SSH chain

controls the position of this edge state. In contrast, for an even
number of sites, edge states at both ends appear only when
t ′ > t . The edge states present in the SSH model reside on the
ends of the chain and decay in the bulk depending on the ratio
of the intercell and intracell hopping (ξ ∝ t ′+t

t ′−t ). The system
size should be greater than the decay length for the properties
of the edge states to be observable.

IV. FANO RESONANCE: SSH CHAIN AS THE SIDE UNIT

After a review of the physics of the isolated SSH model,
we now explore how coupling it to the main chain affects
transport properties on that chain. Here, we take the side unit
to be the SSH chain as shown in Fig. 2. The expression for
�N = |HN (E )| = |EI − Hs| is thus given by

�N =|EI − Hs|=

∣∣∣∣∣∣∣∣∣∣∣

E −t 0 0 · · · −t2
−t E −t ′ 0 · · · 0

0 −t ′ E −t · · · ...

0 0 . . .
. . .

. . . −t1
−t2 0 0 · · · −t1 E

∣∣∣∣∣∣∣∣∣∣∣
N×N

,

(15)

where N = 2L or 2L ± 1 is the number of sites in the SSH
side unit (with L unit cells on the SSH chain), and t, t ′ are two
alternate hoppings. Since t and t ′ alternate on the subdiagonal
and superdiagonal of the tridiagonal matrix [HN (E )], one has
to write t1 = t or t ′ depending on the length N , while t2 = 0
for an open chain and t2 = t ′ for a closed chain. While the
length of the open chain may be odd or even, the closed
chain is forced to have an even number of sites, because
of geometrical constraints, as we will discuss later. We use
�

{λ1,λ2,...,λ j}
N− j to represent the determinant of the square matrix

with dimension (N − j) × (N − j) that is formed after the
removal of the {λ1, λ2, . . . , λ j}th rows and columns from the
matrix [EI − Hs] given in Eq. (15).

In the following subsections, we separately discuss how the
system size of the side unit and whether the SSH chain is open
or closed affects transport in the main chain. The properties
of the open and closed SSH chains are quite different due
to the presence and absence, respectively, of edge states. The
focus of this study is on understanding how the transmission
properties carry signatures of these edge states, which play a
crucial role at energies close to zero (E ∼ 0). Therefore, the
first and last site (nth) of the SSH chain are connected to the
main chain, as shown in Fig. 2.

A. Case 1: Open chain with odd N

We now discuss the transport properties of the system when
the defect is the open SSH chain with an odd number of sites
(Fig. 2). As discussed already, the open chain always pos-
sesses one edge state whose location depends on the relative
hopping strengths t, t ′ as shown in Fig. 3(a). When t ′ < t ,
an edge state resides on the last site of the SSH chain and
decays in the bulk, while in the other limit t ′ > t , the edge
state resides on the first site. Besides varying the relative
strength of t and t ′, we have also considered two different
cases for the second connection strength v2, i.e., v2 = 0 and

FIG. 4. The transmission coefficient T for the open SSH side
chain with N = 99 for a single connection between chain and side
unit. We show T as a function of intercell hopping t ′ and incoming
wave energy E . The other parameters are kept constant: v = 1, t = 1,
v1 = 1, and v2 = 0.

v2 	= 0. For all scenarios, we need to first evaluate the required
coefficients of the inverse of the matrix HN . For the particular

choice here, we have the relations α11 = �
{1}
N−1

�N
, αnn = �

{N}
N−1

�N
, and

α1n = αn1 = (tt ′ )
N−1

2

�N
.

First, we discuss the effect of a single link between the
main chain and the side unit, i.e., v1 	= 0; v2 = 0. For this
scenario, perfect reflection (T = 0) results if �N = 0 while
perfect transmission (T = 1) is found for �

{1}
N−1 = 0. Figure 4

features the transmission coefficient (T ) as a function of the
incoming energy of the wave function (E ) and intercell hop-
ping t ′. It is observed that for E = 0, the system shows a clear
perfect reflection for t ′ > t with a broad blue region. However,
for t ′ < t a thin line is observed within the red region of
full transmission as depicted in Fig. 4. The behavior of the
transmission coefficient (T ) in this case is consistent with
the characteristics of the eigenstate of the full Hamiltonian at
E = 0 as shown in Fig. 14 in Appendix B. In the limit t ′ < t ,
the eigenstate at E = 0 supports no probability amplitude in
the main chain, and as a consequence a sharp dip indicating
zero transmission is observed as shown in Fig. 4. In the limit
t ′ > t , for the E = 0 state, the probability amplitude resides
only on one-half of the main chain, and hence it leads to per-
fect reflection as indicated by the broad blue region in Fig. 4.

If the second coupling to the Fano defect side chain is
added (v2 	= 0), the condition for perfect reflection is modi-
fied. It is now possible only for those energies that satisfy

v�N + v1v2(tt ′)
N−1

2 = 0, (16)

where �N = ∏
θm

(E ±
√

t2 + t ′2 + 2tt ′ cos θm) with θm =
2πm
N+1 ; m = 1, 2, . . . , N−1

2 [24]. The transmission coefficient as
a function of the incoming wave energies and the intercell
coupling t ′ is shown in Fig. 5. Full reflection is observed at
E = 0 in both the regimes, t ′ < t and t ′ > t . In both of the
cases t ′ > t as well as t ′ < t , the zero-energy wave propagates
to the scattering region of the main chain and reflects back
(verified from a study of the full system eigenstates shown in
Fig. 15 in Appendix B). This finally results in minimum trans-
mission through the system. Thus, the narrow line observed
for v2 = 0 with t ′ < t in Fig. 4 is modified into a wider blue
region when v2 	= 0, as shown in Fig. 5.
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FIG. 5. Transmission as a function of the incoming wave energy
E for the couplings between the main chain and the open SSH side
chain with N = 99 for different intercell hopping t ′. The system
parameters are set to v1 = 1, v2 = 1, v = 1, and t = 1.

We have seen that a connection v2 to the side chain signifi-
cantly modifies the transmission in the system. This motivates
us to study how tuning the second coupling strength v2 affects
transmission for various interleg hopping strengths t ′ as shown
in Fig. 6. We see that when v2 = 0, for energy close to zero,
the transmission is zero for any value of t ′. However, for non-
vanishing v2, the system shows transmission only in the limit
t ′ → t . As t ′ approaches t , the SSH chain starts to behave as
a simple nearest-neighbor tight-binding chain, and for an odd
system size it should show perfect reflection for energies E ∼
0. But due to the presence of the secondary connection, the
energy corresponding to perfect reflection (shown in Fig. 18)
is given by Eq. (16). Therefore, the system shows some trans-
mission for energies close to zero, as shown in Fig. 6. In
Appendix C, we discuss the role of the second connection,
when the side unit is a simple tight-binding linear chain.

B. Case 2: Open chain with even N

Next we explore the SSH open chain with an even number
of sites as the side chain. In this case, the isolated SSH model

 0
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 0.9  0.95  1  1.05  1.1
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v2=0.50
v2=0.75
v2=1.00

FIG. 6. The transmission coefficient as a function of different
intercell hopping t ′ of the open SSH chain for different second
connection strengths v2. The other system parameters are kept fixed:
N = 99, t = v = v1 = 1, and E ∼ 0.

FIG. 7. The transmission coefficient (T ) for a single coupling
between the main chain and an open SSH side chain with N = 100
as a function of incoming wave energy E and intercell hoppings t ′

with other parameters set to v = 1, t = 1, v1 = 1, and v2 = 0.

possesses either no edge state (zero-energy state) for the case
t ′ < t or two edge states located at the two ends for the case
t ′ > t as shown in Fig. 3(b). To understand the transmission in
this system, the required coefficients of the inverse matrix HN

are calculated as α11 = αnn = �
{1}
N−1

�N
, α1n = αn1 = (tt ′ )

N
2

t ′�N
. In the

single coupling setup to the scatting center (v1 	= 0; v2 = 0),
the condition for perfect reflection (T = 0) is again given by
�N = 0 and the condition for perfect transmission is given
by �

{1}
N−1 = 0. The transmission spectrum as a function of

incoming wave energy E and intercell hopping t ′ is shown
in Fig. 7. At E ∼ 0, the transmission coefficient undergoes a
transition from 1 (red region) to 0 (blue region) on switching
from the trivial (at t ′ < t) to the topological (at t ′ > t) phase
of the SSH chain as shown in Fig. 7. The propagating wave
reflects back from the scattering region in the main chain as
depicted by the eigenstate of the full Hamiltonian in Fig. 16
(Appendix B).

The two links to the side chain modify the condition for
perfect reflection, which now happens for energies satisfying
the equation

vt ′�N + v1v2(tt ′)
N
2 = 0, (17)

where �N = ∏
θm

(E ±
√

t2 + t ′2 + 2tt ′ cos θm). The variable
θm is calculated numerically using the relation t �(θm, N

2 ) +
t ′ �(θm, N

2 − 1) = 0, where �(θm, l ) = sin[(l+1)θm]
sin θm

[24]. In the
case t ′ < t , the wave propagates without disturbance in the
main chain, which results in perfect transmission in the sys-
tem. However, in the other limit t ′ > t , the main chain is
connected to the two edge states of the SSH chain, and there-
fore, as shown in Fig. 8, minimum transmission is obtained
due to the reflection of the incoming wave by these edge
states (Fig. 17). Thus, the transmission coefficient T again
features a transition from 1 to 0 for zero energy when the side
chain undergoes a transition from the trivial to the topological
phase, but the width of the perfect reflection area is increased
in the presence of the secondary coupling v2. At E = 0, the
transmission coefficient T is unaffected by the secondary con-
nection to the side chain as shown in Fig. 8. This should be
seen as a consequence of the robustness of the topologically
protected edge states of the SSH chain.
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FIG. 8. The transmission coefficient T for the open SSH side
chain with length N = 100 for two couplings (v1, v2) between the
main chain and the side unit. We show T as a function of intercell
hopping t ′ and incoming wave energy E . The other parameters are
kept constant: v = 1, t = 1, v1 = 1, and v2 = 1. The wave ampli-
tudes corresponding to the two (∗) symbols are plotted in Fig. 9.

We verify the results by studying wave propagation using
the time-dependent Schrödinger equation [25] in the system.
The incoming wave is represented by an initial Gaussian wave
packet (time τ = 0) localized at a site l0 (with l0 
 l = 1),
which is far left of the scattering region. It can be written as

ψ ( j) = e−ιk je− 1
2 ( j−l0

σ
)2
, (18)

where σ is the width and k is the momentum. The wave packet
at a later time τ0 can be obtained from the time-dependent
Schrödinger’s equation given by

ψ ( j, τ0) = e−ιHτ0ψ ( j, 0). (19)

The initial wave packet evolves in time and moves toward
the scattering region. The postscattering features of the wave
packet are governed by the Hamiltonian of the side unit. We
focus on the wave amplitude in the system after the scattering
when the energy of the incoming wave packet is E = 0 at two
points indicated by star (∗) symbols in Fig. 8. In Figs. 9(a) and
9(b) we show the square of the wave amplitude for t ′ = 0.5
and 1.5, respectively. In the trivial phase (t ′ < t), the entire
wave packet is transmitted beyond the scattering region indi-
cating complete transmission. In the topological phase t ′ > t ,
on the other hand, the wave packet is completely reflected
from the scattering region. Thus, the dynamics reaffirms the
results obtained from TMM, despite the finite energy width
of the wave packet (18). This is enabled by the broad spectral
width of the total reflection and total transmission features in
Fig. 8 for t ′ < t and t ′ > t , respectively.

Finally, we show the transmission coefficient as a function
of t ′ for different values of v2 in Fig. 10. The transmission
coefficient shows a steplike drop from 1 to 0 as the system
switches from the trivial to the topological phase at t ′ = t .
Usually, this phase transition happens exactly at t ′ = t only for
large system sizes. However, Fig. 10 shows that the secondary
connection facilitates this phase transition as the jump in T at
t ′ = t becomes sharp even for small system sizes. The combi-
nation of an energetically broad region of total reflection (for
t ′ < t) and total transmission (for t ′ > t) evident in Fig. 8,
with a fairly abrupt transmission between the two in terms of

FIG. 9. The evolution of the square of the wave amplitude for an
incoming wave packet with energy E = 0 in the system. The main
chain (site = 1, 2, . . . , Nc) with hopping v = 1 and length Nc = 150
is connected to an open SSH side chain (site = Nc + 1, . . . , Nc + N)
of length N = 100 with couplings v1 = 1, v2 = 1. We mark the left
and right parts of the main chain as CL and CR and the SSH side-unit
as S for clarity. Here t = 1. (a) For t ′ = 0.5 we find perfect trans-
mission and for (b) t ′ = 1.5 perfect reflection. The wave amplitudes
correspond to the two (∗) symbols shown in Fig. 8.

t ′ as seen in Fig. 10, might have useful switching applications
for devices.

C. Case 3: Closed chain with even N

In this subsection, we look at the last case, namely the
closed SSH chain with an even number of sites. In this
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FIG. 10. The transmission coefficient as a function of different
intercell hopping t ′ of the open SSH side chain for different second
connection strengths v2 with other system parameters fixed at N =
100, t = v = v1 = 1, and E ∼ 0.
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FIG. 11. The transmission (T ) in the system for various in-
coming wave energies E and intercell couplings t ′ when a single
connection exists between the main unit and a closed SSH side unit
with length N = 100. The other parameters are kept constant: v = 1,
t = 1, v1 = 1, and v2 = 0.

scenario, the ends of the side chain are connected to the
main chain as well as to each other as shown in Fig. 2.
The closed isolated SSH chain becomes gapless at t ′ = t
with the two energy bands touching at zero energy as de-
picted in Fig. 3(c). This results in non-zero-energy states
in both regions t ′ < t and t ′ > t . Here, the coefficients of
the inverse of the matrix HN are given by α11 = αnn =
�

{1}
N−1

�N
, α1n = αn1 = (tt ′ )

N
2 +t ′2�{1,N}

N−2

t ′�N
. The relation �N = ∏

θm
(E ±√

t2 + t ′2 + 2tt ′ cos θm) with θm = 4mπ
N , m = 1, 2, . . . , N/2,

yields �N [24]. Figure 11 shows the behavior of the transmis-
sion coefficient T of the system in the presence of a single
connection to the side chain in the two phases (t ′ > t and
t ′ < t) of the system. Again, perfect transmission is attained
for the incoming energies satisfying �

{1}
N−1 = 0, whereas per-

fect reflection is attained for energies consistent with �N = 0
as shown in Fig. 11. The system shows full transmission for
energies close to zero in both regions (t ′ > t and t ′ < t) of the
SSH chain due to the opening of the energy bands.

The addition of one more connection (v2) further modifies
the condition for perfect reflection, which now happens for
energies consistent with

v�N + v1v2t ′�{1,N}
N−2 + v1v2(t )

N
2 (t ′)

N
2 −1 = 0. (20)

The behavior of the transmission coefficient in the pres-
ence of the two adjacent connections to the side chain is
shown in Fig. 12. The transmission profile exhibits a change
from perfect transmission to full reflection in the vicinity
of the trivial-to-topological point as featured in Fig. 12. In
the extreme case t ′ 
 t , the system shows full transmission,
whereas in the other regime when t ′ > t , a suppression of
transmission with increasing second coupling strength (v2) is
seen due to modified reflection conditions given by Eq. (20).

The behavior of the transmission for a range of secondary
connection strengths for different interleg coupling t ′ is de-
picted in Fig. 13. In the absence of the second connection v2

the transmission coefficient shows a sharp dip at the transition
point t ′ = t . However, in the presence of the second connec-
tion v2 the width of the dip at t ′ = t is split into a dip and a
peak in the vicinity of the transition point t ′ = t . This is due

FIG. 12. The transmission coefficient T for the closed SSH side
chain with N = 100 for double coupling between the main chain and
the side unit. We show T as a function of intercell hopping t ′ and
incoming wave energy E with other fixed system parameters as v =
1, t = 1, v1 = 1, and v2 = 1.

to the extra connection to the main chain, which modifies the
transmission conditions in the system.

V. EXPERIMENTAL REALIZATION

In this section, we briefly discuss the possible experi-
mental realization of our setup. One way to generate the
Fano-Anderson chain structures discussed here is using op-
tical lattices filled with ultracold atoms like rubidium (87Rb)
[26–28]. For strong lattices, these realize a tight-binding chain
for the atoms, while when replacing direct tunneling with
laser-assisted tunneling between some sites, alternating tun-
neling couplings as required here can be realized [29,30]. This
technique can additionally be combined with employing su-
perlattices [31]. The recent realization of interacting bosonic
SSH chains using atomic trapping in optical tweezers along
with excitation to Rydberg states is an important development
in the field [32,33].
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FIG. 13. The transmission coefficient as a function of different
intercell hopping t ′ of the closed SSH side chain for different second
connection strengths v2. The other system parameters are kept fixed
at N = 100, t = v = v1 = 1, and E ∼ 0. The inset is a zoomed
version that highlights the intricate structure in the vicinity of the
phase-transition point.
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A second platform where our results are directly applicable
is photonic crystals [34,35]. Photonic crystal technology is
based on the creation of nanocavities with a photonic band
gap [36–38], which are introduced into a photonic crystal
waveguide. These exclusion zones can then practically mimic
a tight-binding chain for photons, where control over the
coupling strengths can be exerted by adjusting the spacing
between the sites. Recently, an SSH model with a combina-
tion of rigid and elastic materials, which could continuously
be tuned across its topological phase transition by stretching
[19], was proposed. By immersing the photonic crystal into a
nematic liquid crystal background, dynamical tunability with
the help of an external electric field could also be achieved
[39].

VI. CONCLUSION

In this work, we analyze the interplay of Fano resonances,
topology, and edge states in a Fano-Anderson chain possess-
ing a topological side unit. We take the SSH chain, which
possesses topological characteristics as a prototype side unit,
and we show that the topology of the side unit modifies the
Fano resonance profile and thus the transport probability past
the topological unit. We observe that the transmission profile
is modified when the system is tuned from the trivial to the
topological phase. With a single connection between the main
chain and the side unit, the topological to trivial transition
cannot be efficiently detected. However, if two connections
are present, a clear signal of the transition is obtained directly
from the transmission profile. We provide a detailed study of
how the transmission profile depends on the boundary con-
ditions and the topological properties of the SSH chain. The
detection of topological characteristics from Fano resonances
in quantum transport could allow a new experimental handle
on topological states.

We explicitly derive an exact expression for the transmis-
sion coefficient using the transfer matrix method, and we
obtain conditions for Fano resonance as well as perfect re-
flection. The expression obtained can be generalized to an
arbitrary side unit and hence may find application in other
studies of Fano resonance assisted transport. This enables us
to show that an open topological chain with an even number
of sites exhibits a sharp transition between complete reflection
or complete transmission of all waves with energy near zero,
depending on the parameters of the topological scatterer. The
sharpness of this transition paired with its wide bandwidth
should make this a useful feature for switching in device
applications involving photonic crystals or nanomaterials with
topological elements.

Losses are inevitable in any physical system. Our pre-
liminary check on weak losses incorporated in this system
shows no significant changes in the transmission character-
istics. The Fano resonance condition being the central pillar
for determining the transmission characteristics, any sorts of
losses that can preserve the resonance condition are admis-
sible. Moreover, losses can be brought under control if they
are weak enough, as reported in many experimental studies
[40–42].

One of the intriguing features of the Fano assisted trans-
mission profile is the narrow linewidth of the resonance,

which could provide high sensitivity in sensing systems. In the
proposed Fano-Anderson chain, the two connections between
the main chain and the side unit yield multiple choices for
the tunability of the resonance width. The trivial to topo-
logical transition could be utilized for switching purposes
since the sharp change in the transmission amplitudes at the
resonant peak and dip is vital for such applications. Further,
Fano resonance based photonic devices could potentially be
employed for a variety of filters and interferometer devices,
paving the way for further development of all-optical transis-
tors, switches, and logical gates [3,20,21,43,44].
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APPENDIX A: TRANSMISSION COEFFICIENT

We assume that an incoming wave from the far left ap-
proaches the scattering region in the main chain, and that
after the scattering time period, the wave has been split into
two parts in the main chain: a reflected part moving toward
the left and a transmitted part moving toward the right, as
shown in Fig. 1(b). The boundary conditions for the stationary
scattering states in the time-independent scattering problem
can be written as

A� = I0eιk� + re−ιk� (A1)

for � < 1 and

A� = toute
ιk� (A2)

for � > 2. The coefficients corresponding to the incoming,
reflected, and transmitted waves are denoted, respectively, as
I0, r, and tout. We can now formulate a transfer matrix that
connects the wave function on nearby sites of the main chain
represented by the lattice Eq. (11) as[

A�+1

A�

]
= MT

[
A�

A�−1

]
, (A3)

where MT is the transfer matrix given by

MT =
[

E−αppv
2
1δ�,1−αqqv

2
2δ�,2

v+v1v2αpqδ�,1
− v+v2v1αqpδ�,2

v+v1v2αpqδ�,1

1 0

]
. (A4)

As depicted in Fig. 1, the side unit and main chain are linked
by two connections with different hopping v1 and v2. Hence,
we can represent the final transfer matrix of the system as a
product of two transfer matrices at the two connecting sites.
The first transfer matrix for the connection at the first site
� = 1 is given by M1 = (MT )�=1 and the second transfer
matrix for the connection at the next site � = 2 is given by
M2 = (MT )�=2. Thus, the final transfer matrix is given by
M = M2M1, which connects wave functions of the parts that
lie to the left and right of the scattering regions as[

A3

A2

]
= M

[
A1

A0

]
= M2M1

[
A1

A0

]
(A5)

155111-8



TRANSMISSION IN A FANO-ANDERSON CHAIN WITH A … PHYSICAL REVIEW B 103, 155111 (2021)

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  100  200  300  400  500  600

(b) CL CR S

0.
1ψ

i

site

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  100  200  300  400  500  600

(a) CL CR S

ψ
i

site

FIG. 14. The zero-energy wave function of the system when the
main chain is the simple tight-binding chain with length Nc = 500
(corresponding to site indices running from 1 to 500) to which an
open SSH side chain of length N = 99 (whose site indices run from
501 to 599) is connected to one of the two middle sites. We mark the
left and right parts of the main chain as CL and CR and the SSH side-
unit as S for clarity. The connecting hopping strengths are v1 = 1.0,
v2 = 0 and the other parameters are v = 1.0, t = 1.0 with (a) t ′ =
0.5 and (b) t ′ = 1.5.

with

M =
[

M11 M12

M21 M22

]
, (A6)

where Mi j = M ′
i j

v(v+V ′ ) with M ′
11 = [(E − V1)(E − V2) − |v +

V ′|2], M ′
12 = −v(E − V2), M ′

21 = v(E − V1), and M ′
22 =

−v2. Thus, the final transfer matrix for the setup is given
by M.

The transmission coefficient T = |t2
out/I2

0 | is calculated
from the transfer matrix using the boundary conditions
[Eqs. (A1) and (A2)] as

T = 4 sin2 k

|M11e−ik + M12 − M21 − M22eik|2 . (A7)

Also, the transmission coefficient in terms of the energy of the
incoming wave can be written as

T = v2(4v2 − E2)|v + V ′|2
[βv2 + γ vE − E2M ′

11M ′
22]

, (A8)

where β = (M ′
11 + M ′

22)2 + (M ′
12 − M ′

21)2 and γ = (M ′
11 −

M ′
22)(M ′

12 − M ′
21).

APPENDIX B: WAVE FUNCTIONS FOR
THE EDGE STATES

Here, we discuss the eigenstates of the complete Hamilto-
nian, which incorporates the main chain as well as the side
SSH chain. The properties of a wave traveling in the main
chain with a particular energy are intimately connected to
these eigenstates of the complete Hamiltonian. We focus on
the eigenstates corresponding to the energies at which a Fano
resonance dip is observed in the transmission profile.

Figure 14 features the edge states of the system with a
single connection (v1 	= 0 and v2 = 0) between the main chain
and the SSH chain possessing an odd number of sites. In the
region t ′ < t , the edge state of the isolated SSH chain lies pre-
dominantly on the edge site of the chain, and the probability
amplitude decays toward the bulk. The state at zero energy
of the full system also shows the same behavior as depicted
in Fig. 14(a). The eigenstate covers only a few sites close to
the free end of the SSH chain, and no probability amplitude
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FIG. 15. The zero-energy wave function of the system when the
main chain is the simple tight-binding chain with Nc = 500 (site
indices running from 1 to 500) to which an open SSH chain of
length N = 99 (whose site indices run from 501 to 599) is connected
to one of the middle sites and an adjacent site. The connecting
hopping strengths are v1 = 1.0, v2 = 1.0 and the other parameters
are v = 1.0, t = 1.0, and (a) t ′ = 0.5 and (b) t ′ = 1.5.

is seen in the main chain. We would therefore expect no
contribution to transport from this eigenstate, and thus a very
sharp dip is observed in the transmission profile at E = 0. The
eigenstates close to E = 0 are completely different as they
possess probability amplitudes on the main chain (both toward
the left and right of the defect) and allow a finite amount of
transmission (Fig. 4).

In the region t ′ > t , the edge state mainly lies on the
connected end of the SSH chain and decays in the bulk of
the SSH chain. The connected end shows edge-state character
here, despite its connection to the main chain. However, the
amplitude at this end of the SSH chain is much smaller than
in the other case in Fig. 14(a), which is similar to the edge
state of the isolated SSH chain. Furthermore, as shown in
Fig. 14(b), the eigenstate for the full system also shows a finite
probability amplitude in the main chain that is to the left of
the defect. We take an even total number of sites in the main
chain so that the number of sites to the left of the defect is
different from the number of sites to the right of the defect,
thus breaking the left-right symmetry. As the eigenstate lies
merely on one side of the main chain, zero transmission at
this energy is observed as depicted in Fig. 4.

Next, we explore the eigenstate of the full system with
two connections (v1 	= 0, v2 	= 0) between the side chain and
the main chain (Fig. 15). In Fig. 15 we show the eigenstate
corresponding to E = 0 for both cases t ′ > t and t ′ < t . In
both cases, the eigenstate of the full system vanishes in one-
half of the main chain. As a consequence of this, again the
transmission in the system is fully suppressed as shown in
Fig. 5. With the double coupling, both ends of the SSH chain
are connected to the main chain. We observe that a finite
probability amplitude is seen at (a different) one of the edges
in the two phases.

The isolated SSH open chain with an even number of sites
shows zero modes only when t ′ > t , and so we look at the case
t = 1.0, t ′ = 1.5. The system now possesses two zero-energy
states (which are primarily represented at the two edges).
Figure 16 shows the site coefficients of the two zero-energy
eigenstates for the full Hamiltonian containing the main chain
and the side chain, with a single connection v1 between them.
We observe that both of these states possess a finite probability
amplitude in one part of the main chain and also at the free end
of the SSH chain, as shown in Fig. 16. The zero amplitude
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FIG. 16. The wave function for the two zero-energy states with a
simple tight-binding chain with Nc = 500 (site indices running from
1 to 500) as a main chain and an open SSH chain with N = 100 (site
indices running from 501 to 600) as a side chain, which is connected
to one of the middle sites. The connecting hopping strengths are v1 =
1.0, v2 = 0 and other parameters are v = 1.0, t = 1.0, and t ′ = 1.5.

of the eigenstate in one-half of the main chain confirms the
full reflection in the system corresponding to this energy, as
depicted in Fig. 7.

The presence of the second connection v2 leaves no free
end for the SSH chain. Thus, the eigenstate for the full system
is modified as shown in Fig. 17. The majority of the probabil-
ity amplitude lies on one-half of the main chain, which results
in zero transport in the system, as depicted in Fig. 8.

APPENDIX C: NEAREST-NEIGHBOR TIGHT-BINDING
OPEN CHAIN AS A SIDE UNIT

We consider a nearest-neighbor tight-binding chain with
hopping t (i.e., t = t ′) coupled to the main chain with two
connections v1 and v2. The transmission coefficient (T ) as a
function of incoming wave energies (E ) is shown in Figs. 18
and 19 for different secondary connection strength v2 when
the side unit possesses one (N = 1) and two (N = 2) sites,
respectively.

In the absence of v2, the system shows a minimum trans-
mission (T = 0) at E = 0 when the side unit contains an odd
number of sites as the condition �N = 0 is satisfied. For an
even number of sites in the side chain, the system shows
a maximum transmission (T = 1) at E = 0 as the condition
�

{1}
N−1 = 0 is satisfied.
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FIG. 17. The wave function for the two zero-energy states for a
system consisting of a simple tight-binding chain with Nc = 500 (site
indices running from 1 to 500) as a main chain and an open SSH
chain with N = 100 (site indices running from 501 to 600) as a side
chain, which is connected to one of the middle sites and an adjacent
site. The connecting hopping strengths are v1 = 1.0, v2 = 1.0 and
the other parameters are v = 1.0, t = 1.0, and t ′ = 1.5.
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FIG. 18. Transmission coefficient as a function of the incoming
wave energy with various second connection strengths v2 when the
main chain is the simple tight-binding chain and the side unit is a
single site. The parameters are v = 1.0, v1 = 1.0, and t = 1.0.

In the presence of the second connection v2, the perfect
reflection condition is given by

v�N + v1v2tN−1 = 0, (C1)

where �N = ∏
k[E − 2t cos(k)] with k = jπ

N+1 ; j = 1, . . . , N
with N being the side chain length.

If a single defect site is connected to the main chain
through two connections v1 and v2, then the position of the
minimum of transmission is shifted by −v2 (Fig. 18) accord-
ing to Eq. (C1). Again invoking (C1) for N = 2, as v2 is
increased, the minima at E = ±1 move toward each other as
shown in Fig. 19. Thus, the maximum at E = 0 for v2 = 0
turns into a minimum for v2 = 1.
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FIG. 19. Transmission coefficient as a function of incoming
wave energy with various second connection strengths v2 when the
main chain is the simple tight-binding chain and the side unit is
a two-site chain. The other parameters are v = 1.0, v1 = 1.0, and
t = 1.0.
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