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Abstract. We investigate the possibility of probing the large scale
structure in the universe at large redshifts by studying fluctuations in the
redshifted 1420 MHz emission from the neutral hydrogen (HI) at early
epochs. The neutral hydrogen content of the universe is known from absorp-
tion studies forz <∼ 4.5. The HI distribution is expected to be inhomoge-
neous in the gravitational instability picture and this inhomogeneity leads
to anisotropy in the redshifted HI emission. The best hope of detecting
this anisotropy is by using a large low-frequency interferometric instru-
ment like the Giant Meter-Wave Radio Telescope (GMRT). We calculate
the visibility correlation function〈Vν(U)Vν ′(U)〉 at two frequenciesν and
ν ′ of the redshifted HI emission for an interferometric observation. In par-
ticular we give numerical results for the two GMRT channels centered
aroundν = 325 MHz andν = 610 MHz from density inhomogeneity
and peculiar velocity of the HI distribution. The visibility correlation is
' 10−10–10−9 Jy2. We calculate the signal-to-noise for detecting the cor-
relation signal in the presence of system noise and show that the GMRT
might detect the signal for integration times' 100 hrs. We argue that the
measurement of visibility correlation allows optimal use of the uncorre-
lated nature of the system noise across baselines and frequency channels.

Key words. Cosmology: theory, observations, large scale structures —
diffuse radiation.

1. Introduction

Various observations indicate that around 90% of the HI mass in the redshift range of
2 to 3.5 is in clouds which have HI column densities greater than 2× 1020atoms/cm2

(Lanzetta, Wolfe & Turnshek 1995; Storrie-Lombardi, McMahon & Irwin 1996; Per-
oux et al. 2001). These high column density clouds are responsible for the damped
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Lyman-α absorption lines observed along lines of sight to quasars. The flux of HI
emission from individual clouds (<∼ 10µJy) is too weak to be detected by existing
radio telescopes unless the image of the cloud is significantly magnified by an inter-
vening cluster gravitational lens (Saini, Bharadwaj & Sethi 2001). Although we may
not be able to detect individual clouds, the redshifted HI emission from the distribution
of clouds will appear as background radiation in low frequency radio observations.
Bharadwaj, Nath and Sethi (2001; hereafter referred to as BNS) have used existing esti-
mates of the HI density atz ' 3 to infer the mean brightness temperature of' 1 mK
at ν ' 320 MHz for this radiation. The fluctuations in the brightness temperature
of this radiation arise from fluctuations in the HI number density and from peculiar
velocities. As shown in BNS, the cross-correlation between the temperature fluctua-
tions across different frequencies and different lines of sight is related to the two-point
correlation function (or equivalently the power spectrum) of density perturbations at
the redshift where the radiation originates. The possibility of measuring this provides
a new method for studying large scale structures at high redshifts. Estimates indicate
the expected values of the cross-correlations in the brightness temperature to vary
from 10−7 K2 to 10−8 K2 over intervals corresponding to spatial scales from 10 Mpc
to 40 Mpc for some of the currently-favoured cosmological models. Estimates of the
different contributions to the flux expected in a pixel of a radio image show the contri-
bution from galactic and extragalactic sources and the system noise to be substantially
higher than the contribution from the HI radiation. The task of devising a strategy for
extracting the signal from the various foregrounds and noise in which it is buried is
a problem which has still to be solved. A possible strategy based on the very distinct
spectral properties of the foregrounds as against the HI emission is discussed in BNS.

An alternate strategy for using the HI emission from high redshifts to study large
scale structures has been discussed by many authors (Subramanian & Padmanabhan
1993; Kumar, Padmanabhan & Subramanian 1995; Bagla, Nath & Padmanabhan 1997;
Bagla 1998). This is based on detecting the HI emission from individual protoclus-
ters at high redshifts. There have also been observational efforts in this direction (see
Subrahmanyan & Anantharamaiah 1990 and reference therein). No detections have
been made till date. This strategy suffers from the disadvantage that the protoclusters
correspond to very large overdense regions which are very rare events. Protoclusters
with flux in the range 3 to 5 mJy are predicted to occur with abundances in the range
10−8 −10−7 Mpc−3 in the CDM model (Subramanian and Padmanabhan 1993). In the
statistical approach proposed in BNS fluctuations of all magnitude in the HI distribu-
tion contribute to the signal. The statistical approach allows optimum use of the signal
present in all the pixels of the images made at different frequencies across the band-
width of a typical radio observation. In this paper we take up various issues related to
the statistical approach originally proposed in BNS.

The main focus of this paper is the choice of an appropriate statistical estimator
to quantify the properties of the signal and the system noise. The statistical estimator
proposed in BNS is the cross-correlation between the temperature fluctuations along
different lines of sight in radio map made at different frequencies. While this quantity
is conceptually very simple, complications arise when it is applied to images produced
by radio interferometry, as is the case with most low frequency radio telescopes. Such
observations measure the coherence between the signals arriving at any two antennas,
a quantity known as the visibilityV (U). This is measured for all pairs of antennas
in the interferometric array. HereU refers to the vector joining a pair of antennas,
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measured in units ofλ, projected on the plane perpendicular to the direction which is
being imaged.

The image is produced by a Fourier transform of the visibility

Iν(Eθ) =
∫

V (U) exp[2πi Eθ · U] d2U (1)

where Eθ refers to different positions in the small patch of the sky which is being
imaged, andIν(Eθ) is the specific intensity. The contribution of system noise to the
signal from each antenna is independent, and the visibilities measured by each pair of
antennas are uncorrelated. The noise in the pixels of a radio image constructed from
the visibilities is not independent. The correlations in the noise in the pixels depend
on the detailed distribution of the different separations (baselines)U for which the
visibility has been measured. Any strategy based on the statistical analysis of radio
images will be faced with the problem of distinguishing the correlations in fluctuations
of the HI emission from the correlations in the noise. This complication can be avoided
by dealing directly with the visibilities. In this paper we investigate the possibility of
detecting the fluctuations in the HI emission using a statistical estimator constructed
directly from the visibilities measured in a radio interferometric observation, without
making an image.

We next present a brief outline of this paper. In section 2 we calculate the relation
between the statistical properties of the HI fluctuations and the visibilities produced
by these fluctuations. In section 3 we present numerical estimates of these quantites
for some of the currently favoured cosmological models for the system parameters
of GMRT (Swarupet al. 1991). In section 4, we calculate statistical properties of
the visibility correlations arising from the system noise. In section 5 we present the
conclusions and discuss possible directions for future work.

2. From density fluctuations to visibility

We consider radio-interferometric observations of a small patch of the sky whose
center is in the direction of the unit vectorn (Fig. 1). A small patch of the sky may be
treated as a plane, and the angleEθ which refers to different directions in the sky (Fig.
1) may be treated as a two dimensional vector. Observations at a frequencyν would
measure the HI emission from a redshiftz = (1420 MHz/ν) − 1 or equivalently a
comoving distancerν . The specific intensity of the redshifted HI emission arriving
from any directionEθ may be decomposed into two parts

Iν(Eθ) = Īν + 1Iν(Eθ) , (2)

whereĪν and1Iν(n) are the isotropic and the fluctuating components of the specific
intensity. The isotropic componentĪν is related tōnHI(z), the mean comoving number
density of HI atoms in the excited state at a redshiftz and we have

Īν = A21 hP c n̄HI(z)

4πH(z)
(3)



296 S. Bharadwaj & S. K. Sethi

θ

     sky

Observer

r n

      x

r θ

Figure 1. The geometry for the flat-sky approximation is shown.

whereA21 is the Einstein coefficient for the HI hyperfine transition,hP the Plank con-
stant,c the speed of light andH(z) the Hubble parameter. This is a slightly rearranged
version of equation (11) of BNS.

The fluctuations in the specific intensity1Iν(Eθ) arise from fluctuations in the HI
number density1nHI(x) and the peculiar velocityv(x), wherex refers to the comoving
positionx = rν(n + Eθ) The details of the calculation relating these quantities are
presented in BNS, and we use a slightly rearranged version of equation (12) of BNS

1Iν(Eθ) = Īν

[
1nHI(x)

n̄HI
+ (n · ∇)(n · v(x))

aH

]
(4)

wherea is the scale factor. It should be noted that all the quantities in the right hand
side of equation (4) should be evaluated at the epoch when the radiation was emitted.

In this paper we wish to calculate the contribution from the redshifted HI emission
to the visibilitiesVν(U) that would be measured in radio-interferometric observations.
The relation between the specific intensity and the visibilities is

Vν(U) =
∫

d2θA(Eθ) 1Iν(Eθ) e−i2πU·Eθ . (5)

Only the fluctuating part of the specific intensity contributes to the visibility, and we
have dropped the isotropic component from eq. (5). HereA(Eθ) is the beam pattern of



HI fluctuations at Large Redshifts 297

the individual antennas in the array (primary beam). We use equations (4) and (5) to
relate the visibilities to the fluctuations in the HI distribution.

It is convenient to work with1HI(k), the Fourier transform of the density contrast
of the HI number density1nHI(x)/n̄HI. We assume that on sufficiently large scales
1HI(k) can be related to1(k), the density contrast of the underlying dark matter
distribution, through a linear bias parameterb i.e.,1HI(k) = bHI1(k). We also assume
that the scales we are dealing with are sufficiently large that we can apply linear
theory of density perturbations (Peebles 1980) to relate the peculiar velocities to the
fluctuations in the dark matter distribution,v(k) = (−iaHf (�m)k/k)1(k), where
f (�m) ≈ �0.6

m + 1
70[1− 1

2�m(1+�m)] in a spatially flat universe (Lahavet al.1991).
These assumptions allow us to express the fluctuations in the specific intensity as

1Iν(Eθ) = Īν

∫
d3k

(2π)3

[
1 + βk2

‖
k2

]
1HI(k) eirν(k‖+k⊥·Eθ) (6)

where we have decomposed the wave vectork into two partsk = k‖n + k⊥ where
k‖n refers to the component of the Fourier modek along the line of sight to the center
of the patch of sky being observed, andk⊥ refers to the component ofk in the
plane of the sky. We use equation (6) in equation (5) to express the visibilityVν(U) in
terms of1(k). This allows us to carry out the integral overEθ which gives us

Vν(u, v) = Īν

∫
d3k

(2π)3
1HI(k)

[
1 + βk2

‖
k2

]
eirνk‖ a

(
U − k⊥rν

2π

)
(7)

wherea(U) is the Fourier transform ofA(Eθ) the primary beam,

a(U) =
∫

d2Eθ A(Eθ) e−i2πU·Eθ . (8)

For a Gaussian primary beam patternA(θ) = e−θ2/θ2
0 the Fourier transform also is a

Gaussian and we have

a(U) = πθ2
0 exp

[−π2θ2
0U2

]
(9)

which we use in the rest of this paper.
Equation (7) relates the contribution to the visibilities from fluctuations in the HI

number density. These fluctuations are assumed to be a Gaussian random field, or
equivalently the different modes1HI(k) have independent, random phases. This allows
us to predict all the statistical properties of1HI(k) in terms of the power spectrum of
the fluctuations in the HI distributionPHI(k) which is defined as〈1∗

HI(k)1HI(k
′
)〉 =

(2π)3δ3(k − k
′
)PHI(k) where〈〉 denotes ensemble average. We use this to calculate

the correlation between the visibilities at different baselinesU andU
′
and two different
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frequenciesν andν + 1ν. Here we assume that the bandwidth over which the obser-
vations are being carried out is small compared to the central frequency i.e.,1ν � ν

andrν+1ν = rν + r
′
ν1ν wherer

′
ν = drν

dν
. Using these inputs to calculate the visibility

correlation function we obtain

〈Vν(U)V ∗
ν+1ν(U

′
)〉 = [

Īνθ
2
0π

]2
∫

d3k

(2π)3
PHI(k)eik‖r

′
ν1ν

[
1 + β

k2
‖

k2

]2

× exp

[
− q2 + q ′2

(2/rνθ0)2

]
(10)

with q = k⊥ −2πU/rν andq ′ = k⊥ −2πU
′
/rν . The assumption of linear bias allows

us to relatePHI(k) to P(k) the power spectrum of density fluctuations in the dark
matter distribution through the linear bias parameterPHI(k) = b2P(k). We use this in
later sections to obtain numerical estimates for different cosmological models.

We next turn our attention to a qualitative analysis of equation (10) to determine
the nature and extent of the correlations between the visibilities measured at different
baselines. This is largely governed by term exp

[
− (k⊥−2πU/rν)

2+(k⊥−2πU
′
/rν)

2

(2/rνθ0)2

]
which

arises because the observations have a limited sky coverage determined by the primary
beam pattern. This term is very small for all values ofk⊥ unless| U − U

′ |< 1/θ0.
The parameterθ0 is related to the FWHM of the primary beam andθ0 ≈ 0.6θFWHM,
which allows us to relateθ0 to D the diameter of the individual antennas asθ0 ≈ λ/D.
We also expressU and U

′
in terms ofd and d

′
, the physical separations between

the pairs of antennas asU = d/λ andU
′ = d

′
/λ

′
It should be noted that here and

throughout we assume thatλ
′ = λ(1 − 1ν/ν) with 1ν << ν. Using these we see

that the condition for the visibilities to be correlated can be expressed as| d − d
′ |<

D. This implies that the visibilities measured by a pair of antennas separated by
the displacementd will be correlated to the visibilities measured by another pair
separated by a displacementd

′
only if difference in the two displacementsd and

d
′
is less than the antenna diameter. The consequences of this for a typical antenna

configuration are
• The visibilities measured at various frequencies by the same pair of antennas are

correlated.
• The visibilities measured by different pairs of antennas are uncorrelated.

For the rest of the paper we shall consider only the correlation between the visibilities
measured at various frequencies by the same pair of antennas. We use the notation
〈Vν(U)V ∗

ν+1ν(U)〉 to denote the correlation between the visibilities measured at two
different frequencies by the pair of antennas at a physical separationd = cU/ν. The fact
that this physical separationd will correspond to a different baselineU

′ = (ν+1ν)d/c

at the frequencyν + 1ν is ignored throughout as1ν � ν. Equation (10) can now be
used to obtain

〈Vν(U)V ∗
ν+1ν(U)〉 = [

Īνθ
2
0π

]2
∫

d3k

(2π)3
PHI(k)eik‖r

′
ν1ν

[
1 + β

k2
‖

k2

]2

×

× exp

[
− (k⊥ − 2πU/rν)

2

2(1/rνθ0)2

]
. (11)
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The role of the Gaussian in equation (11) arising from the primary beam pattern is to
ensure that most of the contribution is from Fourier modes for whichk⊥ ≈ (2π/rν)U.
Equation (11) is further simplified if we approximate the Gaussian with a Dirac Delta
function

exp

[
− (k⊥ − 2πU/rν)

2

2(1/rνθ0)2

]
≈ 2π

r2
ν θ2

0

δ2

(
k⊥ − 2π

rν

U
)

(12)

whereby only Fourier modes for whichk⊥ = (2π/rν)U contribute. This allows us to
do two of the integrals in equation (11) giving us

〈Vν(U)V ∗
ν+1ν(U)〉 =

[
Īνθ

2
0

]2

2

∫ ∞

0
dk‖

PHI(k)

r2
ν θ2

o

cos(k‖r
′
ν1ν) ×

×
[

1 + β
k2
‖

k2

]2

with k =
√

k2
‖ + (2π/rν)2U2. (13)

Equations (11) and (13) represent the main results of this section. They relate the
correlation in the visibilities to the power spectrum of fluctuations in the HI distribution.
The visibility correlations at any baselineU are seen to be sensitive to Fourier modes
≥ 2πU/rν . It comes from the fact that each visibility measurement is sensitive to
one Fourier mode in the plane of the sky, which arises from the projection of three-
dimensional Fourier modes making different angles with the plane of the sky. The
typical length scales' π/k that contribute to the measurement for any baselineU are
<∼ 30h−1 Mpc(100/U).
In the next section we use these equations to make predictions for the visibility

correlations expected in the currently favoured cosmological models and we discuss
the possibility of observing these.

3. Results

Equation (3) can be calculated to give:

Īν = 5.4h Jy

degree2
�gas(z)

[
�m0(1 + z)3 + �30

]1/2
(1 + z)−3 (14)

for a spatially flat cosmological model. Here(1+ z) = 1420/ν, ν being the observed
frequency. We use�gas(z) = 10−3 as a fiducial value throughout forz ≥ 1 (Peroux
et al.2001). We give results for the currently-favoured cosmological model: spatially-
flat with �30 = 0.7 and�m0 = 0.3 (Perlmutteret al.1999; de Bernardiset al.2000).
We useh = 0.7 whenever quoting a numerical value (Freedmanet al.2001).

For GMRTθFWHM = 1.8◦ × (325 MHz/ν). We plot the visibility correlation func-
tion in Figs. 2 and 3 for the GMRT channels centered aroundν = 325 MHz and
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Figure 2. For the central frequencyν = 320 MHz, this figure shows the visibility correlation
function as baselineU varies. The thick curve shows the visibility correlation forν = ν ′. The
other three curves show, from top to bottom, the visibility correlation forν ′−ν = {0.5, 1, 2} MHz,
respectively.

ν = 610MHz for COBE-normalized power spectrum (Bunn & White 1996) andb = 1.
GMRT has a total bandwidth of 16 MHz at these frequencies in 128 channels. The vis-
ibility correlation function shown in the figures is averaged over one of these channels
with 1ν = 1.25 kHz. The correlation function is not very sensitive to the width of the
channel so long as the channel width is<∼ a few kHz.

For ν = ν ′, the signal (
√

〈Vν(U)Vν ′(U)〉) is 10–50µJy for baselines|U| '
100–1000. GMRT has 15 antennas in a central array within a radius of' 1 km.
Antenna pairs formed from these antennas will be most sensitive to the signal.

For ν 6= ν ′, the correlation signal is seen to dip sharply as frequency separation is
increased. The signal is anti-correlated and drops below' 1µJy forν ′ − ν ≥ 2 MHz.
Forν ′ − ν ≤ 0.5 MHz the signal is 5–30µJy for baselines<∼ 500.

In Figs. 2 and 3 we assume that the HI distribution follows the underlying dark
matter distribution, i.e.,b = 1. However this may not be true; observed structures at
any redshift are expected to be biased with respect to the underlying mass distribution
(see e.g., Bardeenet al.1986). This bias is expected to be higher at larger redshifts and
the observed strong clustering of high redshift galaxies is at least partly owing to this
fact (Steidelet al.1998). In this paper we adopt a simple model of bias and assume it
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Figure 3. Same as Fig. 2 for the central frequencyν = 610 MHz.

to be linear and independent of the Fourier mode. Though the exact dependence of the
HI signal on the bias is complicated (equation 13), the signal scales roughly linearly
with bias. This means that for a moderately biased HI distributionb ≤ 2 the signal
could be higher by a factor of two.

4. Noise

For each visibility measurement in the UV plane, the contribution comes from both
the signal from HI fluctuationsSν , the detector noiseNν , and various galactic and
extragalactic foregrounds. We consider here the contribution from only the HI signal
and the noise. The visibility measurement gives:

Vν(U) = Sν(U) + Nν(U). (15)

Both S andN are complex quantities with both real and imaginary parts distributed
as Gaussian random variables (see e.g., Crane & Napier 1989 for properties of noise).
The signal is a Gaussian random field because it is linear in density perturbation1(Ek)

which is expected to be a Gaussian random field for large scales (smallk) (see e.g.,
Bardeenet al.1986; Peacock 1999). The signal and noise are uncorrelated with each
other. The reality condition of the surface brightness (equation 1) and the noise in the
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real space impliesS(−U) = S∗(U) andN(−U) = N∗(U) Our aim is to construct
bilinear combinations likeVν(U)V ∗

ν ′(U) and to detectSν(U)S∗
ν ′(U). ν andν ′ will in

general be different. The average signal〈Sν(U)S∗
ν ′(U)〉 is calculated in the previous

section. The average noise correlation, forν = ν ′:

〈Nν(U)N∗
ν (U)〉 =

[
Tsys

K
√

1ν1t

]2

. (16)

HereTsys is the system temperature,1ν is the bandwidth,K is the antenna gain, and
1t is the time of integration for one visibility measurement. Forν 6= ν ′ the noise
correlation vanishes as the noise in different frequency channels is uncorrelated.

Estimator of the signal: From the measured visibility it is possible to write several
estimators of the signal. The simplest such estimator is:

Ŝ = Vν(U)V ∗
ν ′(U) − 〈Nν(U)N∗

ν (U)〉. (17)

This estimator is clearly unbiased, i.e.,

〈Ŝ〉 = 〈Sν(U)S∗
ν ′(U)〉.

The quantity of interest to us is the variance of the estimated signal:σ(Ŝ)2 = 〈Ŝ2〉 −
〈Ŝ〉2. This quantity is calculated to be (see Appendix A for a derivation):

σ 2(Ŝ) ' q

n
〈Nν(U)N∗

ν (U)〉2 (18)

q = 2 forν = ν ′ andq = 1 forν 6= ν ′.n is the total number of visibility measurements.
The signal-to-noise for the detection of the HI fluctuation signal is〈Ŝ〉/σ(Ŝ).

The value ofn for a given|U| in general depends on the antenna positions, frequency
coverage, and the position of the source in the sky. To calculate the value ofn we first
consider the case whenν = ν ′.

Case I– ν = ν ′: To get a simple estimate, assume that a pair of antennas describes
circular tracks in the UV plane with radius|U| and that these tracks do not overlap
with the tracks of other antenna pairs, thenn = T/1t for each frequency channel,
whereT is the total time of observation. (The actual observation is more complicated
because the antenna tracks cross in the UV plane.) For this case, equation (18) gives,
using equation (16):

σ 2(Ŝ) =
[

2Tsys

K
√

1ν T

]2

. (19)

Before proceeding further it is useful to calculate the expected noise for the GMRT.
We shall take the fiducial observing frequency to be' 320 MHz. At this frequency the
GMRT system temperatureTs ' 110 K. GMRT has a total bandwidth of 16 MHz at this
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frequency in 128 channels. To calculate the quantity in equation (16) we take one chan-
nel (1ν = 125 kHz) and an integration time of1t = 30 sec for one ‘instantaneous’
measurement for a given baseline. The antenna gain at this frequencyK = 0.32 K Jy−1.
Using this equation (16) gives the noise correlation to be' 175 mJy. As this is much
larger than the expected signal calculated in the last section, we are justified in neglect-
ing the signal term in equation (26) in the Appendix. For total time of integration
T = 10 hrs, equation (19) givesσ(Ŝ) ' 5 mJy.

As each frequency channel gives a realization of the signal, the noise can be reduced
further by using all the frequency channels. This givesn = Nchan×T/1t with Nchan =
128 for GMRT; equation (19) givesσ(Ŝ) ' 0.45 mJy. Even though we made a few
simplifying assumptions in calculating the noise, this is the typical value obtainable
in a real experiment. The expected noise is much larger than the expected signal
from the HI fluctuations and therefore an experiment like GMRT cannot detect the HI
fluctuation for a given|U| or by using a single pair of antennas in a reasonable amount
of integration time.

To reduce the noise further one must consider averaging the signal over more than
one pair of antennas. One such estimator is the map RMS which uses information from
all possible baselines. The total number of ‘instantaneous’ baselines for an experiment
with N antennas isN(N − 1)/2. This givesn = NchanN(N − 1)/2 × T/1t and
gives a further decrease of a factor' N/

√
2 in the sensitivity. In the previous section

we showed that much of the contribution to signal comes from baselines≤ 1000λ.
GMRT has 15 antennas in the central array within a radius of' 1 km. Much of the
contribution to the signal will come from these antenna pairs.

TakingN = 15 in the calculation of noise sensitivity, we getσ(Ŝ) ' 40µJy for
10 hours of integration. The average signal (averaged over 15 antennas of the central
GMRT array) is' 20–40µJy. This means that a few sigma detection of the signal
might be feasible in integration time≤ 100 hrs using the central array of GMRT.

Case II– ν 6= ν ′: In this case,〈Nν(U)N∗
ν (U)〉 = 0 and the variance of the sig-

nal estimator is smaller by a factor of 2 (equation (18)). The rest of the calculations
proceeds similar to the first case. The number of distinct pairs for two different fre-
quencies will depend on the separation of the frequencies. However, one must also take
into account the line width of the damped Lyman-α clouds which is' 200 km sec−1

(Prochaska & Wolfe 1998). The line width of each GMRT channel is' 120 km sec−1.
This means that one damped Lyman-α cloud will spill over in many frequency chan-
nels, thereby creating a correlation in the signal for nearby channels. This correla-
tion must be accounted for before the HI fluctuation signal can be extracted. It is
hard to do it analytically and this issue will be addressed in future using simulations
of the HI signal. However it is possible to get the typical noise sensitivity for this
measurement.

The total number of frequency channel pairs isNchan(Nchan− 1)/2. Each pair gives
a different realization of noise. If we average the signal over all baselines and all fre-
quency pairs, we getn = N(N − 1)/2Nchan(Nchan − 1)/2. This is larger than the
maximum value ofn in the first case by a factor of' Nchan/2. However it would
be meaningful to average over all channel-pairs if the signal is significant for all
such cross-correlations. As seen in the previous section, the correlation between dif-
ferent channels falls rapidly for separation≥ 1 MHz, therefore the number of use-
ful channels pairs is less than the maximum possible. The value ofn however is
still likely to be more than in the previous case. For example if we average the sig-
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nal over all the frequency channels withν ′ − ν ≤ 0.5 MHz, the expected signal is
' 10–20µJy. The number of frequency pairs are' 5Nchan in this case. This gives
σ(Ŝ) ' 15µJy for ten hours of integration. From this discussion we can conclude
that it might also be possible to extract this signal for integration time≤ 100 hrs using
GMRT.

The noise in detecting the HI signalσ(Ŝ) is comparable to the sensitivity for detect-
ing continuum sources. This is so even though the HI clouds emit line radiation.
Therefore the method of observing fluctuations in HI radiation makes more optimal
use of all the frequency width available in the experiment. The individual clouds are
very faint (flux <∼ 10µJy (Sainiet al. 2001)) and cannot be detected using GMRT
because the line sensitivity' 50µJy for 100 hrs of integration needed to detect the HI
fluctuations.

5. Conclusions and discussion

Our main results are:
• The correlation in measured visibilities owing to density inhomogeneities and

peculiar velocities of the HI distribution at high redshifts can be related to the
power spectrum of the HI distribution (equation (13)). The visibility correlation
for any baselineU is sensitive to Fourier modes≥ 2πU/rν . This means that the
typical length scales probed for any baseline are<∼ 30h−1 Mpc(100/U).

• The signal is strongest for baselines<∼ 1000 and forν = ν ′, i.e., on the same
two-dimesional map, the correlation is between 2× 10−9 Jy2 and 10−10 Jy2.

• Forν 6= ν ′, i.e., cross-correlation signal, the correlation signal is 10−9–10−11 Jy2

for baselines|U| <∼ 500 forν ′ − ν <∼ 0.5 MHz. The correlation is negative for
most baselines forν ′ − ν >∼ 2 MHz and falls below 10−12 Jy2.

• GMRT might detect these signals for integration times<∼ 100 hrs. We argue that
measuring visibility correlations in the presence of system noise makes optimal
use of the fact that the noise is uncorrelated across baselines and frequency chan-
nels. The error for these measurements is comparable to and can even be smaller
than the continuum sensitivity of the instrument.

The signal and noise analyses given in this paper are for the system parameters
of the currently-operational GMRT. However it can be easily extended to future tele-
scopes like Square Kilometer Array (SKA)* and Low Frequency Array (LOFAR)†.
Our analysis can also be extended to higher redshifts (z ' 5) as the HI content
of the universe at these redshifts is beginning to be known (see e.g. Perouxet al.
2001).

In this paper we neglected two other contributions to the visibility correlations:
galactic and extra-galactic foregrounds and the Poisson fluctuations owing to point-
like nature of HI clouds. The galactic foregrounds are expected to be dominated by the
fluctuations in the synchrotron radiation from the Galaxy. The only existing all-sky
map at low radio frequencies is the 408 MHz Haslam map (Haslamet al.1982). This
map has an angular resolution of' 1◦ and therefore cannot give much information

* Seehttp://www.nfra.nl/skai/
†Seehttp://www.astron.nl/lofar
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on the angular scales of interest to us. The extra-galactic foregrounds get most of its
contribution from the radio point-sources. Little is known about the radio point sources
at sensitivity levels (<∼ 100µJy) and frequencies of relevance in this paper.

Even though not much is known about Galactic and extra-galactic foregrounds at
angular scales and sensitivity levels relevant to this paper, extrapolation from known
foregrounds suggest that these foregrounds are likely to dominate over the HI signal
(BNS 2001). A possible strategy to remove foregrounds was discussed in BNS (2001).
Long GMRT baselines (>∼ 1 km) will be useful (the signal is negligible at such base-
lines) in removing the radio point sources and galactic foreground at angular scales
<∼ 1′. Any strategy to remove the foregrounds might degrade the signal-to-noise for

the detection of the HI signal. This issue will be discussed in a later paper by using
simulations of the HI signal and the foregrounds.

The HI at large redshift is locked up in discrete clouds. This will give rise to visibility
correlations even in the absence of gravitational instability. This signal also depends
on the mass function of the HI clouds (Sainiet al.2001) and therefore the detection of
this signal can give an important clue about how the HI at high redshift is distributed.
We shall attempt to estimate this signal from simulation of the high redshift HI in a
later publication.
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APPENDIX A

The HI fluctuation signal and the noise satisfy the following conditions:

〈Sν(U)Sν ′(U′)〉 = 〈Sν(U)Sν ′(U)〉δD(U − U′) (20)

〈Nν(U)Nν ′(U′)〉 = 〈Nν(U)Nν(U)〉δD(U − U′)δD(ν − ν ′). (21)

Note that the signal is correlated across frequency channels while the noise is not. Let
us assume that any interferometric experiment makesn measurements of the visibility
for given |U| and the quantities (like visibility correlation function) are estimated by
averaging over these measurements. Using this it is seen that the signal (forν = ν ′)
and the noise can be treated asn uncorrelated, random variables with the same mean
and variance. In such a case, the estimated average equals the average of any of the
random numbers and the variance of the estimated ‘signal’ is 1/n times the variance
of any of the random variables (see e.g., Papoulis 1984; this result is independent of
the probability distribution functions of the individual variables). Of particular interest
to us is the variance of the estimator in equation (17) for a given|Eu|. The variance is
estimated fromn realizations of the random variablêS. It is given by:

σ 2(Ŝ) = σ 2

n
. (22)
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Hereσ 2 = 〈Ŝ2〉 − 〈Ŝ〉2 is the variance of any realization ofŜ.
It is given by, using the definitions ofV andN from equation (15):

σ 2 = 〈VνVν ′VνVν ′ 〉 + 〈NνNν ′ 〉2 − 2〈NνNν ′ 〉〈VνVν ′ 〉 − 〈SνSν ′ 〉2. (23)

To simplify this expression further we use the fact that for a Gaussian random process,
the expectation value of four random numbers is given by

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x2x4〉〈x1x3〉.

We first consider the case whenν = ν ′. Equation (23) then reduces to:

σ 2 = 3〈VνVν ′ 〉2 + 〈NνNν ′ 〉2 − 2〈NνNν ′ 〉〈VνVν ′ 〉 − 〈SνSν ′ 〉2. (24)

Again using equation (15) for the definition of〈VνV
′
ν〉, this simplifies to:

σ 2 = 2 × (〈SνSν〉 + 〈NνNν〉)2 . (25)

The case whenν = ν ′ is slightly more complicated. Making a simplifying assumption
that the signal contribution can be dropped while calculating the four-point functions
in equation (23) (for justification see the text), we get:

σ 2 ' 〈NνNν〉2. (26)

Equations (25) and (26) along with equation (22) gives equation (18).
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