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Abstract 

    The mean free path of light (l
*
) calculated for elastic scattering on a system of 

nanoparticles  with spatially correlated disorder  is found to  have a minimum when the 

correlation length is of the order of the wavelength of light. For a typical choice of 

parameters for the scattering system, this minimum mean free path (l
*
min) turns out to satisfy 

the Ioffe-Regel criterion for wave  localization , l
*
min  λ,  over a range of the correlation 

length, defining thus  a stop-band for  light transmission. It also  provides a semi-

phenomenological explanation for several interesting findings reported recently  on the 

transmission/ reflection and the trapping/storage  of  light in a  magnetically tunable 

ferrofluidic system. The subtle effect of structural anisotropy,  induced by the external 

magnetic field on the scattering by the medium,  is  briefly discussed in physical terms of the 

anisotropic Anderson localization.   

 

I. INTRODUCTION 

Localization of light,  or of a wave in general,  in a strongly scattering disordered 

medium is now a well established phenomenon
1
. This arises from the interference of the 

coherently, multiply scattered waves in the random medium.  Such a localization of a de 

Broglie wave was first studied theoretically by Anderson
2
 in a seminal “oft-quoted but 

seldom read” paper  for the case of  an electron moving in a disordered lattice.  He had  

predicted that for  sufficiently strong disorder, electrons should become spatially localized 

turning the conductor into an insulator --  a phenomenon now referred to as  Anderson 

transition. The corresponding case for light localization has been the subject of much 

theoretical
1,3

 and experimental investigations
4,5

 in recent years.  Nominally, localization 

occurs when a certain general condition, namely, the Ioffe-Regel criterion is satisfied which 

for  any classical  or  quantum wave, e.g., light or the  de Broglie electron wave,  requires that 
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the transport mean free path l
*
 be of the order of or less than  the wavelength λ0 of  light in 

the medium.  The Ioffe-Regel criterion essentially states that for the disorder - induced 

localization the mean free time (t= l*
/v, where v is the wave velocity in the medium) elapsed 

between the successive elastic scatterings should be less than the time period of the wave 

2/, i.e.,  l
*
/v   2/ , and hence l

*
  0. The exact  numerical prefactor on the right hand 

side of the above inequality depends on the specific model of disorder chosen for  the 

medium. Indeed, experimentally it has been reported
6 

 that at the onset of localization for an 

electron wave (of Fermi wavelength ), l
*
/  5.2 implying l

*
.  This criterion  suggests that 

an increase in the wavelength,  or a decrease in the transport mean free path should serve to 

localize light. The two quantities, however, are not independent, inasmuch as in the limit of 

long wavelength (i.e.,  in the Rayleigh limit), the scattering cross-section varies as the inverse 

fourth power  of the wavelength 0 and the transport mean free path l
*
 increases 

correspondingly. In the opposite limit of short wavelengths, on the other hand, one is in the 

ray-optical regime, where the wave  interference is relatively less effective. While   the 

optical analogue of a truly bound state (i.e., with negative energy) for an electron cannot 

obtain for  light,  it has been shown theoretically
3,7

 that,  similar to the case of sharp impurity 

states lying  in the band-gap of a semiconductor,  localized states of light  can indeed occur 

within the energy gap of a photonic band-gap material upon the introduction of some defects 

(disorder) in the otherwise  perfect periodic structure. Here localization is helped by the 

reduction in  the photonic density of states in the gap (the Purcell-factor effect
7,8

).  A direct 

manifestation of the light wave localization and of the thinning of the optical density of states 

is the well-known inhibition of spontaneous emission from an electronic impurity state lying 

localized within the gap
7,9

. Very recently, Schwartz et al.
10

 have experimentally demonstrated 

the transverse localization of light caused by random fluctuations in a two-dimensional 

photonic crystal lattice.   

In the present work, we re-visit the problem of light wave localization basing on the 

fact that the scattering cross-section for  the wave has a pronounced maximum when the 

correlation length () of the correlated disorder in the medium  matches  the wavelength  

/refractive index) of  light in the medium. This should lead to a minimum in the transport 

mean free path (l
*
) that may now well satisfy the Ioffe-Regel criterion, l

*
 ~ 0;  a condition 

which is normally hard to satisfy for the light scattered by dielectric contrasts (the transport 

mean free paths usually obtainable through dielectric contrasts being typically 100m to a 

few microns >> 0).   We will later address the question of the tunability of the correlation 
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length  that would give rise to  a stop-band for the transmission of  light,  when we finally 

make contact with some recent experiments on the trapping of light in ferrofluids.      

II. DERIVATION 

We begin by giving an analytical treatment for the  scattering of light by a system of 

scatterers with correlated positional  disorder.  The transport mean free path (l*
) for the light 

wave, which in general involves the product of the form factor (namely, the individual 

scattering cross-section that characterises a single scatterer) and the structure factor (that 

takes into account the positional correlation in the  distribution of  the scatterers) is given by:   


 1* )(l  dS )cos1()(),(  q                                    ………..(1)

 

with  (,) the elastic differential scattering cross-section for a single scatterer (i.e., 

(,)d is the flux scattered into the solid angle element d about the scattering direction 

(,) for  a unit incident flux). Here  q = ks - ki is scattering wave vector (the momentum 

transfer divided by ħ), with   ks  =  ki  and the magnitude q = 2k sin(/2); ki  and  ks   being, 

respectively, the incident and the scattered  wave-vectors. The structure factor is given by   
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with Ri the position of the i
th

 scatterer. The factor (1-cos ) weights the effectiveness of the 

backscattering in calculating the transport mean free path l
*
. Thus, for example, for a totally 

random collection (dilute gas, say) of point-like scatterers (of size a0 << λ0) we have the  

Rayleigh scattering off the individual scatterers with a total single particle scattering cross-

section  given by  
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Here  is the dielectric constant of the material of which the scatterers are made relative to 

the dielectric constant of the background. The total scattering cross-section for the N random 

scatterers is then simply N.  Moreover, in this case the structure factor is trivial : 
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where  n = N/V,  is the mean number density of  the scatterers. Thus, for this case of the 

totally uncorrelated random gas of Rayleigh scatterers, we have the well-known expression 

for the transport mean free path l*
: 

)(

1*

n
l                                                               ……..(5) 

We  will now consider such an isotropic  system of scatterers, but with positional correlation 

described by a non-trivial  structure factor  : 

     

                    rrRrRr ji

rrq  
 dde

V ji

i )(δ)(δ
1

,

).(  

                          rrrr
ρrq  
 ddnne

V ji

i )()(
1

,

).(              ……..(6) 

With this, we can re-write the transport mean free path as  

rrrr
rrq  
 dddnne

V
l i Ω)()()θcos1(),θ(ζ

1
)( ).(1*                             ….(7) 

Now, the spatial correlation of the density fluctuations can be introduced and characterized 

generally  through a correlation length scale . For our semi-phenomenological treatment, we 

will take the correlation to have an exponential spatial decay. With this, we obtain 

2

0)(δ)(δ)()( nnnnn  rrrr  
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rr
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where,  the density fluctuation (n) = n(r)  - n0 with n0 the uniform mean value, and the 

ellipses denote the trivial uniform background that clearly does not scatter. The statistical 

fluctuation n
2
(0) above  is to be taken as an overall prefactor without any sensitive 

dependence on the degree of order.  Thus, e.g., for the  Poissonian fluctuations (as  will be 

assumed here for simplicity) within the  interparticle volume ~1/n0, we have  n
2
(0) = n0

2. 

With this proviso, we obtain for the transport mean free path - 

 
 ddeenl ri

r
rq  /.2

0

1* )cos1(),()(                    …………. (9)    

              For the case of our isotropic (nanometric-scale  spherical)  scatterers, we have  

(,)=/4.  Further,  an important and  well known fact
11

 is that a collection of n00
3
 

scatterers lying within an optical cell volume  ~0
3
 scatters phase-coherently making  the 

effective scattering cross-section for the cell (n00
3
)
2
.   (We recall that  here is the total 

scattering cross-section for a single scatterer). Thus, for the case of our rather dense  random 

scatterers, we must modify the above expression by multiplying the single particle 

differential scattering cross-section  (,) by the coherence enhancement factor n00
3
 . 

 
 (By 

way of contrast, we should note that for the electronic case  this coherence factor is 

essentially ~1 because of the smallness of the electron de-Broglie (Fermi) wavelength).  

Accordingly, on  carrying out the space integral over r, we obtain for the normalized 

transport mean free path,  
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where,   we have used        
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Recall that q = (4/0)sin(/2), with  the scattering angle.  Performing the integral over , 

we finally obtain – 
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with  X = /0 . Note that  F(X) is a universal function. Equation(11) is the main result of our 

derivation.    

           A few comments are now in order for the enhancement of scattering when  the 

wavelength 0 matches the correlation length ξ.  This is physically analogous to  the well 

known phenomenon of critical opalescence, where, of course, the correlation length is tuned 

thermally as we approach the critical temperature, and becomes comparable to the 

wavelength of the  light. Indeed, it is known that the light scattering (opalescence) is at its 

maximum at a temperature at which the correlation length equals the wavelength of light
12

. In 

the present context, the temperature tuning of the critical opalescence has been replaced by 

the magnetostatic tuning of the spatial correlation of the light scatterers.  Here the field-

induced ordering of the disordered ferrofluidic system has  been  parameterized 

phenomenologically through a correlation length, ξ, which is expected to increase 

monotonically with increasing external magnetic field which is responsible for  inducing the 

spatial order. (It should be clarified, however, that we are not talking here about the 

spontaneous order and its  correlation length as for  a thermodynamic  system  approaching  

the critical point of a phase transition. In the present case, the forced order is created 

primarily from the consideration of magnetostatic energy minimization
13

).  Thus, as the 

magnetic field is tuned up from the zero value, the spatial order and the associated correlation 

length must increase, and can become comparable to the wavelength of light, which should 

result in strong scattering.  It is this strong scattering over a certain stop-band of the magnetic 

field that can enable us to satisfy the Ioffe-Regel criterion for the localization of light, that 

would otherwise demand a very strong dielectric contrast between the scatterers and the  

background medium. This would be hard to realize.  Our phenomenological model based on  

localization in terms of tunable correlation length may be generally viewed as interpolating 

between  complete randomness and complete order (photonic band-gap crystal). It may be 
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further refined so as to take into account a more realistic model of  magnetic ordering of the 

ferrofluidic system and the resulting anisotropy.   

III. RESULTS AND DISCUSSION 

Figure 1 shows a plot of   l*/0 ( transport mean free path normalised by the wavelength of 

light in the medium) against /0 (the correlation length normalised by the wavelength) 

obtained using Eq. 11, for a choice of parameters typical of the nanometric system to be 

discussed shortly. (The plot is for  0  = /refractive index of medium =  (0.632/1.45) m ; a0, 

the size of the scatterers = 2x10
-2
m,  n0 = 2x10

3
m

-3
, and |(-1)/(+2)|

2

=1/2). Figure 1 clearly 

shows that the calculated transport meanfree path (l*
) dips below the wavelength value 0 for 

a range of the correlation length, 0.065 < /0 < 3.57. In this range (shown as the shaded 

region in the graph), therefore, the Ioffe-Regel localization criterion is well satisfied, defining 

thereby a stop-band for the transmission of light through this optical  medium. (It is apt to 

note here that while the criterion for the onset of localization is framed in terms of l
*
  

calculated in the first Born approximation, the resulting localization develops from the 

coherent multiple back-scattering which is a non-perturbative effect and involves l
*
 as a 

parameter).    
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FIG. 1 : Plot of normalized mean free path (l*/ λ0) against the normalized correlation length (/λ0) for a certain choice of 

parameters given in the text. The Ioffe-Regel criterion is satisfied in the shaded region; hence, the stop-band for light 

transmission. 
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          In Fig.2, we have plotted the universal function F(X) (Eq. 12) for the sake of 

completeness. 
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FIG.2: The universal function F(X) versus X  

We will now attempt an  interpretation of the  recent experimental observations of Mehta and 

co-workers
14-17 

 in on the transmission/reflection and trapping/storage of light in the 

magnetically tunable ferrofluidic system in the  light of our semi-phenomenological treatment 

presented above.  These authors have reported two interesting, and  possibly important 

experimental observations in a system consisting of   a random suspension of nanospheres 

and microspheres of Fe3O4 (magnetite) in kerosene :   

(A)   Reversible blocking  of  light transmission through the disordered ferrofluidic 

scattering system over a stop-band of an external magnetic field applied 

transverse to the direction of the incident light, and the subsequent delayed (upto 

~100ms) release of the stored light in the form of a flash upon removal of the 

magnetic field.    

(B) Simultaneous  vanishing of the transmitted and the reflected light on approaching 

the stop-band.  

While  these experimental observations are admittedly very interesting, the explanation for 

the observed phenomena offered
14

  in terms of the vanishing of the forward as well as the 
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backward scattering of light for a certain combination of the magnetic permeability and the 

dielectric permittivity  (both reckoned at optical frequencies) of the spherical magnetite 

scatterers  is   basically flawed
18,19

.   This is because at optical frequencies, the magnetic 

permeability  =1 and there is no magnetic scattering to interfere destructively with the 

dielectric scattering.  

Our explanation for these findings is  rather straightforward when viewed in  terms of  

localization of light in this remarkable disordered medium of random scatterers, where the 

spatial  order can be induced and tuned magnetostatically by the externally applied magnetic 

field. It is well-known that the magnetite particles  re-arrange to form linear chains in the 

direction of the applied magnetic field
20,21

.  

Let us first consider the observation (A). By varying the external magnetic field  one 

may tune continuously   the spatial correlation length, ξ,  sweeping across the matching 

condition ξ~λ0  giving a strong scattering resulting in localization as has been shown in our 

semi-phenomenological treatment above.  This should naturally give a stop-band (bracketing 

the ξ~λ0 condition) as has indeed been reported.  Thus we believe that  in the experiments of 

Mehta et al.,  in the stop-band the light is stored or trapped as light localized within the 

medium. In this picture, we should now expect the stored light to exit as a flash as  the 

magnetic field is switching off, bringing the system out of the stop-band. Indeed, the storage 

of light as light is consistent with their explicit demonstration of the pumping of a dye 

fluorescence by the trapped light
17

.   

We re-emphasize that all scattering here is essentially electric-dipolar in nature; the 

magnetic nature of the particles, however, helps order the scatterers in space 

magnetostatically through an externally applied magnetic field. It is this synergy between the 

electric-dipolar light scattering by the nano-scatterers and the magnetostatic tunability of their 

spatial order that makes the ferrofluidic system remarkable as a magnetically tunable 

scattering optical medium.  

  It is apt at this stage to  distinguish between the properties of the ferrofluid 

(nanoparticles treated as Rayleigh scatterers)  and those of  the microspheres (treated as Mie 

scatterers) suspended in it, and also their relative roles in the localization of light.   (Recall 

that typically a < λ/10 for Rayleigh scattering, λ/10 <  a <  10λ for Mie scattering, and a > 

10λ for  the refraction/ reflection description  to hold).  In the experiment
14,15

 the typical size 

of the magnetite (Fe3O4) nanospheres was about 10nm, and  their number density was about 
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10
15

cm
-3

. The magnetite microspheres, on the other hand, were much larger (2-3m) in size 

and had a lower number density (10
8
 cm

-3
). The wavelength λ of light used was 0.632m in 

vacuum, which gives λ0 = 0.43m in the medium (kerosene). The  nanoparticles being  of a 

small size, below  the Marshall limit,  are expected to be mono-domain
22

,  or subdomain, and 

thus act as permanent finite magnetic dipoles that can be ordered orientationally by an 

externally applied magnetic field. Their permeability at optical frequencies, however,  stays 

essentially equal to 1 as noted earlier, and thus there is no magnetic dipolar scattering. The 

microspheres are too large (multi-domain) to have a net  spontaneous magnetic moment, but 

are magnetostatically polarizable directly by an external magnetic field  as also by the 

nanomagnets mediating between them. The microspheres  too scatter light, but again 

primarily through their dielectric polarizability, and predominantly in the forward direction, 

which is not effective for localization. (Note the explicit (1-cos) factor in Eq.(1) for the 

effective scattering cross-section).  
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FIG.3 :. Calculated Mie scattering cross-section of the microspheres as a function of 

wavelength for parameters given in the text.  

That the microspheres play a relatively  sub-dominant role in light scattering in this 

system is borne out by our calculation of the transport mean free path
23,24

. The calculated   

total scattering cross-section of a single Mie scatterer is plotted in Fig.3 as a function of 

wavelength, for a choice of parameters corresponding to the experiment. Clearly, one sees 

peaks corresponding to the various multipole resonances, in fact with a pronounced peak at 

the wavelength used in the experiment.  The transport mean free path calculated using Eq.7 
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for Mie scatterers, as in the case of the Rayleigh scatterers,  also  has a minimum as function 

of the correlation length; however, the minimum was relatively shallow.  The  role of the 

microspheres   appears to us, in the present experiment, as   essentially   providing  for a 

scaffolding for  spatial  magnetic order in the medium  giving a finite  correlation length as 

function of the externally applied magnetic field. Thus we believe that the light scattering is 

mainly  by the nanoparticles. In addition,  these magnetically  orientable nanoparticles 

mediate interaction (bonding chains, say) between the polarizable microspheres, and help 

create the spatial order which is tunable  magnetostatically externally. Magnetic ordering of 

similar systems has been studied  by several workers
13, 20,21

.  

         Now we turn our attention to observation (B), namely,  the simultaneous  vanishing of 

the transmitted and the reflected light on approaching localization (the stop-band). While 

away from localization, the transmitted light intensity is expected to be much greater that  the 

reflected intensity  as clearly observed experimentally, the opposite is expected to be the case 

as we    approach  the localization regime (the stop-band). It  indeed then comes as  a surprise 

that, experimentally, both the intensities are actually found to diminish greatly  and 

simultaneously ! Where does the light go ? The question may be answered  in physical  terms  

of  the anisotropic Anderson localization. Here it is known that despite the anisotropy, the 

"mobility edge" (the onset condition for localization) itself is independent of the direction, as 

in the case of isotropic Anderson localization. But, the associated length scales, namely, the 

wave-correlation length Lwc (localization length Lloc) in the extended-state regime (localized-

state regime) are NOT 
25-27

. In particular, the wave-correlation length Lwc along the direction 

of the relatively weaker  disorder can be much (exponentially)  smaller   than  its value in the 

direction of the relatively stronger  disorder.  Now, in the present case, the structural 

anisotropy of disorder is caused by the externally applied magnetic field which  is known to 

create chain-like ordering of the scatterers along the  direction of the magnetic field, i.e., 

transverse to the direction of the incident light (longitudinal direction). This  partial ordering 

in the  transverse direction implies a relatively much weaker  disorder, and correspondingly  a 

much smaller  transverse wave-correlation length scale Lwc.. This in turns implies much 

greater transverse diffusion relative to that in the longitudinal direction as the stop-band is 

approached. We, therefore, expect the light to diffuse away sideways on  approaching the 

stop-band, thus  escaping out  in the transverse direction. Clearly, this dominant transverse 

escape implies simultaneous depletion  of the transmitted and the reflected intensity along the 

longitudinal direction. This is indeed what is observed experimentally. 
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      Finally,  we would like to comment briefly on a possible purely electronic mechanism for 

the phenomenon in question, namely  that of storage/ trapping of light as an electronic 

excitation/resonance,  and  its subsequent delayed re-emission as a pulse, e.g., by 

fluorescence/phosphorescence  as for instance in “quantum-dot blinking”.    However, for the 

cw incident light, the emission of stored/ trapped light energy as magnetically gated light 

pulse (flash) will again involve localization, in that it is the latter that inhibits the emission of 

light by de-excitation in the stop-band  due to the absence of/ reduction in the  propagating 

modes in the localization regime. Moreover, there is no experimental evidence for 

appreciable absorption in the optical band – the absorption band lies in  the ultraviolet
28

. 

Besides, the fluorescence / phosphorescence does not preserve the polarization, while 

experimentally, the emerging flash of light is found to have the same polarization as the 

incident light. The multiple scattering in Anderson localization is, however,  dominated by 

coherent back-scattering that does retain the polarization.  We, therefore, believe that light 

energy is stored as  light  through Anderson localization by disorder which  is  magnetically 

tunable in the present case.  

  

IV.  CONCLUDING REMARKS 

 

     We have provided a semi-phenomenological theory for the localization of 

light in a medium with magnetically tunable correlated disorder. The crucial point here is that 

the scattering is strongest for the correlation length matching the wavelength of light, for 

which an approximate analytical expression has been derived.  This provides a qualitative   

understanding of  the experimental findings of the reversible trapping/storage   of light in a 

ferrofluidic system over a stop-band of an externally applied magnetic field. Our analytical 

treatment is based on an isotropic Anderson model,  while, actually, the system is rendered 

anisotropic by the externally applied transverse magnetic field. This enables us to understand 

another important feature, namely, the simultaneous reduction of the transmission as well as 

the reflection as we approach the stop-band. Besides, it is known that anisotropy favours 

localization in that it effectively lowers the dimensionality of the system
26

. We hope that our 

work will encourage further  experimental and theoretical  investigations that should sharpen 

our understanding of these phenomena.  
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