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Quantum state tomography (QST) has been the traditional method for characterization of an unknown
state. Recently, many direct measurement methods have been implemented to reconstruct the state in a
resource efficient way. In this Letter, we present an interferometric method, in which any qubit state,
whether mixed or pure, can be inferred from the visibility, phase shift, and average intensity of an
interference pattern using a single-shot measurement—hence, we call it quantum state interferography.
This provides us with a “black box” approach to quantum state estimation, wherein, between the incidence
of the photon and extraction of state information, we are not changing any conditions within the setup, thus
giving us a true single shot estimation of the quantum state. In contrast, standard QST requires at least two
measurements for pure state qubit and at least three measurements for mixed state qubit reconstruction. We
then go on to show that QSI is more resource efficient than QST for quantification of entanglement in pure
bipartite qubits. We experimentally implement our method with high fidelity using the polarization degree
of freedom of light. An extension of the scheme to pure states involving d − 1 interferograms for
d-dimensional systems is also presented. Thus, the scaling gain is even more dramatic in the qudit scenario
for our method, where, in contrast, standard QST, without any assumptions, scales roughly as d2.
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Introduction.—The inherent probabilistic features of
quantum measurement play a central role in quantum
mechanics. The probability distribution of outcomes of
any measurement on a quantum system can be predicted if
its quantum state is known. However, an unknown quantum
state of a single particle cannot be directly determined in
any experiment [1]. Nevertheless, if we have an ensemble
of identically prepared particles, we can reconstruct the
quantum state by measuring the expectation values of
different observables.
One of the widely used methods for state reconstruction

is the quantum state tomography (QST) technique [2,3],
which often requires additional postprocessing to ensure
the physicality of the reconstructed density matrix [4,5].
For a d-dimensional system, typically one requires d2 − 1
measurements to reconstruct an arbitrary state. For a pure
qudit state, measurement of 5d − 7 observables suffices to
give us a unique state [6,7]. Over the last decade, several
schemes towards improving the scaling of QST with the
dimension of the Hilbert space have been suggested [8–10]
and recently the focus has been towards single-shot state
estimation, i.e., obtaining the state in a single setup without
any required change in the experimental settings [11–14].
In this Letter, we present a novel method for reconstruct-

ing (pure or mixed) quantum state of a qubit along with its
experimental implementation, and also extend the scheme
to infer the state of d-dimensional qudits requiring only
d − 1 measurements, which serves as a promising and less

cumbersome alternative to QST. We emphasize that in our
proposed scheme, the number of measurements scales
linearly with the dimensionality of the system whereas,
in general, the required number of measurements for QST
scales quadratically with respect to the system size. Thus,
for higher-dimensional systems, our method is more
economical compared to QST. Our method can also be
used for quantification and reconstruction of bipartite pure
entangled states in an efficient manner.
Earlier, other alternatives to standard QST using projec-

tive measurements have been explored, in which the
strength of interaction may be strong as in Ref. [15] or
weak as in Refs. [16–18]. Since weak measurements
[19,20] can give us complex weak values of observables,
they have paved the way for direct measurement of
quantum state [21–27]. Our work in this Letter focuses
on the use of interferometric methods as opposed to direct
measurement techniques to obtain the quantum state.
Recently, it has been shown by us [28] and others [29]

that complex weak values can be obtained without perform-
ing weak measurement, which can lead to efficient direct
measurement of quantum states [30]. Knowing the weak
value of a Hermitian operator can give us the expectation
value of a related non-Hermitian operator [31]. Expectation
value of non-Hermitian column operators have been used
for direct measurement of the state [32].
In this Letter, we show that interferometric methods can

be used to infer the quantum state of an ensemble of
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identically prepared qubits by a single-shot measurement
[33]. We name our method quantum state interferography
(QSI). QSI focuses on minimizing the number of data
acquisitions as all parameters describing the state are
obtained at once by postprocessing the interference pattern.
This differs from direct state measurement which focuses
on minimizing postprocessing at the cost of changing the
experimental setup. QSI has enormous practical benefits
vis-a-vis quantum state estimation that can be useful in
various applications like quantum information processing
protocols [34,35]. We experimentally implement it in
polarization degree of freedom of light, which yields a
single-shot method for characterization of the polarization
state of light.
Next, we discuss the theory for how a two-path inter-

ferometer can be used to reconstruct not only pure states but
also mixed states. We then experimentally demonstrate the
method using 632.8 nm helium-neon laser light in a
displaced Sagnac interferometer [36]. Then, we extend
the protocol to qudits and show the advantage of using QSI
over QST for pure states.
Quantum state interferography for qubits.—The general

density matrix for a qubit can be written using the
coordinates θ ∈ ½0; π� and ϕ ∈ ð−π; π�, which describe
the direction of the vector in the Bloch sphere representa-
tion, and μ ∈ ½0; 1�, which is related to the purity of the state
and the length of the vector.

ρ ¼

0
B@ cos2

�
θ
2

�
1
2
μe−iϕ sinðθÞ

1
2
μeiϕ sinðθÞ sin2

�
θ
2

�
1
CA: ð1Þ

The expectation value of spin-ladder operators σ� ¼
1
2
ðσx � iσyÞ is given as

hσ�i ¼ Trðρσ�Þ ¼
1

2
expð�iϕÞμ sinðθÞ: ð2Þ

The argument of the complex expectation value hσ�i
directly gives us the azimuthal coordinate, i.e.,
ϕ ¼ � argðhσ�iÞ. For a pure state, μ ¼ 1 and hence, the
θ can be obtained as sin−1ð2jhσ�ijÞ. However, the solution
to θ is not unique in ½0; π� and π − θ is a solution as well.
Thus, to uniquely determine θ, we need to measure the
expectation value of another column operator, which in this
case is the projector Π0 ¼ j0ih0j, with hΠ0i ¼ cos2ðθ=2Þ.
Once hΠ0i is known, θ is uniquely determined in ½0; π�.
Now, μ can be determined as μ ¼ ½2jhσ�ij= sinðθÞ�.
Next, we show that all three quantities θ, ϕ, and μ

specifying the polarization state of light can be determined
from a single interference pattern obtained in the Mach-
Zehnder interferometer (MZI) as shown in Fig. 1. The
operator A ¼ σ− is polar decomposed into the R ¼ Π0 and
U ¼ σx. The optical components corresponding to R andU
are placed in each arm of the MZI.

We will discuss the scheme by taking an example of a
MZI. However, it can be realized with any two-path
interferometer including a double-slit interferometer that
can be factory designed and can serve as a robust miniature
device for state estimation. If a pure state jψi is incident

FIG. 1. The polarization state is prepared by using half-wave
plate (HWP) and quarter-wave plate (QWP), which can be at
arbitrary orientations. The MZI is formed by the two beam
splitters (BS). On one arm we place a HWP oriented at π=4 to
realize the σx operator. On the other arm, we use a polarizer with
transmission axis oriented along the horizontal, or alternatively,
the transmitting port of the polarizing beam splitter (PBS) to
effectively realize the operator Π0. The phase shifter introduces a
relative phase φ between the two arms and we measure the
intensity at the photodetector as a function of φ. Experimentally,
the phase shifter can be avoided by making the interferometer
noncollinear (See Fig. 2 and Ref. [28]) to obtain the interferogram
in a single shot.

FIG. 2. Noncollinear displaced Sagnac interferometer for
polarization state interferography: We use the Sagnac interfer-
ometer in noncollinear configuration [28], i.e., we tilt the beam
splitter (Thorlabs BS013) to obtain double-slit-like interference
pattern. We use the displaced Sagnac configuration [36] instead
of the common-path configuration in order to place the polarizing
beam splitter (PBS, Thorlabs PBS122) in one arm (as R ¼ Π0

operation) and the HWP (Thorlabs WPH05M-633) in the other
arm as the U ¼ σx operation. The glass plate, (parallel window
WG40530-B) placed in one of the paths is tilted to achieve the
displacement of that beam to ensure maximum overlap of the two
noncollinear beams at the beam profiler.
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onto the first beam splitter (BS) of a MZI, the intensity at
the photodetector [28] is given by

IðφÞ ¼ 1

4
½1þ hΠ0i þ 2jhσ−ij cosðarg ðhσ−iÞ þ φÞ�: ð3Þ

By knowing IðφÞ, which can be experimentally obtained
from a single interference pattern, we can determine hΠ0i
and hσ−i.
If the incident state is a mixed state given by ρ, we obtain

the intensity at the detector [37] as follows:

IðφÞ ¼ 1

8
½3þ cosðθÞ þ 2 μ sinðθÞ cosðφ − ϕÞ�: ð4Þ

The phase shift of the interference pattern is obtained
at the value of φ that maximizes IðφÞ. Since
0 ≤ θ ≤ π ⇒ sinðθÞ > 0, the phase shift is obtained
as Φ ¼ ϕ.
The phase averaged intensity and the visibility are given

by

Ī ¼ 1

8
½3þ cosðθÞ�; V ¼ 2 μ sinðθÞ

3þ cosðθÞ ; ð5Þ

where θ ∈ ½0; π� can be uniquely determined from Ī, which
is experimentally always normalized with the incident
intensity. Once θ is known, μ can be obtained from
visibility and ρ can be reconstructed.
Interestingly, QSI can also be used to quantify entangle-

ment of pure bipartite states. If a bipartite state is pure, then
entanglement can be quantified by the entanglement
entropy—the von Neumman entropy of the reduced density
matrix, i.e., E ¼ −Tr½ρA logðρAÞ�, where ρA ¼ TrBðρABÞ
and ρAB ¼ jΨiABhΨjAB [39–41]. Since, with a single
experimental setup the reduced density matrix ρA, which
in general is a mixed state, can be determined using QSI, it
can be used to quantify entanglement of pure states of
bipartite qubits. The state jΨiAB can be completely

reconstructed with one additional interferogram as we have
shown in the Supplemental Material [37].
Experiment.—To reconstruct the state of various input

polarizations we need to measure the phase shift of the
interference pattern. If one uses a MZI, it needs to be phase
stabilized against vibrations that change the path difference.
Thus, to avoid this, we prefer interferometers that are not
prone to vibrations such as the Sagnac interferometer [37].
The input state is prepared by placing a HWP (Thorlabs

WPH05M-633) at an angle α followed by a QWP (Thorlabs
WPQ05M-633) at an angle β in the path of a vertically
polarized beam from a helium neon laser (632.8 nm) before
it enters the interferometer. For a fixed angle α of the HWP,
we rotate the QWP and obtain 5 images for a given β. For
each image, we take 100 horizontal slices about the vertical
centroid and fit each slice with the model that is a Gaussian
weighted cosine function:

Bf þ Afe−cfðxf−mfÞ2 ½1þ vf cosðkfxf þ ϕfÞ�: ð6Þ

Here, Bf is the background noise and Af is the amplitude of
the Gaussian envelope centered at mf with standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffi
1=2cf

p
. The fringe width is given by 2π=kf.

The visibility of the fringe and phase shift are determined
from vf and ϕf respectively.
Phase shift, average intensity and visibility from the

interferogram: From the interference pattern obtained in
the noncollinear displaced Sagnac interferometer, we deter-
mine the phase shift, the visibility, and the average intensity
for different polarization states prepared by different combi-
nation of HWP and QWP angles (α, β) as shown in Fig. 3.
The error bars in the plots are obtained from statistics over
the 100 slices for the 5 images. In absence of QWP, the
experimentally obtained value of phase is expected to be a
constant with respect to α. This is considered as the zero
reference for all the measurements. The mean and standard
deviations associated with phase are obtained from the
experimental datasets using circular statistics [42]. The
phase shift obtained from the interferogram has more error

FIG. 3. Phase shift, avg. intensity, and visibility as a function of α and β. The solid lines in the plots represent the theoretical prediction
while the dots and bars represent experimentally obtained mean and statistical error, respectively. The black curve (in the β ¼ 0 plane) is
for the experiment where only HWP was rotated in the absence of the QWP.
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when θ is closer to 0 or π, since the Bloch vector is closer to
the poles where ϕ is undefined, which is manifested in
noticeable deviations from the theory in the experimental
plot for HWP angles 0° and 45°.
All the experimentally obtained averaged intensity are

normalized (with norm ¼ 0.5) with respect to the corre-
sponding maximum of the average intensity obtained as a
function of HWP in the absence of QWP. The average
intensity does not depend on the interference and hence is
not prone to errors that affect the visibility and the phase
shift. The experimentally obtained visibility is systemati-
cally lower than the theoretical prediction because
of various experimental imperfections like polarization
dependence of splitting ratio of the beam splitter (about
3%), angular deviation due to the rotation of the wave
plates (10 arcsec) that changes the spatial overlap, and the
intensity averaging over the pixel area.
Assuming that the polarization state of the incident beam is

pure, we compute the fidelity of the state reconstructed from
θ and ϕ determined by the experimentally obtained average
intensity Ī and phase shift Φ, respectively. The errors
obtained in Φ and Ī are propagated to the calculation of
fidelity for a single state. The mean fidelity calculated from
experimentally obtained mean phase shift (Φ) and mean
average intensity (Ī) are plotted on the Bloch sphere at the θ
and ϕ of the prepared state in Fig. 4 (left) with the values
indicated by the color bar. The average fidelity over all the
prepared states is greater than 98%.
Although the incident state was almost pure (> 99%

vertically polarized), our method can be used in experi-
ments involving mixed states as well. To illustrate, we
reconstruct the density matrix, as given in Eq. (1) using the
μ value determined from the experimentally obtained
visibility, with the restriction that it makes the reconstructed
density matrix physical, i.e., Trðρ2Þ ≤ 1. This is ensured by
construction of ρ in Eq. (1) with the restriction that we
substitute μ with min ðμ; 1Þ as discussed in detail in the
Supplemental Material, Sec. VII [37]. Since the experi-
mentally obtained visibility is systematically lower than the
theory, the reconstructed state has a lower purity and,
consequently, the fidelity [in Fig. 4 (right)] is lower than the
case with pure state assumption.
Quantum state interferography for qudit pure states.—

The pure state of a d-dimensional qudit can be represented
in the polar spherical [43] form as follows:

jψiðdÞ ¼

0
BBBBBBBBBBBB@

cos ðθ1=2Þ
sin ðθ1=2Þ expðiϕ1Þ cos ðθ2=2Þ

..

.

Q
k−1
j¼1 sin ðθj=2Þ expðiϕjÞ cos ðθk=2Þ

..

.

Q
d−1
j¼1 sin ðθj=2Þ expðiϕjÞ

1
CCCCCCCCCCCCA

: ð7Þ

The component of jψiðdÞ in the kth two-dimensional
subspace is given by

jψið2;dÞk ¼
�Yk−1

j¼1

sin

�
θj
2

�
eiϕj

�0B@ cos
�
θk
2

�

sin
�
θk
2

�
eiϕk cos

�
θkþ1

2

�
1
CA:

ð8Þ
We use d − 1 interferometers, one on each of the two-

dimensional fk; kþ 1g subspaces of the d-dimensional
state jψiðdÞ. The expectation values of σ− and Π0 operators
for the two-dimensional subspace can be obtained directly
from phase averaged intensity and phase shift of the
interference pattern. Although, here we shall be formulat-
ing QSI for qudits using d − 1 interferometers for ease of
conceptualization, in principle and in many physical
systems in practice, the state can be inferred from d − 1
interferograms obtained with a setup involving only two
interferometers. This is achieved by using the same
interferometer for all the two-dimensional subspaces (see
Supplemental Material, Sec. XIII [37]).
The matrix element of the spin ladder operator [44] in the

two-dimensional subspace is

hψ jσðkÞ� jψið2;dÞk ¼ ξðkÞ 1
2
e�iϕk sinðθkÞ cos

�
θkþ1

2

�
; ð9Þ

where, ξðkÞ ¼ Q
k−1
j¼1 sin

2ðθj=2Þ.
We directly obtain the relative phase ϕk in the two-

dimensional subspace from the argument of the matrix
element of the spin ladder operator in that subspace. To
determine θk, however, we need to know ξðkÞ and θkþ1 as
well. Nevertheless, as in the case for qubits, we need to
measure the matrix element of ΠðkÞ

0 in the two-dimensional
subspace, i.e.,

hψ jΠðkÞ
0 jψið2;dÞk ¼ ξðkÞcos2

�
θk
2

�
: ð10Þ

We can determine θ1 and, subsequently, θ2 as follows:

θ1
2
¼ cos−1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
hΠð1Þ

0 i
q

Þ; θ2
2
¼ cos−1

�
2jhσð1Þ� ij
sinðθ1Þ

�
: ð11Þ

FIG. 4. (Left) Fidelity with assumption that the various pre-
pared states in θ and ϕ over the Bloch sphere are pure. (Right)
Fidelity of reconstructed density matrices of various prepared
states in θ and ϕ over the Bloch sphere.
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Thus, once θk is determined, θkþ1 can be obtained
sequentially.
We can employ the same scheme to obtain hσðkÞ� i by

placing the polar decomposed elements ΠðkÞ
0 in one and σðkÞx

in the other arm of a MZI constructed for the two-
dimensional subspace fk; kþ 1g. We have to design
d − 1 such MZI setups for the state estimation of a
d-dimensional qudit.
Next, we present a generic scheme to construct all the

necessary operators in each subspace from the Pauli
operators in the d-dimensional Hilbert space. We illustrate
the same using the example of qutrits in Fig. 5.
This scheme can be generalized with d dimensions

simply by blocking all other components after the spin
splitter (ST) except the desired pair. See Supplemental
Material Sec. XII [37] for detailed expressions on how to
infer the state from d − 1 interferograms, which is also
shown to be obtained with two interferometers in Sec. XIII.
Conclusions and outlook.—In summary, we have

proposed quantum state interferography as a method to
reconstruct a qubit state, whether pure or mixed, in a single
experimental setup, and experimentally demonstrated our
scheme with high average fidelity. This forms an efficient
scheme compared to quantum state tomography as well as
direct measurement techniques to infer the state of an
ensemble of identically prepared qubits.
All the parameters needed to determine the state are

obtained from the interference pattern produced using a
single-shot measurement. Since the interference pattern
obtained using the coherent laser light source and a stream
of single photons would be identical [45,46], the method
described here is applicable for determining the state of an
identically prepared ensemble of single photons as well.
QSI provides us with a “black box” approach to quantum
state estimation, wherein, between the incidence of the
photon and extraction of state information, we are not

changing any conditions within the setup, which itself can
be miniaturized. This provides us a true single shot
estimation of the quantum state which has a rich potential
for future technological development.
We have also shown here how QSI can be extended to

estimate pure states of d-dimensional qudits with d − 1
measurements, which can be obtained either by using
d − 1 interferometers as shown in Fig. 5 or by using
only two interferometers as shown in accompanying
Supplemental Material [37]. This is achieved by represent-
ing a d-dimensional qudit using 2ðd − 1Þ parameters and
extracting 2 parameters from each interferogram. While for
qubits we require one measurement as opposed to three in
standard QST, the improvement is even more tremendous
for qudits where standard quantum state tomography,
without any assumptions, scales roughly as d2 and for
pure states, the scaling has been brought down to 5d − 7
[6,7] so far. This may help in efficient characterization of
higher-dimensional systems [47] aimed towards quantum
information processing, quantum computation, and quan-
tum communication. The QSI can also be used for single-
shot entanglement quantification of pure bipartite states,
which can be useful towards foundation of quantum
mechanics.
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of Science and Technology under the QuEST network
programme for partial support.
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