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Quantum key distribution (QKD) is one of the most important aspects of quantum cryptography. Using
laws of quantum mechanics as the basis for security, the key-distribution process makes information the-
oretically secure in QKD. With the advancement and commercialization of QKD, an end-to-end QKD
simulation software is required that can include experimental imperfections. Software of this kind will
ensure that resources are invested only after prior performance analysis, and is faithful to experimental
capacities and limitations. In this work, we introduce our QKD simulation toolkit qkdSim, which is ulti-
mately aimed at being developed into such a software package that can precisely model and analyze any
generic QKD protocol. We present the design, implementation, and testing of a prototype of qkdSim that
can accurately simulate our own experimental demonstration of the B92 protocol. The simulation results
match well with experiment; a representative key rate and the quantum bit error rate from experiment is
51± 0.5 kbit/sec and 4.79%± 0.01% respectively, wherein the simulation yields 52.83± 0.36 kbit/sec
and 4.79%± 0.01%, respectively.
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I. INTRODUCTION

Quantum key distribution (QKD) is a promising tech-
nology that allows two distant parties, popularly referred to
as Alice (sender) and Bob (receiver), to share a sequence of
secret bits called the “key” [1]. Unlike the state-of-the-art
classical public key cryptosystems, developed on Rivest-
Shamir-Adleman (RSA) algorithm [2], which depend on
computational security, i.e., hardness of factoring, the
security of QKD systems rely on the laws of quantum
physics where eavesdropping introduces detectable errors
[1,3]. The secret key generated from a QKD protocol
implementation makes information theoretically secure
communication when the message is encrypted with the
one-time pad symmetric key algorithm [4,5].

With QKD being commercialized [6,7], sophisticated
engineering techniques are being developed [8,9]. To
include and evaluate these growing techniques in the real-
ization of QKD protocols, there exists a requirement of
finding a cost-efficient approach. A useful alternative to the
development followed by testing of an actual experimental
implementation is to design a QKD simulation toolkit that
can accurately model the experimentation of the existing
QKD protocols and deliver the required analysis.

*usinha@rri.res.in

In this paper, we present the design, implementation,
and testing of a prototype of a QKD simulation toolkit
(qkdSim), which we develop, that can simulate an exper-
imental demonstration of the B92 protocol, while tak-
ing into account experimental imperfections. The proto-
type is designed with the vision that in future it will be
ultimately developed into a complete software package
that can precisely model and analyze any generic QKD
protocol.

Earlier theoretical research has been performed on the
analysis of QKD protocols [10,11], and to model real-
world QKD systems [12]. Early stage research activi-
ties were limited to idealistic designs of QKD protocols
[13–15] and they also considered only a few optical
components [16–20]. Web-based toolkits that simulate
QKD basics primarily for educational purposes have also
been developed [21–23]. The other development in QKD-
related modeling is in the simulation of QKD networks
[24,25]. The emphasis in these QKD network simulations
is on the network structure and the dissemination of the
secure key through various levels of the network and not
so much on the accurate simulation of the QKD protocol
towards the generation of the key [24–27].

Among the existing QKD modeling frameworks, a
proper modular structure and detailed modeling architec-
ture for the design, implementation, and analysis of a full
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system-level model can only be found in “qkdX” [12].
Although, qkdX has been deployed as a complete software
package with a modular architecture, limited attention has
been invested in it towards modeling the actual physical
processes including photon sources, from first principles,
as well as detection module. Additionally, qkdX leaves
behind large room for improvement from the implemen-
tational viewpoint in the level of imperfections considered
while modeling some of its optical components.

With this perspective, we develop qkdSim that supports
quick, easy, and precise simulation of physical processes
and evaluation of QKD systems, while considering real-
istic experimental imperfections at a greater detail. For
instance, while in nearly all of the earlier works, the model-
ing of the input photon in the QKD protocol is considered
as a sequence of events, the corresponding input of our
simulation is a sequence of time-stamping data that fol-
lows an ideal single-photon distribution [sub-Poissonian,
antibunching, g2(τ = 0) = 0]. We also model the back-
ground noise as a thermal source, in order to perform
more realistic error analysis that complies with the experi-
mental implementation. In addition to that, our detection
module includes all imperfections like dead time, quan-
tum efficiency, timing resolution etc. Thus, qkdSim aims to
simulate the key-generation rate as well as the quantum
bit error rate (QBER) for a wide range of QKD protocols
while taking into account an exhaustive list of experi-
mental imperfections. This will help in filling the gap
between abstract simulations of QKD implementations and
the actual experimental performance. With a more accurate
prediction of experimental performance, resources could
be more confidently allocated towards real-world QKD
implementations.

Our paper is organized as follows. In Sec. II, we dis-
cuss some elements related to the historical developments
in QKD and thereafter we introduce the general stages as
well as the evaluation methodology of a QKD protocol.
In Sec. III, we discuss the software process models that are
used to develop our QKD simulator. In Sec. IV, we present
a detailed description of our free-space-based experimental
demonstration of the B92 protocol. In Sec. V, we discuss
the various modules that have been constructed for the sim-
ulation of the B92 protocol implementation. In Sec. VI, we
analyze the modeling of the associated physical processes
including single-photon generation and time stamping. In
Sec. VII, we highlight the modeling of different optical and
electrical components that are used in the experimentation.
In Sec. VIII, we analyze and evaluate the results simu-
lated with qkdSim against those obtained from the actual
experimental implementation using the same setup. Lastly,
in Sec. IX, we provide the concluding remarks and dis-
cuss the future research efforts that can be made in this
direction. The detailed analytical expressions and method-
ologies used at various stages in the toolkit, are provided
as appendices.

II. BACKGROUND, GENERAL APPROACH, AND
PERFORMANCE ANALYSIS OF QKD SYSTEMS

In this section, we first provide a brief summary of the
historical advancements in QKD. Thereafter in the second
part, we outline the main steps required to distill a secure
key in any QKD protocol. Finally in the third part, we
define the criteria to evaluate its security.

The first QKD protocol (BB84) is proposed in 1984 by
Bennett and Brassard [28] and then demonstrated using
an experimental prototype in 1989 over a 30-cm free-
space optical channel [29]. The information theoretic secu-
rity of the BB84 protocol has been proven [1,3,30,31].
Unlike the use of four nonorthogonal states in BB84,
QKD is achieved in 1992 using two nonorthogonal states
[32]. This is called the B92 protocol and it is experi-
mentally realized with weak coherent pulses (WCPs) in
1998 [33,34]. Over the years, few protocols such as E91
[35] and BBM92 [36], that perform QKD using quantum
entanglement instead of the noncommutativity of quan-
tum operators as their resource, have also been proposed
and demonstrated [37,38]. In 1998, QKD is first shown to
be secure with imperfect devices, more specifically by the
proposal of a self-checking photon source [39]. This work
initiated developments in the topic of device-independent
quantum key distribution (DIQKD), which not only proved
that QKD can be fully secure with minimal fundamental
assumptions and untrusted devices [40–43], but also exper-
imentally realized it [44]. While the two common QKD
protocols, BB84 and B92, used two and four states, respec-
tively, in 2000 Phoenix et al. proposed that the addition of
a third state to the B92 protocol would enhance its secu-
rity considerably [45]. Later in 2005, this three-state QKD
protocol is proven to be unconditionally secure [46].

An important aspect of a QKD demonstration is the type
of channel over which the key distribution is performed.
Two common choices are the free-space and fiber-based
ones.

The fiber-based QKD setup in 1998 is able to commu-
nicate up to 100 km [34] following the first experimental
implementation of QKD in 1992 [47] and in 2003 using
a free-space optical link, QKD could be demonstrated
only up to 23.3 km [48]. Since then, substantial progress
in research has led to the rapid development of optical
quantum technologies and over the last few years, many
experiments including the demonstration of the feasibility
of ground-to-satellite, satellite-to-ground, and satellite-to-
satellite QKD [49–58] have been reported as well as
commercial QKD devices [59–62] are available. Besides
the implementation of long-haul QKD [63], chip-based
integrated QKD systems supporting miniaturization have
been designed to enable large-scale deployment of QKD
into future telecommunication networks [64]. Lately in
2019, an in-field demonstration of the three-state QKD
protocol is performed over a fiber link exhibiting a 21-dB
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transmission loss in the metropolitan area [65], with the
performance of the scheme being evaluated using finite
key analysis [66].

The process of generating a secure key in a QKD proto-
col can be segregated into (i) authentication, (ii) transmis-
sion using single photons or WCPs, (iii) sifting, (iv) error
correction, and (v) privacy amplification [53,54]. More
specifically, in order to obtain the secure key, the raw key
is first generated over the quantum channel, followed by
information exchange over the classical channel, that leads
to the generation of the sifted key. Thereafter steps (iv) and
(v) are implemented; where the error correction estimates
the error rate and rectifies the erroneously received infor-
mation bits, while finally privacy amplification extracts a
shorter and even more secure final key.

Performance of QKD systems are evaluated with the
QBER and the rate of secure communication [34]. A
lower QBER indicates higher security, while a high secure-
communication rate implies that the transmission link has
a good performance. Any information leakage to an eaves-
dropper about the generated key leads to an increase in the
QBER. Therefore, obtaining a high QBER value reduces
the rate of secure communication during error-correction
stage of the QKD protocol. If the QBER remains below a
certain threshold, then the two parties (sender and receiver)
can still distill a secure key string by means of error cor-
rection and privacy amplification [67]. In other words, if
the QBER of the sifted key is above the information the-
oretically computed threshold for a given QKD protocol
then the key is no longer secure. In that case, any pri-
vacy amplification technique becomes ineffective. Thus it
is imperative for a QKD protocol to ensure a proper upper
bound for the QBER if the privacy amplification tech-
niques are to be employed to eliminate any knowledge
gained by the eavesdropper.

III. SOFTWARE PROCESS OF THE QKD
SIMULATOR

In this section, we discuss the software-development
procedures on which our qkdSim is designed. As a part of
this discussion, we also highlight the salient features of
those software processes and how they get associated to
our final objective.

A software process generally refers to the set of activ-
ities that are used to build a software product [68]. In
software engineering, the simplified representation of a
software process is known as a software process model or
process paradigm [68,69]. Although there can be different
processes and process models, each of them must satisfy
four activities that are fundamental to software engineer-
ing [68]. More specifically, these four activities are that
(i) the software specification must be well defined, (ii) the
software design and implementation must perfectly suit
the requirements, (iii) the implemented software must be

validated, and finally (iv) the software must possess the
provision to be easily evolved as per user needs.

A. Overview of the process model

In this part, we explain the software process model that
is used to construct qkdSim. Our QKD simulation toolkit is
built using a hybrid process model [70]. From a top-down
perspective, our version of the hybrid architectural model
consists of two parts: the “Waterfall” development model,
which supports linear and sequential design techniques;
and the “Agile” development model, which allows itera-
tive and incremental design procedures [69]. In this sense,
it can be categorized as a kind of “Agifall” process model
[71]. Agifall merges the best of both worlds, by injecting
Agile techniques into loose Waterfall design procedures.

As discussed in Sec. II, any QKD protocol grossly
is a five-step sequential process, which experimentally
involves propagating the signal generated at the source
stage through the preparation, transmission, detection,
and lastly postprocessing stage. Therefore, in qkdSim,
the outer structure, containing the gross five-step QKD
design, is developed using the Waterfall process model,
which promotes a clear flow-down logic scheme. How-
ever, keeping in mind the continuous and rapid evolution
of technological advances, precision of handling imperfec-
tions and experimental nonidealities; the inner software-
development architecture for each of the five experimental
stages from the modeling of components and physical pro-
cesses to data-processing methods are developed using the
Agile process model, which supports development at a
sprinter’s pace. In a nutshell, by using an Agifall process
model we ensure that the design pattern remains robust
and modular at every step of software development to ease
future customization challenges.

The key components from the Agifall process model,
which support the “best of both worlds” logic, are high-
lighted as follows [69]. These components are primarily
considered for the design of the inner and outer structure
of qkdSim.

(a) Modeling, usability, and organization can be coher-
ently applied on the outer structure of all QKD protocols
in general, so the choice of Waterfall process model is
suitable.

(b) Incremental updates in small update cycles allow
rapid improvement of basic experimental techniques and
components, so the choice of Agile process model is appro-
priate for designing the inner parts of the implementation
stage.

B. Salient features of the process model

In this part, we first present the salient stages of our
version of the Agifall process model in Fig. 1 [69].
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FIG. 1. Schematic of the hybrid process model used to build
qkdSim. The outline of the simulator is developed on the Waterfall
model, while its implementation-based intricacies are modeled
using the Agile design procedures.

Thereafter, in the following subsections, we discuss in
details the five major steps of the top Waterfall structure,
including the requirement analysis performed for devel-
oping the toolkit, followed by the specifications of the
system, the design process, and finally the implementation
and testing stage.

1. Requirement analysis

The first stage of our architectural model is “requirement
analysis” where the goals and constraints of the software
are discussed by consultation with the users. These user
requirements then serve as a part of the software specifi-
cations. The probable users for the toolkit are identified
as experimental physicists and engineers working in the
domain of quantum communication and cryptography. The
users are required to provide necessary inputs for the
toolkit to perform. The requirements of the user that the
toolkit will be able to fulfil are analyzed with the help of
an user story. The principle user story for the toolkit is

I, as a QKD experimentalist, want to simulate an experi-
mental implementation of a QKD protocol and evaluate its
performance through the quantification of the key rate, the
QBER and the key symmetry.

The toolkit is also required to provide flexibility to the
users to simulate any experimental setup and be able to
vary the choice of various components in the setup, so that
in principle it may be applicable to any QKD protocol.
The toolkit is built keeping in mind that the user require-
ments may vary with time and hence the toolkit should
be extendable to accommodate modification of the vari-
ous modules that form the system. An important aspect of
developing the toolkit is the consideration of the security
of the protocol being simulated. Whereas the toolkit does
not accommodate any dedicated security analysis of the

given protocol, the algorithms used for calculating QBER
are developed to ensure that the value is maintained below
known security thresholds for the protocol being imple-
mented. Following the stage of requirement analysis, we
move on to the stage where we identify the specific inputs
and outputs of the simulation toolkit such that the user
requirements are satisfied.

2. System specifications

The second stage called “system specifications” is used
to identify the inputs and outputs from the user require-
ments. Figure 2 represents the inputs and outputs of the
simulation toolkit. At this stage, we form the overview
of the system and identified the functions that the system
is enabled to perform without delving into the question
“how?.” The inputs take into account the integral compo-
nents of implementation of a QKD protocol and various
choices that the experimentalists possess.

The identification of the general inputs and outputs to
the toolkit leads us to the design stage where we develop
the architecture of the toolkit.

3. System design

At the third or the “system design” stage, the user
requirements along with the list of inputs and outputs have
to be associated with the hardware and software units
to establish an overall system architecture of the toolkit.
The independent layers that will form our desired system
must contain the level of abstraction and flexibility that
we want to provide to the user. An optimal architecture
enables us to develop the system in an iterative approach
and enhance the system by considering further real-world
imperfections.

In our design presented in Fig. 3, the independence
of each layer of the architecture exists with respect to
their development and modeling. However, there is a
hierarchical dependence among the layers in forming the
components of the experimental implementation to be sim-
ulated. Each layer of the architecture can be explained as
follows.

FIG. 2. System specifications of the simulation toolkit.
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FIG. 3. Architecture of the simulation toolkit.

(a) The QKD protocol chosen by a user forms the top
layer of the system. The choices regarding the other inputs
to the toolkit will be dependent on the choice of the pro-
tocol. As an example, for an entanglement-based QKD
protocol, the choice of source is restricted to entangled
photon sources. Thus, depending on the choice of the pro-
tocol, the respective modules from the second layer will be
chosen.

(b) The second layer is formed by the different mod-
ules that will be used to simulate the corresponding aspects
of the experiment. The modules can be further subdi-
vided into different types to accommodate for the various
possible requirements. For example, the source module
can accommodate different types of sources such as her-
alded single-photon source, weak coherent pulse source,
entangled photon source, etc. Thus, the user will be able
to choose the specific type corresponding to each of the
modules as required for the simulation.

(c) The bottom layer is formed by the submodules that
are modeled and are used to form the structures of the
modules in the upper layer. Each of the modules is made
functional by the flow of logic through these submodules.
The submodules contain various modeled physical com-
ponents and processes that can be chosen by the user as
required.

The different layers developed in the architecture form
the basis for the next stage, which is the implementation, in
an iterative manner following the Agile model mentioned
previously.

4. Implementation

In this work, an experimental demonstration of the B92
protocol is simulated by using the architecture described
in the previous subsection. The simulation toolkit is in
a prototype stage, and the modeled physical components
and processes are limited to the current aim of simulat-
ing the specific implementation scenario. The accuracy of
the prototype is limited by the various assumptions that are

TABLE I. List of modeled physical components.

Beam splitter Polarizing beam
splitter

Phase retarder

Single-mode fiber Single-photon
detector

Time-correlated
single-photon
counting module
(TCSPCM)

Periodically poled
potassium titanyl
phosphate
(PPKTP) crystal

SMA cable Band-pass filter

In-lab free-space
channel

Lens Fiber coupler

considered as well as the set of imperfections that are taken
into account while modeling the physical components.

Tables I and II categorize the different physical compo-
nents and processes that are modeled and tested while con-
sidering realistic imperfections. The design methodology
employed for modeling these two categories of elements
is the Agile development procedure. Such a choice allows
the required flexibility for quickly incorporating the future
technological advancements, inclusion of further imper-
fections and thus, improving upon the precision that can
be achieved.

The simulation toolkit is currently implemented in
Python programming language and interacts via a com-
mand user interface. Before we move on to the analysis
and testing of the implemented prototype of the simu-
lation toolkit, we make the following observation that
besides B92 other similar prepare and measure protocols,
such as the BB84 protocol based on SPDC-based heralded
single-photon source can be easily accommodated using
the different modules available in the current implementa-
tion of qkdSim with little modifications. Even for enabling
the simulation of other categories of the QKD protocols,
we would just need to develop some additional modules
and fit them into the pre-existing modular structure of the
Agifall framework. For example, in order to simulate a
differential phase-shift keying-based QKD protocol, we
would need to develop a source module that can simu-
late a weak coherent pulse, which in fact is simpler in
comparison to simulation of a SPDC source. Thereafter,
we can just call the pre-existing physical component mod-
ules such as beam splitters, fibers, fiber couplers, wave
retarders etc., as per our requirement. Lastly, even the parts

TABLE II. List of modeled physical processes.

Type-II SPDC
process

Propagation of
single photons

Fiber coupling

Single-photon
detection

Time stamping Background
estimation and
detection
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of the detection modules, i.e., detectors and time-correlated
single-photon counting submodules, can be mostly reused,
with only simpler modifications required on the detector
module, when we simulate continuous variable QKD pro-
tocols. Similarly, the simulation of a measurement-device-
independent QKD protocol would require an additional
entangled photon-source module. Such features will be
released in the next iterations of qkdSim.

5. Testing

At this stage, we test the various modules and sub-
modules that are constructed as a part of the prototype,
to simulate the experimental demonstration of the B92
protocol. Each submodule is tested independently to ver-
ify whether expected outcomes are obtained. The results
from the testing of submodules listed in Table I are com-
pared with experimental outcomes from characterization
of the corresponding physical components. The submod-
ules of the physical processes are tested by matching the
results with experimental observations corresponding to
the same processes. The outputs from each of the mod-
ules are then compared with the corresponding sections of
the actual experimental setup. The overall verification and
testing of the performance of the prototype is done by com-
paring the simulated outputs with the experimental results
obtained from the in-lab free-space demonstration of the
protocol. In Sec. IV we provide a detailed discussion on the
procedure of our experimental implementation, while the
results obtained from the simulation and the experiment
are presented in Sec. VIII.

IV. EXPERIMENTAL DEMONSTRATION OF THE
B92 PROTOCOL IN FREE SPACE

In this section, we describe in details our free-space-
based experimental realization of the B92 protocol. In the
first part, we provide a brief overview of the B92 protocol
and a quick history of its various experimental imple-
mentations. In the second part, we discuss in details the
experimental setup that we use to implement the B92 pro-
tocol. Lastly, we highlight the general procedure and the
associated techniques, that we develop and use to analyze
our experimental data, i.e., estimate the key rate, QBER,
and key symmetry for our experimental demonstration.

A. General procedure of B92

In a standard B92 protocol using polarization encod-
ing, Alice sends Bob a stream of single photons, where
the polarization state of each of the photons is ran-
domly selected between any two nonorthogonal polariza-
tion bases, say, |a〉 and |b〉, where 〈a|b〉 �= 0. These two
polarization states are encoded with binary 0 and 1, respec-
tively. When these photons reach Bob, he randomly and
independently selects between two projection operators

FIG. 4. Schematic of the B92 protocol based on polarization
encoding.

(I − |a〉 〈a|) or (I − |b〉 〈b|) for each photon, and projects
on it. Note that the operator (I − |a〉 〈a|) always gives a
null result when it operates on |a〉. Similarly, (I − |b〉 〈b|)
always gives a null result for |b〉. A schematic of the B92
protocol based on polarization encoding is presented in
Fig. 4. Here, Alice randomly selects the polarization state
for each photon coming from a single-photon source to be
either vertical (V) or diagonal (D; +45◦ with respect to
the horizontal polarization basis) and sends it to Bob. She
also assigns bit values to all the photons based on their
polarization and records them sequentially (T1-1, T2-1,
T3-0, etc.). Bob randomly selects his measurement basis
to be horizontal (H) or antidiagonal (A; −45◦ with respect
to the horizontal polarization basis). Bob only considers
those events where his measurements give positive (or
non-null) results (T2, T5, T6, etc.) and announces only the
occurrence (or timing) of these positive events in a public
communication channel (that could be prone to eaves-
dropping), once all the photons are received. Bob never
shares the choice of measurement operations for these pos-
itive events. Based on the announcement, Alice only keeps
those bits that generate positive events in Bob’s setup.
Thus Alice and Bob generate and share an identical, secure
key.

There are many experimental implementations of the
B92 protocol. All these experiments can be broadly cat-
egorized based on three classification parameters, i.e., type
of encoding, medium of transmission and type of source
of photons. Though the original B92 protocol is based on
phase encoding and many later experiments [72,73] fol-
lowed similar logic, a number of experiments have also
been performed based on polarization encoding [74–77].
In terms of the medium of transmission, there are experi-
ments in free-space transmission channel [78–80] as well
as fiber-based channel [76,81,82]. With respect to the type
of source, interestingly, most of the experiments to date use
WCPs as single photons [73,82–84], and only a handful of
experiments have considered heralded single photons gen-
erated from a spontaneous parametric down-conversion
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(SPDC) process [77,80]. In fact the paucity of existing lit-
erature on the B92 protocol motivates its choice as the first
protocol that we choose to evaluate using qkdSim as, con-
ceivably, it could reveal fresh insights against which we
can test our simulator.

In our implementation, we use heralded single pho-
tons generated using the SPDC process. Our choice of
source is connected to the security aspects of the protocol
and enhances the same. This is explained when we dis-
cuss about postprocessing in the following subsection. The
photons have been encoded in polarization degree of free-
dom, and transmitted in a free-space channel inside a lab
environment.

B. Our experimental implementation of the B92
protocol

In this part, we provide a detailed description of the key
resources and the various stages of our experimental imple-
mentation. In the process of analyzing the different stages
of our setup and its associated components, we also iden-
tify the different sources of noise and imperfection, that can
potentially affect our measurements, and highlight how our
resources help to mitigate them.

We use spontaneous parametric down-conversion as
a source of heralded single photons. While there are a
very small number of SPDC-based implementations of
the B92 protocol in the literature, our implementation is
significantly different from the existing ones as discussed
below.

The schematic in Fig. 5 has details on the components
in the source. A blue diode laser of wavelength 405 nm
(Cobolt 08-NLD) pumps a PPKTP crystal continuously
with 30-mW power. The polarization of the pump beam

FIG. 5. Schematic of the heralded single-photon source and
Alice’s module. M1, M2: dielectric mirrors; HWP1: half-wave
plate for pump light; L1: focusing lens; L2: collimating lens;
F1: long-pass filter; F2: band-pass filter; PBS: polarizing beam
splitter; FC1, FC2, FC3: fiber couplers; BS1, BS2: 50:50 nonpo-
larizing beam splitter; HWP2, HWP3: half-wave plates; QWP1,
QWP2: quarter-wave plates; SPAD: single-photon avalanche
detector; TC: temperature controller.

is kept horizontal (H), by using a half-wave plate (HWP1).
The PPKTP crystal is placed inside an oven (RAICOL),
which is connected to a temperature controller. We find
that at 40 ◦C, photon pair generation is optimal for colinear,
degenerate, type-II SPDC process in the crystal, wherein a
horizontally polarized pump photon of wavelength 405 nm
down-converts to a horizontally polarized signal and a ver-
tically polarized idler photon, both with peak wavelength
at 810 nm. In order to maximize the photon pair-generation
rate, two lenses of focal lengths 100 mm (L1) and 50 mm
(L2), respectively, are used; L1 focuses the pump beam at
the center of the crystal and L2 is used to collimate the
beam. Due to the colinear configuration, both photons in
each pair traverse the same path as followed by the residual
pump beam. A long-pass filter F1, placed after the crystal,
blocks most of the pump beam and allows only the red
photons to go through. A band-pass filter F2, allows only
photons with wavelength close to 810 nm to go through. A
polarizing beam splitter (PBS) separates the two photons in
each pair, where “H” polarized photon goes to the transmit-
ted arm and “V” polarized photon goes to the reflected arm
of the PBS. A coupler (FC1), placed in the reflected arm,
couples “V” polarized photon to a single-mode fiber that
is connected to a single-photon avalanche detector (SPAD;
COUNT-T-100). So, detection of a “V” polarized photon
heralds the “H” polarized photon of the same pair. This is
how heralded single photons are generated.

Alice substation: The components after the PBS in Fig. 5
constitute the Alice substation of the QKD implementa-
tion. Once each heralded single photon is generated, Alice
randomly selects between two nonorthogonal polarization
states, vertical (V) and diagonal (D), by passing the pho-
ton through a 50:50 nonpolarizing beam splitter (BS1),
whose transmitted arm has a HWP (HWP2) that rotates
the input H polarization to D, and reflected arm has a HWP
(HWP3) that rotates the input H polarization to V. Quarter-
wave plates (QWP2 and QWP3) are also placed along with
HWPs, in order to minimize ellipticity in the polarization.
The use of such a 50:50 BS for random selection gives
us quantum randomness, which is necessary for the secu-
rity aspects of the protocol. However, this comes with the
caveat that Alice herself does not have knowledge about
the polarization state of the photon that she sends to Bob.

In order to resolve this, we come up with a fresh solu-
tion wherein Alice makes use of two known properties
of SPDC, namely, heralding process and the probabilistic
nature of pair generation, where photon pairs are generated
randomly in time. If Alice now randomly selects a sub-
set from generated photon pairs and applies a fixed time
delay to them, it becomes impossible for an eavesdrop-
per to determine if the photon pair is from the selected
subset or the rest, just by looking at the arrival time. So,
Alice uses two single-mode fibers of different lengths in
the two output arms of the BS1. Photons that traverse the
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transmitted arm and become “+45◦” polarized later have
a fixed time delay (�t) as compared to photons that tra-
verse the reflected arm and become “V” polarized. Alice
also records the arrival time of each heralding photon
detected in her detector using a time tagger (HydraHarp
400) connected to the detector. This is crucial in deter-
mining whether the corresponding pair photon is delayed
or not, before it is sent to Bob, and hence its polarization
state. Thus, by introducing a time delay in the path of one
of the photons and knowing the arrival time information of
its partner photon (heralding arm), Alice is able to deter-
mine the polarization state of the photon that is sent to
Bob.

In order to remove any distinguishability in the spatial
degree of freedom, outputs from both single-mode fibers
recombine at another 50:50 BS (BS2), and only one out-
put arm of the BS2 is used to send both “V” and “+45◦”
polarized photons to Bob.

Bob substation: In Bob’s part of the experimental archi-
tecture as shown in Fig. 6, a 50:50 beam splitter (BS) is
placed in the path of the incoming photons, where each
photon has 50% probability to go to the transmitted arm
and 50% to go to the reflected arm. In the transmitted arm
of the BS, a polarizing beam splitter (PBS2) is placed and
a fiber coupler (FC2) collects any photon that transmits
through the PBS and sends it to a single-photon detec-
tor (SPAD2). So, in this arm, arm only “+45◦” polarized
photons have 50% probability to get detected while “V”
polarized photons have 0% probability. In the reflected
arm of the BS, a similar combination of PBS (PBS1) and
fiber coupler (FC1) is placed with an additional half-wave
plate (HWP) just after the BS. This HWP converts D pho-
tons to V photons and similarly H photons to D photons.
So, only the “V” polarized photons sent by Alice pass
through the PBS and get detected in this arm with a prob-
ability 1

2 , but no “+45◦” polarized photon is detected. So,
to summarize, any detection in the transmitted arm of the

FIG. 6. Schematic of Bob’s module. BS: 50:50 nonpolarizing
beam splitter; HWP: half-wave plate; PBS1, PBS2: polariz-
ing beam splitters; FC1, FC2: fiber couplers; SPAD1, SPAD2:
single-photon avalanche detector.

beam splitter definitely means that the photon is “+45◦”
polarized (assigned bit value 0), and any detection in the
reflected arm definitely means that the photon is “V” polar-
ized (assigned bit value 1). Similar to Alice, Bob also
records photon time-stamping data from the two detectors
at his end.

Postprocessing: In the postprocessing stage, Bob shares
only his time-stamping data publicly, but does not indi-
cate which time-stamping data comes from which detector.
Alice compares her time-stamping data with Bob’s data
and measures time difference for all detected photon pairs.
Let us say the distance between Alice and Bob is d, then
the time difference should be ideally T = d/c, where c is
the speed of light. For the “+45◦” photons, where Alice
applied additional time delay �t, time difference becomes
T +�t. Alice considers those events where time difference
is closer to T (within a small time window around T) as bit
value 1 ( in this case, “V” polarized photons are sent by
Alice to Bob), and considers those events where time dif-
ference is closer to T +�t as bit value 0 (“+45◦” polarized
photons are sent in this case).

Alice then sends back Bob’s time-stamping data by
omitting all those events that could not make it to Alice’s
final key. Based on this, Bob generates his final key, which
concludes the final key-generation process.

This brings us to an important comment regarding
the use of heralded single photons for our implemen-
tation and its ramifications. For the purpose of security
of the generated key, generation of ideal single photons
(with Fock state |1〉) is essential. In the case of a multipho-
ton source, an eavesdropper may apply a photon number
splitting (PNS) attack. One way to verify the single-photon
distribution is to look for the antibunching property where
the probability of generating two consecutive photons
within the coherence time is negligible. For this purpose,
we can measure the normalized second-order coherence
or g2 by performing a Hanbury Brown and Twiss (HBT)
type experiment. For an ideal single-photon source g2(τ =
0) = 0, where τ is the time interval between the generation
of two consecutive photons.

In a real-world experiment, there are stray photons that
get detected in Bob’s detection module along with single
photons that are sent by Alice. There are also other sources
of noise like dark noise of the detector, electrical noise, etc.
A single-photon detector cannot distinguish noise from the
actual signal. These noises increase the quantum bit error
rate in the generated key. For noise cancellation, heralded
single-photon source plays an important role. In a heralded
photon source, correlated photons are always generated as
a pair. Detection of one photon in each pair ensures the
presence of the other photon. Therefore, Alice and Bob
postselect only those events where Alice detects one pho-
ton and Bob detects the other photon of the same pair
(i.e., coincident events) and consider them as part of the
signal.
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C. Data analysis

In the data-processing stage, we measure three impor-
tant parameters that are the quantifiers of the performance
of the QKD experimental setup. These parameters are
key rate, quantum bit error rate, and asymmetry of the
key.

For key rate, we measure the average number of bits
in the sifted key (including error bits) generated per sec-
ond. In the B92 protocol, sifting includes postprocessing
of the dataset, where Alice and Bob selects only those
events where Bob’s detectors show positive outcome and
the detection occurs within some predefined time window.
After the completion of the protocol, Alice and Bob both
have a key that should be identical in the absence of any
noise in the channel and eavesdropping activity. We mea-
sure the number of error bits by comparing each value
of the bits for the same bit position in the two keys. The
number of error bits divided by the total key length gives
the QBER. Asymmetry (or key symmetry) quantifies the
disparity between the number of 0 and 1 bits in the final
error-free key shared by Alice and Bob.

In order to report the average key rate, we run the proto-
col for 10 s and repeat the same for 20 iterations. The final
key rate is then averaged over the 20 key length values. In
order to ensure that we choose a runtime of the protocol
such that the standard deviation (SD) by mean (M ), i.e.,
SD/M of the reported average key rate is very small, we
collect data continuously for a longer time duration (say,
100 s), apply the bootstrapping technique (as discussed in
Appendix A), and obtain a SD/M plot (refer to Fig. 29)
as a function of the runtime for a fixed number of itera-
tions. We find SD/M for 10-s runtime and 20 iterations to
be 0.016%.

In order to measure key length, QBER, and asymmetry
from each dataset, we apply two types of optimization
methods, namely A & B, on every dataset. In both method-
ologies, at the beginning Alice’s and Bob’s recorded time-
stamping data are compared and plotted as a function of
time difference between the two. The schematic in Fig. 7
shows two distinct coincidence peaks due to the time delay
of around 10 ns introduced in Alice’s setup. The first peak
(blue) represents those coincidence events where Alice
sent a “V” polarized photon and Bob measured correctly.
The second peak (red) represents those coincidence events
where Alice sent “+45◦” polarized (delayed) photon and
Bob measured correctly. The extension of the red curve
under the blue curve represents those events when Alice
sent a “V” photon, but Bob measured it wrongly as a
“+45◦” polarized photon; due to the noise introduced by
optical components as well as the transmission channel.
Similarly, the extension of the blue curve under the red
peak represents those events when Alice sent a “+45◦”
photon, but Bob measured it wrongly as a “V” polarized
photon. We fix a certain time window around both peaks
(Wl1 to Wr1, and Wl2 to Wr2) and measure the area under
the curves. The sum of the total area (i.e., both signal and
noise portions) under the blue and the red curve for their
consecutive time windows gives the key length. The sum
of the total area under the red curve from Wl1 to Wr1, and
the blue curve from Wl2 to Wr2 gives the number of total
error bits or noise (that contribute to the QBER). In context
to our schematic shown in Fig. 7, the definitions of key rate
and QBER (Qerr) can be analytically expressed as

key rate = [signal+ noise] part of both curves
runtime of the protocol

(Hz) ,

(1a)

FIG. 7. Simplified schematic of the output of two independent coincidence detection: Alice and Bob’s R basis (coincidence peak 1
in blue) versus Alice and Bob’s D basis (coincidence peak 2 in red). The background noise zone indicated below the flat portions of
the blue and red curve represents the unwanted coincident detection from stray light sources, uncorrelated signal and idler photons,
leaked pump photons, and dark noise of the photodetector. The symbols Wl1(2) and Wr1(2) represent the left and right markers of the
time window around the maximal coincidence point for coincidence peak 1 (2). The total coincidences within the chosen window
around the central maximum from both curves contribute to the error-free “key rate” (or signal—marked in purple); while those within
the background noise zone contribute to the “QBER” (or noise—marked in gray). Note that in reality, the coincidence curves are not
typically smooth functions and contain a lot of kinks (local optimal points) around a central global maximum.
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Qerr =
noise part of both curves× 100

[signal+ noise] part of both curves
(%) , (1b)

key symmetry = signal part of either curve× 100
signal part of both curves

. (1c)

Ideally, for secure key generation the probability of
obtaining any key string of N key bits among the 2N set
of possible key strings should be equal; i.e., any key can
be generated with the probability of 1

2N . If this ideal case
is to be realized then all the optical components should
behave perfectly, i.e., symmetric beam splitter should have
exactly 50% probability of both transmission and reflec-
tion, all threshold detectors must have equal efficiency, etc.
This would lead to both coincidence peaks also being iden-
tical or in other words, the number of 0’s and 1’s in the
final key would then be equal. However, in the real exper-
imental scenario the two peaks could be different. In order
to investigate this further, we generate a large number of
key strings and find that all of them exhibit asymmetry
between the number of 0’s and 1’s, away from the ideal
requirement of 50:50. One of the possible causes for this
asymmetry could be a mismatch between the efficiencies
of the detectors used in Bob’s module. However, we verify
independently that the two detectors used in Bob’s module
have similar efficiency, in the sense that on interchanging
them, we observe nearly identical counts. This indicates
that the bias (quantified by the asymmetry) is primarily
introduced before the detectors, mostly by the beam split-
ter and other optical components placed in Bob’s arm,
rather than the detectors. If the device is generating per-
fectly random outputs, we would have obtained a binomial
distribution peaked at 50:50 (i.e., the number 0’s or 1’s in
the generated key string would then be exactly half of the
key length).

Nevertheless, in our case, we find that the distribution, in
general, is peaked at different values ranging from 57.59±
0.29 : 42.41± 0.29 to 51.49± 0.32 : 48.51± 0.32. This
bias in the final key can be advantageous to the eavesdrop-
per unless a commensurate step to mitigate this is included
in the postprocessing algorithm. More particularly, for gen-
erating a perfectly secure key, the probability of a certain
key bit to be “0” or “1” should be equal for all the bits
in the key string. In this work, along with QBER, the role
of asymmetry in the key string is also investigated with
respect to security loopholes of a QKD protocol.

As mentioned earlier, in our implementation, we devise
two different optimization strategies: “A” and “B” (refer to
Appendix B for the detailed procedure of the two strate-
gies) to account for this asymmetry in key string due
to device imperfection. In both strategies, our aim is to
maintain the QBER below a certain threshold. Addition-
ally, strategy A attempts to counter the biasing issue by
compensating for the asymmetry in the key bits; while
strategy B does not offer any such compensation on key

asymmetry but enhances the SNR ratio. As a cost for
the additional compensation, the former technique pro-
duces a lower key rate than the latter. Nevertheless, both
strategies have their advantages and shortcomings that are
highlighted next.

In strategy A, we optimize the QBER obtained in each
run of the experiment individually and impose a symmetry
of nearly 50:50 among the key bits. More specifically, the
whole purpose of this optimization method is to find the
value of the two coincidence time windows or the posi-
tion of Wl1, Wr1, Wl2, and Wr2 (as shown in Fig. 7), such
that the QBER remains below the threshold value (4.8%)
[67] and the key is symmetric. However, this approach is
insecure from the perspective that it imposes a 50:50 key
symmetry. In this strategy, ensuring a 50:50 ratio also leads
to asymmetric deletion of some bit values and thus lowers
the final key length. We recall that the previously stated
key-generation probability of 1/2N in the ideal case, can be
associated to Eve’s probability of guessing the key string.
Hence using strategy A, her guessing probability has now
been increased to [(N/2)!]2/N !, while reducing her ability
to gain additional information due to any asymmetry in the
key bits.

In strategy B, we calibrate the time-window markers on
the two curves based on maximization of the SNR, while
ensuring that the duration remains equal for both of them.
More particularly, we move the detection-window mark-
ers, in and out around their respective coincidence peaks,
to obtain the maximum (error-free) key length within the
QBER bound and ensure that the two windows have an
equal span, for each key string separately. As a conse-
quence, we find that the optimized key length increased,
while the key symmetry deteriorated from 50:50.

In Fig. 8, we exemplify the key symmetries obtained
for the generated (error-free) key strings and compare the
unoptimized and the two optimized key strings through the
distribution of their individual key bits. For this analysis,
we consider one of the 20 datasets measured, during the
daytime, with the 30-mm crystal. For this representative
analysis, we report the distribution of zero bits, which ide-
ally should be equivalent to that for the one bits in a given
key string.

In the first case, i.e., in Fig. 8(a), we report the distribu-
tion of zero bits obtained in the error-free key string gen-
erated by considering a 3-ns time window around the left
(blue) and right (red) coincidence peaks (shown in Fig. 7).
The duration of 3 ns is chosen to cover the maximum coin-
cidences available on the two curves. This approach being
an unoptimized one, produced an error-free key rate of
about 73.6 kHz, at the expense of a QBER of 7.27%. The
obtained error-free key rate can be inferred from the red
subplot on the left, where each value on the x axis contains
100 key bits of the generated key string. The blue his-
togram subplot on the right illustrates that the distribution
of zero bits in the key string is indeed a binomial peaked at
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(a)

(b)

(c)

FIG. 8. Distribution of zero bits in the error-free key string obtained with three different strategies: (a) unoptimized, (b) optimized
via strategy A, and (c) optimized via strategy B. For all strategies, the left plot represents the number of zero bits present in sequential
chunks of size 100 key bits within the key string, and the right plot displays the corresponding histogram of the frequency of zero bits
found within those chunks (bins). The key bits plotted on the left plots are collected over a measurement time of 10 s. This representa-
tive analysis is performed on one of the 20-day datasets measured with the 30-mm crystal. (a) For the error-free key string generated
with unoptimized time windows of 3 ns duration around both coincidence peaks. The highest peak of the binomial distribution on the
right is at 57.09. (b) For the error-free key string generated with time windows optimized using strategy A. The highest peak of the
binomial distribution on the right is at 49.97. (c) For the error-free key string generated with time windows optimized using strategy
B. The highest peak of the binomial distribution on the right is at 55.91.

57.09, indicating that the ratio of 0 to 1 bits is quite asym-
metric. More particularly, when we bin the key bits into
sets of 100 over the entire key string, then we find that the
probability of obtaining a key symmetry of approximately
57 : 43, becomes the maximum, within those bins. This
also validates our earlier claim that the distribution of key
bits, in general, can possess asymmetric peak values rang-
ing as high as 57.59± 0.29 (averaged over 20 datasets). In
the next two cases, we contrast the unoptimized analysis
against those obtained with the two optimization strate-
gies: A and B. More specifically, in Figs. 8(b) and 8(c),
similarly we report the corresponding distribution of zero

bits in the key strings that are generated using the optimiza-
tion strategies A and B, respectively. From a comparative
perspective, we can observe that in Fig. 8(b) the peak of
the binomial distribution occurs at 49.95, i.e., the most
probable case is free from any significant bias; while in
Fig. 8(c) a considerable bias (or asymmetry) exists for the
peak of the distribution being at 55.91. It is important to
note that the distribution of the zero bits in the gener-
ated (error-free) key string for strategy A, in this analysis,
comes to being a binomial distribution instead of the other-
wise expected delta function peaked at about 50:50, since
in the said algorithm we are optimizing the key symmetry
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over the entire string and not over the individual chunks
being plotted here.

For strategy B, being free from the imposition of any
symmetry constraint on the ratio of 0’s to 1’s bits in the
optimized key string, there occurs no increase in Eve’s
guessing probability unlike that found in strategy A. How-
ever, strategy B suffers from possible information leakage
to Eve due to the existing bias arising from asymmetry.
In [85], the authors have shown how any possible secu-
rity loophole due to detector efficiency mismatch can be
mitigated by including relevant steps in the privacy ampli-
fication part of the postprocessing algorithm, thus ensuring
that such a bias can also be accounted for, enabling a
secure reconciled key. In our example, the mismatch that
happens due to the effective asymmetry present in our opti-
cal components can also be recast into a similar detection
efficiency mismatch problem, thereby enabling a secure
reconciled key as shown in Ref. [85]. It would be an
interesting open problem to see how modifications could
be made to privacy amplification algorithms to account
for the possible security loophole posed by optimization
strategy A.

We remark here that while the symmetry aspects bring
about different security implications as discussed above,
the objective of our work is to model practical QKD
as accurately as possible, while constraining the QBER
below the known security threshold for the given proto-
col and not comment on any detailed security analysis of
the said protocol. In the current B92 implementation, we
thus constrain the QBER to be below 4.8% [67] in both
optimization strategies that we implement.

V. SIMULATION TOOLKIT

In this section, we discuss the principle aspects and
the current stage of the implementation of the simulation
toolkit. Following an overview, we go on to discuss the
various assumptions that are considered while simulating
the experimental demonstration. In the later subsections,
we provide a detailed discussion on the various modules
that comprises the toolkit.

A. Overview

We simulate the experimental demonstration of the
B92 protocol discussed in Sec. IV using the simulation
toolkit “qkdSim” discussed in Sec. III. Different modules
are developed for the respective choices corresponding to
the source, detection, and transmission components used
in the actual experiment. Table III lists the various choices
for the general inputs to the toolkit and Fig. 9 shows the
interconnection of the various modules developed for the
toolkit.

The modules are interconnected for the flow of logic
and mimics the path of the photons in the actual experi-
mental setup. The output from the source module, based

TABLE III. Choice of inputs.

Choices Inputs

Type of protocol B92 QKD protocol
Type of source Type-II colinear degenrate

SPDC source
Type of transmission

channel
Free space

Distance of transmission 2 m
Type of detection Fiber-based single-photon

detectors and TCSPCM
Protocol runtime 20 runs for 1 s each
Security parameter QBER threshold
Environmental

conditions
In-lab (day time and night

time)

on type-II colinear degenerate SPDC process, is passed to
Alice’s preparation module. The signal states are encoded
for transmission and relayed to the transmission module
while the heralding states are passed to Alice’s detection
module. The transmission module simulates the transmis-
sion of single photons over the quantum channel between
Alice and Bob and the detection of the received signal
states is simulated in Bob’s detection module. The out-
puts from Alice’s and Bob’s detection modules are fed into
the classical postprocessing module, which then gives as
output the sifted key rate, QBER, and the key symmetry.

Each of the modules is constructed with the help of
various submodules corresponding to the various physi-
cal components and processes that play important roles
in the experimental implementation of the protocol. The
inputs to the modules can be categorized as user inputs, set
parameters, and outputs obtained from preceding modules.
The user inputs refers to certain choices made by the user
whereas the set parameters refers to the specification of
the various components that the setup consists of. Before
we discuss in detail the structure and working of each of
the modules, we discuss the various assumptions that are
considered for the simulation, in the following subsection.

B. Assumptions

Though the simulation toolkit takes into account vari-
ous nonideal aspects of experimental implementation of a
QKD protocol, it is not exhaustive. Thus it is essential to
provide a detailed list of assumptions that are considered
while implementing the architecture at each stage of the

FIG. 9. B92 simulation structure.
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iteration. The assumptions considered for the simulation
of the B92 protocol are listed as follows.

1. The time stamps associated with each of the photon
pairs are evolved through the experimental setup compris-
ing different optical components. However, in the sections
of the experimental setup where the photon pairs travel
identical path lengths or the possible paths that can be
traversed by a single photon have identical length, the
time taken to travel is not accounted for. For example,
the detectors in Bob’s detection module are assumed to be
positioned equidistant from the BS (Fig. 6).

2. The pump laser output is assumed to be a symmetric
Gaussian beam. The generated photon pairs are also con-
sidered to have similar beam properties as that of the pump
laser. Thus each photon is associated with a Gaussian
distribution for the intensity.

3. It is assumed that the alignment of the optical
and mechanical components in the experimental setup is
achieved up to maximum precision, limited only by the
error introduced by the least count of the screws of the
mounting components and stages.

4. In the simulation of the type-II colinear degenerate
SPDC process, the frequency linewidth of the pump laser is
assumed to be extremely narrow and hence, the frequency
distribution of the signal and idler photons is not taken into
account. Additionally it is also assumed that the pair gen-
eration takes place only at the center of the crystal and the
crystal medium is lossless.

5. In the experiment, it is observed that the important
parameters of the system such as the laser power, tempera-
ture of the crystal etc. does not fluctuate significantly over
the period of time for the data acquisition. Thus, in simula-
tion, we assume the system to be time invariant and all the
parameters are assumed to be constant over the runtime of
the simulation.

6. Any effect in the phase or polarization of the pho-
tons due to the transmission over free space and optical
fiber channel is neglected.

7. No eavesdropping strategy or attack is considered
for the simulation. A security parameter that corresponds
to a threshold QBER, derived based on the protocol and
independent to the simulation, is taken as an input to the
system.

We discuss the various assumptions that are considered
in the implementation of the simulation toolkit and now
we discuss each of the modules shown in Fig. 9 in order of
the path followed by the photons in the actual experimen-
tal setup. The source module is discussed first followed by
the modules corresponding to the preparation, transmis-
sion, and detection of the signal photons and concluding
with the postprocessing module. For each of the modules,
a brief introduction is followed by a brief discussion on
the inputs and outputs of the modules, the structure of the

FIG. 10. Source module overview.

module and the algorithmic overview on the logic used.
Each module is constructed using relevant submodules and
to avoid redundancy, detailed discussions on the various
submodules are given in Secs. VI and VII.

C. Type-II SPDC source module

The type-II SPDC source module simulates the gener-
ation of photon pairs in a type-II SPDC process and the
temporal distribution of the photon pair-generation events
at the crystal. At present, the module simulates the specific
case of type-II colinear degenerate SPDC process by quasi-
phase-matching (QPM) using a PPKTP crystal. The inputs
and the structure of the module are in accordance with
this specific case and the submodules are also developed
accordingly. Figure 10 lists the user inputs to the source
module, the set parameters, and the outputs of the module.
[S] denotes set parameters. With respect to the structure,
the source module is constructed of submodules that sim-
ulate the integral aspects of the type-II degenerate SPDC
process by quasi-phase-matching and the layout is shown
in Fig. 11.

The optimal QPM condition submodule takes as input
the pump wavelength and the poling period of the crys-
tal and calculates the phase-matching temperature for the
degenerate condition. The mode overlap function sub-
module then calculates the pair-generation probability per
pump photon incident at the crystal for the given con-
ditions of pump-beam characteristics, crystal dimensions,
and temperature for the quasi-phase-matching condition.
The total pair-generation rate is then calculated by taking

FIG. 11. Type-II SPDC source module layout.
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FIG. 12. Alice’s preparation module overview.

into account the pump-beam intensity at the crystal and the
simulated pair-generation rate obtained per pump photon
from the preceding submodules.

The time-stamping submodule takes as input the pair-
generation rate and the total runtime of the protocol and
creates a list of time stamps of the event of photon pair
generation at the crystal in respect to a global clock. The
spot size of the signal and idler photons is calculated from
the pump-beam spot size and the electric-field-distribution
submodule generates a list of electric field amplitudes, at
different points along an axis perpendicular to the direction
of propagation of photons, that follows a Gaussian distri-
bution. The time stamps for the signal and idler photons
along with the Gaussian distribution of their electric field
amplitudes are stored in the form of separate arrays and are
returned to the main module of the toolkit.

D. Alice’s preparation module

Alice’s preparation module simulates the stage where
Alice prepares and encodes the signal states that are to
be sent to Bob over the quantum-communication channel.
Out of the photon pairs generated at the crystal, the sig-
nal photons are encoded for transmission to Bob, whereas
the idler photons are transmitted to the detection compo-
nent of Alice. Figure 12 lists the inputs and outputs of
Alice’s preparation module. [S] denotes set parameters and
[O] denotes inputs that are given as output by the previous
module(s).

Alice’s preparation module is constructed of various
submodules corresponding to different physical processes
and components that processes the time stamps and the
electric field distribution of the generated photon pairs
from the type-II SPDC source module. The structure of the
module is shown in Fig. 13. The arrows refer to the flow of
logic within the module and the two outputs correspond to
the signal and the heralding arms of Alice.

The initial section of the module is common to the
stream of photon pairs generated from the crystal (signal
and idler). The time stamps and electric-field-distribution

FIG. 13. Alice’s preparation module layout.

arrays are first evolved through the lens submodule that
provides loss and change of phase to the incident photons.
The resultant electric field distribution of the photons at
the signal and the heralding end of the module are calcu-
lated using the input electric-field-distribution array. The
time-stamp arrays are further evolved with the other sub-
modules. The PBS submodule generates the signal and
heralding photon time-stamp arrays and while the former
is passed to the following submodules, the later is not.

The signal time-stamp array is separated by the BS sub-
module into two with each of the arrays being further
evolved through the HWP, fiber coupler, fiber transmis-
sion, and the fiber collimator submodules consecutively,
similar to the experimental setup. At the HWP module,
the photons are projected to specific polarization desired
for transmission and encoded with a bit-value (“0” or “1”)
corresponding to the polarization. Each element of the
time-stamp array of the photons is appended with the cor-
responding bit value. The resultant arrays from the two
different streams are further merged at the BS submodule
and the final array is generated and stored as the signal
time-stamp array. The resultant arrays are returned to the
main module of the toolkit.

E. Transmission module

The transmission module simulates the transmission of
the photons sent by Alice to Bob over a free-space or fiber-
based channel. Figure 14 lists the inputs and outputs of the
transmission module. [S] denotes set parameter and [O]

FIG. 14. Transmission module overview.
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FIG. 15. Transmission module layout.

denotes inputs that are derived as output from the previ-
ous module(s). It is important to note that the choice of the
channel that forms a general input to the system is specifi-
cally used in the transmission module and in accordance
with the choice, the respective submodule correspond-
ing to the free-space or optical fiber-based transmission
is used. As per the experimental setup being simulated,
the transmission module incorporates the in-lab free-space
transmission submodule as shown in Fig. 15.

According to the experimental setup being simulated,
the transmission model uses the in-lab free-space transmis-
sion submodule, which is discussed in detail in Sec. VII.
The time stamps of the transmitted signal photons and
the electric field distribution are evolved with the in-lab
free-space transmission module as shown in Fig. 15. The
transmission loss in the channel is accounted for and the
transmittance of the channel is calculated, which translates
to the transmission probability for the incident photons. If
α is the attenuation in dB per meter and l is the length of
the fiber, then the transmission probability for an incident
photon can be calculated as [86]

t = 10−αl/10. (2)

For each time stamp of the input time-stamp array at the
module, a random number is uniformly generated in the
range (0,1) and compared with the transmission probabil-
ity. If the generated random number is less than or equal to
the transmission probability, then the photon is considered
to be transmitted and the time stamp of the photon is added
to the output array of time stamps. It must also be men-
tioned that the time stamps are added with the time taken
for the photon to traverse the channel. If c is the velocity of
light in vacuum and n is the refractive index of the channel,
the time of traversal of the photons is given as

�t = ln
c

. (3)

As the output of the module, the time stamps of the pho-
tons received at Bob’s detection module are returned to the
main module along with polarization encoding and electric
field distribution of the transmitted photons.

FIG. 16. Bob’s detection module overview.

F. Bob’s detection module

This module simulates the detection of the signal pho-
tons transmitted by Alice over the quantum channel.
Figure 16 lists the inputs and outputs of Bob’s detection
module. [S] denotes set parameter and [O] denotes inputs
that are derived as output from the previous module(s).
The choice of the detection components, i.e., the type of
the single-photon detector and the time-correlated single-
photon counting module dictates the use of respective
submodules within this module. Bob’s detection module is
constructed of the submodules corresponding to the detec-
tion components chosen by the user as well as the require-
ments based on the choice of protocol. In parity with the
experimental set up, the submodules for fiber-based single-
photon detectors and TCSPCM are used. The structural
layout of the module is depicted in Fig. 17. The arrows
denote the flow of logic among the different submodules.
The detection of single photons in the rectilinear and diag-
onal basis are simulated separately with the respective

FIG. 17. Bob’s detection module layout.
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inputs corresponding to the noise level. The time stamps
of the received photons along with the polarization encod-
ing are evolved through the BS submodule, which splits
the received time-stamp array into two separate arrays cor-
responding to the random basis choice for measuring the
received photons. One of the time-stamp arrays is fed into
the submodules, simulating rectilinear-basis measurement,
whereas the other is fed into the submodules, simulating
diagonal-basis measurements. For the rectilinear basis, the
time-stamp array is evolved with the fiber coupler and
fiber-transmission submodules to obtain the photons that
are received at the detector. In parallel, the electric field
distribution of the received photons are evolved according
to the user input corresponding to the distance between the
fiber coupler and the beam splitter. The coupling efficiency
at the coupler is obtained using the fiber coupler submod-
ule. Similar logic is followed for the diagonal basis with
an addition of the HWP submodule that simulates the pro-
jection of the signal polarization states onto the diagonal
basis.

From the submodules corresponding to the background
detection, the time stamps of the background photons are
obtained and merged with the time stamps of the sig-
nal photons received at the detector. The time stamps
of the photons are then evolved with the single-photon
detector and TCSPCM submodule to finally generate the
time-stamp array of the detected photons. A bit value cor-
responding to the basis in which the photons are detected
are appended to each element of the detected time-stamp
time array. The resultant arrays are then returned to the
main module of the simulation toolkit.

G. Alice’s detection module

Alice’s detection module simulates the detection of the
heralding photons that are separated from the photon pairs
at Alice’s preparation module. Figure 18 lists the inputs
and outputs of the module. [S] denotes set parameter and
[O] denotes inputs that are derived as output from the pre-
vious module(s). Similar to Bob’s detection module, the
module is constructed of submodules corresponding to the
choice of the detection components provided by the user
as depicted in Fig. 19.

The time stamps and the electric field distribution of
the heralding photons at the position of the fiber cou-
pler in the heralding arm of Alice’s detection module are
evolved through the relevant submodules in series. The
fiber-coupler submodule uses the electric field distribution
of the incident photons to simulate the coupling efficiency
while the fiber-transmission submodule simulates the loss
through the fiber and generates the time-stamp array of the
photons received at the detector. Similar to Bob’s detection
module, the incident background rate is estimated and time
stamps are generated with the help of the background time-
stamping submodule and are merged with the time stamps

FIG. 18. Alice’s detection-module overview.

of the heralded photons received at the detector. The detec-
tion of the heralding photons is then simulated with the
single-photon detector and the TCSPCM submodule and
the time-stamp array of the detected photons is generated
and returned to the main module of the toolkit.

H. Classical postprocessing module

The classical postprocessing module simulates the post-
processing of the data after the execution of the protocol.
Fig. 20 lists the inputs and outputs of the classical postpro-
cessing module, where [O] denotes inputs that are derived
as output from the previous module(s). The module incor-
porates the optimization strategies that are developed for
implementation of the B92 QKD protocol based on single-
photon sources as discussed in Secs. IV C. Depending on
the choice of the user for the security parameters, the cor-
responding optimization algorithm submodule is used as
depicted in Fig. 21.

VI. MODELING PHYSICAL PROCESSES

In the current prototype version of the qkdSim, various
physical processes are simulated as listed in Table II. The
physical processes include generation of photon pairs in

FIG. 19. Alice’s detection-module layout.
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FIG. 20. Classical postprocessing module overview.

SPDC process, time stamping of generated photon pairs as
well as background thermal photons, propagation of pho-
tons, and fiber coupling and collimation of the same. In this
section, the simulation techniques used for these processes
are discussed in detail.

A. Spontaneous parametric down-conversion-based
source

1. Background

Spontaneous parametric down-conversion refers to a
process of amplification of vacuum uncertainties (or fluc-
tuations) of the optical field in the low-gain regime [87].
In a SPDC process, a photon from the pump (p) laser
beam incident on a nonlinear (type-II) crystal such as BBO,
PPKTP etc. can originate two other photons: signal (s) and
idler (i) [88]; as shown in schematic Fig. 22. Given that
the index of refraction changes with frequency, only cer-
tain triplets of frequencies will be phase matched such that
law of conservation of momentum [refer to Fig. 23(a)] and
energy [refer to Fig. 23(b)] are satisfied. In order to achieve
phase matching through the use of birefringent crystals,
the highest frequency wave ωp = ωs + ωi is polarized in
the direction that gives it the lower of the two possible
refractive indices [87]. For the type-II crystal, this choice
corresponds to the extraordinary polarization [87]. Also,
the polarization of the pump photon should be the same
(extraordinary: e) as the signal, while the idler should have
orthogonal (ordinary: o) polarization (refer to the green
encircles and arrows in Fig. 22). Thus, for type-II crystals,
ep = es + oi.

FIG. 21. Classical postprocessing module layout.

FIG. 22. Schematic of the SPDC process through a PPKTP
crystal of poling period

(
�� = 10 μm

)
. In SPDC, the input pump

(p) photon at 405 nm (in blue) undergoes frequency down-
conversion and outputs two near-infrared photons [signal (s) and
idler (i), highlighted in red] at double its wavelength (i.e., 810
nm). The green colored dot and arrows represent orthogonal
polarization directions.

From the above considerations for the conservation of
energy and momentum in a SPDC process, the quasi-
phase-matching condition for a periodically poled KTP
crystal can be obtained by solving the Sellmeier equations
using the values of the constants given in Refs. [89–91].
Numerically, the phase-matching temperature is calculated
to be 44.4 ◦C considering a pump wavelength of 405 nm
along with signal and idler wavelengths of 810 nm (refer
to Appendix C for detailed expressions).

2. Pair-generation probability and pair-generation rate

The pair-generation probability density (or joint spectral
density) is the square modulus of the probability ampli-
tude of the SPDC process (or joint spectral amplitude),
i.e., |ψ (ωs, ωi)|2. Now since ωp = ωs + ωi and ωp is
the coherent state of the laser source, if we numerically
integrate ψ (ωs, ωi) over a possible range of signal fre-
quencies (ωs) then we can obtain a sinc2 nature plot for this
pair-generation probability density function plotted over a
spectrum of signal mode frequencies as illustrated through
a schematic in Fig. 24.

The maximum of this probability distribution provides
the corresponding wavelength information at which the
SPDC pair-generation rate is maximal. The maximum
value of pair-generation probability obtained numerically

(a) (b)

FIG. 23. Schematic describing the relations for the law of con-
servation of momentum (left) and energy (right), where �� is the
poling period.
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FIG. 24. Schematic describing the sinc2 nature of pair-
generation probability density function corresponding to a spec-
trum of mode frequencies.

can be directly verify with the experimental data. Conse-
quently, the pair-generation rate is given by

RT ∝ 〈ψ |ψ〉 =
∫
|ψ (ωs, ωi)|2 dωsdωi. (4)

For detailed analytical derivation of the pair-generation
rate, refer to Appendix D and for the numerical
approach implemented the simulate the same, refer to
Appendix E.

B. Time stamping of single and background photons

In an idealistic picture, we consider a photon
source that generates perfect (only) single-photon events
(Fock state |1〉). The quantum uncertainty of detecting
each output photon with frequency ω at time t is �t�ω ≥
1
2 . The probability distribution of measuring a given pho-
ton at time t (or with frequency ω) then becomes the
modulus square of its wave function (or its probability
amplitude). The distribution also depends on the source
properties as well as the filtering conditions. For exam-
ple, in a SPDC source (as presented through a schematic
in Fig. 25), the probability distribution can be Gaussian or
Sinc-squared, depending on the nonlinearity profile of the
crystal as well as the spectral profile of the filter.

Defining the probability of a photon generated at
time t1 + τ is Pr (t1 + τ |t1) given that the earlier pho-
ton is generated at time t1; then for an ideal single-
photon source, for τ = 0, this probability becomes zero,
i.e., Pr (t1|t1) = 0. Now for all τ 	 tcoh, where tcoh is
the coherence time of the single photon, this probabil-
ity will have a constant value p , i.e., Pr (t1 + τ |t1) = p .
This is because of the fact that for very large values
of τ beyond the coherence time tcoh, the source behaves
truly randomly and emits single photons at any arbitrary
interval with equal probability. Therefore as shown in
Fig. 26(b), if we plot this probability as a function of
τ , it will smoothly increase from 0 and saturate at p .

FIG. 25. Probabilistic ideal single-photon source emitting a
stream of photon pairs at times t1, t2, t3. Detection of the idler
photon heralds the signal photon of the same pair. The detection-
time uncertainty for each photon is depicted with a Gaussian
distribution.

Let us assume that 107 photons are generated per sec-
ond. So, we divide the time span of 1 s into equal bins of
size of 1 ps. This provides us with 1012 bins in 1 s. When
107 photons are randomly distributed into those 1012 bins,
the probability of having a photon in each bin becomes
10−5. However, we enforce an idealistic restriction that if
one photon has already been assigned to a bin, say x, then
the probability of another photon to be assigned to the same
bin (x) is zero. Now as illustrated earlier in Fig. 26, this
probability of assignment for each bin slowly increases for
the subsequent bins, i.e., x + 1, x + 2, x + 3, . . . and satu-
rates at p = 10−5 for some bin number, say in this case x +
n, where n is related to the coherence time. However, it is
important to note that for a SPDC-based (nonideal) single-
photon source the probability of assigning more than one
photon is negligible [Pr (t1|t1)→ 0]. The algorithm for
time stamping and the comparison between the simulated
and the experimental time-stamping data can be found in
Appendix F.

(a)

(b)

FIG. 26. (a) Schematics comparing the positions of time-
uncertainty distributions for two single-photon events with
three different relative time intervals τ : (i) τ = 0 where
Pr (t1 + τ |t1) = 0 (ii) 0 < τ < tcoh where 0 < Pr (t1 + τ |t1) <
p (iii) τ 	 tcoh where Pr (t1 + τ |t1) = p . (b) Schematic of the
nature of the probability distribution Pr (t1 + τ |t1) as a function
of τ for any arbitrary t1.
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While generating the time-stamp list for each run of
the protocol, it is observed that the process increases the
runtime of the simulation significantly. In order to speed
up the process, we adapt the data resampling technique
to generate the time-stamp list. For an arbitrary simulated
single-photon pair-generation rate, the time-stamp list is
generated only for the first instance of the simulation. In
further runs of the simulation, where the parameters for the
type-II SPDC source module remain unchanged and hence
a similar pair rate is obtained, the resampling technique
is used to generate the time-stamp list. The application of
the resampling technique results in variation in the num-
ber of time stamps generated for a fixed time interval. The
number of time stamps generated determines the effective
number of photon pairs that form the input to the subse-
quent modules in the simulation toolkit. In Secs. V B, we
mention that it is assumed that all the parameters remain
invariant over the runtime of the simulation. Thus, for mul-
tiple runs of the simulation with fixed parameters, the sim-
ulated pair-generation rate remains constant over all such
instances but the effective number of photon pairs gener-
ated varies because of the usage of resampling technique.
This effectively mimics the variation in the single-photon
pair-generation rate in the experimental setup. Refer to
Appendix H for a detailed discussion and algorithm for the
time-stamp resampling method.

C. Detection of background photons

Besides the single photons from a SPDC source, the
experimental detections also consists of other background
photons that commonly originate from any surrounding
thermal source. From the literature, the photon-number
(n) distribution for such a source is commonly super-
Poissonian, where Pr (n) = μn/(1+ μ)n+1. If we mea-
sure the second-order coherence g(2) for such a source,
then it exhibits bunching property, where g(2) at τ = 0
is greater than that at τ 	 0. In our simplified model
to simulate these background photon statistics we con-
sider multiphoton events only up to two photons. Also, we
assume that Pr (n = 2) = Pr (n = 1)2, which implies that
Pr (2)/Pr (1)� 1 since 0 ≤ Pr (n) ≤ 1. Here, it is impor-
tant to note that for an ideal single-photon distribution
Pr (2)/Pr (1) ≈ 0.

Let us assume that 105 background photons are inci-
dent at the single-photon detector per second. As in the
case of single-photon time stamping, we divide the time
span of 1 s into bins of equal time intervals, each of 1-ps
time resolution. Thus we get 1012 bins in 1 s. Now, let
us consider, the probability of assigning a single thermal
photon-generation event to an empty bin is P1, then the
probability of assigning a multiphoton event to an empty
bin becomes P2

1 from the idea discussed above. There-
fore, the probability of assigning at least one photon in
each bin is P1 + 2× P2

1. Thus, from the consideration that

105 background photons are incident per second, the value
of P1 becomes approximately 10−7. We use the consid-
erations made above to generate the time-stamping data
for our background contributions from thermal sources.
Refer to Appendix G for the algorithm implemented for
generating background time stamps.

But before we perform the time stamping of the inci-
dent background photons, we need to simulate the back-
ground incidence rate. This estimation on the incidence
rate is done by taking into account the noise level in the
coincidence plots at the detectors for the different basis
measurements performed in the protocol. This noise level
in the coincidence plots is similar to what is mentioned
in Fig. 7 and is taken as a user input to the detection mod-
ules. Initially, a dataset is generated by varying the incident
background rate at the detectors and obtaining the corre-
sponding background coincidence rate for a fixed signal
rate. The dataset is then stored and interpolated to obtain
the incident background rate for a given input background
coincidence rate at the fixed signal rate.

Now we need to extend the aforementioned logic to cal-
culate the incident background rate for any incident signal
rate, i.e., we want to estimate the ratio in which the inter-
polated background rate will be affected. This is done by
the method explained as follows. A dataset is generated
by varying the signal rate and obtaining the correspond-
ing background coincidence rate for a fixed background
incidence rate at the detectors. Now the ratio in which
the incidence background rate changes with the signal
rate can be calculated by dividing the background coin-
cidence rate obtained at any arbitrary signal rate with the
background coincidence rate at the fixed signal rate for
which a dataset has already been generated. Thus the two
datasets can be interpolated to obtain the incident back-
ground rate for any arbitrary signal rate and background
coincidence level. Refer to Appendix G for the algorithm
implemented for obtaining the incident background rate at
the detector.

D. Propagation of single photons

In the source module, each of the generated photons are
associated with a Gaussian distribution corresponding to
their electric field amplitude. The propagation of single
photons are thus simulated by using Huygen’s principle for
propagation of Gaussian beams in two dimensions. Refer
to Appendix J for the algorithms implemented for the gen-
eration of the electric-field-distribution array as well as the
propagation of single photons.

E. Fiber coupling

In the experimental setup, coupling of single photons
into a single-mode fiber is done using mounting stages and
fiber couplers that provide certain degrees of freedom to
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align the fiber tip with the input beam in order to maximize
the coupling. In our simulation toolkit, the fiber-coupling
submodule is used to simulate an active coupling mecha-
nism that a user might perform while aligning the exper-
imental setup. As mentioned in Secs. V B, the position of
the fiber tip is simulated accurately for the maximum cou-
pling limited only by the errors generated from the least
count of the coupling apparatus. The error in the posi-
tion of the fiber tip is simulated by randomly selecting
a value from a Gaussian distribution with the least count
being twice the sigma of the distribution. The submod-
ule takes in as input the specifications of the physical
components such as the fibers and the aspheric lenses
within the couplers and the electric field distribution of
the incident photons and returns the effective coupling effi-
ciency as the output. The efficiency is calculated as the
overlap between the intensity distribution of the received
photons at the fiber tip and the Gaussian distribution con-
sidering the mode-field diameter of the fiber. By further
considering the associated losses, the effective coupling
efficiency is obtained. Refer to Appendix K for the detailed
methodology and algorithms implemented to simulate the
fiber-coupling process.

VII. MODELING PHYSICAL COMPONENTS

In this section, we discuss briefly the various physical
components that are simulated, as listed in Table I, for
the current version of qkdSim. The physical components
that form the experimental setup for demonstration of the
B92 protocol includes both optical and electrical compo-
nents such as lenses, filters and beam splitters, free-space
and optical fiber-based channel, detectors, and TCSPCM.
The simulation methodology for the submodules corre-
sponding to these physical components are discussed as
follows.

A. Lens

The working of a lens is simulated by using the lens-
transfer function calculated from the specifications of the
lenses used in the setup and applying that on the electric
field corresponding to the incident photons. As specified in
Secs. V B, the photons are considered to have a Gaussian
electric field distribution, so the effect of the lens is sim-
ulated taking the case of Gaussian beams only. The lens
submodule takes in as input the specifications correspond-
ing to the type of material and its dimensions, etc., the
electric field distribution and the time-stamp array of the
incident photons. A part of the total number of incident
photons gets lost during transmission because of the loss
in the medium. The submodule returns as output the elec-
tric field distribution of the photons after they pass through
the lens and the corresponding time stamps.

B. Half-wave plate (HWP)

The HWP submodule simulates the the effect of phase
shift on the polarization of the photons transmitted through
the HWPs in the experimental setup. The orientation of the
fast axis of the HWP with respect to the polarization of the
incoming photons is simulated by the choice of basis for
the required projection. The accuracy of the orientation is
limited only by the least count of the mounting component
and the error is simulated by randomly choosing a value
from a Gaussian distribution with the least count being
twice the standard deviation of the distribution. The param-
eters regarding the loss through the medium, least count
of the mounting component etc. are set within the sub-
module. For each element of the time-stamp array evolved
with the submodule, the rotation of polarization is calcu-
lated by taking into account the simulated orientation of
the fast axis of the HWP, and then the polarization angle is
appended to the corresponding element of the array.

C. Filter

The filter submodule simulates the effect of filter on
a beam or photons of certain wavelength. For now we
model a very simplified filter inspired from the real com-
ponents used in the experimental setup and thus can be
further enhanced to capture more practical scenarios. The
submodule takes into account the insertion and the trans-
mission losses incurred by the photons incident on the
filter. From these losses, the transmission probability of
an incident photon is calculated. When the time-stamp
array is evolved with the submodule, the elements are ran-
domly selected based on the transmission probability and a
new array for time stamps corresponding to the transmitted
photons is created and returned as output.

D. Polarizing beam splitter (PBS)

The PBS submodule simulates the transmission of a lin-
early polarized beam through a PBS. The extinction ratio
and the transmission loss associated with the PBS is set
within the submodule as set parameters by taking data
from the specifications’ sheet provided by the manufac-
turer. The submodule takes as input the time stamps of
the incident photons and the polarization angle of the pho-
tons. Depending on the extinction ratio, each element of
the input time-stamp array is randomly selected for either
transmission or reflection. By further considering the loss
through the medium, separate time-stamp arrays are cre-
ated corresponding to the transmission and reflection arms
of the PBS and returned as outputs.

E. Beam splitter

The BS submodule simulates the transmission of a beam
through a beam splitter. The transmission loss and the
splitting ratio associated with the BS is set within the
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submodule as set parameters by taking data from the
specifications’ sheet provided by the manufacturer. The
submodule takes as input the time stamps of the incident
photons and similar to the PBS submodule, depending on
the splitting ratio and loss through the medium, separate
time-stamp arrays are created corresponding to the trans-
mission and reflection arms of the BS and returned as
outputs.

F. Fiber transmission

The fiber-transmission submodule simulates the trans-
mission of photons through an optical fiber of a certain
length. The submodule takes into account only the losses
encountered by the beam during transmission and does not
consider any other effect due to the fiber. This takes as
input the length of the fiber channel and the time-stamp
array of the coupled photons into the fiber. The loss asso-
ciated with the transmission as well as the insertion loss at
the mating sleeves are taken from the specification sheet of
the fiber and defined within the submodule. The total loss
calculated determines the transmission probability of the
photons through the fiber. If β is the loss in dB due to the
connectors of the fiber and α is the transmission loss in dB
per meter, then the total loss (γ ) can be calculated as

γ = β + αl, (5)

where l is the length of the fiber. The transmission proba-
bility can then be calculated as [86]

t = 10−γ /10. (6)

The refractive index of the material of the fiber is also
accounted for from the specification sheet of the fiber and
is used to calculate the traversal time of photon using
Eq. (3). Each element of the input time-stamp array is
randomly selected, depending on the transmission proba-
bility, to form the time-stamp array corresponding to the
transmitted photons. This array is returned as output by the
submodule.

G. In-lab free-space transmission

The in-lab free-space transmission submodule simulates
the transmission of photons through free space of a cer-
tain length in laboratory conditions where temperature,
humidity, and lighting are controlled. It takes into account
only the losses encountered by the beam during trans-
mission and does not consider any other effect due to
the free-space channel. The submodule takes in as input
the length of the free-space channel and the time-stamp
array of the photons traveling through the channel. For
the in-lab free-space transmission channel, the attenuation
is taken as 0.2 dB per km and the transmission probabil-
ity is calculated using Eq. (2). The refractive index of the

medium is taken as unity and the time of traversal for the
photons is obtained using Eq. (3). Similar to the fiber-
transmission submodule, depending on the transmission
probability, elements of the input time-stamp array are ran-
domly selected to form the time-stamp array corresponding
to the transmitted photons.

H. Fiber-based single-photon detector

The fiber-based single-photon detector submodule sim-
ulates the detection process of single photons with fiber-
based detectors. In other words, we consider the case
where single photons are coupled to the detector with
a fiber and get detected via an avalanche breakdown
process at the photo diode of the detector. For each
detection event, the detector outputs a transistor-transistor
logic (TTL) pulse corresponding to the detected photon.
The submodule provides a simplistic approach towards
modeling of single-photon avalanche detectors and the
scope is restricted to only SPADs. It takes the time-
stamp array of the stream of photons incident at the
detector as an input. The primary detector imperfections
that we consider for simulation are the quantum effi-
ciency r, dead time, and timing jitter of the detector.
The values corresponding to these parameters are taken
from the specification sheet of the detector and set within
the submodule. The imperfections are discussed as fol-
lows.

1. Quantum efficiency: A single-photon detector has
a certain efficiency of detecting photons incident on it,
i.e., for each of the photons received at the detector, a
TTL pulse is not generated. The probability of genera-
tion of the TTL pulse on receiving an incident photon
is quantified using the parameter quantum efficiency of
the detector. The quantum efficiency of the detector or
the detector efficiency depends on the wavelength of the
incident photons.

2. Detector dead time: The dead time of a detector is
the time interval after a detection event, followed by an
avalanche breakdown, during which the detector is unre-
sponsive to any photon incident at the detector. It defines
the time required by the detector to restore the quenching
circuit. Thus the minimum time interval possible between
two detection events is the dead time of the detector.

3. Timing jitter: Due to imperfections in the detector
circuit, there is a time uncertainty between receiving a pho-
ton at the detector and generating the TTL pulse. The time
interval between generation of the TTL pulse correspond-
ing to a photon detection and the time at which the photon
is actually received at the detector is not constant and has
a Gaussian distribution. This uncertainty is quantified by
the timing jitter of the detector, i.e., the FWHM of the
distribution.
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The logic used for simulating the single-photon detec-
tion event at the detectors considering the specified imper-
fections can be explained as follows. The quantum effi-
ciency affects the difference in the total number of pho-
tons incident at the detector and those which actually get
detected. For each photon incident at the detector, a ran-
dom number is generated in the range [0, 1] as in principle
the efficiency of the detector is ≤ 1. If the random vari-
able has a value less than the quantum efficiency of the
detector, the instance is considered as the receiving event.
The detector dead time is then accounted for by checking
the difference in the time stamp of the consecutive pho-
tons received at the detector. If the difference is less than
the dead time, the photon corresponding to the larger time-
stamp value is discarded and the time difference with the
next photon is checked and the process continues for all
the received photons. To simulate the timing jitter of the
detector, each of the generated TTL pulses corresponding
to detected photons is adjusted with a time delay cho-
sen randomly from a Gaussian distribution with a mean
(μ) of zero and standard deviation (σ ) value equalling 2.3
times the timing jitter of the detector. The time-stamp array
corresponding to the detected photons is then returned as
output.

I. Time-correlated single-photon counting module

A TCSPCM receives the TTL pulses generated at the
detector corresponding to the detection events and registers
time stamps for the TTL pulses. The TCSPCM submodule
simulates this process by taking as input the time stamps of
the TTL pulses generated at the detector corresponding to
the detection events. The primary TCSPCM imperfections
that we consider for simulation are the losses in the Sub-
Miniature version A (SMA) cables that connects it to the
detectors, dead time, and timing jitter of the TCSPCM. In
the following, we explain the various parameters that are
accounted for to model the TCSPCM.

1. SMA cable losses: SMA cables are used to con-
nect the detector to the TCSPCM. These cables have some
inherent losses at the connectors and as a result of that,

some of the TTL pulses generated from the detectors are
lost.

2. TCSPCM dead time: Similar to the detectors, the
dead time of a TCSPCM is the minimum time interval
between registering two TTL pulses received from the
detector. The value of the dead time is set within the
submodule as per the specification sheet.

3. Timing jitter: Due to imperfections in the TCSPCM
circuit, the time stamps associated to a received pulse is not
the same as the time at which the TTL pulse is received.
The distribution of this time delay is a Gaussian distribu-
tion, centered at the time at which the pulse is actually
received by the TCSPCM. This deviation is quantified
using the timing jitter of the TCSPCM, which forms the
FWHM of the Gaussian distribution.

The dead time of the TCSPC module and the timing jit-
ter is simulated in the same way as done for the detector.
The channel efficiency is calculated using the specified
losses of the SMA cable and is simulated in a similar
manner as the detection efficiency. Refer to Appendix I
for the algorithms implemented for the simulation of
single-photon detection with the methodology discussed
for fiber-based single-photon detector and TCSPCM sub-
modules

VIII. RESULTS AND DISCUSSION

Our paper introduces a simulation toolkit called qkdSim.
While in the future, we aim to develop this into a soft-
ware that will be able to simulate any QKD protocol
along with consideration of the associated experimental
imperfections, in the present work, we show details of
the B92-protocol simulation and its performance analysis
in comparison to the results obtained from our experi-
mental demonstration of the B92 protocol using a her-
alded single-photon source. We find a reasonably good
match between our simulation and experiment as discussed
below.

The comparative results from the experiment and sim-
ulations, using the two optimization strategies A and B,
are presented in Tables IV and V, respectively. The results

TABLE IV. Optimized results of average key rate, QBER and asymmetry (i.e., key symmetry), obtained using strategy A, from the
experiment and the simulation. Note that an asymmetry value of “x” implies that the ratio of “0” bits to “1” bits in the key is x:(100-x).

Optimization strategy A

From experiment From simulation
Crystal length
(mm) Time of the day key rate (kHz) QBER (%) asymmetry key rate (kHz) QBER (%) asymmetry

20 Day 47.6± 0.6 4.79± 0.01 49.82± 0.01 53.1± 0.3 4.79± 0.01 50.1± 0.06
Night 51.0± 0.5 4.79± 0.01 50.15± 0.02 52.8± 0.4 4.79± 0.01 50.1± 0.05

30 Day 33± 2 4.78± 0.01 50.07± 0.02 64± 1 4.78± 0.01 50.05± 0.08
Night 36± 3 4.78± 0.01 50.08± 0.02 60± 2 4.79± 0.01 50.01± 0.11
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TABLE V. Optimized results of average key rate, QBER, and asymmetry (i.e., key symmetry), obtained using strategy B, from the
experiment and the simulation. Note that an asymmetry value of “x” implies that the ratio of “0” bits to “1” bits in the key is x:(100-x).

Optimization strategy B

From experiment From simulation
Crystal length
(mm) Time of the day key rate (kHz) QBER (%) asymmetry key rate (kHz) QBER (%) asymmetry

20 Day 47.8± 0.6 4.79± 0.01 50.2± 0.3 60.0± 0.2 4.79± 0.01 57.0± 0.2
Night 53.8± 0.4 4.79± 0.01 53.7± 0.3 59.8± 0.2 4.79± 0.01 57.0± 0.2

30 Day 36± 2 4.79± 0.01 54.0± 0.3 71± 1 4.79± 0.01 57.1± 0.3
Night 38± 3 4.78± 0.01 54.1± 0.4 66± 2 4.79± 0.01 57.1± 0.3

reported for the experiment are obtained by averaging
the measurement outcomes over 20 measurement sets,
wherein each set involved a measurement time of 10 s. The
choice for this measurement time is motivated from the
result of the bootstrapping analysis discussed at the end of
Secs. IV C and described in Appendix A. For the simula-
tion, while the number of datasets considered for averaging
remained the same, the runtime of the protocol is consid-
ered to be 1 s. Here, the consideration of a smaller runtime
for the simulation can be motivated from the assumption of
time invariance that is considered for the system. The error
values quoted correspond to the standard deviations in the
results obtained from 20 iterative runs of the protocol, for
both simulation and experiment.

In Figs. 27 and 28, we exemplify the distribution of the
key rate, QBER, and key symmetry values correspond-
ing to a range of coincidence window sizes, considering a
representative daytime dataset (chosen from those 20 mea-
surement sets), for both crystals of length 20 and 30 mm,
respectively. More particularly, in both figures, we vary
the coincidence window size (i.e., the gap between Wl1
and Wr1 or Wl2 and Wr2) in steps of 10 ps from the global
maximum point (shown in Fig. 7) and then use two unop-
timized strategies: A and B, that are slight variations to
the optimization strategies presented in Appendix B. In the
unoptimized strategy A, we calculate the key rate (plotted
with blue “+” symbol) for the (unrestricted) QBER (plot-
ted with red “+” symbol) corresponding to each size of the
coincidence window, while ensuring that the key symme-
try remains 50:50 (approximately). This is done by slightly
readjusting the coincidence window size on the coinci-
dence peak 2 (i.e., the positions of windows: Wl2 and Wr2).
Thus, it can be observed in Figs. 27(b) and 28(b) that the
distribution of key symmetry (marked with green “+” sym-
bol) remains 50 over the whole range of coincidence win-
dow sizes. In the unoptimized strategy B, we only slightly
deviate from its optimized strategic version, by calculating
the key rate (plotted with blue dots) for the (unrestricted)
QBER (plotted with red dots) corresponding to each size of
the coincidence window; however, in this case apart from
removing the threshold on QBER values, we also relax the

50:50 constraint on the key symmetry. For this strategy,
the corresponding variations in key symmetry values are
shown in Figs. 27(b) and 28(b) with pink dots. We can

(a)

(b)

FIG. 27. Distribution of key rates, QBERs, and key symme-
tries plotted against a range of coincidence window sizes for the
crystal of length 20 mm. (a) Plot showing the distribution of key
rate and QBER values for varied sizes of coincidence window
obtained using unoptimized versions of strategies A and B. (b)
Plot showing the distribution of key symmetry (or asymmetry)
values corresponding to the varied sizes of coincidence window
obtained using unoptimized versions of strategies A and B. Here,
a key symmetry value of “x” implies that the ratio of “0” bits to
“1” bits in the key is x:(100-x).
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(a)

(b)

FIG. 28. Distribution of key rates, QBERs, and key symme-
tries plotted against a range of coincidence window sizes for the
crystal of length 30 mm. (a) Plot showing the distribution of key
rate and QBER values for varied sizes of coincidence window
obtained using unoptimized versions of strategies A and B. (b)
Plot showing the distribution of key symmetry (or asymmetry)
values corresponding to the varied sizes of coincidence window
obtained using unoptimized versions of strategies A and B. Here,
a key symmetry value of “x” implies that the ratio of “0” bits to
“1” bits in the key is x:(100-x).

observe that in strategy B, for the two coincidence peaks
(1 and 2) being asymmetric (in height and width) and also
slightly skewed due to realistic imperfections, the key sym-
metry keeps constantly decreasing in a given direction over
the range of coincidence window sizes. Intuitively, in both
Figs. 27(a) and 28(a), the key rate and QBER values are
directly proportional to the size of the coincidence win-
dow, as they result from the area under the curve estimates
depicted in Fig. 7. In Fig. 28(a), the key rate and QBER
values grow more steeply compared to that in Fig. 27(a),
since both pair production rate and background noise is
higher for the longer crystal of 30 mm. This is because
we do not focus our Gaussian pump beam very tightly to
ensure that we achieve a good heralding ratio [92] (refer
to Appendix D for details). Also, we note that towards the

larger sizes of the coincidence window, the growth of the
key rate reduces and becomes sublinear, compared to the
linearity of the slope for the QBER distribution, since at
those points the coincidence window span has expanded
and entered the flat zone where the background noise is
increasing more rapidly than the SNR. Most importantly,
we observe that beyond a certain choice of coincidence
window size the information theoretic QBER threshold of
4.8% [67] for the B92 protocol gets violated for both crys-
tals, reaching upto approximately 88 kHz key rate with
approximately 8.9% QBER in Fig. 28(a) and upto approx-
imately 50 kHz key rate with approximately 5.7% QBER
in Fig. 27(a). Lastly, we observe that the key-rate values
corresponding to 4.8% QBER in Fig. 28(a) for the shorter
crystal and Fig. 28(b) for the longer crystal is around 48
and 34 kHz, respectively; along with the fact that the
key-rate curve for strategy B shoots above that for strat-
egy A in Fig. 28(b), unlike that in Fig. 28(a) where they
actually overlap. These observations help us to infer that
the optimization results presented in Tables IV and V are
well in agreement with these unoptimized results. These
results also bring out the importance, utility, and perfor-
mance analysis of the optimization methods that have been
introduced in this paper.

One of the key features of the results reported in
Tables IV and V is that irrespective of the optimization
strategy used, the simulated key rates are seen to be higher
than the experimentally measured ones. Whereas, in the
qkdSim framework, we indeed taken into account realistic
imperfections associated with several optical components
and processes, thus enabling a close match between simu-
lation and experiment, there are more effects that we will
be incorporating in future versions of the toolkit, which
will enable an even closer match. One of the key fac-
tors, which plays a major role in the reported key rate is
the fiber coupling of the photons. The efficiency of cou-
pling is affected by numerous factors such as the coupling
lens arrangement, the degrees of freedom provided by the
lens mount, the least count of the mounts, direction of
the incoming beam as well as human error. In the qkdSim
module, which simulates coupling, we take into account
the lens specifications, the fibers as well as the mounts.
However, the incoming beam is considered to be perfectly
perpendicular to the spherical front surface of the lens. Any
deviation from this decreases the coupling efficiency. We
also assume that the beams are perfectly Gaussian in the
spatial domain whereas in experiment, the beam may devi-
ate from this assumption. These factors create a difference
in experimental and simulated coupling efficiency, which
inevitably means that the simulated efficiency is always
higher. As a result, the simulated key rate is higher than
the experimentally measured one.

All the reported results in Tables IV and V are obtained
using the optimization strategies (introduced in Secs. IV C)
and as a consequence of it, the results are dependent on the
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background noise in the coincidence plots. As discussed,
the source of this noise is the background photons incident
at the detector. We observe in Table IV that the error val-
ues for both estimated QBER and asymmetry parameters,
are at least one order of magnitude lower than those for the
key rates, irrespective of their origin: i.e., from experiment
or simulation. The reasons for this are the constraints on
QBER (approximately 4.8%) and key symmetry (approx-
imately 50), which are fixed in case of the optimization
strategy A to obtain the key rate, as discussed earlier in
Secs. IV C. Therefore, all the fluctuations in the measured
data get reflected on the key-rate results. However, in Table
V, we observe that both key rate and key symmetry (or
asymmetry in the key) have one order of magnitude higher-
error values than QBER. This is in accordance with the
fact that in optimization strategy B, the key symmetry,
along with key rate, is also considered as an unconstrained
parameter for optimization. It is important to note that such
choices of optimization, results in different implications on
the security of the resultant secure key as discussed earlier
in Secs. IV C.

Moreover, for both tables, our in-lab free-space exper-
imental demonstration of the B92 protocol (discussed in
Secs. IV B) is conducted during day and night time. For
both time periods, the similarity of the experimental results
reflects that the in-lab conditions varied indistinctly at dif-
ferent times of the day. In principle, for in-lab conditions,
the estimated key rate should be the same for both day
and night time measurement. However, we find that irre-
spective of optimization strategy, the measured key rate
in the night data is slightly higher than that measured
during the day time. We compare the raw unoptimized
data to investigate this observation and find that the night-
time key rates are higher than the day time ones. For the
20-mm crystal and considering a 3-ns time window, we
obtain a key rate of 47.47 and 51.1 kHz for the exper-
iment during the day and night time, respectively. Thus,
this observation is not an artefact of a given optimization
strategy nor is it simply correlated with higher or lower
measured background. We believe that the source of this
slight increase in night-time key rate may be related to the
overall temperature conditions. As our source is a PPKTP
source, the phase matching is governed by the tempera-
ture of the crystal. As explained in Secs. IV B, the crystal
temperature is maintained at the phase-matching temper-
ature through a feedback mechanism involving an oven
and a temperature controller. Ideally, the oven tempera-
ture is the same as the one displayed on the temperature
controller. However, during the day time, the outside tem-
perature fluctuates quite a lot, which results in slight lab
temperature fluctuations at a fractional level. The temper-
ature that is experienced by the crystal is a homogenized
combination of the oven temperature as well as the over-
all room temperature. From the analytical relationship
between the quasi-phase-matching temperature and SPDC

pair rate in a type-II PPKTP crystal, as highlighted over
Appendices C and D, along with its numerical calculation
discussed in Appendix E, it can be observed that even a 0.1
degree change in crystal temperature may lead to change in
phase-matching condition and hence, pair-generation rate.
Thus, the small difference in homogenized temperature
may cause slightly higher night-time key rates than day
time ones. However, as the background noise level forms a
key input to the simulation toolkit, the negligible variation
of the in-lab conditions at different times of the day gets
reflected in the simulation results, in which the night- and
day-time key rates are almost the same, within respective
error bars.

Another observation from both tables is that although
for our case of not tightly focused Gaussian pump beam,
having a longer crystal length should potentially lead to
a higher key rate [as depicted in Fig. 28(a)] due to an
increased pair production rate [92], the crystal of length
30 mm in fact produces a lower key-rate estimate, for
the given threshold QBER value, than the 20-mm one
for the experimental results unlike the simulation part,
where the logic is rather consistent. This is because in
the experimentally measured datasets, the 30-mm crys-
tal besides having higher signal level also possesses an
increased noise level due to the detection of more back-
ground photons, which then lowers the key rate to ensure
that the QBER optimization remains within the thresh-
old value of 4.8%. However, since the experimentally
observed noise level forms an input to the simulation
toolkit, one expects to observe a better match of the sim-
ulated results with that of the experiment for the crystal
of 30-mm length. Nevertheless, we observe a contradic-
tion there! As per our understanding, the origin of this
discrepancy is due to the assumptions involved with the
pair-generation-rate calculation while simulating the type-
II colinear degenerate SPDC process. The simulated pair-
generation rate is directly proportional to the crystal length
as well as the input pump intensity at the crystal, which
is not observed experimentally. Through separate experi-
mental tests we verify that the singles and the coincidence
rates observed at the detectors does not increase linearly
with increase in the pump-beam intensity and the crys-
tal length. From these test results, it can be inferred that
the pair-generation rate at the crystal does not increase
linearly as well. Thus the pair-generation rate obtained
from the simulation differs from the actual value obtained
from the experiment, resulting in a discrepancy between
the final results for the 30-mm crystal length. Additionally,
in the case of the key rate estimated from the experi-
ment with the 30-mm crystal, the error values are also
higher owing to the increased fluctuations in the mea-
sured data points on the coincidence plot. As exemplified
for a representative dataset in Fig. 8(a), we observe via
the unoptimized window duration of 3 ns around the
coincidence peaks that the 30-mm crystal indeed offers
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a higher key rate owing to its increased pair rate com-
pared to the 20-mm crystal. More particularly, in this
daytime data analysis over 20 runs of the protocol we
find the key rate and QBER to be 47.47± 0.52 kHz and
4.67± 0.06%, respectively, for the 20-mm crystal, and
78.9± 0.48 kHz and 7.26± 0.03%, respectively, for the
30-mm crystal. However, a significant lowering of this
considerably high QBER (below the threshold) present in
the 30-mm datasets due to an increased background noise
level, via the optimization strategies, leads to a significant
loss of key rate as reported in Tables IV and V. In a nut-
shell, due to these reasons, the results from the experiment
and those from the simulation offer a better match when
the length of the crystal is 20 mm compared to the 30-mm
case that involves both higher background noise and more
fluctuations.

Furthermore, from Tables IV and V, we observe that
the key rates obtained via the two optimization algorithms
differ given a certain time of the day and length of the
crystal. As discussed previously, this increase in the cor-
responding key rates for strategy B, occurs due to the
offered relaxation in key symmetry, over strategy A. For
the simulations, however, the increase is more pronounced
than that for the experiment. From this observation, we
can compare and conclude that the asymmetry in simu-
lated key bits is intrinsically higher than in the experiment.
In order to understand the reason behind this intrinsic
asymmetry, we need to take an account of the factors
that affect the asymmetry of the key bits in both simu-
lation and the experiment. In simulation, the asymmetry
is mainly introduced by the asymmetric splitting ratio of
the beam splitters. However, in the experiment, apart from
the asymmetry in the beam-splitting ratio, the asymme-
try in coupling efficiency also plays an important role.
In our experiment, the asymmetry due to coupling effi-
ciency effectively reduces the asymmetry introduced by
the beam splitter to some extent. This counter error prop-
agation happens as all the components involved in the
experiment do not behave identically, thus we can get a
different coupling efficiency even when the specification of
the fibers and lenses remain the same. As a consequence,
the overall asymmetry in the setup decreases and that gets
reflected in the results as well. In the simulated version
of the coupling, the asymmetry is found to be less pro-
nounced as the various parameters that affect the behavior
of the components are directly taken from the specification
sheet of the components. For this reason we observe that
the difference in the key rates obtained with the two opti-
mization strategies are higher for the simulation than for
the experiment.

Lastly, it is important to point out that while the opti-
mization strategies focus on fixed values of QBER and
asymmetry in the key string, the estimated key rate is
itself associated with a standard deviation in the case
of both experiment and simulation. While the sources of

this deviation for the experiment are imperfections of the
source, devices, components etc., that for the simulation
are primarily captured by the methodology of the sim-
ulation, which is based on random number generation
from both uniform and normal distributions. While certain
aspects of the experiment such as loss through the medium,
generation of time stamps, and detection efficiency are
simulated using random number generation from a uni-
form distribution; the alignment errors, timing jitter, etc.
are simulated using random numbers from a normal distri-
bution. This, explained in detail in Secs. VI and VII, results
in deviation in the outcomes for multiple simulation runs
of the protocol, which are shown in the tables.

IX. CONCLUSION AND OUTLOOK

In this paper, we discuss in detail our in-house devel-
oped simulator qkdSim, which is created to specifically
provide the QKD community with a simulation toolkit
that takes into account practical imperfections that could
be encountered in an actual experiment. Software avail-
able earlier, including qkdX, do not contain detailed dis-
cussion on attendant physical processes and/or physical
components. The qkdSim aims to bring in more practical
considerations to QKD simulations so that realistic predic-
tions about the key rate and the QBER can be made before
investment of resources in developing the physical QKD
system. To this end, in our current work, we show how
qkdSim simulates the free-space-based in-lab demonstration
of the B92 protocol in detail. We discuss the development
of the qkdSim architecture following the Agifall model as
well as the simulation methodology involved in modeling
the various physical processes and components. A repre-
sentative key rate from the experiment is 51± 0.5 kbit/sec
whereas that from the qkdSim simulated value is 52.8±
0.4 kbit/sec, corresponding to a representative QBER of
4.79%± 0.01% from both. Having successfully simulated
the B92 protocol, which is an example of a QKD protocol
that does not use entanglement as the basis for security,
we will, in future work, address the applicability of qkdSim
to entanglement-based QKD. This will bring us a step
closer to the desired all-purpose QKD software, which is
capable of simulating arbitrary QKD protocols, giving due
importance to experimental imperfections and conditions.
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APPENDIX A: BOOTSTRAPPING ON MEASUREMENT OUTCOMES

1. Motivation

To estimate an optimal choice for the data-acquisition rate (measurement time for each dataset versus number of
datasets measured) for an appropriate estimation of key rate, QBER, and asymmetry (or key symmetry) obtained in
our experimental demonstration of the B92 protocol.

2. Methodology

For a given measurement run of M sets, each of time T ps:

1. We choose the start and end time-window marker positions for both coincidence curves (sketched in Fig. 7), i.e.,
between Alice and Bob V basis (vertical) and Alice and Bob + basis (diagonal). This provides us with three lists of time
stamps sorted in ascending order corresponding to each measurement set.

2. We choose a uniform random sequence of length M .
3. Using a fast binary search algorithm we collect k (¡T) seconds of data from each of the above three lists, starting

from the time-stamp entry found in the random sequence. For those three output lists we calculate the key rate.
4. We repeat step 3 for each element of the uniform random sequence and then obtain the average key rate over those

elements.
5. To remove any bias, we randomize (or repeat) steps 2–4 over many iterations. We store the average key rate

obtained in each iteration.
6. We finally calculate the ratio: standard deviation (SD) over mean (M) of all the average key rates.
7. We repeat steps 2–6 for a range of k values and finally obtain a plot over that range.

We use Algorithm 1 to implement the above methodology.

Algorithm 1 Bootstrap analysis on QKD datasets

Require:
UNSIGNED INTEGER WINLEFTCURVE1 � Left-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINRIGHTCURVE1 � Right-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINLEFTCURVE2 � Left-window marker position (in ps) for the second curve
UNSIGNED INTEGER WINRIGHTCURVE2 � Right-window marker position (in ps) for the second curve
UNSIGNED INTEGER TOTTIME �Measurement runtime for each dataset in ps
UNSIGNED INTEGER TOTDATASETS � Total number of datasets measured
UNSIGNED INTEGER MINCHUNK �Minimum time chunk size (in ps) for bootstrap analysis
UNSIGNED INTEGER MAXCHUNK �Maximum time chunk size (in ps) for bootstrap analysis
UNSIGNED INTEGER STEPSIZE � Stepsize (in ps) to increase the time chunk
UNSIGNED INTEGER TOTITER � Number of iterations
UNSIGNED INTEGER LENDETTIMESTAMPSALICE � Length of Alice’s detected photon time-stamp array
UNSIGNED INTEGER [LENDETTIMESTAMPSALICE] DETTIMESTAMPSALICE � Alice’s detected photon
time-stamp array
UNSIGNED INTEGER LENDETTIMESTAMPSBOBPLUS � Length of the time-stamp array for Bob’s “+” polarized
photon detection
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBPLUS] DETTIMESTAMPSBOBPLUS � Time-stamp array for Bob’s
detection of “+” polarized photons
UNSIGNED INTEGER LENDETTIMESTAMPSBOBVERT � Length of the time-stamp array for Bob’s “V”
polarized photon detection
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBVERT] DETTIMESTAMPSBOBVERT � Time-stamp array for
Bob’s detection of “V” polarized photons
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Ensure:
UNSIGNED INTEGER COUNTER � Counts the number of time chunk sizes used for the analysis
REAL [COUNTER] RATIOS � Array of standard deviation over mean values for each time chunk size
UNSIGNED INTEGER [COUNTER] CHUNKSIZE � Array of the corresponding time chunk sizes

1: procedure BOOTSTRAP(WINLEFTCURVE1, WINRIGHTCURVE1, WINLEFTCURVE2, WINRIGHTCURVE2, TOTTIME, TOT-
DATASETS, MINCHUNK, MAXCHUNK, STEPSIZE, TOTITER, LENDETTIMESTAMPSALICE, DETTIMESTAMPSALICE, LENDET-
TIMESTAMPSBOBPLUS, DETTIMESTAMPSBOBPLUS, LENDETTIMESTAMPSBOBVERT, DETTIMESTAMPSBOBVERT)

2: REAL [] RATIOS � Dynamic array for storing standard deviation over mean values
3: UNSIGNED INTEGER [] CHUNKSIZE � Dynamic array for storing the corresponding time chunk sizes
4: UNSIGNED INTEGER COUNTER � Counts the number of time chunk sizes
5: UNSIGNED INTEGER K � Iterator for time chunk sizes
6: UNSIGNED INTEGER J � Iterator for total number of iterations
7: UNSIGNED INTEGER I � Iterator for randomly chosen sequence of time stamps
8: UNSIGNED INTEGER [TOTDATASETS] SEQUENCE � Array to store TOTDATASETS uniform random positive

integers
9: REAL CUMSUM � Stores cumulative sum of all key rates
10: REAL [TOTITER] AVGKEYRATE � Array to store intermediate average key rates
11: UNSIGNED INTEGER [] TEMPALICE � Dynamic array to store the temporary list of Alice’s detected photon

time stamps
12: UNSIGNED INTEGER [] TEMPBOBPLUS � Dynamic array to store the temporary list of Bob’s detected (“+”

polarized) photon time stamps
13: UNSIGNED INTEGER [] TEMPBOBVERT � Dynamic array to store the temporary list of Bob’s detected (“V”

polarized) photon time stamps
14: REAL ESTKEYRATE � Stores the estimated values of key rate
15: COUNTER← 0 � Counter for the processed time chunk sizes initialized to zero
16: RATIOS← ∅ � Initializes the dynamic array RATIOS as a NULL set
17: CHUNKSIZE← ∅ � Initializes the dynamic array CHUNKSIZE as a NULL set
18: for K = MINCHUNK, MAXCHUNK do � Loops over the time-chunk sizes
19: for J = 1, TOTITER do � Loops over the specified set of iterations
20: SEQUENCE← RANDOMSEQ (0, TOTTIME− K, TOTDATASETS) � Stores TOTDATASETS uniform random

integers
21: CUMSUM← 0 � Initializes CUMSUM variable to zero
22: for I = 1, LENGTH (SEQUENCE) do � Loops over the uniform random positive integers
23: TEMPALICE← GETTIMESTAMPS (I, SEQUENCE, K, DETTIMESTAMPSALICE) � Stores a random

chunk of time stamps from DETTIMESTAMPSALICE array
24: TEMPBOBPLUS← GETTIMESTAMPS (I, SEQUENCE, K, DETTIMESTAMPSBOBPLUS) � Stores a

random chunk of time stamps from DETTIMESTAMPSBOBPLUS array
25: TEMPBOBVERT← GETTIMESTAMPS (I, SEQUENCE, K, DETTIMESTAMPSBOBVERT) � Stores a

random chunk of time stamps from DETTIMESTAMPSBOBVERT array
26: ESTKEYRATE←QKDRATE(WINLEFTCURVE1, WINRIGHTCURVE1, WINLEFTCURVE2, WINRIGHTCURVE2,

TEMPALICE, TEMPBOBPLUS, TEMPBOBVERT) � Stores the estimated key rate for the given window positions
27: CUMSUM← CUMSUM+ ESTKEYRATE � Updates the cumulative summation of key rates
28: end for
29: AVGKEYRATE [J]← CUMSUM/LENGTH (SEQUENCE) � Stores the key rate averaged over the current

random sequence length
30: end for
31: RATIOS← RATIOS ∪ { SD (AVGKEYRATE)/MEAN (AVGKEYRATE) } � Appends the SD and M value of

the average key rates for each chunk size
32: CHUNKSIZE← CHUNKSIZE ∪ {SEC(K) } � Stores the corresponding time chunk size, i.e., K s
33: COUNTER← COUNTER+ 1 � Updates the counter by unity
34: end for
35: return COUNTER, RATIOS, CHUNKSIZE � Returns the specified outputs
36: end procedure
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FIG. 29. Bootstrap analysis (SD and M of key rate) plot on a 15-s dataset from a series of 20 measurement runs. Here each run
consists of 10 000 iterations. The saturation or convergence effect is supported by the exponential fit to the simulated data points. The
goodness of the fit is guaranteed by the low values for sum-of-squares error (SSE) and root-mean-square error (RMSE) as well as close
to 1 values for R squared (R sq.) and adjusted R squared (Adj. R sq.).

Please refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

3. Result

We test our bootstrap method over a measurement run where (M =) 20 sets of (T =) 15× 1012 ps data are collected.
In order to remove bias, for each set and corresponding to every chosen size of time window, the estimated values of
key rate are averaged over 10 000 iterations. The result obtained is presented in Fig. 29. As expected, from this result,
we observe that SD and M decreases with increase in the data-collection time of k s for each measurement and finally
saturates beyond a certain value (here say, approximately 9 s) of k as it approaches T. To have an appropriate estimate
of the key rate, QBER and key symmetry, the measurement runtime (which for our experiment is fixed to 20 sets of 10 s
each) should belong to this saturation region.

APPENDIX B: OPTIMIZATION METHODS FOR DATA ANALYSIS

1. Overview

In classical cryptography, asymmetry quantifies the disparity between the number of 0 bits and 1 bits in the key shared
by Alice and Bob. For perfect secrecy of the key string, the probability of a certain key bit to be 0 or 1 should be equal for
all the bits in the key string. Thus, we can consider that asymmetry in key string can give rise to security issues in QKD
protocols. In the implementation of a QKD protocol, the sifted key generated can be asymmetric since the various optical
components induce some imperfections.

To account for this asymmetry in key string due to device imperfection, we define two types of optimization strategies,
namely A and B, to obtain the optimal values for the key rate, QBER, and key symmetry. Both strategies have their
advantages and shortcomings. In strategy A, we maximize the key rate while keeping the QBER below a certain threshold
and maintaining approximately 50:50 key symmetry. Here, the asymmetry obtained in the key string is negligible, however
the fixing of asymmetry value introduces the possibility for leakage of additional information to the eavesdropper. On the
other hand in strategy B, we maximize the key rate with similar constraints on QBER but not on key symmetry. With this
technique, the key rate gets increased; however now the security gets compromised to some extent since the probability
for obtaining any key string out of 2N possibilities, where N is the number of key bits in each key string, remains no
longer 1/2N .
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2. Methodology

In our experimental version of the B92 protocol, we measure two coincidence curves, which includes coincidences
between Alice and Bob’s V basis and Alice and Bob’s + basis, as sketched in Fig. 7.

Strategy A: We use this method to maximize the output key rate while maintaining an asymmetry (also referred to as
key symmetry) value of approximately 50% and simultaneously ensuring a quantum bit error rate ≤ 4.8% in our protocol.
For a given dataset in a measurement run of S datasets, the main steps of this strategy are listed as follows.

1. Detect and mark the coincidence maximum points in both plots.
2. In the first plot, consider an almost wide window, i.e., place the window markers on the left and the right of the

coincidence maximum. Ensure that they are located far beyond the FWHM points.
3. Move both window markers with equal step size towards the coincidence maximum and in turn maximize the key

rate (i.e., whole area under the curve) within the considered window span. Ensure that the QBER remains below the
threshold value of 4.8% during maximization.

4. Retain the optimized window position in the left coincidence plot and in a similar way optimize the left and the
right-window marker positions on the right coincidence plot. During this optimization, ensure that approximately 50%
symmetry exists between the key rates obtained from both curves and also that the overall QBER from both curves lies
within 4.8%.

Lastly, store the optimized key rates, QBERs, and key symmetry (or asymmetry) values for all the S datasets in three
different lists. Calculate the mean value for each of the three lists to obtain the optimal key rate, QBER, and key symmetry
for the entire measurement run over S datasets.

Strategy B: We use this method to maximize the output key rate while only ensuring a quantum bit error rate ≤ 4.8% in
our protocol. For a given dataset in a measurement run of S datasets, the main steps of this strategy are listed as follows.

1. Detect and mark the coincidence maximum points in both plots.
2. In the first plot, consider an almost wide window, i.e., place the window markers on the left and the right of the

coincidence maximum. Ensure that they are located far beyond the FWHM points.
3. Move both window markers with equal step size towards the coincidence maximum and in turn maximize the SNR,

i.e., the ratio of the areas under the curve (above and below background noise level), within the considered window span.
4. Retain the optimized window position in the left coincidence plot and in a similar way optimize the left and the

right-window marker positions on the right (or delayed) coincidence plot.
5. After SNR optimization on the second (or delayed) coincidence plot, move both its window markers in (or out) to

achieve the current window span on the first coincidence plot.
6. Alter the window size by moving the slightly markers in (or out) to ensure that the overall QBER does not cross

the threshold value of 4.8%.

In the similar approach as used in strategy A, obtain the mean value from each of the three optimized lists for key rates,
QBERs, and asymmetry values to report the optimal key rate, QBER, and key symmetry for the entire measurement run.

We use Algorithms 2 and 3 to implement the strategies A and B, respectively.

Algorithm 2 Optimization of QKD results on measured datasets by strategy A

Require:
REAL STEPSIZEQBER � Step size for updating the threshold QBER
REAL SEEDQBERBOUND � Threshold for the seed QBER value to initiate optimization
UNSIGNED INTEGER WINLEFTCURVE1 � Left-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINRIGHTCURVE1 � Right-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINLEFTCURVE2 � Left-window marker position (in ps) for the second curve
UNSIGNED INTEGER WINRIGHTCURVE2 � Right-window marker position (in ps) for the second curve
UNSIGNED INTEGER TOTTIME �Measurement runtime for each dataset in seconds
UNSIGNED INTEGER TOTDATASETS � Total number of datasets measured in a run
REAL MINASYBOUND �Minimum threshold value for asymmetry estimation
REAL MAXASYBOUND �Maximum threshold value for asymmetry estimation
REAL QBERBOUND � Actual threshold value for the QBER estimation
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UNSIGNED INTEGER STEPSIZEWIN � Step size (in ps) for shrinking the window span
UNSIGNED INTEGER LENDETTIMESTAMPSALICE � Length of Alice’s detected photon time-stamp array
UNSIGNED INTEGER [LENDETTIMESTAMPSALICE] DETTIMESTAMPSALICE � Alice’s detected photon
time-stamp array
CHAR D � Input for selecting Bob’s measurement in diagonal basis
CHAR R � Input for selecting Bob’s measurement in rectilinear basis
UNSIGNED INTEGER LENDETTIMESTAMPSBOBPLUS � Length of the time-stamp array for Bob’s detection in
diagonal basis
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBPLUS] DETTIMESTAMPSBOBPLUS � Time-stamp array for
Bob’s photons detected in diagonal basis
UNSIGNED INTEGER LENDETTIMESTAMPSBOBVERT � Length of the time-stamp array for Bob’s detection in
rectilinear basis
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBVERT] DETTIMESTAMPSBOBVERT � Time-stamp array for
Bob’s photons detected in rectilinear basis
REAL [TOTDATASETS] OPTKEY � Array containing all optimized key rates
REAL [TOTDATASETS] OPTQBER � Array containing all optimized QBERs
REAL [TOTDATASETS] OPTASYMMETRY � Array containing all optimized asymmetry values
UNSIGNED INTEGER CURRDATASET � Pointer to the current dataset in a given run

Ensure:
REAL [TOTDATASETS] OPTKEY � Updated array with optimized key rates upto the current dataset
REAL [TOTDATASETS] OPTQBER � Updated array with optimized QBERs upto the current dataset
REAL [TOTDATASETS] OPTASYMMETRY � Updated array with optimized asymmetry values upto the current
dataset
UNSIGNED INTEGER NEXTDATASET � Pointer to the next dataset in a given run

1: procedure OPTIMIZATIONSTRATEGYA(WINLEFTCURVE1, WINRIGHTCURVE1, WINLEFTCURVE2, WINRIGHTCURVE2, TOT-
TIME, TOTDATASETS, QBERBOUND, SEEDQBERBOUND, STEPSIZEQBER, MINASYBOUND, MAXASYBOUND, STEPSIZEWIN,
LENDETTIMESTAMPSALICE, DETTIMESTAMPSALICE, LENDETTIMESTAMPSBOBPLUS, DETTIMESTAMPSBOBPLUS, LENDET-
TIMESTAMPSBOBVERT, DETTIMESTAMPSBOBVERT, OPTKEY, OPTQBER, OPTASYMMETRY, CURRDATASET, D, R)

2: REAL MINQBERBOUND �Minimum threshold value for QBER estimation
3: REAL MAXQBERBOUND �Maximum threshold value for QBER estimation
4: UNSIGNED INTEGER FLAG � Indicator to hasten or delay the convergence of optimized results
5: UNSIGNED INTEGER TEMPSTEPSIZE1 � Temporary optimization step size for the first curve
6: UNSIGNED INTEGER TEMPSTEPSIZE2 � Temporary optimization step size for the second curve
7: REAL [5] RESULTSCURVE1 � Array to store the estimated results for the first curve
8: REAL [5] RESULTSCURVE2 � Array to store the estimated results for the second curve
9: REAL KEY1 � Stores the optimized key rate for the first curve

10: REAL KEY2 � Stores the optimized key rate for the second curve
11: REAL QBER � Stores the optimized QBER for both curves
12: REAL ASYMMETRY � Stores the optimized asymmetry value for both curves
13: REAL UPKEY1 � Stores the updated value of the key rate for the first curve
14: REAL UPKEY2 � Stores the updated value of the key rate for the second curve
15: REAL UPQBER � Stores the updated value of the QBER for both curves
16: REAL UPASYMMETRY � Stores the updated value of the asymmetry for both curves
17: UNSIGNED INTEGER ITERLEFT � Iterator for the left-window position
18: UNSIGNED INTEGER ITERRIGHT � Iterator for the right-window position
19: UNSIGNED INTEGER LOOPCOUNT � Loop counter
20: KEY1← 0 � Initializes the optimized key rate for the first curve to zero
21: KEY2← 0 � Initializes the optimized key rate for the second curve to zero
22: QBER← 0 � Initializes the optimized QBER to zero
23: ASYMMETRY← 0 � Initializes the optimized asymmetry value to zero
24: UPKEY1← 0 � Initializes the updated key rate for the first curve to zero
25: UPKEY2← 0 � Initializes the updated key rate for the second curve to zero
26: UPQBER← 0 � Initializes the updated QBER to zero
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27: UPASYMMETRY← 0 � Initializes the updated asymmetry value to zero
28: LOOPCOUNT← 0 � Initializes the loop counter to zero
29: while QBER < QBERBOUND do � Checks that the QBER remains within threshold
30: MINQBERBOUND← SEEDQBERBOUND− STEPSIZEQBER � Updates the minimum threshold value for

QBER estimation
31: MAXQBERBOUND← SEEDQBERBOUND+ STEPSIZEQBER � Updates the maximum threshold value for

QBER estimation
32: LOOPCOUNT← LOOPCOUNT+ 1 � Updates the loop counter at each iteration
33: FLAG← 0 � Initializes the flag to zero
34: TEMPSTEPSIZE1← STEPSIZEWIN � Initializes the step-size iterator for the first curve with the

user-input-window step size
35: ITERLEFT← WINLEFTCURVE1 � Initializes the iterator with left-window start position for the first curve
36: ITERRIGHT← WINRIGHTCURVE1 � Initializes the iterator with right-window start position for the first

curve
37: while ITERRIGHT− ITERLEFT > 0 do � Iterates until the two windows cross each other
38: RESULTCURVE1 ← QKD (ITERLEFT, ITERRIGHT, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-

TIMESTAMPSBOBVERT, TOTTIME, D) � Assigns the estimated results of key rate, QBER, signal, noise, and SNR
for the first curve

39: if RESULTCURVE1[2] > MAXQBERBOUND then � Checks if the estimated QBER is above the threshold
maximum

40: if FLAG = 2 then
41: TEMPSTEPSIZE1← TEMPSTEPSIZE1− 1 � Hastens the convergence rate by 1 ps
42: end if
43: ITERRIGHT← ITERRIGHT− TEMPSTEPSIZE1 � Shifts the right-window iterator towards the global

or central maximum
44: ITERLEFT← ITERLEFT+ TEMPSTEPSIZE1 � Shifts the left-window iterator towards the global or

central maximum
45: FLAG← 1 � Updates the flag
46: else
47: if RESULTCURVE1[2] < MINQBERBOUND then � Checks if estimated QBER is below the threshold

minima
48: if FLAG = 1 then
49: TEMPSTEPSIZE1← TEMPSTEPSIZE1− 1 � Hastens the convergence rate by 1 ps
50: end if
51: ITERRIGHT← ITERRIGHT+ TEMPSTEPSIZE1 � Shifts the right-window iterator away from the

global or central maximum
52: ITERLEFT← ITERLEFT− TEMPSTEPSIZE1 � Shifts the left-window iterator away from the

global or central maximum
53: FLAG← 2 � Updates the flag
54: else
55: break � Quits due to saturation of the QBER at the threshold
56: end if
57: end if
58: end while
59: TEMPSTEPSIZE2← STEPSIZEWIN � Initializes the step-size iterator for the second curve with the

user-input-window step size
60: FLAG← 0 � Resets the flag to zero
61: ITERLEFT← WINLEFTCURVE2 � Reinitializes the iterator with left-window start position for the second

curve
62: ITERRIGHT← WINRIGHTCURVE2 � Reinitializes the iterator with right-window start position for the

second curve
63: while ITERRIGHT− ITERLEFT > 0 and TEMPSTEPSIZE2 > 0 do � Iterates until the two windows cross

each other
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64: RESULTCURVE2 ← QKD(ITERLEFT, ITERRIGHT, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-
TIMESTAMPSBOBVERT, TOTTIME, R) � Assigns the estimated values of key rate, QBER, signal, noise, and SNR for
the second curve

65: KEY2← RESULTCURVE2 [1] � Stores the current key rate obtained for the second curve

66: QBER← (RESULTCURVE1 [4]+RESULTCURVE2 [4])×100

(RESULTCURVE1 [3]+RESULTCURVE1 [4]+RESULTCURVE2 [3]+RESULTCURVE2 [4])
� Calculates

the total QBER from the estimated signal and noise values

67: ASYMMETRY← (RESULTCURVE2 [3]×100)
(RESULTCURVE1 [3]+RESULTCURVE2 [3])

� Calculate the asymmetry value from the
estimated signal values

68: if ASYMMETRY > MAXASYBOUND then � Checks if estimated asymmetry value is above the
threshold maximum

69: if FLAG = 2 then
70: TEMPSTEPSIZE2← TEMPSTEPSIZE2− 1 � Hasten the convergence rate by 1 ps
71: end if
72: ITERRIGHT← ITERRIGHT− TEMPSTEPSIZE2 � Shifts the right window towards global or central

maximum
73: ITERLEFT← ITERLEFT+ TEMPSTEPSIZE2 � Shifts the left window towards global or central

maximum
74: FLAG← 1 � Updates the flag
75: else
76: if ASYMMETRY < MINASYBOUND then � Checks if estimated asymmetry value is below the

threshold minimum
77: if FLAG = 1 then
78: TEMPSTEPSIZE2← TEMPSTEPSIZE2− 1 � Hasten the convergence rate by 1 ps
79: end if
80: ITERRIGHT← ITERRIGHT+ TEMPSTEPSIZE2 � Shifts the right window away from the global or

central maximum
81: ITERLEFT← ITERLEFT− TEMPSTEPSIZE2 � Shifts the left window away from the global or

central maximum
82: FLAG← 2 � Updates the flag
83: else
84: break � Quits due to the saturation of the asymmetry value at the threshold
85: end if
86: end if
87: end while
88: if QBER < QBERBOUND then
89: UPKEY1← KEY1 � Stores the previous value of key rate for the first curve
90: UPKEY2← KEY2 � Stores the previous key rate obtained for the second curve
91: UPQBER← QBER � Stores the previous QBER obtained for both curves
92: UPASYMMETRY← ASYMMETRY � Stores the previous asymmetry value obtained for both curves
93: end if
94: end while
95: OPTKEY [CURRDATASET]← UPKEY1 + UPKEY2 � Stores the optimized key rates for the current measurement

set
96: OPTQBER [CURRDATASET]← UPQBER � Stores the optimized QBER for the current measurement set
97: OPTASYMMETRY [CURRDATASET]← UPASYMMETRY � Stores the asymmetry value for the current

measurement set
98: NEXTDATASET← CURRDATASET + 1 � Updates the pointer to the next dataset
99: return OPTKEY, OPTQBER, OPTASYMMETRY, NEXTDATASET � Returns the specified outputs
100: end procedure
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Algorithm 3 Optimization of QKD results on measured datasets by strategy B

Require:
REAL STEPSIZEQBER � Step size for updating the threshold QBER
REAL GLOBALMAX1 � Global maximum point of the first curve
REAL GLOBALMAX2 � Global maximum point of the second curve
REAL MINQBERBOUND �Minimum threshold value for QBER estimation
REAL MAXQBERBOUND �Maximum threshold value for QBER estimation
UNSIGNED INTEGER WINLEFTCURVE1 � Left-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINRIGHTCURVE1 � Right-window marker position (in ps) for the first curve
UNSIGNED INTEGER WINLEFTCURVE2 � Left-window marker position (in ps) for the second curve
UNSIGNED INTEGER WINRIGHTCURVE2 � Right-window marker position (in ps) for the second curve
UNSIGNED INTEGER TOTTIME �Measurement runtime for each dataset in seconds
UNSIGNED INTEGER TOTDATASETS � Total number of datasets measured in a run
REAL QBERBOUND � Actual threshold value for the QBER estimation
UNSIGNED INTEGER STEPSIZEWIN � Step size (in ps) for shrinking the window span
UNSIGNED INTEGER LENDETTIMESTAMPSALICE � Length of Alice’s detected photon time-stamp array
UNSIGNED INTEGER [LENDETTIMESTAMPSALICE] DETTIMESTAMPSALICE � Alice’s detected photon
time-stamp array
UNSIGNED INTEGER LENDETTIMESTAMPSBOBPLUS � Length of the time-stamp array for Bob’s detection in
diagonal basis
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBPLUS] DETTIMESTAMPSBOBPLUS � Time-stamp array for
Bob’s photons detected in diagonal basis
UNSIGNED INTEGER LENDETTIMESTAMPSBOBVERT � Length of the time-stamp array for Bob’s detection in
rectilinear basis
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBVERT] DETTIMESTAMPSBOBVERT � Time-stamp array for
Bob’s photons detected in rectilinear basis
REAL [TOTDATASETS] OPTKEY � Array containing all optimized key rates
REAL [TOTDATASETS] OPTQBER � Array containing all optimized QBERs
REAL [TOTDATASETS] OPTASYMMETRY � Array containing all optimized asymmetry values
UNSIGNED INTEGER CURRDATASET � Pointer to the current dataset in a given run
CHAR D � Input for selecting Bob’s measurement in diagonal basis
CHAR R � Input for selecting Bob’s measurement in rectilinear basis

Ensure:
REAL [TOTDATASETS] OPTKEY � Updated array with optimized key rates upto the current dataset
REAL [TOTDATASETS] OPTQBER � Updated array with optimized QBERs upto the current dataset
REAL [TOTDATASETS] OPTASYMMETRY � Updated array with optimized asymmetry values upto the current
dataset
UNSIGNED INTEGER NEXTDATASET � Pointer to the next dataset in a given run

1: procedure OPTIMIZATIONSTRATEGYB(GLOBALMAX1, GLOBALMAX2, MINQBERBOUND, MAXQBERBOUND, WINLEFT-
CURVE1, WINRIGHTCURVE1, WINLEFTCURVE2, WINRIGHTCURVE2, TOTTIME, TOTDATASETS, QBERBOUND, SEEDQBER-
BOUND, STEPSIZEQBER, STEPSIZEWIN, LENDETTIMESTAMPSALICE, DETTIMESTAMPSALICE, LENDETTIMESTAMPSBOB-
PLUS, DETTIMESTAMPSBOBPLUS, LENDETTIMESTAMPSBOBVERT, DETTIMESTAMPSBOBVERT, OPTKEY, OPTQBER, OPTA-
SYMMETRY, CURRDATASET, D, R)

2: UNSIGNED INTEGER FLAG � Indicator to hasten or delay the convergence of optimized results
3: UNSIGNED INTEGER TEMPSTEPSIZE1 � Temporary optimization step size for the first curve
4: UNSIGNED INTEGER TEMPSTEPSIZE2 � Temporary optimization step size for the second curve
5: REAL [5] RESULTSCURVE1 � Array to store the estimated results for the first curve
6: REAL [5] RESULTSCURVE2 � Array to store the estimated results for the second curve
7: REAL SNR1 � Stores the optimized signal-to-noise ratio for the first curve
8: REAL SNR2 � Store the optimized signal-to-noise ratio for the second curve
9: REAL QBER � Stores the optimized QBER for both curves

10: REAL ASYMMETRY � Stores the optimized asymmetry value for both curves
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11: REAL REMSNR1 � Stores the previous value of the signal-to-noise ratio obtained for the first curve
12: REAL REMSNR2 � Stores the previous value of the signal-to-noise ratio obtained for the second curve
13: UNSIGNED INTEGER WINSPAN1 � Stores the window span for the first curve
14: UNSIGNED INTEGER WINSPAN2 � Stores the window span for the second curve
15: UNSIGNED INTEGER ITERLEFT1 � Iterator for the left-window marker position for first curve
16: UNSIGNED INTEGER ITERRIGHT1 � Iterator for the right-window marker position for first curve
17: UNSIGNED INTEGER ITERLEFT2 � Iterator for the left-window marker position for second curve
18: UNSIGNED INTEGER ITERRIGHT2 � Iterator for the right-window marker position for second curve
19: REMSNR2← 0 � Initializes the previously optimized SNR for the second curve to zero
20: FLAG← 0 � Initializes the flag to zero
21: TEMPSTEPSIZE1← STEPSIZEWIN � Initializes the step-size iterator for the first curve with the

user-input-window step size
22: ITERLEFT1← WINLEFTCURVE1 � Initializes the iterator with left-window start position for the first curve
23: ITERRIGHT1← WINRIGHTCURVE1 � Initializes the iterator with right-window start position for the first curve
24: REMSNR1← 0 � Initializes the previously optimized SNR for the first curve to zero
25: while ITERRIGHT1− ITERLEFT1 > 0 do � Loops until the two window markers cross each other
26: RESULTCURVE1 ← QKD (ITERLEFT1, ITERRIGHT1, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-

TIMESTAMPSBOBVERT, TOTTIME, D) � Assigns the estimated results of key rate, QBER, signal, noise, and SNR
for the first curve

27: if RESULTCURVE1 [5] > REMSNR1 then � Checks if the estimated SNR is increasing
28: if FLAG = 2 then
29: TEMPSTEPSIZE1← TEMPSTEPSIZE1− 1 � Hastens the convergence rate by 1 ps
30: end if
31: ITERRIGHT1← ITERRIGHT1− TEMPSTEPSIZE1 � Shifts the right-window marker towards global

maxima
32: ITERLEFT1← ITERLEFT1+ TEMPSTEPSIZE1 � Shifts the left-window marker towards global maxima
33: FLAG← 1 � Updates the flag
34: else
35: if RESULTCURVE1 [5] < REMSNR1 then � Checks if the estimated SNR is decreasing
36: if FLAG = 1 then
37: TEMPSTEPSIZE1← TEMPSTEPSIZE1− 1 � Hastens the convergence rate by 1 ps
38: end if
39: ITERRIGHT1← ITERRIGHT1+ TEMPSTEPSIZE1 � Shifts the right-window marker away from the

global maxima
40: ITERLEFT1← ITERLEFT1− TEMPSTEPSIZE1 � Shifts the left-window marker away from the global

maxima
41: FLAG← 2 � Updates the flag
42: else
43: break � Quits as further maximization of SNR is not possible
44: end if
45: end if
46: REMSNR1← SNR1 � Saves the current optimized SNR for the first curve
47: end while
48: WINSPAN1← (GLOBALMAX1− ITERLEFT1)+ (ITERRIGHT1− GLOBALMAX1) � Saves the optimized window

span for the first curve
49: TEMPSTEPSIZE2← STEPSIZEWIN � Initializes the step-size iterator for the second curve with the user-input

step size
50: FLAG← 0 � Reinitializing the flag to zero
51: ITERLEFT2← WINLEFTCURVE2 � Initializes the iterator with left-window start position for the second curve
52: ITERRIGHT2← WINRIGHTCURVE2 � Initializes the iterator with right-window start position for the second

curve
53: REMSNR2← 0 � Initializes the previously optimized SNR for the second curve to zero
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54: while ITERRIGHT2− ITERLEFT2 > 0 and TEMPSTEPSIZE2 > 0 do � Loops until the two window markers
cross each other

55: RESULTCURVE2 ← QKD(ITERLEFT2, ITERRIGHT2, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-
TIMESTAMPSBOBVERT, TOTTIME, R) � Assigns the estimated results of key rate, QBER, signal, noise, and SNR for
the second curve

56: if RESULTCURVE2 [5] > REMSNR2 then � Checks if the estimated SNR is increasing
57: if FLAG = 2 then
58: TEMPSTEPSIZE2← TEMPSTEPSIZE2− 1 � Hastens the convergence rate by 1 ps
59: end if
60: ITERRIGHT2← ITERRIGHT2− TEMPSTEPSIZE2 � Shifts the right window towards global maxima
61: ITERLEFT2← ITERLEFT2+ TEMPSTEPSIZE2 � Shifts the left window towards global maxima
62: FLAG← 1 � Updates the flag
63: else
64: if RESULTCURVE2 [5] < REMSNR2 then � Checks if estimated SNR is decreasing
65: if FLAG = 1 then
66: TEMPSTEPSIZE2← TEMPSTEPSIZE2− 1 � Hastens the convergence rate by 1 ps
67: end if
68: ITERRIGHT2← ITERRIGHT2+ TEMPSTEPSIZE2 � Shifts the right-window marker away from the

global maxima
69: ITERLEFT2← ITERLEFT2− TEMPSTEPSIZE2 � Shifts the left-window marker away from the global

maxima
70: FLAG← 2 � Updates the flag
71: else
72: break � Quits as further maximization of SNR is not possible
73: end if
74: end if
75: end while
76: WINSPAN2← (GLOBALMAX2− ITERLEFT2)+ (ITERRIGHT2− GLOBALMAX2) � Saves the optimized window

span for the second curve
77: ADJUSTBY← (WINSPAN1−WINSPAN2)

2 � Stores the difference in window span sizes between the first and
second curve

78: ITERLEFT2← ITERLEFT2− CEIL (ADJUSTBY) � Reinitializes the iterator with adjusted position for the
left-window marker of the second curve

79: ITERRIGHT2← ITERRIGHT2+ FLOOR (ADJUSTBY) � Reinitializes the iterator with adjusted position for the
right-window marker of the second curve

80: RESULTCURVE2 ← QKD(ITERLEFT2, ITERRIGHT2, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DETTIMES-
TAMPSBOBVERT, TOTTIME, R) � Reassigns the estimated results of key rate, QBER, signal, noise, and SNR for the
second curve

81: QBER← (RESULTCURVE1 [4]+RESULTCURVE2 [4])×100

(RESULTCURVE1 [3]+RESULTCURVE1 [4]+RESULTCURVE2 [3]+RESULTCURVE2 [4])
� Calculates the total

QBER from the estimated signal and noise values
82: ASYMMETRY← (RESULTCURVE2 [3]×100)

(RESULTCURVE1 [3]+RESULTCURVE2 [3])
� Calculates the asymmetry value from the

estimated signal values
83: while QBER > MAXQBERBOUND or QBER < MINQBERBOUND do � Optimizes both window spans to restrict

the overall QBER within the threshold value
84: if QBER < MINQBERBOUND then � Checks if the estimated QBER is below the desired range
85: ITERLEFT1← ITERLEFT1− STEPSIZEQBER � Shift the left window away from the global maxima of

the first curve
86: ITERRIGHT1← ITERRIGHT1+ STEPSIZEQBER � Shift the right window away from the global maxima

of the first curve
87: ITERLEFT2← ITERLEFT2− STEPSIZEQBER � Shift the left window away from the global maxima of

the second curve
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88: ITERRIGHT2← ITERRIGHT2+ STEPSIZEQBER � Shift the right window away from the global maxima
of the second curve

89: else
90: ITERLEFT1← ITERLEFT1+ STEPSIZEQBER � Shifts the left window towards the global maxima of the

first curve
91: ITERRIGHT1← ITERRIGHT1− STEPSIZEQBER � Shifts the right window towards the global maxima of

the first curve
92: ITERLEFT2← ITERLEFT2+ STEPSIZEQBER � Shifts the left window towards global maxima of the

second curve
93: ITERRIGHT2← ITERRIGHT2− STEPSIZEQBER � Shifts the right window towards global maxima of the

second curve
94: end if
95: RESULTCURVE1 ← QKD(ITERLEFT1, ITERRIGHT1, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-

TIMESTAMPSBOBVERT, TOTTIME, D) � Re-assigns the estimated results of Key rate, QBER, signal, noise and SNR for
the first curve

96: RESULTCURVE2 ← QKD(ITERLEFT2, ITERRIGHT2, DETTIMESTAMPSALICE, DETTIMESTAMPSBOBPLUS, DET-
TIMESTAMPSBOBVERT, TOTTIME, R) � Reassigns the estimated results of key rate, QBER, signal, noise, and SNR for
the second curve

97: QBER← (RESULTCURVE1 [4]+RESULTCURVE2 [4])×100

(RESULTCURVE1 [3]+RESULTCURVE1 [4]+RESULTCURVE2 [3]+RESULTCURVE2 [4])
� Updates the

total QBER for the revised window positions
98: ASYMMETRY← (RESULTCURVE2 [3]×100)

(RESULTCURVE1 [3]+RESULTCURVE2 [3])
� Updates the key symmetry value

corresponding to the revised window positions
99: end while
100: OPTKEY [CURRDATASET]← RESULTCURVE1 [1] + RESULTCURVE2 [1] � Stores the optimized key rates for

the current measurement set
101: OPTQBER [CURRDATASET]← QBER � Stores the optimized QBER for the current measurement set
102: OPTASYMMETRY [CURRDATASET]← ASYMMETRY � Stores the key symmetry value for the current

measurement set
103: NEXTDATASET← CURRDATASET + 1 � Updates the pointer to the next dataset
104: return OPTKEY, OPTQBER, OPTASYMMETRY, NEXTDATASET � Returns the specified outputs
105: end procedure

Refer to Appendix L for details on the usage of data types and libraries, at various instances, in the above two
optimization algorithms.

Algorithm 4 Calculates the estimated values of key rate, QBER, signal, noise, and SNR from detected photon time
stamps by Alice and Bob

Require:
UNSIGNED INTEGER WINDOWLEFT � Left-window marker position (in ps)
UNSIGNED INTEGER WINDOWRIGHT � Right-window marker position (in ps)
UNSIGNED INTEGER LENDETTIMESTAMPSALICE � Length of Alice’s detected photon time-stamp array
UNSIGNED INTEGER [LENDETTIMESTAMPSALICE] DETTIMESTAMPSALICE � Alice’s detected photon time-stamp
array
UNSIGNED INTEGER LENDETTIMESTAMPSBOBDIAG � Length of the time-stamp array for Bob’s detection in
diagonal basis
CHAR BASISCHOICE � Choice of measurement basis: rectilinear (R) or diagonal (D)
UNSIGNED INTEGER [LENDETTIMESTAMPSBOBDIAG] DETTIMESTAMPSBOBDIAG � Time-stamp array for
Bob’s detection in diagonal basis
UNSIGNED INTEGER LENDETTIMESTAMPSBOBRECT � Length of the time-stamp array for Bob’s detection in
rectilinear basis
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UNSIGNED INTEGER [LENDETTIMESTAMPSBOBRECT] DETTIMESTAMPSBOBRECT � Time-stamp array for Bob’s
detection in rectilinear basis
UNSIGNED INTEGER MEASTIME � Total data collection time in seconds

Ensure:
REAL KEYRATE � Estimated key rate
REAL QBER � Estimated QBER
UNSIGNED INTEGER SIGNAL � Estimated signal value
UNSIGNED INTEGER NOISE � Estimated noise value
REAL SNR � Estimated signal-to-noise ratio

1: function QKD(WINDOWLEFT, WINDOWRIGHT, LENDETTIMESTAMPSALICE, DETTIMESTAMPSALICE, LENDETTIMES-
TAMPSBOBDIAG, DETTIMESTAMPSBOBDIAG, LENDETTIMESTAMPSBOBRECT, DETTIMESTAMPSBOBRECT, MEASTIME,
BASISCHOICE)

2: UNSIGNED INTEGER I � Iterates over Eve’s detection list
3: UNSIGNED INTEGER J � Iterates over Eve’s detection list
4: UNSIGNED INTEGER SIGNAL � Stores the estimated signal value along matched bases
5: UNSIGNED INTEGER NOISE � Stores the estimated noise value along mismatched bases
6: REAL KEYRATE � Stores the estimated key rate
7: REAL QBER � Stores the estimated QBER
8: switch BASISCHOICE do � Collects the measurement basis choice to estimate the signal and noise along it
9: case D �Measurements along the chosen diagonal basis
10: I← 1 � Initializes the iterator to the first element on Alice’s detection list
11: J← 1 � Initializes the iterator to the first element on Bob’s detection list
12: SIGNAL← 0 � Initializes the counter for coincidences along matched bases to zero
13: while I ≤ LENDETTIMESTAMPSALICE & J ≤ LENDETTIMESTAMPSBOBDIAG do � Loops over both time

stamp lists
14: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] < WINDOWLEFT then � Rejects any

detection beyond the current left-window position
15: J← J+ 1 � Increments the detection interval
16: end if
17: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] � WINDOWRIGHT &

DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [i] � WINDOWLEFT then � Rejects any detection outside the
current window span

18: SIGNAL← SIGNAL+ 1 � Increments the signal counter
19: I← I+ 1 � Increments the pointer on Alice’s detection list
20: J← J+ 1 � Increments the pointer on Bob’s detection list for the diagonal basis
21: end if
22: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] > WINDOWRIGHT then � Rejects any

detection beyond the right-window position
23: I← I+ 1 � Decrements the detection interval
24: end if
25: end while
26: I← 1 � Reinitializes the iterator to the first element of Eve’s detection list
27: J← 1 � Reinitializes the iterator to the first element of Eve’s detection list
28: NOISE← 0 � Initializes the counter for coincidences along mismatched bases to zero
29: while I ≤ LENDETTIMESTAMPSALICE & J ≤ LENDETTIMESTAMPSBOBRECT do � Loops over both

time-stamp lists
30: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] < WINDOWLEFT then � Rejects any

detection beyond the current left-window position
31: J← J+ 1 � Increments the detection interval
32: end if
33: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] � WINDOWRIGHT &

DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] � WINDOWLEFT then � Rejects any detection outside
the current window span
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34: NOISE← NOISE+ 1 � Increments the noise counter
35: I← I+ 1 � Increments the pointer on Alice’s detection list
36: J← J+ 1 � Increments the pointer on Bob’s detection list for the rectilinear basis
37: end if
38: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] > WINDOWRIGHT then � Rejects any

detection beyond the current right-window position
39: I← I+ 1 � Decrements the detection interval
40: end if
41: end while
42: case R �Measurements along the chosen rectilinear basis
43: I← 1 � Initializes the iterator to the first element on Alice’s detection list
44: J← 1 � Initializes the iterator to the first element on Bob’s detection list
45: SIGNAL← 0 � Initializes the counter for coincidences along matched bases to zero
46: while I ≤ LENDETTIMESTAMPSALICE & J ≤ LENDETTIMESTAMPSBOBRECT do � Loops over both

time-stamp lists
47: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] < WINDOWLEFT then � Rejects any

detection beyond the current left-window position
48: J← J+ 1 � Increments the detection interval
49: end if
50: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] � WINDOWRIGHT &

DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [i] � WINDOWLEFT then � Rejects any detection outside the
current window span

51: SIGNAL← SIGNAL+ 1 � Increments the signal counter
52: I← I+ 1 � Increments the pointer on Alice’s detection list
53: J← J+ 1 � Increments the pointer on Bob’s detection list for the rectilinear basis
54: end if
55: if DETTIMESTAMPSBOBRECT [J]− DETTIMESTAMPSALICE [I] > WINDOWRIGHT then � Rejects any

detection beyond the right-window position
56: I← I+ 1 � Decrements the detection interval
57: end if
58: end while
59: I← 1 � Reinitializes the iterator to the first element of Eve’s detection list
60: J← 1 � Reinitializes the iterator to the first element of Eve’s detection list
61: NOISE← 0 � Initializes the counter for coincidences along mismatched bases to zero
62: while I ≤ LENDETTIMESTAMPSALICE & J ≤ LENDETTIMESTAMPSBOBDIAG do � Loops over both

time-stamp lists
63: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] < WINDOWLEFT then � Rejects any

detection beyond the current left-window position
64: J← J+ 1 � Increments the detection interval
65: end if
66: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] � WINDOWRIGHT &

DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] � WINDOWLEFT then � Rejects any detection outside
the current window span

67: NOISE← NOISE+ 1 � Increments the noise counter
68: I← I+ 1 � Increments the pointer on Alice’s detection list
69: J← J+ 1 � Increments the pointer on Bob’s detection list for the diagonal basis
70: end if
71: if DETTIMESTAMPSBOBDIAG [J]− DETTIMESTAMPSALICE [I] > WINDOWRIGHT then � Rejects any

detection beyond the current right-window position
72: I← I+ 1 � Decrements the detection interval
73: end if
74: end while
75: KEYRATE← SIGNAL+NOISE

MEASTIME � Stores the final estimated key rate

024036-39



RISHAB CHATTERJEE et al. PHYS. REV. APPLIED 14, 024036 (2020)

76: QBER← NOISE×100
SIGNAL+NOISE � Stores the final estimated QBER in %

77: SNR← SIGNAL
NOISE � Stores the final estimated signal-to-noise ratio

78: return KEYRATE, QBER, SIGNAL, NOISE, SNR � Returns the specified outputs in the order: key rate, QBER,
signal, noise, and SNR

79: end function

Refer to Appendix L for details on the usage of various data types and libraries in the above algorithmic function.

APPENDIX C: QUASI-PHASE-MATCHING TEMPERATURE FOR TYPE-II SPDC IN A PPKTP CRYSTAL

Considering the law of conservation of momentum (sketched in Fig. 23) and colinear parametric interaction (sketched
in Fig. 22) for a SPDC process, the quasi-phase-matching condition [87] for a periodically poled crystal can be described
with the relations

Kp cos θp = Ks cos θs + Ki cos θi + 2π
� (T)

,

Ks sin θs = Ki sin θi.
(C1)

Here, Kp , Ks, and Ki represents the magnitude of the momentum vectors for the pump (p), signal (s) and idler (i) photons,
respectively. Also,Λ(T) denotes the poling period of the crystal, which is dependent on temperature T and θs (i) represents
the angle that the signal’s (idler’s) momentum vector makes with that of the pump propagation along z direction. Note
that the quasi-phase-matching condition described in Eq. (C1) can be derived by solving the set of coupled differential
equations for the electric field amplitude of the pump, signal, and idler as shown in Ref. [92].

Substituting the conditions of colinearity (i.e., θs = θi = 0) and degeneracy
(
i.e., ωs = ωi = ωp/2

)
in Eq. (C1); and

also finally considering Kh = 2π nh/λh, where h ε {p , s, i}, we get

2π np

λp
= 2π ns

λs
+ 2π ni

λi
+ 2π
� (T)

, (C2)

where np , ns, and ni denote the nonlinear refractive indices and λp , λs, and λi represent the wavelengths of the pump,
signal, and idler photons, respectively.

Now, each of these nonlinear refractive indices can be compactly stated as functions of temperature T, polarization
direction ŝ, and respective wavelength λh, i.e., nh = f

(
T, ŝ, λh

)
where h ε {p , s, i}. So, a thermal expansion of the poling

period results in [93]

�(T) = �0
{
1+ α (T − T0)+ β (T − T0)

2} , (C3)

where T0 = 25 ◦C (room temperature) and �0 = 10 μm (poling period of our crystal). Also for a KTP crystal, α =
(6.7± 0.7)× 10−6 ◦C−1 and β = (11± 2)× 10−9 ◦C−1 [93]. Additionally, a thermal expansion of the refractive indices
gives [93,94]

n (λ, T) = n (λ, T = T0)+ ∂n
∂T

∣∣∣∣
(λ, T=T0)

(T − T0)+ ∂2n
∂T2

∣∣∣∣
(λ, T=T0)

(T − T0)
2 . (C4)

The second and third term in Eq. (C4) can be obtained from the empirical results in Refs. [93,94]. While, the value of the
first term, can be obtained by solving either of the following Sellmeier equations for a PPKTP crystal [89–91]:

one pole: n2 (λ, T = T0) = A+ B
1− Cλ−2 − Dλ2, or (C5)

two pole: n2
z (λ, T = T0) = A+ B

1− Cλ−2 −
D

1− Eλ−2 − Fλ2. (C6)

The value of the constants A to F can be again obtained from empirical results in Refs. [89–91]. Here, it is important
to note that the two-pole Sellmeier equation provides a better accuracy in the obtained result for the first term than the
one-pole version.
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Lastly, by considering a pump wavelength of 405 nm and using the above Eqs. (C1)–(C6), we numerically calculate
our phase-matching temperature to be 44.4 ◦C with a signal (or idler) wavelength of 810 nm.

APPENDIX D: ANALYTICAL DEDUCTION OF SPDC PAIR RATE FROM FIRST PRINCIPLES

In the previous Appendix C, we deduce the phase-matching temperature for our PPKTP crystal. In this appendix, we
continue with that result to theoretically derive the expressions and then use it later to numerically simulate the values for
the pair-generation probability and the pair-generation rate of our SPDC process.

1. Quantization of the electromagnetic field

Using vector potential A (�r, t), the classical electric �E (�r, t) and magnetic field �B (�r, t) can be expressed as [95]

�E (�r, t) = −∂
�A (�r, t)
∂t

, (D1a)

�B (�r, t) = �∇ × �A (�r, t) , (D1b)

where �r is the direction vector and t denotes time.
By substituting Eqs. (D1a) and (D1b) in Maxwell’s equations and thereby using �∇ · �A (�r, t) = 0 from Coulomb gauge,

we can arrive at the following wave equation [96]:

�∇2�A (�r, t) = 1
c2

∂ �A2 (�r, t)
∂2t

, (D2)

where c = 1/
√
μ0ε0 is the speed of light in vacuum, with μ0 being the free-space magnetic permeability and ε0

representing the free-space electric permittivity.
Considering period boundary conditions in a cubic space of side length L, the contributions from various modes, say k,

to the vector field can be expressed as [97]

�A (�r, t) =
∑
k,p

�εkpAkp (t) ei �K ·�r + c.c., (D3)

where �K is the wave vector that takes restricted values owing to the defined boundary conditions, �ε represents the polar-
ization vector, c.c. stands for complex conjugate and Akp denotes the mode function. In this configuration, there are two
conditions that must be satisfied: (a) �K · �ε �K = 0, which arises from Coulomb gauge, implying that the orthogonal between
the polarization of light and its direction of propagation; and (b) �εkp · �εkp ′ = δp ,p ′ that comes from the orthogonality of the
polarization vectors. By substituting Eq. (D3) in Eq. (D2), the following solution to the wave equation can be obtained
[97],

Akp (t) = Akpe−iωkt, (D4)

where ωk =
∣∣ �K∣∣ c represent the frequency of the kth mode. Inserting this solution again in Eq. (D3), we get

�A (�r, t) =
∑
k,p

�εkpAkpei( �K .�r−ωkt) + c.c. (D5)

In the classical picture, the energy of the electromagnetic (EM) field is given by [95,96]

Hc = 1
2

∫

V

(
ε0

∣∣�E∣∣2 + 1
μ0

∣∣�B∣∣2
)

dV, (D6)
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where V = L3 is the mode volume. Now solving Eqs. (D1a) and (D1b) with the result of Eq. (D5) and substituting the
results in Eq. (D6) we obtain [97]

Hc =
∑
k,p

ε0Vω2
k

(
AkpA∗kp + A∗kpAkp

)
. (D7)

Again in the quantum picture, the energy of the EM field is given by [96]

Hq =
∑
k,p

�ωk

(
n̂kp + 1

2

)
, (D8)

where n̂kp = â†
kp âkp is the photon number operator. Also, âkp and its hermitian conjugate (H.c.) â†

kp are the

quantum-mechanical field operators that satisfy the commutation relation:
[
âkp , â†

k′p ′
]
= δkk′ δpp ′ and

[
âkp , âk′p ′

] =[
â†

kp , â†
k′p ′

]
= 0.

In EM field quantization, every mode of the classical field is associated to a quantum-mechanical harmonic oscillator.
Here, by comparing Eqs. (D8) and (D7), the map from the classical-to-quantum picture can be done with the following
substitutions,

Ak,p =
√

�

2ε0Vωk
âk,p , (D9a)

A∗k,p =
√

�

2ε0Vωk
â†

k,p . (D9b)

Considering the substitution of Eqs. (D9a) and (D9b) in Eq. (D5), we obtain the quantized vector potential for the EM
field, which can then be expressed as

Â (�r, t) =
∑
k,p

√
�

2ε0Vωk

[
�εkp âkpei( �K ·�r−ωkt) + H.c.

]
. (D10)

Therefore, by substituting Eq. (D10) in Eq. (D1a), we obtain the quantized electric field vector, which when polarized
along the unit vector �εk is given by

�̂Ek (�r, t) =
∑
k,p

√
�ωk

2ε0V

[
�εkâkei( �K ·�r−ωkt) + H.c.

]
. (D11)

Here,
√

�ωk/2ε0V is the amplitude factor with V being the quantization volume. Also, we can turn the electric field vector
into a positive and a negative frequency part, which can then be expressed as

�̂Ek (�r, t) = �̂E(+)k (�r, t)+ �̂E(−)k (�r, t) , with

�̂E(−)k (�r, t) =
[
�̂E(+)k (�r, t)

]†
. (D12)

By considering Eq. (D12) and assuming that the electric field is horizontally polarized, the positive frequency part of
Eq. (D11) can be rewritten as [92]

�̂E(+)k (�r, t) =
∑

k

√
�ωk

2ε0 [n (ωk)]2 V
E ( �K (ωk) , �r ) âke−iωkt, (D13)
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where using the dispersion relation we substitute
∣∣ �K (ωk)

∣∣ = ωk n (ωk)/c, with n (ωk) being the frequency-dependent
refractive index (squared in this case owing to its nonlinear dependence), and E ( �K (ωk) , �r) = ei �K(ωk)·�r represents the
spatial mode function.

The above form of the electric field vector along with the Gaussian beam approximation [87] provides us the electric
field expressions for the pump (p), signal (s), and idler (i) photons in a SPDC process. In the following subsections we
illustrate this construction in details.

2. Gaussian beam approximation

We consider the solution to the paraxial wave equation (given in Ref. [96]) for the propagation of an optical wave
through a nonlinear medium. We also assume that the beam undergoes transverse intensity modulation that is everywhere
Gaussian. With this assumption, the solution can be then re-expressed in scalar approximation as [87]

A (r, z) = A0
w0

w (z)
e−r2/w(z)2 ei K r2/2R(z) eiΦ(z), (D14)

where K = 2πnω/c is the wave number with n being the complex refractive index of the nonlinear medium, r2 =
x2 + y2 + z2 represents the spherical beam shape with radius (r) in a three-dimensional coordinate system, λ = 2πc/nω

represents the wavelength of the radiation in the medium, w (z) = w0

[
1+ (

λz/πnw2
0

)2
]1/2
= w0

[
1+ (z/LR)

2]1/2
rep-

resents the beam waist of the Gaussian beam at a distance z for w0 being the input beam waist (i.e., at z = 0) and
LR = πnw2

0/λ denotes the Rayleigh length, R (z) = z
[
1+ (

πnw2
0/λz

)2
]
= z

[
1+ (LR/z)2

]
is the radius of curvature of

the optical wavefront, and �(z) = − arctan
(
λz/πnw2

0

) = − arctan (z/LR) represents the spatial variation of the phase of
the wave (measured with respect to that of an infinite plane wave).

In principle, the output of the pump laser has a Gaussian mode profile propagating in z direction, which then undergoes
SPDC in the experiment. So, the above expression for A (r, z) serves as the form of our spatial mode function E

[ �K (ωk) , �r]
in the expression of the electric field given by Eq. (D13). The beam undergoes nonlinear interaction through the PPKTP
crystal of a certain length, say L, along its direction of propagation (z). However, it remains unaffected along the x and
y directions. So, in order to calculate the value of the wave amplitude A0 in Eq. (D14), we can consider the following
normalization condition, i.e., ∀ z:

∫∫ ∞
−∞
|A(r, z)|2 dx dy = 1. (D15)

With this condition, we get

A0 =
√

2√
πw0

ez2/w(z)2 (D16)

and so A0 is also a function of z. By substituting Eq. (D16) in Eq. (D14) and ignoring the Gouy phase term, we obtain the
final scalar approximated version of our spatial mode function E ( �K (ωk) , �r):

E ( �K (ωk) , �r)≡
√

2√
π w (z)

e−(x
2+y2)/w(z)2 ei K (x2+y2+z2)/2R(z). (D17)

It is important to note that this expression for the spatial mode function is the same as that provided in Ref. [98] for the
case of focused Gaussian pump beam.

3. Quantum Hamiltonian governing the SPDC process

Under periodic boundary conditions,

E ( �K (ωk) , �r)
∣∣
z=−L/2 = E ( �K (ωk) , �r)

∣∣
z=L/2 for z axis, (D18a)

E ( �K (ωk) , �r)
∣∣
x=−∞ = E ( �K (ωk) , �r)

∣∣
x=∞ = 0 for x axis, (D18b)
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E
[ �K (ωk) , �r]∣∣y=−∞ = E

[ �K (ωk) , �r]∣∣y=∞ = 0 for y axis, (D18c)

we get e−ikL/2 = eikL/2, which leads to k = 2mπ/L for m = 0,±1,±2, . . ., with L being the length of the PPKTP crystal.
Now, the total energy for all the k = 2mπ/L modes is contained within Eq. (D8), while the average energy per mode

(frequency) is given by �ω
(
n̂+ 1

2

)
. So, the total energy (E) for all frequencies can be expressed as

∫

ω

dE
dω
=

∫

ω

δE
δm
× δm
δk
× δk
δω
=

∫

ω

�ω
(
n̂+ 1/2

)
L

2πc
dω. (D19)

Rewriting the positive frequency part of the electric field in Eq. (D13) with frequency indices instead of mode indices,
we get

�̂E(+)ω (�r, t) =
∫

ω

A Eω (�r) âωe−iωtdω, (D20)

where A is the transformed amplitude factor. In order to calculate the exact form of this factor, we substitute the value of
the electric field operator from Eq. (D22) in Eq. (D6) and compare with the result of Eq. (D19). This gives us the form of
the amplitude factor to be,

A =
√

�ω

4πε0c
. (D21)

Finally, substituting Eq. (D21) in Eq. (D22), the complete form of the positive frequency part of the electric field operator
turns out to be

�̂E(+)ω (�r, t) =
∫ ∞

0

√
�ω

4πε0c
Eω (�r) âωe−iωtdω, (D22)

where Eω (�r) denotes a Gaussian spatial mode function of the form given in Eq. (D17) and having a frequency ω [98].
A parametric interaction between a pump field (p) and two other fields, designated as signal (s) and idler (i), initially

in the vacuum state defines the spontaneous parametric down-conversion process. We restrict our considerations to the
electromagnetic fields which describe a linearly (i.e., horizontal in this case) polarized light with paraxial Gaussian beam
waist at the origin, propagating along z direction through a nonlinear medium (PPKTP crystal of length L) of second-order
nonlinearity.

From Eq. (D22), the quantized version of the electric field vectors for the pump (p), signal (s) and idler (i) photons can
be expressed as

�̂E(+)ωp
(�r, t) =

∫ ∞
0

√
�ωp

4πε0c
Eωp (�r) âωp e−iωp tdωp for pump (p) photon, (D23a)

�̂E(−)ωs
(�r, t) =

∫ ∞
0

√
�ωs

4πε0c
E ∗ωs

(�r) â†
ωs

eiωstdωs for signal (s) photon, (D23b)

�̂E(−)ωi
(�r, t) =

∫ ∞
0

√
�ωi

4πε0c
E ∗ωi

(�r) â†
ωi

eiωitdωi for idler (i) photon, (D23c)

where ωp , ωs, and ωi represent the frequency of the pump, signal, and idler photons. However, in our case, since we use
a bright continuous-wave laser source for the pump beam, we replace Eq. (D23a) with its classical form [92],

�̂E(+)ωp
(�r, t)→ �E(+)ωp

(�r, t) ≡ Ap

∫ ∞
0

s (ω)Eωp (�r) e−iωp tdωp , (D24)
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where Ap is the pump amplitude. Here for our monochromatic pump s (ω) = δ (
ω − ωp

)
, which represents the pump

spectral amplitude. However, for a general spectral amplitude distribution the corresponding normalized power spectral
density is given by

∫
ω

dω |s (ω)|2 = 1.
Therefore, the quantum Hamiltonian for this parametric interaction is then given by

ĤI (�r, t) =
∫

V
ε0χ

(2) (�r) :
[
�̂E(+)ωp

(�r, t) �̂E(−)ωs
(�r, t) �̂E(−)ωi

(�r, t)+ H.c
]

dV, (D25)

χ(2) (r) is the nonlinear susceptibility tensor.

a. Pair production process

In the interaction picture, we apply the unitary operator U = exp
[
−(i/�) ∫∞−∞ dt ĤI (�r, t)

]
to the initial vacuum (|0〉)

state of the signal and the idler photons |ψin (t = 0)〉 = |0〉s ⊗ |0〉i to obtain the resultant state of the SPDC process. The
first term of this expansion produces the output state at time t, that is the creation of a photon pair:

|ΨSPDC〉 = − i
�

∫ ∞
−∞

dt ĤI (�r, t) |ψin (t = 0)〉 . (D26)

We now insert Eqs. (D23a), (D23b), (D23c), and (D25) in Eq. (D26) to obtain the final form the output state |ΨSPDC〉,

|ΨSPDC〉 = −i
∫∫ ∞

0
ψ (ωs,ωi) â†

ωs
â†
ωi
|0〉s |0〉i dωsdωi, (D27)

where the amplitude (joint spectral amplitude [92]) of the SPDC process is given by [98]

ψ (ωs,ωi) =
√

2π2�Np

ε0λpλsλi
s
(
ωp

)
O (ωs,ωi) . (D28)

In Eq. (D28), the mean photon number of the pump beam is denoted by Np , where s
(
ωp

) √
Np replaces the operator âωp ,

and the free-space wavelength of the pump, signal, and idler photons is given by λh = 2πc/ωh, where ωp = ωs + ωi, for
h ∈ {p , s, i}. Also, O (ωs, ωi) represents the spatial overlap of the pump, signal, and idler modes in the nonlinear medium.
This SPDC amplitude contains all the spatiotemporal structure of the two-photon output state [92]. Conceptually, the joint
spectral amplitude is a product of pump spectral amplitude s

(
ωp

)
and phase-matching term, which essentially is a sinc

function. The intensity of the classical fields for the signal and idler photons is proportional to the square modulus of this
phase-matching function [92].

b. Pair-generation probability density and pair-generation rate

The square modulus of the joint spectral amplitude (or in other words the joint spectral density) of the SPDC process,
i.e., |ψ (ωs, ωi)|2, gives the pair-generation probability density. More particularly, given the pump power, it provides the
expected number of photon pairs produced per unit time per signal (or idler) bandwidth.

Moreover, we know that ωp = ωs + ωi and ωp can be considered to be the coherent state from the laser source. There-
fore, if we now numerically integrate ψ (ωs, ωi) [given by Eq. (D28)] over a certain bandwidth, i.e., a range of signal (or
idler) frequencies, then we obtain a sinc2 nature trace for this pair-generation probability density plotted over a spectrum
of signal frequencies (as sketched in Fig. 24).

The maxima of this probability distribution provides the corresponding wavelength information at which the SPDC
pair-generation rate will be maximal. The maximum value of pair-generation probability obtained numerically can be
directly verified with the experimental data. Consequently, the pair-generation rate can be defined as [92,98,99]

R ∝ 〈ψ |ψ〉 =
∫ ∞

0
dωs

∫ ∞
0

dωi |ψ (ωs,ωi)|2 . (D29)

The pair-production rate R is proportional to the Boyd-Kleinman factor [92,98]. In the case of weakly focused Gaussian
pump beam, the Boyd-Kleinman factor is proportional to the length L of the nonlinear crystal [92]. However, it is important
to note that this relationship of R and L is not true for the case of strongly focused Gaussian pump beam; and also that
there exists a trade-off between heralding ratio and tightness of focus [92].
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APPENDIX E: NUMERICAL CALCULATION FOR THE GENERATION RATE OF PHOTON PAIRS FROM
TYPE-II SPDC PROCESS

Here we describe the numerical approach that we follow to obtain the single-photon pair generation in a type-II SPDC
process using the quasi-phase-matching condition in a PPKTP crystal. Algorithm 5 shows the numerical method for
calculating refractive indices along the directions of the pump, signal, and idler beams at any given temperature.

Algorithm 5 Calculation of refractive indices using Selmier equations

Require:
FLOAT TEMP � Input temperature value
FLOAT LAMBDAP � Pump-beam wavelength in meters
FLOAT LAMBDAS �Wavelength of signal photons in meters
FLOAT LAMBDAI �Wavelength of idler photons in meters

Ensure:
FLOAT REFP � Refractive index along the pump-beam direction
FLOAT REFS � Refractive index along the direction of signal photons
FLOAT REFP � Refractive index along the direction of pump photons

1: function REFRACTIVEINDICES(TEMP, LAMBDAP, LAMBDAS,LAMBDAI)
2: FLOAT NP � Temperature-independent refractive index along the pump-beam direction
3: FLOAT NS � Temperature-independent refractive index along the direction of signal photons
4: FLOAT NI � Temperature-independent refractive index along the direction of idler photons
5: AZ← 2.12725 � Assigning values to the Sellmier coefficients
6: BZ← 1.18431
7: CZ← 0.0514852
8: DZ← 0.6603
9: EZ← 100.00507

10: FZ← 0.00968956
11: AY← 2.19229
12: BY← 0.83547
13: CY← 0.0497
14: DY← 0.01621
15: A0 ← 9.9587X10−6

16: A1 ← 9.9228X10−6

17: A2 ←−8.9603X10−6

18: A3 ← 4.1010X10−6

19: B0 ←−1.1882X10−8

20: B1 ← 10.459X10−8

21: B2 ←−9.8136X10−8

22: B3 ← 3.1481X10−8

23: C0 ← 6.2897X10−6

24: C1 ← 6.3061X10−6

25: C2 ←−6.0629X10−6

26: C3 ← 2.6486X10−6

27: D0 ←−0.14445X10−8

28: D1 ← 2.2244X10−8

29: D2 ←−3.5770X10−8

30: D3 ← 1.3470X10−8

31: LAMBDAP← LAMBDAP× 106 � Converting wavelength in meters to microns
32: LAMBDAS← LAMBDAS× 106

33: LAMBDAI← LAMBDAI× 106

34: NP←
√

AY+ BY
1−CY×LAMBDAP−2 − DY× LAMBDAP2 � Obtaining the values for the temperature-independent

refractive indices
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35: NS←
√

AY+ BY
1−CY×LAMBDAS−2 − DY× LAMBDAS2

36: NI←
√

AZ+ BZ
1−CZ×LAMBDAI−2 − DZ

1−EZ×LAMBDAI−2 − FZ× LAMBDAI2

37: REFP← NP+ (TEMP− 25)×
(

C0 + C1
LAMBDAP + C2

LAMBDAP2 + C3
LAMBDAP3

)
+ (TEMP− 25)2 ×(

D0 + D1
LAMBDAP + D2

LAMBDAP2 + D3
LAMBDAP3

)
� Obtaining the final temperature-dependent refractive indices

38: REFS← NS+ (TEMP− 25)×
(

C0 + C1
LAMBDAS + C2

LAMBDAS2 + C3
LAMBDAS3

)
+ (TEMP− 25)2 ×(

D0 + D1
LAMBDAS + D2

LAMBDAS2 + D3
LAMBDAS3

)

39: REFI← NI+ (TEMP− 25)×
(

A0 + A1
LAMBDAI + A2

LAMBDAI2 + A3
LAMBDAI3

)
+ (TEMP− 25)2 ×(

B0 + B1
LAMBDAI + B2

LAMBDAI2 + B3
LAMBDAI3

)

40: return REFP, REFS, REFI � Returning the specified outputs
41: end function

Algorithm 6 shows the numerical method for calculating the optimal temperature for obtaining the quasi-phase-
matching condition for type-II SPDC process of single-photon generation. The function takes into account the poling
period of the crystal and the signal and pump-beam wavelengths and returns the temperature for the condition that satis-
fies the QPM condition corresponding to the input wavelengths. This function also uses the “refractive index” function
described in Algorithm 5 to obtain the refractive indices for any given temperature.

Algorithm 6 Obtaining the optimal temperature for the QPM condition

Require:
FLOAT LAMBDAP � Pump-beam wavelength
FLOAT LAMBDAS �Wavelength of signal photons
FLOAT POLPERIOD � Poling period of the crystal

Ensure:
FLOAT TEMP � Optimal temperature for the QPM condition

1: function QPMTEMPERATURE(LAMBDAP, LAMBDAS,POLPERIOD)
2: FLOAT LAMBDAI �Wavelength of idler photons
3: FLOAT KP �Wavevector of the pump beam
4: FLOAT KS �Wavevector of the signal photons
5: FLOAT KI �Wavevector of the idler photons
6: FLOAT KPOL �Wavevector corresponding to the poling period
7: FLOAT TPOL � Temperature-dependent poling period of the crystal
8: FLOAT RES � Difference in the value of the wavevectors
9: FLOAT [3] ARRREF � Temperature-dependent refractive indices’ array

10: TEMPVAR← 20 � Start value for temperature scan
11: MIN← 10 �Minimum difference value of the wavevectors
12: A← 6.7× 10−6 � Length expansion coefficients
13: B← 11× 10−9

14: while TEMPVAR ≤ 100 do � Iterating over temperature range
15: REFARR← REFRACTIVEINDICES (TEMPVAR, LAMBDAP, LAMBDAS, LAMBDAI) � Obtaining the

temperature-dependent refractive indices using the function defined in Algorithm 5
16: TPOL← POLPERIOD× (

1+ A× (T− 25)+ B× (T− 25)2
) � Obtaining the effective poling period at the

temperature
17: KP← 2×π×REFARR[0]

LAMBDAP � Obtaining the temperature-dependent wavevectors
18: KS← 2×π×REFARR[1]

LAMBDAS
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19: KI← 2×π×REFARR[2]
LAMBDAI

20: KPOL← 2×π
TPOL

21: RES← KP− (KS+ KI+ KPOL) � Obtaining the wave vector mismatch
22: if | RES |≤ MIN then � Checking whether the wave vector mismatch is below the set threshold value
23: MIN←| RES |
24: TEMP← TEMPVAR � Obtaining the optimal temperature for the QPM condition
25: end if
26: TEMPVAR← TEMPVAR+ 0.1 � Incrementing the iterative temperature value for condition check
27: end while
28: return TEMP � Returning the specified output
29: end function

Algorithm 7 shows the numerical approach for calculating the spatial mode overlap of the signal, idler, and the pump
modes generated within the dimensions of the crystal.

Algorithm 7 Spatial mode-overlap calculation

Require:
FLOAT TEMP � Input temperature value
FLOAT LAMBDAP � Pump-beam wavelength
FLOAT LAMBDAS �Wavelength of signal photons
FLOAT LAMBDAI �Wavelength of idler photons
FLOAT SIZEP � Spot size of the pump beam at the crystal center
FLOAT SIZES � Spot size of the signal photons at the crystal center
FLOAT SIZEI � Spot size of the idler photons at the crystal center
FLOAT POLPERIOD � Poling period of the crystal
FLOAT LENCRYSTAL � Length of the crystal

Ensure:
FLOAT RES � Spatial mode-overlap value

1: function MODEOVERLAP(TEMP, LAMBDAP, LAMBDAS, LAMBDAI, SIZEP,
SIZES, SIZEI, POLPERIOD, LENCRYSTAL)

2: FLOAT [3] ARRREF � Temperature-dependent refractive indices’ array
3: FLOAT RADP � Beam radius of the pump beam at a given distance
4: FLOAT RADS � Beam radius of the signal photons at a given distance
5: FLOAT RADI � Beam radius of the idler photons at a given distance
6: FLOAT KP �Wavevector of the pump beam
7: FLOAT KS �Wavevector of the signal photons
8: FLOAT KI �Wavevector of the idler photons
9: FLOAT QP � Calculated quantity for the pump beam

10: FLOAT QS � Calculated quantity for the signal photons
11: FLOAT QI � Calculated quantity for the idler photons
12: FLOAT Z � Distance from the center of the crystal
13: FLOAT J � Relates the iteration step size to the poling period of the crystal
14: SIGNED INTEGER F � Sign value for the integration
15: ZSTEP← 10−6 � Step size for iteration
16: I← 0 � Initializing iterative variable
17: REFARR← REFRACTIVEINDICES (TEMP, LAMBDAP, LAMBDAS, LAMBDAI) � Obtaining the temperature-dependent

refractive indices using the function defined in Algorithm 5
18: J← POLPERIOD

2×ZSTEP
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19: RES← 0 � Initializing the mode-overlap value
20: Z← −LENCRYSTAL

2 � Initializing iterative distance
21: while Z ≤ LENCRYSTAL

2 do � Iterating over the length of the crystal

22: RADP← SIZEP×
√

1+ Z×LAMBDAP(
π×REFARR[0]×SIZEP2

)2 � Calculating the beam radius at the given distance from the

center of the crystal
23: RADS← SIZES×

√
1+ Z×LAMBDAS(

π×REFARR[1]×SIZES2
)2

24: RADI← SIZEI×
√

1+ Z×LAMBDAI(
π×REFARR[2]×SIZEI2

)2

25: KP← 2×π×REFARR[0]
LAMBDAP � Calculating the wavevectors of the pump, signal, and idler beam

26: KS← 2×π×REFARR[1]
LAMBDAS

27: KI← 2×π×REFARR[2]
LAMBDAI

28: QP← RADP2 + 2i×Z
KP � Calculating the intermediate variables

29: QS← RADS2 + 2i×Z
KS

30: QI← RADI2 + 2i×Z
KI

31: I← I+ 1 � Incrementing the iterative variable with each run of the loop
32: if INT

(
I
J

)
mod 2 �= 0 then � Conditioning over the ratio of the number of iteration and the derived

quantity from the poling period of the crystal and step size of the iteration
33: F← 1 � Assigning case-dependent value to the variable
34: else
35: F←−1
36: end if

37: RES← RES+
(

2
3
2√
π
× RADP×RADS×RADI

QP×QS+QI×QS+QP×QI × F× exp (i× (KP− KS− KI)× Z)× ZSTEP

)
� Obtaining the

mode-overlap value
38: Z← Z+ ZSTEP � Incrementing the distance
39: end while
40: return RES � Returning the specified output
41: end function

Using the previous algorithms for the functions “refractive indices,” “QPM temperature,” and “mode overlap,”
Algorithm 8 is employed to calculate the single-photon pair-generation rate. The module takes as input the intensity
of the pump beam, the degeneracy condition, beam waist of the pump beam at the center of the crystal, the poling period
and nonlinear coefficient of the crystal, and the total time for which the pump is switched on. In output, it returns the total
number of single-photon pairs generated.

Algorithm 8 Obtaining the pair-generation rate from type-II SPDC process

Require:
FLOAT PUMPINT � Intensity of the pump beam
FLOAT LAMBDAP � Pump-beam wavelength
FLOAT LAMBDAS �Wavelength of signal photons
FLOAT SIZEP � Spot size of the pump beam at the crystal center
FLOAT POLPERIOD � Poling period of the crystal
FLOAT LENCRYSTAL � Length of the crystal
FLOAT EFF � Effective nonlinear coefficient of the crystal for type-II SPDC process
FLOAT LAMBDAIN � Initial value of the signal wavelength for the iteration
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FLOAT LAMBDAFIN � Final value of the signal wavelength
FLOAT TIME � Runtime of the process

Ensure:
FLOAT RATE � Single-photon pair-generation rate

1: procedure PAIRRATECALCULATION(PUMPINT, LAMBDAP, LAMBDAS, SIZEP, POLPE-
RIOD, LENCRYSTAL, EFF, LAMBDAIN, LAMBDAFIN, TIME)

2: FLOAT SIZES � Spot size of the signal photons at the crystal center
3: FLOAT SIZEI � Spot size of the idler photons at the crystal center
4: FLOAT TEMP � Optimal temperature for QPM condition
5: FLOAT LAMBDAI �Wavelength of idler photons
6: FLOAT [3] ARRREF � Temperature-dependent refractive indices’ array
7: FLOAT OVERLAP �Mode-overlap value
8: FLOAT TPOL � Temperature-dependent poling period of the crystal
9: FLOAT LAMBDAITER � Iterative wavelength of the signal photons

10: FLOAT RES � Integration value for each iteration
11: FLOAT S � Stores intermediate values for integration at each iteration
12: FLOAT ENERGY � Energy of a single pump photon
13: UNSIGNED INTEGER NUMPUMP � Number of pump photons
14: EPS← 8.85× 10−12 � Free-space permittivity
15: HBAR← 6.626×10−34

2π � Planck’s constant
16: VEL← 3× 108 � Velocity of light in free space
17: STEP← 10−11 � Step size of the iteration
18: A← 6.7× 10−6 � Length expansion coefficients
19: B← 11× 10−9

20: S← 0 � Initializing the intermediate integration value
21: RES← 0 � Initializing the resultant value for each run of the integration
22: SIZES←√2× SIZEP � Calculating spot size of signal photons
23: SIZEI←√2× SIZEP � Calculating spot size of idler photons
24: TEMP← QPMTEMPERATURE (LAMBDAP, LAMBDAS, POLPERIOD)
25: TPOL← POLPERIOD× (

1+ A× (T− 25)+ B× (T− 25)2
) � Poling period of the crystal at the optimal

temperature for QPM
26: LAMBDAITER← LAMBDAIN � Initializing the iterative variable for wavelength
27: while LAMBDAITER ≤ LAMBDAFIN do � Iterating over the range of signal wavelength
28: LAMBDAI← LAMBDAITER×LAMBDAP

LAMBDAITER−LAMBDAP � Updating the value of the idler wavelength
29: REFARR← REFRACTIVEINDICES (TEMP, LAMBDAP, LAMBDAITER, LAMBDAI) � Obtaining the

temperature-dependent refractive indices using the function defined in Algorithm 5
30: OVERLAP← MODEOVERLAP (TEMP, LAMBDAP, LAMBDAITER, LAMBDAI,

SIZEP, SIZES, SIZEI, TPOL, LENCRYSTAL ) � Obtaining the mode overlap using the function defined in Algorithm 7

31: S← 2× EPS× OVERLAP×
√

2π2×HBAR
EPS×LAMBDAP×LAMBDAITER×LAMBDAI � Calculating the intermediate value

32: RES← RES+ |S|2 × STEP× 2π×VEL
LAMBDAP2 � Obtaining the resultant value for each iteration

33: end while
34: ENERGY← 2π×HBAR×VEL

LAMBDAP � Calculating the total energy of the pump beam

35: NUMPUMP← INT
(

PUMPINT
ENERGY

)
� Obtaining the number of photons in the pump beam

36: RATE← RES× NUMPUMP � Obtaining the pair-generation rate at the crystal
37: return RATE � Returning the specified output
38: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.
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APPENDIX F: SINGLE-PHOTON TIME STAMPING

1. Methodology

We use Algorithm 9 to generate time-stamping data for single photons emitted from an ideal single-photon source.

Algorithm 9 Generates the time-stamping data of the single photons emitted from a single-photon source

Require:
UNIT INTERVAL PROBSINPHOT � Probability of assigning a single-photon event to an empty bin
UNIT INTERVAL PROBMULPHOT � Probability of assigning a photon event to a bin conditioned that another
photon is present
UNSIGNED INTEGER TOTBINS � Total number of bins
REAL SIGMA � Standard deviation of the Gaussian pulse for each photon

Ensure:
UNSIGNED INTEGER LENTIMESTAMPS � Length of the array to store time-stamping data
UNSIGNED INTEGER [LENTIMESTAMPS] TIMESTAMPS � Array to store the time-stamping data

1: procedure TIMESTAMPS(PROBSINPHOT, PROBMULPHOT, TOTBINS, SIGMA)
2: REAL FACTOR← 1− PROBMULPHOT

PROBSINPHOT
3: REAL [TOTBINS] PROBARRAY � Array of TOTBINS size to store the assignment probabilities
4: UNSIGNED INTEGER [] TIMESTAMPS � Dynamic array for storing the time stamps
5: UNSIGNED INTEGER LENTIMESTAMPS � Counter for the number of stored time stamps
6: for I = 1, TOTBINS do � Iterates over the total number of bins
7: PROBARRAY [I]← PROBSINPHOT � Initializes the array with assignment probability of single-photon events
8: end for
9: TIMESTAMPS← ∅ � Preinitializes the array as a NULL set

10: while I ≤ TOTBINS do � Iterates over the total number of bins
11: UNIT INTERVAL RANDNUM← RANDOM (0, 1) � Assigns a random real number between 0 & 1
12: if RANDNUM ≤ PROBARRAY [I] then
13: TIMESTAMPS← TIMESTAMPS ∪ I � Appends the corresponding time stamp to the output array
14: LENTIMESTAMPS← LENTIMESTAMPS+ 1 � Increments the counter to account for the appended time

stamp
15: for J = 0, TOTBINS− I do � Iterates over a subset of the total number of bins
16: PROBARRAY [I+ J]← PROBSINPHOT×

(
1− FACTOR× exp

(
−J2

2 SIGMA2

))
� Updates the probability

after assignment of the time stamp for each photon
17: end for
18: I = I− 1 � Updates the iterator for estimating the chances of reassignment
19: end if
20: I = I+ 1 � Increments the iterator to search for the next assignment
21: end while
22: return LENTIMESTAMPS, TIMESTAMPS � Returns the specified outputs
23: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

2. Results

Thereafter, we plot the distribution for pairwise time interval, where the X axis is the time difference between any two
consecutive photons (tn+1 − tn) and Y axis represents the number of such events per second. This distribution possesses
an antibunching property at smaller time scales (�t→ 0) (see Fig. 30) and an exponential decay nature at larger time
scales (far from zero time interval, �t	 0) as depicted in Fig. 31.

This behavior (exponential decay) is also noticed in our experimental data as shown in Fig. 32. We cannot observe the
antibunching behavior at shorter time scale as the dead time (45 ns) of our detector is much larger than the coherence
time.
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FIG. 30. Simulation: at high resolution (i.e., narrow bin width of 1 ps), we observe the antibunching behavior of a single-photon
distribution. The exponential decay rate being low is invisible at very short (highly resolved) time periods. More particularly, at zero
time difference no events occurred since the multiphoton probability is considered to be zero. Here, the standard deviation (σ ) is
arbitrarily taken to be 10 ps and so the curve owing to the number of events saturates after 3σ of pairwise time difference.

FIG. 31. Simulation: at low resolution (i.e., broader bin width of 1 ns), we observe the exponential decay nature, which is expected
from any random distribution. Here, the abbreviations RMSE, SSE, and R sq. stand for root-mean-square error, sum of square error,
and R squared, respectively. They determine the relative and absolute goodness of the fit.

FIG. 32. Measurement: considering a binsize of 13 ps we observe the exponential decay nature for the distribution of frequency of
single-photon events versus pairwise time interval between two consecutive photons emitted from the SPDC source along the signal
(or idler) path. The measurements are collected for time window of 2 s and a pump power of 2 mW is used. The R-squared value of
the exponential fit in pink is approximately 1 ensuring a nice fit to the measured data points.

APPENDIX G: SIMULATION OF THE INCIDENT BACKGROUND PHOTON RATE AND GENERATION
OF TIME STAMPS

In Sec. VI we explain in detail the technique that is used to infer the incident background rate from the noise level at
the coincidence plots obtained experimentally. Algorithm 10 explains the numerical method.
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Algorithm 10 Generates the incident background rate at the detector

Require:
UNSIGNED INTEGER LENSIGNALARR � Length of the array for storing arbitrary signal generation rate from source
UNSIGNED INTEGER [LENSIGNALARR]SIGNALARR � Array for storing arbitrary signal generation rate from source
UNSIGNED INTEGER LENBGCOINARR1 � Length of the array for storing simulated background coincidence rate
for varied signal rate at a fixed background rate
UNSIGNED INTEGER [LENBGCOINARR1]BGCOINARR1 � Array for storing simulated background coincidence rate
for varied signal rate at a fixed background rate
UNSIGNED INTEGER LENBGRATEARR � Length of the array for storing arbitrary incident background rate at the
detector
UNSIGNED INTEGER [LENBGRATEARR]BGRATEARR � Array for storing arbitrary incident background rate at the
detector
UNSIGNED INTEGER LENBGCOINARR2 � Length of the array for storing simulated background coincidence rate
for varied incidence background rate for a fixed signal rate
UNSIGNED INTEGER [LENBGCOINARR2]BGCOINARR2 � Length of the array for storing simulated background
coincidence rate for varied incidence background rate for a fixed signal rate
UNSIGNED INTEGER DETBGCOINRATE� Specific detected background coincidence rate at the TCSPCM given as
input by the user
UNSIGNED INTEGER SIGRATE � Specific signal generation rate obtained from the source
UNSIGNED INTEGER GENRATE � Specific signal rate for which the interpolation dataset is generated

Ensure:
UNSIGNED INTEGER INBGRATE � Incident background rate at the detector obtained by the two-step interpolation

1: procedure BACKGROUNDRATE(SIGNALARR, BGCOINARR1, BGRATEARR,BGCOINARR2, DETBGCOINRATE,
SIGRATE, GENRATE)

2: FLOAT ratio
3: F ← INTERPOLATE(SIGNALARR, BGCOINARR1) � Interpolated function generated from the arrays of arbitrary

signal rate and the corresponding simulated background coincidence rate
4: RATIO← F(SIGRATE)

F(GENRATE) � Obtaining the ratio for arbitrary signal rate
5: F1 ← INTERPOLATE(BGRATEARR, BGCOINARR2) � Interpolated function generated from the arrays of arbitrary

incident background rate and the corresponding simulated background coincidence rate at a specific signal rate
6: INBGRATE← F1(DETBGCOINRATE)

RATIO � Incident background rate for an arbitrary signal rate calculated from the
ratio and interpolated incident background rate for the specific signal rate

7: return INBGRATE � Returning the specified output
8: end procedure

Following the discussion in Sec. VI the obtained incident background rate is then used as an input to Algorithm 11 to
obtain the time-stamp list of the background photons incident at the detector.

Algorithm 11 Generates the time-stamping data of the background photons incident at the detection module

Require:
UNSIGNED INTEGER INBGRATE � Incident background photons per second
UNSIGNED INTEGER TOTTIME � Total time for the run of the protocol in seconds
UNSIGNED INTEGER STDEV � Standard deviation of the Gaussian pulse for each photon in ps

Ensure:
UNSIGNED INTEGER LENBGTIMESTAMPS � Length of the background photon time-stamp array
UNSIGNED INTEGER [LENBGTIMESTAMPS]BGTIMESTAMPS � Background photon time-stamp array

024036-53



RISHAB CHATTERJEE et al. PHYS. REV. APPLIED 14, 024036 (2020)

1: procedure TIMESTAMPS( INBGRATE, TOTTIME, STDEV)
2: UNIT INTERVAL PROB1 � Probability of assigning a single-photon event to an empty bin
3: INTERVAL(0, PROB1) PROB2 � Random variable defined in an interval
4: UNIT INTERVAL FACTOR � Variable calculated from PROB1 and PROB2
5: UNSIGNED INTEGER BINS � Total number of bins
6: DYNAMIC PROBARR � Declaring the array, which will contain the different probability values for all its

elements to be a dynamic array
7: DYNAMIC BGTIMESTAMPS � Declaring the array, which will contain the output time stamps to be a dynamic

array
8: UNIT INTERVAL RAND � Random variable, which can take values from 0 to 1
9: UNSIGNED INTEGER I � Declaring an iterative variable
10: UNSIGNED INTEGER J � Declaring an iterative variable
11: BINS← 1012 × TOTTIME � Obtaining the total number of time bins in ps resolution
12: PROB1← INBGRATE

1012 � Obtaining the probability of a single-photon event at each ps time interval
13: PROB2← PROB12 � Obtaining the probability of assigning a photon event to a bin conditioned that another

photon is already present at each ps time interval
14: FACTOR← 1− PROB2

PROB1
15: PROBARR← ∅ � Probability array preinitialized to a null set
16: I← 1 � Initializing the iterative variable
17: while I ≤ BINS do � Looping over the total number of bins taken as input
18: PROBARR← PROBARR ∪ PROB1 � Probability array is being appended with the probability PROB1 of

assigning a single-photon event to each of the BINS
19: I← I+ 1 � Updates the iterator to append the next element to the array
20: end while
21: BGTIMESTAMPS← ∅ � Initializing the dynamic background time-stamp array to be null set
22: I← 1 � Reinitializing the iterator
23: while I ≤ BINS do � Looping over the total number of bins taken as input
24: RAND← RANDOM (0, 1) � Assigns an uniform random number between 0 & 1
25: if RAND ≤ PROBARR [I] then � Randomly selects the instance at which a single photon is generated
26: BGTIMESTAMPS← BGTIMESTAMPS ∪ { I } � Update the output array with the time stamp
27: for J = 0, BINS− I do � Iterating over the remaining bins after each single-photon time-stamp

assignment at the Ith bin
28: PROBARR [I+ J] = PROB1

(
1− FACTOR× exp

(
−J2

2×STDEV2

))
� Update the probability after

assignment of the time stamp for each photon
29: end for
30: I← I− 1 � Update the iterator for estimating the chance of reassignment
31: end if
32: I← I+ 1 � Increment the iterator to search for the next assignment
33: end while
34: LENBGTIMESTAMPS← LENGTH (BGTIMESTAMPS) � Assigns the length of the dynamic array
35: return BGTIMESTAMPS, LENBGTIMESTAMPS � Returning the specified output
36: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

APPENDIX H: SAMPLING OF TIME STAMPS

In order to save computational time, we employ a sampling technique to generate time-stamp lists quickly. This is used
when the simulation is rerun multiple times as explained in Sec. VI. Algorithm 12 describes the sampling technique that
we implement.
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Algorithm 12 Sampling of time-stamp data

Require:
UNSIGNED INTEGER LENINPARR � Length of the input time-stamp array
UNSIGNED INTEGER [LENINPARR]INPARR � Input time-stamp array
UNSIGNED INTEGER TOTTIME � Total time for which the input time stamps is generated in ps resolution

Ensure:
UNSIGNED INTEGER LENSAMPARR � Length of the sampled time-stamp array
UNSIGNED INTEGER [LENSAMPPARR]SAMPARR � Sampled time-stamp array

1: procedure SAMPLINGTIMESTAMPS([LENINPARR]INPARR)
2: DYNAMIC INTARR � Declaring the time-stamp interval array to be dynamic
3: UNSIGNED INTEGER LENINTARR � Length of the time-stamp interval array
4: DYNAMIC SAMPARR � Declaring the sampled time-stamp array to be dynamic
5: UNSIGNED INTEGER I � Declaring an iterative variable
6: UNSIGNED INTEGER SUM � Variable for storing the iterative value of the time over which sampled time

stamps are generated
7: UNSIGNED INTEGER RAND � Declaring a random variable
8: INTARR← ∅ � Initializing the dynamic time-stamp interval array to be a null set
9: SAMPARR← ∅ � Initializing the dynamic sampled time-stamp array to be a null set

10: I← 1 � Initializing the iterative variable
11: while I ≤ (LENINPARR− 1) do � Iterating over the elements of the input time-stamp array
12: INTARR← INTARR ∪ (INPARR [I+ 1]− INPARR [I]) � Generating the time-stamp interval array
13: end while
14: SUM← 0 � Initializing the iterative variable
15: while SUM ≤ TOTTIME do � Iterating until the value of time reaches the set threshold
16: RAND← RANDOM (1, LENINTARR) � Randomly choosing a location of the time-interval array
17: SUM← SUM+ RAND � Updating the iterative value for the time
18: SAMPARR← SAMPARR ∪ SUM � Generating the sampled time-stamp array
19: end while
20: LENSAMPARR← LENGTH (SAMPARR) � Calculating the length of the sampled time-stamp array
21: return LENSAMPARR, SAMPARR � Returning the specified outputs
22: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

APPENDIX I: SINGLE-PHOTON DETECTION USING SINGLE-PHOTON DETECTORS AND TCSPCM

Simulation of detection of single photons forms one of the most important aspects of the simulation of an implemen-
tation of a QKD protocol. We model the single-photon detectors and TCSPCM that forms the detection module of the
setup. In Sec. VII, we explain in detail the simulation technique for the various parameters of these detection components.
The following algorithms provide insight into the simulation of the single-photon detection.

Algorithm 13 provides a general algorithm for processing the time stamps of the input signal photons at a detection
instrument (single-photon detector and TCSPCM).

Algorithm 13 Generates the processed time stamps corresponding to the input single-photon time stamps at the
instrument

Require:
UNIT INTERVAL EFF � Efficiency of the instrument
UNSIGNED INTEGER DEADTIME � Dead time of the instrument in ps resolution
SIGNED INTEGER STDEV � Standard deviation of the Gaussian distribution corresponding to the timing jitter
SIGNED INTEGER MEAN �Mean of the Gaussian distribution corresponding to the timing jitter
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UNSIGNED INTEGER LENIPTIMESTAMPS � Length of the array of the input photon time stamps
UNSIGNED INTEGER [LENIPTIMESTAMPS]IPTIMESTAMPS � Input photon time-stamp array

Ensure:
UNSIGNED INTEGER LENOPTIMESTAMPS � Length of the processed photon time-stamp array
UNSIGNED INTEGER [LENOPTIMESTAMPS]OPTIMESTAMPS � Processed photon time-stamp array

1: function GENERALTAGGER(EFF, DEADTIME, STDEV, MEAN, LENIPTIMESTAMPS, IPTIMESTAMPS)
2: UNIT INTERVAL RAND � Random variable that can take values from 0 to 1
3: UNSIGNED INTEGER DETTIMESTAMP � Iterative variable to store time stamps of the detected photons
4: DYNAMIC OPTIMESTAMPS � Declaring the processed time-stamp array as dynamic
5: UNSIGNED INTEGER I � Declaring an iterative variable
6: REAL NORMRAND � Declaring a random variable
7: SIGNED INTEGER JITTER � Timing jitter associated to detected time stamps
8: OPTIMESTAMPS← ∅ � Initializing the dynamic processed time-stamp array to be a null set
9: DETTIMESTAMP← 0 � Initializing the iterative variable

10: I← 1 � Initializing the iterative variable
11: while I ≤ LENIPTIMESTAMPS do � Looping over the elements of the input time-stamp array
12: if IPTIMESTAMPS [I]− DETTIMESTAMP ≥ DEADTIME then � Rejects events that arrives at the instrument

within its dead time
13: RAND← RANDOM (0, 1) � Assigns an uniform random number between 0 & 1
14: if RAND ≤ EFF then � Randomly selects the input time stamps based on the efficiency of the instrument
15: NORMRAND← NORMALRANDOM (MEAN, STDEV) � Obtaining the effective timing-jitter value
16: JITTER← ROUND (NORMRAND) � Rounding off the timing-jitter value
17: OPTIMESTAMPS← OPTIMESTAMPS ∪ (IPTIMESTAMPS [I]+ JITTER) � Generating the output

time-stamp array
18: DETTIMESTAMP← IPTIMESTAMPS [I] � Value of the iterative variable updated with the processed time

stamp
19: end if
20: end if
21: end while
22: LENOPTIMESTAMPS← LENGTH(OPTIMESTAMPS) � Assigns the length of the dynamic array
23: return OPTIMESTAMPS, LENOPTIMESTAMPS � Returning the specified output
24: end function

Algorithm 14 uses the function “general tagger” to simulate the detection of photons in single-photon detectors. The
module takes as input the time stamps of the received signal photons at the detectors and the dead time, efficiency ,and the
timing jitter of the detector. Time stamps of the TTL pulses generated in correspondence to a detection event are returned
as output.

Algorithm 14 Generates the time stamps of the TTL pulses corresponding to the detected single photons at the
detector

Require:
UNIT INTERVAL EFF � Quantum efficiency of the detector
UNSIGNED INTEGER DEADTIME � Dead time of the detector in ps resolution
UNSIGNED INTEGER STDEV � Standard deviation of the Gaussian distribution corresponding to the timing jitter
UNSIGNED INTEGER MEAN �Mean of the Gaussian distribution corresponding to the timing jitter
UNSIGNED INTEGER LENIPTIMESTAMPS � Length of the input photon time-stamp array
UNSIGNED INTEGER [LENIPTIMESTAMPS]IPTIMESTAMPS � Array of the incoming photon time stamps

Ensure:
UNSIGNED INTEGER LENOPTIMESTAMPS � Length of the output array for storing TTL pulse time stamps
UNSIGNED INTEGER [LENOPTIMESTAMPS]OPTIMESTAMPS � TTL pulse time-stamp array
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1: procedure DETECTOR(EFF, DEADTIME, STDEV, MEAN, LENIPTIMESTAMPS, IPTIMESTAMPS)
2: return GENERALTAGGER(EFF, DEADTIME, STDEV, MEAN, LENIPTIMESTAMPS, IPTIMESTAMPS) � Returning the

specified output through the function defined in Algorithm 13
3: end procedure

Algorithm 15 uses the function general tagger to simulate the time stamping of detected signal photons at the TCSPCM.
The module takes as input the time stamps of the received TTL pulses at the TCSPCM, loss in the connecting SMA cables,
the dead time, and timing jitter of the TCSPCM. Time stamps corresponding to the detected TTL pulses are returned as
output. These time stamps are considered as the time stamps of the detected photons.

Algorithm 15 Generates the time stamps of the TTL pulses corresponding to the detected single photons at the
detector

Require:
REAL LOSS � Loss in the SMA connector cables
UNSIGNED INTEGER DEADTIME � Dead time of the TCSPCM in ps resolution
UNSIGNED INTEGER STDEV � Standard deviation of the Gaussian distribution corresponding to the timing jitter
UNSIGNED INTEGER MEAN �Mean of the Gaussian distribution corresponding to the timing jitter
UNSIGNED INTEGER LENIPTIMESTAMPS � Length of the input TTL pulse time-stamp array
UNSIGNED INTEGER [LENIPTIMESTAMPS]IPTIMESTAMPS � Input TTL pulse time-stamp array

Ensure:
UNSIGNED INTEGER LENOPTIMESTAMPS � Length of the output array of the time stamps for the TTL pulses
corresponding to the detected photons
UNSIGNED INTEGER [LENOPTIMESTAMPS]OPTIMESTAMPS � Output array of the time stamps for the TTL pulses
corresponding to the detected photons

1: procedure TCSPCM(LOSS, DEADTIME, STDEV, MEAN, LENIPTIMESTAMPS, IPTIMESTAMPS)
2: UNIT INTERVAL EFF � Efficiency of the channel connecting the TCSPCM and the detector

3: EFF← 10−
LOSS

10 � Efficiency of the channel calculated
4: return GENERALTAGGER(EFF, DEADTIME, STDEV, MEAN, LENIPTIMESTAMPS, IPTIMESTAMPS) � Returning the

specified output through the function defined in Algorithm 13
5: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

APPENDIX J: GENERATION OF ELECTRIC FIELD DISTRIBUTION AND BEAM PROPAGATION

As explained in Sec. VI, the distribution of the electric field is considered as a Gaussian distribution whereas the beam
waist of the beam acts as twice the standard deviation of the distribution. Algorithm 16 depicts the generation of the
Gaussian distribution corresponding to the electric field of the beam. The algorithm takes as input the properties of the
distribution such as the position of the center and the standard deviation. It also takes as input the extent in space over
which the distribution will be generated. The algorithm returns the Gaussian distribution stored in an array.

Algorithm 17 describes the propagation of the Gaussian beams along the z axis following the assumptions considered
in Secs. V B. The algorithm takes as input the electric field distribution at the initial point along with the extent of the
beam at the initial and final point along the x axis. The wavelength of the beam and the distance along the z axis are also
considered as inputs. The field amplitudes at the final point are calculated, for each point on the x axis over which the
beam is spread, following Huygen’s principle of beam propagation.
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Algorithm 16 Generation of electric field distribution following Gaussian distribution

Require:
FLOAT CENTER � Position of the center of the Gaussian distribution
FLOAT STDDEV � Standard deviation of the Gaussian distribution
FLOAT AMP � Electric field amplitude at the center
FLOAT NUM � Number of data points of the distribution
FLOAT LIMIT � Extent in position over which the field is generated

Ensure:
UNSIGNED INTEGER LENFIELDARR � Length of the electric field array
FLOAT [LENFIELDARR]FIELDARR � Electric field array

1: procedure FIELDDISTRIBUTION(CENTER, STDDEV, AMP,NUM, LIMIT)
2: DYNAMIC POSARR � Declaring the position array to be dynamic
3: DYNAMIC FIELDARR � Declaring the electric field array to be dynamic
4: FLOAT POS � Iterative position value
5: FLOAT RES � Resolution of the field distribution
6: UNSIGNED INTEGER LENPOSARR � Length of the position array
7: FLOAT FIELDAMP � Iterative amplitude of the electric field
8: POS← CENTER− LIMIT � Initializing the iterative position value
9: POSARR← ∅ � Initializing the dynamic position array to be a null set

10: FIELDARR← ∅ � Initializing the dynamic electric field array to be a null set
11: RES← 2×LIMIT

NUM � Calculating the resolution for generating the position array
12: while POS ≤ (CENTER+ LIMIT) do � Iterating over the limits of the position values
13: POSARR← POSARR ∪ POS � Generating the position array
14: POS← POS+ RES � Incrementing the position value for each iteration
15: end while
16: LENPOSARR← LENGTH (POSARR) � Obtaining the length of the position array
17: I← 0 � Initializing the iterator
18: while I ≤ LENPOSARR do � Iterating over the elements of the position array

19: FIELDAMP← AMP× exp
(
−(POSARR[i]−CENTER)2

4×STDDEV2

)
� Obtaining the electric field amplitude at each iteration

20: FIELDARR← FIELDARR ∪ FIELDAMP � Updating the electric-field-distribution array with the amplitude value
at each iteration

21: end while
22: LENFIELDARR← LENGTH (FIELDARR) � Obtaining the length of the electric field array
23: return LENFIELDARR , FIELDARR � Returning the specified outputs
24: end procedure

Algorithm 17 Propagation of Gaussian beam

Require:
UNSIGNED INTEGER LENINFIELDARR � Length of the input electric field array
FLOAT [LENINFIELDARR]INFIELDARR � Input electric field array
FLOAT NUMIN � Number of data points of the distribution of the input electric field
FLOAT NUMOUT � Number of data points of the distribution of the output electric field
FLOAT LIMITIN � Extent in position over which the input field is generated
FLOAT NUMOUT � Number of data points of the distribution of the output electric field
FLOAT LIMITOUT � Extent in position over which the output field will be generated
FLOAT CENTERIN � Position of the center of the Gaussian distribution of the input field
FLOAT CENTEROUT � Position of the center of the Gaussian distribution of the output field
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FLOAT DIST � Distance between the two points along the z axis over which the beam is propagated
FLOAT LAMBDA �Wavelength of the beam

Ensure:
UNSIGNED INTEGER LENOUTFIELDARR � Length of the output electric field array
FLOAT [LENOUTFIELDARR]OUTFIELDARR � Output electric field array obtained after propagation

1: procedure FIELDDISTRIBUTION([LENINFIELDARR]INFIELDARR, NUMIN, LIMITIN, NUMIUT, LIMITOUT, DIST, LAMBDA)
2: DYNAMIC INPOSARR � Declaring the position array to be dynamic
3: UNSIGNED INTEGER LENINPOSARR � Length of the position array
4: DYNAMIC OUTPOSARR � Declaring the position array to be dynamic
5: UNSIGNED INTEGER LENOUTPOSARR � Length of the position array
6: DYNAMIC OUTFIELDARR � Declaring the electric field array to be dynamic
7: FLOAT POS � Iterative position value
8: FLOAT RES � Resolution of the field distribution
9: UNSIGNED INTEGER I � Iterative variable as a pointer
10: UNSIGNED INTEGER J � Iterative variable as a pointer
11: FLOAT SUM � Integrated field amplitude value
12: INPOSARR← ∅ � Initializing the dynamic input position array to be a null set
13: OUTPOSARR← ∅ � Initializing the dynamic output position array to be a null set
14: OUTFIELDARR← ∅ � Initializing the dynamic output electric field array to be a null set
15: RES← 2×LIMITIN

NUMIN � Calculating the resolution for generating the position array corresponding to the input
electric field

16: POS← CENTERIN− LIMITIN � Initializing the iterative position value
17: while POSIN ≤ (CENTERIN+ LIMITIN) do � Iterating over the position range for the input electric field
18: INPOSARR← INPOSARR ∪ POS � Generating the position array
19: POS← POS+ RES � Incrementing the iterative position value for each iteration
20: end while
21: RES← 2×LIMITOUT

NUMOUT � Calculating the resolution for generating the position array corresponding to the output
electric field

22: POS← CENTEROUT− LIMITOUT � Reinitializing the iterative position value
23: while POS ≤ (CENTEROUT+ LIMITOUT) do � Iterating over the position range for the output electric field
24: OUTPOSARR← OUTPOSARR ∪ POS � Generating the position array for the output electric field
25: POS← POS+ RES
26: end while
27: LENINPOSARR← LENGTH (INPOSARR) � Obtaining the length of input electric-field-distribution array
28: LENOUTPOSARR← LENGTH (OUTPOSARR) � Obtaining the length of output electric-field-distribution array
29: while I ≤ LENOUTPOSARR do � Iterating over all the elements of the position array for the output field
30: SUM← 0 � Initializing the sum value, which corresponds to the field amplitude for iteration
31: while doJ ≤ LENINPOSARR � Iterating over all the elements of the position array for the input field
32: LEN←

√
(OUTPOSARR [I]− INPOSARR [J])2 + DIST2 � Distance between two points of the input and

output positions

33: SUM← SUM+
(

exp
(

2π i×LEN
LAMBDA

)

LEN × INFIELDARR [J]
)

34: OUTFIELDARR← OUTFIELDARR ∪ SUM � Generating the output electric-field-distribution array
35: end while
36: end while
37: LENOUTFIELDARR← LENGTH (OUTFIELDARR) � Calculating the length of the output field array
38: return LENOUTFIELDARR, OUTFIELDARR � Returning the specified outputs
39: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.
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APPENDIX K: FIBER COUPLING EFFICIENCY

The fiber coupling efficiency is obtained by calculating the overlap of the Gaussian distribution corresponding to
the electric field intensity of the incident beam at the position of the fiber tip and the mode-field diameter of the fiber.
Algorithm 18 described the numerical method followed to obtain the efficiency.

Algorithm 18 Fiber coupling efficiency

Require:
UNSIGNED INTEGER LENINFIELDARR � Length of the input electric field array
FLOAT [LENINFIELDARR]INFIELDARR � Input electric field array
FLOAT CENTER � Position of the center of the Gaussian distribution
FLOAT LIMIT � Extent in position over which the electric field is generated
FLOAT MODEDIA �Mode-field diameter of the fiber

Ensure:
FLOAT COUPEFF � Coupling efficiency

1: procedure COUPLING([LENINFIELDARR]INFIELDARR, MODEDIA, CENTER, LIMIT)
2:
3: DYNAMIC INTARR � Declaring the array for storing the electric field intensity to be dynamic
4: FLOAT STDDEVFIELD � Standard deviation of the Gaussian distribution corresponding to the electric field

intensity distribution at the fiber position
5: DYNAMIC POSARR � Declaring the position array to be dynamic
6: UNSIGNED INTEGER LENPOSARR � Length of the position array
7: FLOAT POS � Iterative position value
8: FLOAT RES � Resolution of the field distribution
9: FLOAT STDDEVFIBER � Standard deviation of the Gaussian distribution corresponding to the mode diameter of

the fiber
10: UNSIGNED INTEGER I � Declaring an iterative variable
11: FLOAT INTPEAK � Peak value of the electric field distribution
12: FLOAT INT � Iterative intensity value for the electric field
13: INTARR← ∅ � Initializing the dynamic electric field intensity array to be a null set
14: POS← CENTER− LIMIT � Initializing the iterative position value
15: POSARR← ∅ � Initializing the dynamic position array to be a null set
16: RES← 2×LIMIT

LENINFIELDARR � Calculating the resolution for generating the position array
17: while POS ≤ (CENTER+ LIMIT) do � Iterating over the elements of the input electric field array
18: POSARR← POSARR ∪ POS � Generating the position array
19: POS← POS+ RES
20: end while
21: I← 1 � Initializing the iterative variable
22: while I ≤ LENINFIELDARR do
23: INTARR← INTARR ∪ ABSOLUTE (INFIELDARR [I]) � Generating the electric field intensity for the output

electric field
24: end while
25: INTPEAK← MAXIMUM (INTARR) � Obtaining the maximum value of the intensity array
26: POS← 1 � Initializing the iterative position value
27: INT← INTARR [POS] � Initializing the iterative intensity value
28: while INT ≤

(
INTPEAK

e2

)
do � Conditioning on the value of the electric field intensity being lower than the set

threshold value
29: POS← POS+ 1 � Incrementing the position value at each iteration
30: INT← INTARR [POS] � Updating the intensity value at each iteration
31: end while
32: STDDEVFIELD← POSARR[POS]

2 � Calculating the standard deviation for the input beam Gaussian distribution
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33: STDDEVFIBER← MODEDIA
4 � Calculating the standard deviation for the Gaussian distribution corresponding to

the fiber mode field diameter
34: COUPEFF← OVERLAP (STDDEVFIBER, STDDEVFIELD) � Calculating the overlap of the two Gaussian

distributions
35: return COUPEFF � Returning the specified outputs
36: end procedure

Refer to Appendix L for details on the data types and the libraries that are used at various instances in the above
algorithm.

APPENDIX L: GENERAL DATA TYPES AND LIBRARY FUNCTIONS

1. Data types

Each variables used in the algorithms are declared as a certain data type. Here we list the different data types that are
used to declare the variables.

(a) UNSIGNED INTEGER: declares the variable as a positive integer (Z+) in the pseudocode.
(b) SIGNED INTEGER: declares the variable as an integer (Z) that can take both positive and negative values in the

pseudocode.
(c) REAL: declares the variable as a real number (R) that can take both positive and negative values in the pseudocode.
(d) UNIT INTERVAL: declares the variable to be in the open interval (0, 1) in the pseudcode, i.e., the variable can

take any real value (R) within the interval.
(e) INTERVAL(a, b): declares the variable to be in the open interval (a, b) in the pseudocode where a and b are real

numbers(R).
(f) DYNAMIC: declares the variable as a dynamic array in the pseudocode.
(g) CHAR: declares the variable that can store a single character.

2. Libraries

Here we list the various functions that are used in the algorithms.

(a) RANDOM (a, b): returns a random number between a and b sampled from a uniform distribution
(b) NORMALRANDOM (μ, σ): returns a random number sampled from a Gaussian (normal) distribution of mean μ

and standard deviation σ .
(c) INTERPOLATE (X , Y): This function takes as input two arrays X (domain) and Y (range) of same size and returns

an interpolated function f : y = f (x). An instance of this class is created by passing the two 1D vectors (X and Y)
comprising the data and a function is created out of it using linear interpolation. Behavior at the boundary can be specified
at instantiation time, which by default is a linear spline if not specified otherwise.

(d) LENGTH (A): returns the length of the sequence or list (1D array) A.
(e) ROUND (a): returns the integer value closest to the real variable a.
(f) RANDOMSEQ(a, b, c): returns a sequence of random integers between a and b sampled from an uniform

distribution of length c.
(g) SEC(k): returns the converted time in seconds for an input time interval k in ps.
(h) GETTIMESTAMPS(i, S, k, L): returns a randomly selected chunk of contiguous time stamps of length k, starting

from the S[i]th position, from the list L.
(i) QKDRATE(wl1, wr1, wl2, wr2, A, B, C): returns the total key rate between coincidence window markers: wl1 & wr1

as well as wl2 & wr2 for cross-correlations between the detection at A & B as well as those at A & C, respectively.
(j) MEAN(L): returns the mean of the sequence or list (1D array) L.
(k) SD(L): returns the standard deviation between values in the sequence or list (1D array) L.
(l) QKD(wl, wr, lenA, A, lenBR, BR, lenBD, BD, t, c): returns a 1× 4 dimensional list (or an array) containing values

in the order: key rate, QBER, signal (corresponding to match of polarization basis), noise (corresponding to mismatch
of polarization basis), and SNR ratio. The values are estimated between coincidence windows: wl & wr, owing to cross-
correlations between the time stamps recorded in lists A [lenA] with BR [lenBR] for c = ‘R’, i.e., along rectilinear basis
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(or BD [lenBD] for c = ‘D’, i.e., along diagonal basis). The key rate is estimated over a measurement time t. For detailed
algorithmic description refer to Algorithm 4.

(m) CEIL(N ): return the smallest integer value that is bigger than or equal to the number N .
(n) FLOOR(N ): return the largest integer value that is smaller than or equal to the number N .
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