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ABSTRACT

This paper reports methods of obtaining the components of Faraday
rotation tenscr in anisotropic crystals, using longitudinal and transverse
Faraday rotation along the optic axis. - Itis found that in crystals belonging
to triclinic, monoclinic and orthorhombic symmetry, one can get 6 out of
9, 3 or 4 out' of 5, and 2 out of 3 components respectively. In the case of
uniaxial crystals only 1 component can be obtained. By measuring Faraday
rotation in a randomly oriented polycrystal oné more component in
all the above classes can be obtained. :

1. INTRODUCTION

RECENTLY, Legall and Jamet (1971) have shown that the different phenomena
associated with magneto-optics of magnetic crystals like Faraday, Kerr,
Cotton-Mouton and Spin-Raman effects are not processes distinctly different
from each other but really various manifestations of the spin-photon inter-
action. Faraday effect which is usually viewed as arising from circular
- birefringence, can be described as a quantum process involving an elastic
scattering of photons by the magnetic spins with a =/2 spatial rotation in the
polarization vectors of photons, while the Spin-Raman effect arises from an
inelastic scattering and the two phenomena are very intimately related. In
the case of cubic crystals exact analytical relations between these have also
been obtained by these authors. It would therefore be of some interest
to obtain the components of Faraday-rotation tensor in crystals of lower
symmetry. This paper deals with the problem of gxtraétipg these compo-
nents. ' '

When a tfahsparent isotropic medium is placed in a magnetic field, it
Fotates the plane of polarization, of light traversing it along the lines of force.
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This magnetic optic rotation or Faraday effect differs from natural optical
activity in that the sense of rotation depends not only on the direction of
light propagation but also on the direction of the magnetic field. The rota-
tion is given by '

p = VHL

where H is the magnetic field, L the length of the specimen and V the Verdet
constant which represents rotation per unit length per unit magnetic field.
[For a review on Faraday rotation in diamagnetic crystals see Ramaseshan
and Sivaramakrishnan (1958) and Ramachandran and Ramaseshan (1961).]

In an anisotropic medium, however, the Verdet constant, V, changes
with direction. Voigt (1908) considered this problem from a simple electron
theory and the concept of anisotropic _polarizability and showed that in
certain types of monoclinic crystals in which the optic axes lie on the plane
of symmetry, the magneto-optic rotation along the two optic axes may be
different for the same applied field. Voigt himself demonstrated this beauti-
fully (1908) in the case of cane sugar. He also foresaw the possibility of
Verdet constant varying with direction in paramagnetic anisotropic crystals.
This effect was experimentally shown by Becquerel [(1908), (1929)] who by
an ingeneous experiment observed variation of Verdet constant with direc-
tion in anisotropic paramagnetic crystals.

The problem of Faraday rotation in anisotropic crystals was considered
in detail theoretically by Le Corre (1957). He showed Faraday rotation
to be representable by an asymmetric second rank polar tensor having 9
independent components for the triclinic system. He also worked out the
forms of the Faraday rotation matrices. However, the actual methods of
extracting the tensor components were not considered. This problem is
made difficult because the magneto-optic rotation in crystals is usually measured
along the optic axis. Although attempts have been made to measure rota-
tions in directions away from the optic axis [Chauvin (1886) (for Calcite
upto 3°) and by Ramaseshan (1951) (for Alumina lipto 10°)] the strong
linear birefringence affects the measurements. This therefore restricts the
-number of components that can be extracted. However, in crystals of ortho-
rhombic and lower symmetry we also have another interesting effect, namely,
the transverse Faraday rotation wherein one can observe rotation normal
to the direction of the magnetic field. This effect together with the familiar
longitudinal Faraday rotation helps one in extracting a number. of tenso-
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components in anisotropic crystals. In this paper methods of extracting
the various Faraday rotation tensor components have been reported. '

2. FARADAY ROTATION IN CRYSTALS

Le Corre (1957) has published the theory of Faraday rotation in aniso-
tropic crystals. The theory is presented here briefly but in a slightly different
form. In the presence of a magnetic field H, the induction D and the external
field E of the light wave are related by the following equation:

D=(¢E+i(p)E. (1)

If the medium is transparent (e) is a ‘symmetric second rank tensor with real
components and (p) is an antisymmetric tensor of second rank again with
real components. If the medium is optically active, part of the rotation
results from natural optical activity. In such optically active “crystals by
measuring rotation in the presence and the absence of H, rotation due to
magnetic field H alone can be separated out. Hence for purely magneto-

optic rotation

D= (¢ E + i(pf) E. (2
The antisymmetric tensor (p/) exists only when H is ‘present. This can be
replaced by a vector operator Gfx. Hence

D=()E+iGI xE | - &)
Alternatively if E is exprc;ssed as a function of D we get

E=@D—il"xD | | . @

where I'f is called the magneto-gyration vector which is a function of H only.
In a first order theory we can take '

rt=IhH ' | ©)

.where (If) is a general nine-component tensor.

If we solve Maxwell’s equations for such a medium, we find that along
any direction s two crossed elliptic vibrations travel w1th velocities v’ and "
given by

v’ = 3 (0?0 — | V(v — Uzz)é + 4y? I} ' - (6)
p" =1 (v,® + 9% + 3| V(v — 07+ A ) |
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where v, and v, are the principal velocities in the absence of the field H and
y = I';;f Hisj. Along any direction in an isotropic crystal or along the
optic axis in anisotropic crystals v, = v, and the two ellipses, degenerate
into right and left circularly polarised waves travelling with refractive indices
ny and n; respectively. The rotatory power is given by

p= ;(nr — ny)
Ty : | ™
where
we can write (7) in the extended form as
p= %Tn"m {Fl;f H,s; + Taof Hysy + yf Hasy + I'pf Hys,

+ lef H2S1 + anf H2S3 + ng;f H3S2 + F31f H3s.|. + Flaf H1S3}‘.

®)
Equation (8) can be written in the following form also. |
p = fijHis; ' : (9)
where
(fi) = 5 n°m (Tigf). . B (10)

The tensor (f) represents the Faraday rotation in the crystal. As p is an
axial scalar, H; an axial vector and s; a polar vector, (f) is a second rank
polar tensor, which however is not symmetric as (I') is itself not symmetric.
The forms of the matrix (f) in the various point groups are given in Table I,
together with the number of independent components.

3. TRANSVERSE FARADAY ROTATION

From the forms of the Faraday rotation matrices (f) ‘we see clearly that
in uniaxial crystals belong to the Group A (Table. 1) and lower symmetries,
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‘the Faraday rotation is observable not only along the field direction but
also in a direction transverse to it. The second effect which may be called
the transverse Faraday effect may be effectively. used along with the familiar
longitudinal Faraday effect to extract the components of the matrix (f).

TABLE 1

Forms of (f) matrices in different point groups

Triclinic 1, T - ~ fu iz Sra ]
‘ . ' f21 fzz Soa 9
_f31 f32 f33....
Monoclinic 2, m, 2/m 0 i3]
0 frz O &)
L fu O Sasd -
Orthorhombic 222, mm2, mmm, e 0 0
0 Jae 0 €)]
.0 0 Sa
Uniaxial ' [fu Sz 07
Group A—3, 3,4, 4, 4/m, 6, 6, 6/m —fiz fu O 3)
| 0 | 0 Sas
Group B—32, 3m, 3m, 422, 4mm, 32m, 4/mmm, 622, [ Ju 0 0
6mm, 6m2, 6/mmm 0 Ju 0 2
| ‘ 0 0 Jas
Cubic 23, m3, 432, 43m, m3m . o [/ 0 0
e R 0 0| ®
—'0 _ 0 fll

To observe this interesting effect one should measure rotation in a direc-
tion normal to H. Transverse rotation cannot be observed in uniaxial
crystals belonging to Group A along the optic axis. Method of observing
this in lower symmetry classes like one of orthorhombic symmetry is given
below. . - :

- There are three independent constants fi;, fa» and fz. Rotation per
unit length p in any general direction s is give_n by -

p =SuHisy + foaHysy + foHlas, -
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If s/, s/, and s;3’ are the direction cosines of the field H, the above
equation becomes

p = (fusy" s1 + foaSs' 5o + faa83 53) H. (11)

As observations are to be made along the optic. axis, whose’ positions are
fixed with respect-to the index ellipsoid, the components of s and s’ will be
taken with respect to the principal axes X;, X, and X3 of the index ellipsoid.

In orthorhombic crystals the principal axes of the index ellipsoid coin-
cide with the three crystallographic directions @, b and ¢. If n; > 1, > ns,
the two optic axes will lie on the (X;, X3) plane. Let OP; and OP, be the
two optic axes each making an angle V with the X axis with 2V as the optic
axial angle. Hence the rotations p, and p, along OP; and OP, for the same
H are given by

pr = (Jfusy sinV + fes5'cos V) H (12)
Py =(— fusy'sinV + fis:’cos VY H | .

If observations are made along one of the axes, say OP;, and the direction
of the field is perpendicular to OP, and at the same tlme 1t lies on the axial
plane (X; X;) we get the rotation

T = (fu — fo) Hsin V cos V | (13)

which does not vanish, showing that the transverse Faraday rotation p,T can
be observed. When the field H is reversed the sign of ;T also changes.

Again when the field H [which is normal to OP,] is normal to the axial
plane, [i.e., s, =38 =0 and s," = 1] we find p;* = 0. Thus as the crysta]
is rotated about the optic axis with H remaining normal to it, rotation changes
from a maximum value of + p,T to a minimum value of — p,T and then back

to + P1 T.

4. EXTRACTION OF COMPONENTS

By measuring longitudinal and transverse Faraday rotatlons along the
optic axis one can get a number of tensor components. Methods of obtain-
ing the various tensor components in dlﬁ’erent classes are given below

(1) Cubic crystals.—Faraday rotation in any direction s fpr a field H
is given by

P —fn (54 51+ 8 8, + 53’ s3) H : (14)
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where s’ is the direction of the magnetic field. We can write (14) as
p=fuHcos¢

where ¢ is the angle between H and s. The rotation p is a maximum when
¢ = 0, which is the longitudinal effect. The rotation p* is- given by

p* = fu H. ' (15)
From this relation we get f;,.
(ii) Uniaxial crystals;

(o) Crystals belonging to Group A.—Faraday rotation in any general
direction is given by
P =[fu(s)' 51+ 83" 52) + fa83' 85 + fr2 (81" 52 — 82" s)] H. (16)

As said earlier transverse rotation is absent along the optlc axis. The
longitudinal rotation along the optic axis is given by

pt = fuH
Hence only the constant f;; can be obtained.

(B) Crystals belonging to Group (B)—Faraday rotation in any genera
direction s is given by :

p = [/11 (81" 81 + 82" $2) + fasS5' 53] H. (17)
The longitudinal rotation along the optic axis is
Pt = fwH (18)

from which f3; can be obtained.

(iii) Orthorohombic érystals —Equation (12) gives Faraday rotation
along the two optic axes for the same field H. Longitudinal rotation along
the two axes will be identical given by -

Pt = pt = (fuasin®V + fi cos? V) H. (19)

Equation (13) which describes transverse rotation gives one more equation
~in fi, and fy. These two equations can be solved to get f;; and f;;. Thus
2 out of 3 unknowns can be obtained easily.
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(iv) Monoclinic crystals.—There are 5 unknowns to determine and Fara-
day rotation in direction s is given by

p = (f1181" 81 + fou8s S + faaSs' 83 + fiasy' S3 + fa155' sl) H.
Two cases must be considered.

(¢) The case when symmetry element relates the two optic axes.—
If the two optic axes OP; and OP, (with 2V as the angle between them) lie
on the (X; X;) plane (we are referring to the same orthogonal system that
was considered in Section 3), then the crystallographic diad which is along
X, will relate the two optic axes. Rotations p, and p, along the two optic
axes are given by :

pr = (fasS' SIN V + frg85’ c0S V + fig5," cos V) H (20)

and |
Pz = (— fos sz"sin V + fas 85" cos V + fi35," cos V) H. (21)
Longitudinal rotations along the two axes are the same given .by -
P = po" = (fa2 SIn? V + f3 cos? V) H. (22)

For the transverse rotation we can have two possibilities. If observa-
tions are made along OP, and the transverse field H lies on the axial plane
we get

pT = (foa — faz) Hsin V cos V. (23)

However if the transverse field is normal to the axial plane
pT = fis H. (249
Hence using (22), (23) and (24) we get three constants fy,, f33 and fi,.

(B) The case when the symmetry element does not relate the two
optic axes.—If OP, and OP, lie on the (X;X;) plane the diad which is along
X, does not relate the two optic axes. Rotations p, and p, along the two
optic axes are given by

p1 = (fusy' sin V 4 fi55' cos V + f1351' €08 V -+ f4:85" sin V) H

and «
Pa= (= fusy’ SV + fusy’ 005 V + fu%1” 008 V— fusy' sin V) H. (25)
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if p,* and p," are the longitudinal rotations along OP; and OP,, then
we get

pit = [fu1sin? V + fo3 0082V + ( fis + fa1) sin'V cos V] H (26)

and

p~ = [f18in%V + fy3°cos2 V — (fi3 + far) sin'V cos V] H. 7

If the crystal is placed such that H is normal to OP, and at the same
time lies also on the axial plane, then the transverse rotation along OP,
is given by :

P = [(fos — fu) sin Vcos V — fi3 cos? V + f;, sin® V] H. (28)

A similar experiment along OP, gives
Pt = [(fas — fi) sin Vcos V + fi3cos? V + f;; sin? V] H. (29)

Hence using (26), (27), (28) and (29) we get 4 out of 5 constants. We have
considered only the symmetry element of the diad. The case of mirror as a
symmetry element can be easily worked out. In the point group 2/m the
mirror is perpendicular to the diad. In this case the optic axes will be sym-
metrically related and equations from (20) to (24) can be used. For crystals
belonging to point group ‘m’ we have only mirror symmetry. If ‘m’ coin-
cides with the (X, X,) plane and the two optic axes are in the (X, X;) plane
then they will be symmetrically related and equations from (20) to (24) can
be used. On the other hand if the two axes are on the (X; X,) plane itself
then they will not be related through the symmetry element.

(v) Triclinic crystals.—There are 9 unknowns in this case and the
index ellipsoid is disposed with its principal axes ‘at a general orientation
“with respect to the crystallographic directions. As in the previous cases
here also we refer components of s and H with respect to the principal axes
of the index ellipsoid. If the two optic axes lie on the (X; X,) plane each
at an angle V from the X; axis, then the magneto-optic rotations along the
two optic axes will be

pr = (f115," 8In V + f3385" cos V + fiz5," cos V + f 83" sin V
+ fesSe' €08 V + fa5:" sin V) H (30)
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and
pa = (— f118," SIN V =+ f3385" cos V + f135:" c0s V — f55’ sin V
+ fasSs' €08 V — fu8," sin V) H.'

Longitudinal rotations p,* and p," along the two optic axes will be not
equal. They are given by

pt = [fasin?V 4 fi3c082 V + (fis + fa1) sin V cos V] H (31)
and
prt = [f118in%V + f33c082 V — (f33 + f31) sin V cos VIH. (32)

Transverse rotations along the two optic for H normal to the axial plane
are given by

T = (fagcos V + f sin V) H (33)
and
poT = (fag cOS V — f3, sin V) H. | , (34)

Transverse rotations p;™ and p,” when H lies on the axial plane are
given by

Y = [(fss— fr1) sin Vcos V — Sizcos?V + f3,sin? VI H (35)
and | |
e = [(fas — fu1) sin Vcos V + fizcos?V — f3; sin? VI H. (36)

Thus we have 6 independent equations from which we can get fi;, fis, fiss
fa1, fo2 and f. Hence 6 out of 9 unknowns can be obtained.

5. FARADAY ROTATION IN POLYCRYSTALS

It is possible to make a randomly oriented crystalline aggregate of aniso-
tropic crystals. The medium as a whole will be translucent if optically aniso-
trophy of the crystallites are large. On the other hand one can get a good
amount of transmission for weakly birefringent crystals. If the crystallites
are optically inactive the medium will behave as an optically isotropic media.
A plane polarized light emerges out of the medium as partially polarized
light. The completely polarized part of the emergent beam will be in the
same state of polarization as the incident (Ramaseshan, (1972).
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In the presence of a magnetic field each crystallite will become magneti-
cally active resulting in Faraday rotation. Under these conditions the medium
will still be optically isotropic exhibiting a Faraday rotation whose magnitude

1s
p=fH (37

where

F=3(fu + fa + fo0) . ' (38)

with fi;. fa2, fss as the principal components of (f). Also there will be a
slight increase in depolarization. In all the crystal classes considered so
far we could get only two out of three principal components. It follows
from (27) and (28) that by measuring Faraday rotation in the polycrystal
we can get f from which the remaining principal component can also be
obtained. Hence one more constant can be obtained in all the non-cubic
classes. Table II gives the number of components of (f) matrix that can
be obtained from single and polycrystal data.

TABLE 11

No. of components obtainable

Crystal _ —
- No. of Single Poly- Total
unknowns crystal crystal
Triclinic .. 9 6 1 7
Monoclinic .. 5 4 1 5
3 1 4
Orthorhombic .. 3 2 1 3
Uniaxial v .
Group A - 3 1 1 2
Group B .. 2 1 1 2

Cubic .. 1 1 1
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6. PIEZO-FARADAY EFFECT

In recent times stress has been found to alter Faraday rotation in crsytals
[Skaggs and Broersma (1964)]. This problem has been theoretically worked
out by Bhagavantam (1971) who has studied the effect of stress on the optical
properties of magnetic crystals. Magnetic crystals in general show Faraday
type of rotation. However in certain magnetic symmetry point groups this
phenomenon will be absent. Bhagavantam has found an interesting result
that even these magnetic point groups, which normally forbid Faraday type
rotation, show up magnetic rotation under the influence of stress. In cubic
crystals belonging to m3 and m3 m this effect has been predicted. It would
be interesting to workout methods of observing these effects which 'will not
be straightforward due to the unavoidable photoelastic effects, that accom-

pany stresses.
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