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Interaction potentials and ultracold scattering cross sections for the 7Li+-7Li ion-atom system
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We calculate the isotope-independent Li+-Li potential energy curves for the electronic ground and first
excited states. The scattering phase shifts and total scattering cross section for the 7Li+ - 7Li collision are
calculated, with an emphasis on the ultralow-energy domain down to the s-wave regime. The effect of physically
motivated alterations on the calculated potential energy curves is used to determine the bound of accuracy of the
low-energy scattering parameters for the ion-atom system. It is found that the scattering length for the A 2�+

u

state, au = 1325a0, is positive and has well-constrained bounds. For the X 2�+
g state, the scattering length,

ag = 20 465a0, has a large magnitude, as it is sensitive to the restrained change of the potential, due to the
presence of a vibrational state in the vicinity of the dissociation limit.
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I. INTRODUCTION

Experimental research on ion-atom interactions in dilute,
trapped gas systems at ultracold temperatures is rapidly
evolving towards detailed probes of the quantum dynamics
of the resulting products [1–16]. One of the main goals
is to thermalize an atomic ion within the ultracold atomic
gas [2,3,5]. An atom and an ion mutually interact at a large
internuclear distance, R, through an attractive charge-induced-
dipole potential behaving as ∼−αd/(2R4), where αd is the
static dipole polarizability of the neutral atom. For energy
E � kB × 1 mK, an ion-atom collision involves many partial
waves �, due to the strongly attractive long-range nature
of their interaction [17], allowing a semiclassical descrip-
tion of the collision. Despite continuous progress regard-
ing the precise control of the trapped ion motion, reach-
ing the ultralow relative energy regime (E/kB ≈ 1 μK or
lower) for ion-atom collisions is still challenging experimen-
tally [4,6,18–20]. At these energies, quantum effects emerge,
as few partial waves contribute to the collision. Due to ion
heating as a result of interactions and trap imperfections
in dynamical trapping, it is experimentally advantageous to
investigate the full quantum regime at the highest possible
temperatures [4,18].

The lowest possible centrifugal barrier is induced by the
p wave (� = 1) and has a height equal to 1/(2μ2αd ) (in
atomic units of energy; a.u.). The p-wave barrier will be
the highest for a low reduced mass, μ, thus opening the
possibility of probing it at a relatively high collision energy.
For this reason, lithium is implemented in several ongoing
experiments [6,7,21,22]. Most hybrid ion-atom trapping ex-
periments use an alkaline-earth ionic species suitable for laser
cooling, which aids the achievement of low ion-atom collision
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energies. The choice of a heteronuclear ion-atom combina-
tion, however, excludes the resonant charge exchange (RCE)
mechanism, where an electron of the atom can be transferred
to the ion without any energy release [1,8,9,23–26]. In our
previous experiments [8,26], we have consistently exploited
the RCE in the study of ion-atom collisions. We therefore
focus this study on the scattering properties of 7Li+ - 7Li,
as this is a light system, with isotopic abundance, for going
toward the quantum regime, with a p-wave barrier height of
kB × 2.98 × 10−5 K.

In this paper, we perform calculations of the 7Li+ - 7Li
interaction for the colliding ion and the atom when they are in
their ground state. Specifically, in Sec. II we compute the ab
initio potential energy curves (PECs) of X 2�+

g , the electronic
ground state, and A 2�+

u , the first electronic excited state, of
the Li+2 molecular ion using the multireference configuration
interaction (MRCI) method and the best available basis sets.
This is required despite the availability of previous high-
quality calculations, since there is a significant discrepancy
(factor of ≈2) between the calculations for ag [27,28], the
scattering length for the X 2�+

g state, which determines the
low-energy ion-atom scattering cross section. These molecu-
lar ion ab initio PECs are smoothly matched to their physical
asymptotic forms in the large-R range. We then derive the
phase shifts characterizing the 7Li+ - 7Li collision as functions
of the energy. The resulting scattering lengths ag and au of
the X 2�+

g and A 2�+
u states, respectively, are both computed

to be positive with ag � au. Our results are consistent with
previous studies on the X 2�+

g and A 2�+
u PECs [27,29–35].

A convergence criterion is developed to bound the range of
uncertainty within which the values of the scattering lengths,
ag and au, are constrained. The total cross sections obtained by
computing the phase shifts are evaluated in Sec. III. We finally
provide recommended values for the cross sections and their
bounds for the 7Li+ - 7Li system in Sec. IV.
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TABLE I. Total electronic energies (in a.u.) of the Li+(1S0) and
Li(2S1/2) ground states and their sum, Li+ + Li, obtained from the
present MRCI-SD calculations with increasing size of basis sets from
aug-cc-pCVXZ, with X ≡ D, T, Q, 5. Another calculation using the
coupled-cluster method, EA-EOM-CCSD, with ANO-RCC+ basis
sets [33], is provided for comparison. Two separate calculations of
Li+ and Li representing the nonrelativistic variational calculations
using Hylleraas coordinates are also listed [39,40].

Li+ (1S0) Li (2S1/2) Li+ + Li Reference

−7.26922697 −7.46607917 −14.73530614 X ≡ D
−7.27690629 −7.47457432 −14.75148061 X ≡ T
−7.27870222 −7.47670230 −14.75540452 X ≡ Q
−7.27933195 −7.47740563 −14.75673758 X ≡ 5
−7.275561 −7.473553 −14.74911400 [33]
−7.27991339a −7.47806032310b −14.7579737131 [39],a [40]b

aLi+.
bLi

II. Li+2 POTENTIAL ENERGY CURVES

A. Ab initio Born-Oppenheimer potentials

We compute the X 2�+
g and A 2�+

u states of Li+2 un-
der the Born-Oppenheimer approximation using the MOLPRO

package [36]. The complete active-space self-consistent field
(CASSCF) and multireference configuration interaction with
single and double excitation (-SD) methods are used. Full-
valence-type CASSCF wave functions, which consider all five
electrons of Li+2 as active, are calculated and used as the ref-
erence functions for the MRCI calculations [37]. We choose
this approach as it is variational for the truncated configuration
interaction expansion, to ensure convergence towards the true
energies for both states with the basis-set size. The reference
calculations are performed with the largest available basis
set, namely, the augmented Dunning correlation-consistent,
polarized valence, 5-zeta basis set, aug-cc-pCV5Z [38].

Due to the large discrepancies between ag values reported
in the literature [27,28], we determine bounds for ag so that
more precise calculations in the future should not supersede
the conclusions drawn here. We first compute the atomic
energies of Li and Li+ in their ground state (Table I ). Various
sizes of the aug-cc-pCVXZ basis sets are considered, with
X ≡ D (double), T (triple), Q (quadruple), and 5 (quintuple)
referring to the largest excitation degree of the determinants.

This allowed us to reach a relative convergence of better than
0.009%. Our variational values are larger in magnitude by
0.05% than those obtained in [33] using a coupled-cluster
approach with single and double excitations (CCSD) and the
ANO-RCC+ basis set. As Li+ and Li are small systems,
with two and three electrons, respectively, extremely precise
atomic calculations can be performed. Our energies obtained
with the aug-cc-pCV5Z basis set differ by only 0.008% from
the best available variational calculations using Hylleraas co-
ordinates [39,40] (Table I), justifying the choice of the aug-cc-
pCV5Z set as an appropriate one for molecular calculations.

The sum of the electronic energies of Li+ (1S0) and
Li(2S1/2), from Table I and the energy of the dissociation
limit obtained from the molecular calculation, E∞ (Table II),
exhibit a small difference (0.004 cm−1), which is assigned to
the basis-set superposition error. We calculated this effect for
the Li atom, using the effective core potential and core polar-
ization potential with one valence electron (see the method
labeled Th2 further on). The basis-set superposition error
amounts to less than 0.2 cm−1 at the equilibrium distance,
Re, and to 0.006 cm−1 at R = 50a0 (a0 is the Bohr radius).
Hence for the scattering calculation this correction is not
incorporated into the potentials.

In order to provide a convergence criterion on poten-
tial energies, we compute the ab initio X 2�+

g and A 2�+
u

PECs with a series of aug-cc-pCVXZ basis sets (with X ≡
D, T, Q, 5) in the [2a0–50a0] internuclear distance range, with
a 0.2a0 step. They correlate with the lowest asymptotic limit
Li+(1S0) + Li(2S1/2). We report in Table II the total potential
energy E∞ for R → ∞, i.e., at the dissociation limit (see
Sec. II B), and Ee at the equilibrium distance, Re, the well
depth, De = E∞ − Ee, and the position of the repulsive wall,
Rin, at the well depth. The relative changes �E∞ and �Ee

of E∞ and Ee with increasing size of the basis set are also
reported. Their progressions show a convergence similar to
that observed for Li+(1S0) + Li(2S1/2) (Table I). The energy
of Li+(1S0) + Li(2S1/2) in the complete-basis-set limit is the
best variational representation of the dissociation limit, E∞,
and should ideally be attained in the full configuration interac-
tion (FCI) and complete-basis-set limit of the Li+2 X 2�+

g and
A 2�+

u PECs. The difference between Li+(1S0) + Li(2S1/2)
obtained from the best available atomic calculation, listed in
Table I [39,40], and the E∞ obtained from the aug-cc-pCV5Z

TABLE II. Dissociation limit, E∞, its convergence with basis sets, �E∞, total energy Ee at Re, its convergence with basis sets, �Ee,
equilibrium distance, Re, well depth, De, and repulsive wall position Rin of the X 2�+

g and A 2�+
u PECs of 7Li+2 . Results for various basis sets

aug-cc-pCVXZ, with X ≡ D, T, Q, 5, are listed.

Electronic E∞ �E∞ Ee �Ee Re De Rin aug-cc-pCVXZ
state (a.u.) (%) (a.u.) (%) (units of a0) (cm−1) (units of a0) basis sets, with X ≡
X 2�+

g −14.73530934 −14.78224306 5.940 10 300.76 3.758 D
−14.75148110 0.1097 −14.79891577 0.1128 5.875 10 410.70 3.723 T
−14.75540520 0.0266 −14.80300996 0.0277 5.865 10 448.03 3.715 Q
−14.75673756 0.0090 −14.80438625 0.0093 5.858 10 458.58 3.713 5

A 2�+
u −14.73530934 −14.73570944 18.939 87.81 15.630 D

−14.75148110 0.1097 −14.75188381 0.1098 18.839 88.38 15.563 T
−14.75540520 0.0266 −14.75580764 0.0266 18.818 88.32 15.545 Q
−14.75673756 0.0090 −14.75714022 0.0090 18.799 88.37 15.540 5
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TABLE III. Fundamental spectroscopic constants of the X 2�+
g and A 2�+

u PECs for 7Li+2 . Exp refers to the best available experimental
determination, while the numbered Th labels refer to various theoretical determinations.

State and method, Re De ωe ωexe Be Ref.
X 2�+

g /A 2�+
u (units of a0) (cm−1) (cm−1) (cm−1) (cm−1) No.

X
Exp 5.88 10 464 ± 6 262.2 ± 1.5 1.7 ± 0.5 0.496 ± 0.002 [47,48]
Th1 5.858 10 458.58 261.96 1.51 0.500 Present study
Th2 5.838 10 515.76 262.54 1.50 0.503 Present study
Th3 5.863 10 439 262.58 1.58 — [33]
Th4 5.877 10 457.7 261.6 1.47 — [27]
Th5 5.844 10 498 263.39 — — [32]
Th6 5.848 10 475 264 1.94 0.506 [31]
Th7 5.856 10 441 263.76 1.646 0.5006 [29]
Th8 5.826 10 494 262.771 1.645 0.505 [34]
Th9 5.899 10 466 263.08 1.477 0.4945 [30]
Th10 5.877 10 457 266.2 – 0.4753 [35]

A
Th1 18.799 88.37 16.15 0.84 0.0486 Present study
Th2 18.797 88.71 16.17 0.84 0.0486 Present study
Th3 18.795 88 15.98 0.81 — [33]
Th4 18.798 88.4 16.63 1.05 — [27]
Th5 18.787 89 15.92 — — [32]
Th6 18.729 88 15.81 0.74 0.049 [31]
Th7 18.802 90 20.1 0.13 0.049 [29]
Th8 18.763 89 16.312 0.750 0.0487 [34]
Th9 18.899 90 16.01 0.79 0.049 [30]

calculation, listed in Table II, is smaller than the difference
in the E∞ values obtained from the two cases X ≡ Q and
X ≡ 5, suggesting a good convergence. The observed bound
on E∞ suggests that molecular calculations of the Li+2 in the
FCI and complete-basis-set limits will not result in a change in
the well depth, De, of X 2�+

g more than 10 cm−1 larger (i.e.,
the difference between the D′

e values obtained in the X ≡ Q
and X ≡ 5 cases) than the value obtained with the aug-cc-
pCV5Z basis set. The experimental value of De (Table III)
also supports the above theoretical bound.

The ab initio X 2�+
g and A 2�+

u PECs, hereafter denoted
V ab

g and V ab
u , respectively, relative to E∞ are shown in

Fig. 1 [41]. The lower inset displays the difference between
these PECs and those obtained from the method in [42]
based on the representation of the Li+ cores by an effective
core potential (ECP) and a core polarization potential (CPP)
(referred to as the Th2 method), thus treating the Li+2 molecule
as a one-electron system (see also, for instance, [30]). The
overall agreement is satisfactory between the two approaches,
with the largest difference in energy at 12a0 about 1%. Below
6a0, the difference is much larger, which can be understood to
indicate that the ECP + CPP approach restrains the calcula-
tion from precisely representing the core-valence correlation
at short internuclear distances.

B. Determination of asymptotic extensions of PECs

The low-energy scattering wave functions need to be
computed up to large internuclear distances, with R � λ,
where λ is the de Broglie wavelength of the colliding sys-
tem (for 7Li+ - 7Li, 10a0 < λ < 106a0 for collision energies
10−5 a.u. > E > 10−15 a.u.). The ab initio PECs, in the

large-R limit, generally become less accurate, as the molecular
orbitals which are built during the calculations are not best
adapted to the situation of separated atoms. Instead, we use the
well-established asymptotic functional form V a

p (R) derived
from the multipolar expansion of the interaction energy in

FIG. 1. 7Li+2 potential energy curves X 2�+
g and A 2�+

u , com-
puted in the present work (MRCI-SD with the aug-cc-pCV5Z basis
set), and denoted XTh1 and ATh1, respectively. Upper inset: Minima
of the A 2�+

u curve. Lower inset: Energy differences �E with the
curves calculated using the approach in [42] (denoted XTh2 and
ATh2). The corresponding spectroscopic constants are listed in Ta-
ble II.
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inverse powers of R,

V a
p (R) = V a

ind(R) ∓ V a
exch(R), p ≡ {g, u}, (1)

where g (u) corresponds to X 2�+
g (A 2�+

u ). The asymptotic
induction term V a

ind(R) is expressed as [43]

V a
ind(R) = −

[
C4

R4
+ C6

R6
+ C8

R8
+ . . .

]
, (2)

where C4 = αd/2, C6 = αq/2, and C8 = αo/2, with αd , αq,
and αo being the dipole, quadrupole, and octupole static
polarizabilities of the 7Li ground-state atom. We take the
values from Tang et al. [44,45]: αd = 164.161 a.u., αq =
1423.415 a.u., and αo = 39 653.720 a.u. The van der Waals
(dispersion) interaction, also varying as 1/R6, which is gener-
ally small for ion-atom cases [27,43], will be included in an
effective manner in the potential finally used in the scattering
calculations.

The asymptotic exchange term reads [46]

V a
exch(R) = 1

2
ARαe−βR

[
1 + B

R
+ C

R2
+ . . .

]
, (3)

where the parameters α = 2.1774 a.u., β = 0.6294 a.u., and
B = 0.5191 a.u. are simple functions of the 7Li ionization
energy [43,46]. The A and C parameters are obtained from
the fits of the ab initio exchange energy, Vab

exch, given by
half the difference of the ab initio A 2�+

u (V ab
u ) and X 2�+

g

(V ab
g ) PECs with Eq. (3). The interval 23a0 < R < 28a0 is

used in the fitting procedure, yielding A = 0.133 899 a.u. and
C = 27.7397 a.u. The selected interval gives us the fit with the
smallest relative residuals. The same A and C provide an ex-
cellent fit for the entire range above R > 28a0. This suggests
that for the exchange energy, the selected range represents the
asymptotic limit, and it fixes the functional form of the ex-
change energy for 7Li+2 , i.e., V c

exch(R). The ab initio exchange
energy, V ab

exch, intersects the function V c
exch(R) at R = 25.6a0,

which is selected as the point beyond which asymptotic ex-
pansions are used. V a

exch(R) [or V c
exch(R)] decays exponentially

with R, so in the large-R limit, only the contribution of V a
ind(R)

remains significant. Around 35a0, V a
exch(R) becomes smaller

than 0.1% of V a
ind(R). Moreover, the contributions of the C6/R6

and C8/R8 terms become smaller than 1% of the induction
energy beyond 29.5a0 and 12.5a0, respectively. In the inter-
nuclear range where only the C4/R4 term contributes signif-
icantly, E∞ is obtained using a fit to the ab initio induction
energy, given by the average of the A 2�+

u (V ab
u ) and X 2�+

g

(V ab
g ) PECs, with the form given in Eq. (2) using C6 as a

free parameter in the range 35a0–50a0. For a calculation with
the aug-cc-pCV5Z basis set, the change in E∞ for different
fit ranges, varying from 25a0–50a0 to 35a0–50a0, is only
∼0.02 cm−1.

After setting E∞ as the origin of energies of the PECs, cal-
culation of the extension of potentials for large R is performed
under the following conditions: (i) the PECs X 2�+

g and
A 2�+

u used in the scattering calculations and their derivatives
are kept continuous at R = 25.6a0, and (ii) the PECs approach
V a

p (R) as R → ∞. First, an R-dependent coefficient, C4(R),
is determined by expressing the ab initio PECs in the range
20a0 < R < 50a0 as

V ab
p = V c

ind(R) ∓ V c
exch(R), (4)

FIG. 2. Asymptotically extended PECs X 2�+
g (solid red line)

and A 2�+
u (solid blue line) of 7Li+2 . The asymptotic induction

function and ab initio exchange term, V a
ind(R) and V ab

exch, and the
computed induction and exchange functions, V c

ind(R) and V c
exch(R),

are plotted for comparison. Inset: First derivatives of the X 2�+
g and

A 2�+
u PECs and V c

ind(R).

with

V c
ind(R) = −

[
C4(R)

R4
+ C6

R6
+ C8

R8

]
, (5)

and the functional form of V c
exch(R), which is determined

previously. Then, from the computed C4(R), the functional
forms of ∂C4/∂R and C4(R) and, consequently, of V c

ind(R) are
obtained. In this way, the small van der Waals term is included
in the function V c

ind(R) in an effective way. The final scattering
potentials X 2�+

g and A 2�+
u , denoted V c

p (R), use ab initio
values for R < 25.6a0 and V c

ind(R) ∓ V c
exch(R) for R > 25.6a0.

The asymptotically extended PECs, X 2�+
g and A 2�+

u ,
V c

p (R) [41], the asymptotic induction function and ab initio ex-
change energy, V a

ind(R) and V ab
exch, and the computed induction

and exchange functions, V c
ind(R) and V c

exch(R), are shown in
Fig. 2. The difference between V a

ind(R), which uses a constant
C4, and V c

ind(R), which uses a derived R-dependent function
C4(R), is quite evident in the 20a0–25a0 range (see Fig. 2).
This procedure fixes in a consistent way the asymptotic form
of the PECs for reliable scattering calculations at extremely
low energies.

C. Criterion for bounds on the scattering parameters

The previous section demonstrates that the asymptotic ion-
atom interaction is well determined by the highly accurate
calculations. Therefore the large variation in the low-energy
ion-atom cross sections reported in the literature is illustrative
of their strong sensitivity to the ab initio part of the PECs,
given that the small-R region of the potentials is strongly
influenced by the growing contribution of the core electrons
and thus is represented least accurately. To estimate the effect
of this dependence on the scattering parameters, a set of PECs
for X 2�+

g and A 2�+
u is generated by continuously varying
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the potentials according to

Rp = R + rp(R − Re)/(Rin − Re) ∀ R < Re, (6)

where Rp denotes the coordinate of the generated PECs, and
rp is the change in the repulsive wall position Rin. The allowed
variation in the small-R region (i.e., R < Re) of the potentials
is estimated by comparing the De from the PECs obtained us-
ing different methods and basis sets (Table III) with our values
computed with basis sets aug-cc-pCVXZ with X ≡ D, T, Q, 5
(Table II). The difference in the well depths for the X 2�+

g
obtained from aug-cc-pCVTZ and aug-cc-pCV5Z covers a
similar variation, ≈40 cm−1, as observed from XTh1−9 and
XExp (Table III). The difference between the repulsive wall of
PECs computed using the aug-cc-pCV5Z and aug-cc-pCVTZ
basis sets is thus taken as the permissible range of change
in the wall positions of the PEC models with �R = ±rp,
p ≡ {g, u}, with rg = 0.01a0 for X 2�+

g and ru = 0.02a0 for
A 2�+

u . The determined energy bound for the allowed change
in the small R is much larger than the contributions arising
from relativistic effects, the diagonal Born-Oppenheimer cor-
rection, and other corrections. A comparison is provided in
Sec. IV. The sets of PECs are created using the linear scaling
of Eq. (6) for the required change in �R = ±rp, p ≡ {g, u},
at the repulsive wall position Rin. The scattering calculations
are performed for the two limiting modifications to both the
X 2�+

g and the A 2�+
u curves with suffixes ”:�R = ±rg/u” and

for the ab initio curves denoted ”:�R = 0”.
An extensive comparison of the present results for

the states obtained with the aug-cc-pCV5Z basis set,
X 2�+

g :�R = 0 and A 2�+
u :�R = 0 (referred to as Th1), with

those previously published in the literature is presented in
Table III. The vibrational levels of the X 2�+

g :�R = 0 and
A 2�+

u :�R = 0 curves are evaluated using the LEVEL numer-
ical code [49]. The X 2�+

g (A 2�+
u ) PEC supports 82 (16)

vibrational levels with vibrational harmonic constant ωe =
261.96 cm−1 and anharmonicity constant ωexe = 1.51 cm−1

(ωe = 16.15 cm−1 and ωexe = 0.84 cm−1). The overall shape
of the bottom of the potential curve, described by ωe, ωexe,
and Be, is well reproduced by all calculations. They are in
good agreement with the best available results from optical-
optical double resonance spectroscopy [47,48], falling within
the reported error bars. We see that the present approach
(Th1) and the simpler method (Th2), mentioned in Sec. II. A,
are in remarkable agreement (about 0.5% for the equilibrium
distance Re, the well depth De, and the rotational constant Be

and even 0.2% for the vibrational constant ωe).
Up to now the calculations have been performed with the

core-optimized basis set and the active core; i.e., core excita-
tions are included. To assess the contribution of the core elec-
trons, we have performed an additional set of MRCI calcula-
tions with cc-pVXZ;X ≡ D, T, Q, 5, which are the basis sets
self-consistently produced from the atomic calculations with
the frozen-core electrons. The cc-pVXZ;X ≡ D, T, Q, 5 basis
sets are similar to the aug-cc-pCVXZ;X ≡ D, T, Q, 5 sets,
the core-optimized basis with an augmented function, used
in this work. PECs computed with cc-pVXZ;X ≡ D, T, Q, 5
are mostly similar to their respective aug-cc-pCVXZ;X ≡
D, T, Q, 5 PECs in the large-R region but are significantly
inaccurate in the small-R region (especially R < Re). These

calculations show that the repulsive wall positions of the
PECs obtained from the frozen-core basis sets erroneously
fall below the repulsive walls of the respective PECs with
the active-core basis sets. In the case of frozen-core basis sets
and frozen-core calculations, the unoptimized core continues
to retain higher electron densities between the two nuclei
than in cases where they are energy optimized along with
the valence electrons. It, consequently, pushes the repulsive
wall to lower values of R, much beyond the convergence limit
shown in Figs. 3(c) and 3(d). We find that, for small electronic
systems, it is essential that PEC calculations are performed
with core-optimized basis sets in which all electrons of the
molecular system are variationally optimized.

III. 7Li+ - 7Li COLLISION CROSS SECTIONS

Applying standard scattering theory based on the partial-
wave expansion of the total wave function in R, the
Schrödinger equation for a single partial wave, �, at a collision
energy E = h̄2k2/(2μ), k = 2π/λ is[

− h̄2

2μ

d2

dR2
+ h̄2

2μ

�(� + 1)

R2
+ V c

p (R)

]
yE ,�

p (R)

= EyE ,�
p (R), (7)

where μ is the (7Li+ - 7Li) Watson’s charge-modified reduced
mass [50]. The asymptotic form of the wave function yE ,�

p (R)
is given by yE ,�

p (R) � kR[ j�(kR) cos(η�
p) − n�(kR) sin(η�

p)],
where j�(kR) and n�(kR) are the spherical Bessel functions,
and η�

p is the quantum phase shift generated by the scattering
potential V c

p (R). Equation (7) is solved numerically, and η�
p

is extracted at large distances, namely, at R = 10λ, as the
asymptotic limit for low energies when λ > 100a0 and at
R = 1000a0 for higher energies when λ < 100a0.

In Fig. 4, the quantum phase shifts η�
p (modulo π ) are

shown for E = 10−5 a.u. (or ∼2 cm−1) and E = 10−6 a.u. (or
∼0.2 cm−1). For large �, when the outer classical turning point
at a given collision energy is such that V c

p (R) can be approx-
imated to the leading term −αd/2R4 of V a

ind(R), one can de-
fine the semiclassical phase shift as η�

sc ≈ (πμ2αd )/(4h̄4) ×
E/�3 and thus the semiclassical cross section is σsc(E ) =
π (μα2

d/h̄2)1/3(1 + π2/16) × E−1/3 [24]. The semiclassical
phase shifts are in agreement with the quantum phase shifts
for � > Lsc, with Lsc = 41 for E = 10−5 a.u. and Lsc = 19 for
E = 10−6 a.u. Around E = 10−8 a.u. (or ∼0.002 cm−1), as
the contribution to the cross section from partial waves � > 10
becomes negligible, resonance features arise.

In Fig. 5, the quantum phase shifts η�
g for � = 0, 1 are

plotted as a function of the collision energy for the ab initio
PEC, X 2�+

g :�R = 0, and the generated PECs with shifted
repulsive walls, X 2�+

g :�R = ±rg. At low energies, the ef-
fect is weak for � > 0, as the centrifugal barrier becomes
dominant in the collision. Note that the s-wave (� = 0) phase
shift changes sign when the repulsive wall is slightly shifted,
indicating the presence of a pole where the scattering length
diverges. As a result, the accuracy of the PEC becomes a ma-
jor factor in determining the collision cross section. This is the
primary motivation for the extreme care taken in determining
the scattering potential in Sec. II.
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FIG. 3. Potential energy curves near the repulsive wall (see insets) for X 2�+
g (a) and A 2�+

u (b), computed using the basis sets aug-cc-
pCVXZ with X ≡ D, T, Q, 5, and corresponding positions Rin of their inner turning points at the dissociation limit E∞ (c, d). Selected ranges
�R for the variation of the repulsive wall of the aug-cc-pCV5Z calculations mimicking possible inaccuracies in cross-section calculations are
shown: �R = ±rg/u with rg = 0.01a0 and ru = 0.02a0 for X 2�+

g and A 2�+
u , respectively.

Due to the identical nuclei, the scattering between the
7Li+ - 7Li ion-atom system enables the event in which the ion
and the atom exchange their charge identities. A scattering
event when the initial identities are preserved is a direct
elastic collision, whereas an event where the identities of the
ion-atom pair are interchanged is termed a resonant charge
exchange collision [17]. The scattering amplitudes for direct
elastic and RCE collisions are given by ( fg + fu)/2 and fce =
( fg − fu)/2, where fg and fu are the scattering amplitudes for
X 2�+

g and A 2�+
u . We define Sg(E ) and Su(E ) in Eq. (8) and

Sce(E ) in Eq. (9), where d is the differential solid angle, as

Sp(E ) =
∫

| fp|2d = 4π

k2

∞∑
�=0

(2� + 1) sin2
(
η�

p

)
, (8)

Sce(E ) =
∫

| fce|2d = π

k2

∞∑
�=0

(2� + 1) sin2 (
η�

g − η�
u

)
. (9)

The average (Sg(E ) + Su(E ))/2 has been identified as the
total cross section, and Sce(E ) as the RCE cross section when
certain approximations are made [43] at high collision ener-
gies. The functions Sg(E ) and Su(E ) for the 7Li+ - 7Li system
as functions of the collision energy are shown along with the
semiclassical scattering cross section, σsc(E ), in Figs. 6(a)
and 6(b). For 7Li+ - 7Li, σsc(E ) = 2826 × E−1/3 a.u. The
Langevin cross section, ∼π (2αd )1/2 × E−1/2, for 7Li+ - 7Li,
56.92 × E−1/2 a.u., and Langevin/4 are shown along with
Sce(E ) in Fig. 6(c). In all cases, the cross sections include the
sum of the first 100 partial waves. It can be seen that Sce(E ), in
this case, predominantly falls in the range defined by Langevin
and Langevin/4. For low energies, Sce(E ) varies significantly
from the expected semiclassical picture.

For homonuclear systems, in principle, individual scatter-
ing channels cannot be measured independently and therefore
we compute the total cross section σtot (E ), given in Eq. (10).
The expression for σtot (E ) differs from the one usually
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FIG. 4. Quantum (modulo π ) and semiclassical phase shifts
as functions of the partial waves, �, for a collision along the
X 2�+

g :�R = 0 and A 2�+
u :�R = 0 curves for the collision energies

10−5 a.u. (a) and 10−6 a.u. (b). Lines joining the points are a guide
for the eye.

employed in the literature; the derivation will be discussed
elsewhere [51]:

σtot (E ) = 4π

k2

[
x
[∑

even

(2� + 1) sin2
(
η�

g

)

+
∑
odd

(2� + 1) sin2
(
η�

u

)]

FIG. 5. Quantum phase shift (modulo π ) of the X 2�+
g :�R =

±rg and ab initio X 2�+
g :�R = 0 curves as a function of the collision

energy for the partial waves � = 0 (a) and � = 1 (b). At low energies,
the change in the phase shifts for different PEC models are significant
only for � = 0.

+ (1 − x)
[ ∑

odd

(2� + 1) sin2
(
η�

g

)

+
∑
even

(2� + 1) sin2
(
η�

u

)]]
, (10)

where x is a function of the nuclear spin I . For a half-integer
nuclear spin, x = I/(2I + 1). For 7Li, with I = 3/2, x is
3/8 [43]. The cross section evaluated using Eq. (10) differs

FIG. 6. (a) Sg(E ) for the generated X 2�+
g :�R = ±rg and X 2�+

g :�R = 0 curves. (b) Su(E ) for A 2�+
u :�R = ±ru and A 2�+

u :�R = 0. In
(a) and (b), the semiclassical cross section, 2826 × E−1/3, is shown. (c) Sce(E ) for the two bounding modifications of PECs, X 2�+

g :�R = +rg,
A 2�+

u :�R = +ru and X 2�+
g :�R = −rg, A 2�+

u :�R = −ru, along with Sce(E ) for the X 2�+
g :�R = 0, A 2�+

u :�R = 0 curves. Langevin and
Langevin/4 are also plotted for comparison.
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FIG. 7. Total collision cross sections, σtot (E ), of the 7Li+ - 7Li
system in its first asymptotic state, which involves the electronic
states X 2�+

g and A 2�+
u , for the modified PECs X/A:�R = ±(rg, ru)

and X/A:�R = 0, 0. The semiclassical cross section, 2826 × E−1/3,
and the centrifugal barrier energies for � = 1–5 are also shown.

significantly in the s-wave limit from the value calculated as
the average of Sg(E ) and Su(E ). For 7Li+ - 7Li, in the s-wave
limit, the cross section obtained using σtot (E ) is 25% smaller
than the average of Sg(E ) and Su(E ). The total cross section,
σtot (E ), for 7Li+ - 7Li is plotted along with the semiclassical
scattering cross section, σsc(E ), in Fig. 7. The centrifugal
barrier energies introduced by the first few partial waves are
also shown.

The scattering length au, when compared with the charac-
teristic interaction length scale R∗, i.e., the position of the �

= 1 barrier (αd × μ/h̄2)
1/2

, which for 7Li+ - 7Li is 1024a0,
is within a factor of 2, while ag is very large (see Table IV).
Also, Sg(E ) and ag are more sensitive to the small-R region
of the PEC and, consequently, to the details of the short-range
interaction than Su(E ) and au. This sensitivity of X 2�+

g is
amplified for the 7Li+ - 7Li system, which is also noted by
Schmid et al. [28], due to the proximity of a scattering pole,

TABLE IV. 7Li+ - 7Li scattering lengths for the modeled
X 2�+

g :�R = ±rg, X 2�+
g :�R = 0 and A 2�+

u :�R = ±ru,
A 2�+

u :�R = 0 curves are listed. For direct comparison with
Zhang et al. [27] and Schmid et al. [28], the values obtained from
X/A:�R = 0 are appropriate.

X 2�+
g , �R = ±rg,u �R = 0 [27] [28]

A 2�+
u

ag −6582/3948 20 465 14 337 7 162
au 1432/1227 1 325 1 262 —

i.e., the PEC either is about to attain or has just attained a
weakly bound state.

IV. DISCUSSION AND CONCLUSION

The values of De calculated by Zhang et al. [27] and
Schmid et al. [28], along with the value calculated in this
work (Table III), fall within the experimental accuracy of
10 464 ± 6 cm−1 [47]. However, the convergence of Ee and
E∞ and the variational nature of the calculation provide addi-
tional certainty in our case. We have calculated the relativis-
tic corrections using the second-order Douglas-Kroll-Hess
Hamiltonian [36]. Relativistic corrections on the PECs can
be expressed in two parts: a constant shift by ≈−306.6 cm−1

and an R-dependent change in the total electronic energy. The
constant shift due to relativistic corrections does not affect
the scattering calculations. The R-dependent change in the
total electronic energy is less than 1.0 cm−1 for R > Re

and less than 5.0 cm−1 for R < Re, which is not significant
compared with the effect of core electrons in the calculation,
which is ±140 cm−1 at the repulsive wall position, Rin, for the
allowed change of ±rg in the X 2�+

g curve. We have found that
the variation in the diagonal Born-Oppenheimer correction is
less than 0.5 cm−1 over the entire internuclear range [52]. In
addition, as we have discussed, counterpoise corrections for
basis-set superposition error is not relevant in our case.

In the present work, an analysis is performed to obtain
consistent asymptotic extensions of the scattering potentials.
We find that the 7Li+ - 7Li system in the X 2�+

g state is close
to a scattering pole, and therefore extreme care is required
in the computation of low-energy scattering parameters. Scat-
tering lengths for X 2�+

g :�R = 0 and A 2�+
u :�R = 0 are

20 465a0 and 1325a0, respectively (see Table IV). The scat-
tering lengths, ag, reported by Zhang et al. [27] and Schmid
et al. [28] are 14 337a0 and 7162a0, respectively. Schmid et al.
also provide a bound on ag of (107 825a0, 3664a0), which
corresponds to the potentials scaled by (0.999, 1.001) to the
computed PEC. The possible errors in the cross section, in
our case, are estimated by controlled variations in the small-R
region of the PECs, assessing the change they bring to the
phase shifts and cross sections in the low-energy limit. The
scattering pole for X 2�+

g occurs within the determined range
of variations as shown in Fig. 3, particularly between the PEC
models �R = +rg and �R = 0; this is also evident in the
phase shift plot (Fig. 5), which prevents us from estimating the
upper limit of the total cross section. However, the lower limit
of the total cross section is given by the �R = −rg,−ru curve.
The setting of this range will prevent the values reported here
from being affected by even more sophisticated calculations
in the future. The calculated value of the total cross sections is
shown by the �R = 0 curve in Fig. 7. The cross sections are
determined for a wide range of collision energies, from 10−5

to 10−15 a.u., which covers a large range of temperatures, from
a few K to a few nK. Sg(E ), Su(E ), Sce(E ), and σtot (E ) in the
temperature regimes below a few mK have contributions from
only a few partial waves (about five). In this regime, the cross
sections significantly deviate from the semiclassical values
and result in the distinctive features that can be explored in
future experiments. The total cross section for the 7Li+ - 7Li
system in the low-energy limit is (1.9 × 109)a2

0. When the
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collision energy is higher than a few mK, many partial waves
participate in the scattering and their contributions sum up to
give the semiclassical value.
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