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ABSTRACT
The light-cone effect causes the mean as well as the statistical properties of the redshifted 21-
cm signal Tb(n̂, ν) to change with frequency ν (or cosmic time). Consequently, the statistical
homogeneity (ergodicity) of the signal along the line-of-sight (LoS) direction is broken.
This is a severe problem particularly during the Epoch of Reionization (EoR) when the
mean neutral hydrogen fraction (x̄H I) changes rapidly as the Universe evolves. This will also
pose complications for large bandwidth observations. These effects imply that the 3D power
spectrum P(k) fails to quantify the entire second-order statistics of the signal as it assumes
the signal to be ergodic and periodic along the LoS. As a proper alternative to P(k), we use
the multifrequency angular power spectrum (MAPS) C�(ν1, ν2), which does not assume the
signal to be ergodic and periodic along the LoS. Here, we study the prospects for measuring
the EoR 21-cm MAPS using future observations with the upcoming SKA-Low. Ignoring any
contribution from the foregrounds, we find that the EoR 21-cm MAPS can be measured at a
confidence level ≥5σ at angular scales � ∼ 1300 for total observation time tobs ≥ 128 h across
∼44 MHz observational bandwidth. We also quantitatively address the effects of foregrounds
on MAPS detectability forecast by avoiding signal contained within the foreground wedge
in (k⊥, k‖) plane. These results are very relevant for the upcoming large bandwidth EoR
experiments as previous predictions were all restricted to individually analysing the signal
over small frequency (or equivalent redshift) intervals.

Key words: methods: statistical – techniques: interferometric – cosmology: theory – dark
ages, reionization, first stars – diffuse radiation – large-scale structure of Universe.

1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) is one of the important periods
in the evolutionary history of our Universe. During this epoch, the
ionizing radiation from the first luminous sources in the Universe
gradually ionizes the neutral Hydrogen (H I) in the intergalactic
medium (IGM). As more and more of these sources form, the
ionized (H II) regions grow and eventually overlap and fill almost the
entire IGM. Our present knowledge about this epoch is very limited.
The current measurements of the Thomson scattering optical depth

� E-mail: rajeshmondal18@gmail.com; Rajesh.Mondal@sussex.ac.uk

(Planck Collaboration XLVI, XLVII 2016a, b), a measure of the
line-of-sight (LoS) free electron opacity to cosmic microwave
background (CMB) radiation in the IGM, suggest that the mean
neutral fraction x̄H I falls by ∼0.1 at z ∼ 10 from a completely
neutral IGM. The second observation is the Gunn–Peterson optical
depth of the high-redshift quasar spectra (Becker et al. 2001; Fan
et al. 2002, 2006; Becker et al. 2015). These measurements show
an absorption trough at z � 6, which indicates that the IGM was
neutral at 0.1 per cent level by z ∼ 6. The third and the most recent
constraint comes from the measurements of the luminosity function
and clustering properties of high-z Lyman α emitters (Konno et al.
2014; Santos, Sobral & Matthee 2016; Ota et al. 2017; Zheng et al.
2017). These studies indicate a patchy distribution of H I and infer a
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sharp increase in x̄H I at redshifts larger than z ∼ 7. The findings of
all these indirect observations provide an overall indication that the
EoR probably extends over a redshift range 6 � z � 12 (Robertson
et al. 2013, 2015; Mitra, Choudhury & Ferrara 2015, 2017; Dai
et al. 2019). However, these indirect observations are not able to
shed light on various fundamental issues, such as the exact duration
and timing of reionization, properties of the ionizing sources, the
topology of H I at different cosmic times, etc.

Observations of the redshifted 21-cm signal caused by the hyper-
fine transition of H I in the IGM is the most promising probe of the
EoR (Scott & Rees 1990; Bharadwaj & Sethi 2001). There has been
a considerable observational effort devoted to measuring the EoR
21-cm signal using the presently operating radio interferometers
e.g. the GMRT1 (Paciga et al. 2013), LOFAR2 (van Haarlem et al.
2013; Yatawatta et al. 2013), the MWA3 (Jacobs et al. 2016), and
PAPER4 (Parsons et al. 2014; Ali et al. 2015; Jacobs et al. 2015).
The presently operating (first-generation) radio interferometers are
not sensitive enough to make tomographic images of the EoR 21-
cm signal and can only make a statistical detection of the signal.
Observing the EoR 21-cm signal is one of the major scientific
goals of the upcoming radio telescopes e.g. SKA5 (Mellema et al.
2013; Koopmans et al. 2015) and HERA6 (DeBoer et al. 2017).
These observations are very challenging due to the presence of
foregrounds, system noise, and other calibration errors. Foregrounds
are ∼4–5 orders of magnitude stronger than the expected signal (Ali,
Bharadwaj & Chengalur 2008; Bernardi et al. 2009; Ghosh et al.
2012; Paciga et al. 2013), and modelling or removing them from
the actual data is more complicated. However, in this work, we
assume the idealistic scenario where foregrounds can be removed
completely.

The upcoming SKA-Low will have 512 stations,7 and each of
them will be ∼35 m in diameter. These stations will consist of
several log-periodic dipole antennas. The telescope will also have
∼ 20 deg2 field of view, a compact core and three spiral arms that
will extend up to ∼60 km. SKA-Low will have enough sensitivity
over a large range of frequencies (frequency band of 50–350 MHz)
to image the EoR 21-cm signal (Mellema et al. 2015). Unlike the
CMB, we can map the large-scale structure (LSS) of the universe
in 3D using the redshifted 21-cm signal, with the third dimension
being frequency (or cosmic time or redshift). However, one has to be
very careful while quantifying the EoR 21-cm signal as the mean, as
well as other statistical properties of the signal change with varying
frequency or redshift due to the light-cone (LC) effect (Barkana &
Loeb 2006; Datta et al. 2012; La Plante et al. 2014; Zawada et al.
2014; Mondal, Bharadwaj & Datta 2018).

The LC effect breaks the statistical homogeneity (ergodicity)
along the LoS direction. Moreover, the main assumption that goes
into the estimation of the power spectrum P (k) or equivalently
into the 3D Fourier transform is that the signal is ergodic and
periodic. As a consequence of this fundamental difference between
the assumption for Fourier transform and the actual properties of
the signal, the spherically averaged 3D power spectrum P(k) fails
to quantify the entire second-order statistics of the signal (Mondal

1http://www.gmrt.ncra.tifr.res.in
2http://www.lofar.org
3http://www.mwatelescope.org
4http://eor.berkeley.edu
5http://www.skatelescope.org
6http://reionization.org
7SKA1 LowConfigurationCoordinates-1.pdf

et al. 2018) and gives a rather biased estimation of the signal (Trott
2016). This is particularly severe during the EoR when the x̄H I

changes rapidly as the reionization proceeds. This will also pose
complications for broad bandwidth observations with SKA-Low
(Mondal et al. 2019). The issue here is ‘how to quantify the statistics
of the EoR 21-cm signal in the presence of the LC effect’. As a
proper alternative to P(k), we use the multifrequency angular power
spectrum (MAPS) C�(ν1, ν2) (Datta, Choudhury & Bharadwaj 2007;
Mondal et al. 2018, 2019), which does not assume ergodicity and
periodicity along the LoS. The only assumption is that the EoR
21-cm signal is statistically homogeneous and isotropic in different
directions on the sky plane. The visibilities are the main observables
in every radio interferometric observations and the MAPS is
directly associated with these visibility correlations. Therefore, it is
relatively easy to estimate MAPS from the observations (Bharadwaj
& Ali 2005; Ali et al. 2008; Ghosh et al. 2011).

Several studies have been made to quantify the sensitivity
for measuring the EoR 21-cm power spectrum with different
instruments (Morales 2005; McQuinn et al. 2006; Zaroubi et al.
2012; Beardsley et al. 2013; Pober et al. 2014; Ewall-Wice et al.
2016; Shaw, Bharadwaj & Mondal 2019). These predictions were
restricted to individually analysing over small redshift (or equivalent
frequency) intervals where they have worked with the 3D power
spectrum P(k). However, there is no such restriction for the MAPS,
and we can, in principle, consider the entire bandwidth for the
analysis. Here, we have made the signal-to-noise ratio (SNR)
predictions for measuring the EoR 21-cm MAPS using future
observations with SKA-Low. We have presented our results mainly
considering a scenario, the ‘Optimistic’, where the observed MAPS
is a sum of the EoR 21-cm MAPS and the system noise MAPS,
ignoring any contribution from the foregrounds to the observed
signal. However, we have also demonstrated the effects of fore-
grounds on the detection of the EoR 21-cm MAPS incorporating the
foreground ‘wedge’. Note that we have used numerical simulations
for computing the EoR 21-cm MAPS in our analysis.

The paper is structured as follows. In Section 2, we briefly
describe the simulations used to generate the EoR 21-cm LC.
Starting from the basic definition of the MAPS, we derive the
expressions for the noise MAPS and MAPS error covariance in
Section 3. In Section 5, we report the results i.e. the estimated
MAPS, MAPS error covariance, and SNR assuming no foregrounds.
Next, we discuss the impact of foregrounds on the prospects of
detecting the 21-cm MAPS in Section 6. Finally, in Section 7, we
summarize our results and conclude. Throughout the paper, we
have used the values of cosmological parameters �m0 = 0.27, ��0

= 0.73, �b0h2 = 0.02156, h = 0.7, σ 8 = 0.8, and ns = 0.9619. These
values are consistent with the latest results from WMAP (Komatsu
et al. 2011) and Plank combined with other available constraints
(Planck Collaboration XIII, XLVII 2015, 2016b).

2 SI M U L AT I N G TH E E O R 2 1 - C M S I G NA L

2.1 The simulation

The density fields and halo catalogues are obtained from a high-
resolution, large-volume N-body PRACE4LOFAR simulation (Giri
et al. 2019). This simulation was run using the CUBEP3M code
(Harnois-Deraps et al. 2013) and followed 69123 particles in
a comoving 500 h−1Mpc ≈ 714 Mpc per side volume to enable
reliable halo identification (with 25 particles or more) down to
109 M�. The reionization process is simulated using the C2-RAY

code (Mellema et al. 2006) on a 3003 grid with sources and density
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Figure 1. The reionization history as a function of redshift obtained from
our simulation.

fields based on the N-body data following the method presented in
Iliev et al. (2007) and Dixon et al. (2016). Specifically, for this work,
we have used the data from the 714Mpc g0.87 gS 300 reionization
simulation following the notation of Dixon et al. (2016). We refer
the reader to cited papers for details of the notation and set-up, with
only a brief summary provided here.

The density fields are calculated using smoothed particle
hydrodynamics-like smoothing. The sources of ionization are as-
sociated with the resolved haloes or high-mass atomically cooling
haloes (HMACHs). These haloes are complemented by a subgrid
model for the low-mass atomically cooling haloes (LMACHs) 108

< Mhalo < 109 (Ahn et al. 2015). Below this range, haloes are
assumed to not form stars. For a source with halo mass M and
lifetime ts, we assign ionizing photon emissivity according to

Ṅγ = gγ

M�b

μmp(10 Myr)�0
, (1)

where the efficiency gγ combines the ionizing photon production
efficiency of the stars per stellar atom, Ni, the star formation
efficiency, f∗, and the escape fraction, fesc:

gγ = f∗fescNi

(
10 Myr

ts

)
(2)

(e.g. Haiman & Holder 2003; Iliev et al. 2012). The high-mass
sources (M > 109 M�) are assumed unaffected by the radiative
feedback and assigned an efficiency gγ,HMACH = 0.87. Prior to local
reionization, the low-mass sources share the same efficiency as the
high-mass sources. After the local ionization threshold exceeds 0.1,
the low-mass sources have a mass-dependent efficiency

gγ,LMACH ∝ gγ,HMACH ×
[

M

9 × 108 M�
− 1

9

]
. (3)

We have generated the coeval brightness temperature (δTb) cubes
at 125 different redshifts in the range 6 ≤ z < 16, and the resulting
reionization history is shown in Fig. 1. Our results are compared
to observational inferences from Ly α damping wings (squares;
Greig et al. 2017; Davies et al. 2018; Greig, Mesinger & Bañados
2019), dark Ly α forest pixels (triangles; McGreer, Mesinger & Fan
2011; McGreer, Mesinger & D’Odorico 2015), GRB damping wing
absorption (diamonds; McQuinn et al. 2008; Chornock et al. 2013),
decline in Ly α emitters (hexagons; Ota et al. 2008; Ouchi et al.
2010), and Ly α clustering (pentagons; Ouchi et al. 2010).

Figure 2. This shows sections through the 3D 21-cm brightness temperature
maps for the coeval (left) and LC (right) simulations. The boxes are
centred at redshift 7.09, which corresponds to the comoving distance
rc = 8865.64 Mpc and x̄H I ≈ 0.50.

Figure 3. Same as Fig. 2 centred at redshift 8.04, which corresponds to the
comoving distance rc = 9162.06 Mpc and x̄H I ≈ 0.75.

2.2 Generating the light-cones

We have generated our LCs following the formalism presented in
Datta et al. (2014), using the simulated coeval δTb cubes described
in Section 2.1. We have generated two LCs: LC1 centred at zc =
7.09 (frequency νc = 175.58 MHz), which corresponds to x̄H I ≈
0.50 and LC2 centred at zc = 8.04 (νc = 157.08 MHz), which
corresponds to x̄H I ≈ 0.75. LC1 spans the redshift range 6.15 � z �
8.25, which corresponds to change in the mass-averaged H I fraction
x̄H I (from end-to-end of the LC, following the reionization history
shown in Fig. 1) as �x̄H I ≈ 0.79 − 0.02 = 0.77. Whereas, LC2
spans the range 6.92 � z � 9.40, which corresponds to change
in the x̄H I as �x̄H I ≈ 0.90 − 0.42 = 0.48. Note that the redshift
ranges, channel widths, and central frequencies assumed in the LCs
are only representative values and may change. We have chosen
these to observe the behaviour at two different stages of reionization
history.

The right-hand panels of Figs 2 and 3 show sections through the
simulated LC 21-cm brightness temperature maps. As a comparison,
the left-hand panels of Figs 2 and 3 show the sections through
coeval simulations at z = 7.09 and z = 8.04, respectively. The
lower redshifts on the left side of the LC simulations correspond to
the later stages of the evolution as compared to the higher redshifts
shown on the right side. The ionized regions appear smaller in the
LC simulations as compared to their coeval companion at the right
side (early stage). Whereas, the ionized regions appear larger in the
LC simulations as compared to their coeval case at later stages (left
side).

In this work, we assume the plane of the sky is flat. Under the flat-
sky approximation, we map the brightness temperature fluctuations
δTb(x, y, z) from the Cartesian grid to a 3D rectangular grid in (θ , ν)
within our simulation box. We use θx = x/r, θy = y/r, and ν = z/r

′
.
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Figure 4. This shows the MAPS 
2(ν1, ν2) at � = 469, 768, 1257, and 2071 (from left to right respectively) for the LC1 at νc = 175.58 MHz.

We also keep the angular extent the same at all frequency channels
while performing this coordinate transformation.

3 TH E M U LT I F R E QU E N C Y A N G U L A R P OW E R
SPECTRUM

This study concerns the question: ‘How to quantify the statistics
of the redshifted EoR H I 21-cm signal δTb(n̂, ν) when it is non-
ergodic along the LoS (i.e. the signal varies significantly along
the LoS)?’ (Trott 2016; Mondal et al. 2018, 2019). In the case of
the evolving statistical properties of the signal within the observed
volume, the 3D Fourier modes k are not the correct choice of basis.
Further, it assumes periodic boundary condition in all directions
that is also not justified along the LoS. As a consequence, the
power spectrum P (k) is not optimal and gives a biased estimate of
the true statistics (Trott 2016; Mondal et al. 2018). To avoid this
issue, the previous power spectrum measurements are restricted
to individually analysing small redshift intervals (Morales 2005;
McQuinn et al. 2006; Zaroubi et al. 2012; Datta et al. 2014; Pober
et al. 2014; Ewall-Wice et al. 2016; Shaw et al. 2019).

The above-mentioned properties of the signal necessitate the use
of MAPS C�(ν1, ν2) that quantifies the entire second-order statistics
of the EoR 21-cm signal (Mondal et al. 2018). It does not assume
the signal to be statistically homogeneous along the LoS. One can
decompose δTb(n̂, ν) into spherical harmonics Y m

� (n̂) as

δTb(n̂, ν) =
∑
�,m

a�m(ν) Y m
� (n̂) , (4)

and define the MAPS using

C�(ν1, ν2) = 〈
a�m(ν1) a∗

�m(ν2)
〉
. (5)

The only assumption that goes into this definition is that the EoR
21-cm signal is statistically homogeneous and isotropic in different
directions on the sky plane.

In this study, we have chosen to work in the flat-sky ap-
proximation, where the redshifted 21-cm brightness temperature
fluctuations can be expressed as δTb(θ, ν). Here, θ denotes a 2D
vector on the plane of the sky. Instead of δTb(θ , ν), we use its
2D Fourier transform T̃b2(U, ν), where U is the Fourier conjugate
of θ described in the previous section. T̃b2(U, ν) is the primary
observable measured in radio interferometric observations. Under
the flat-sky approximation, we redefine the MAPS (equation 5) as

C�(ν1, ν2) ≡ C2πU(ν1, ν2) = �−1
〈
T̃b2(U, ν1) T̃b2(−U, ν2)

〉
, (6)

where � is the solid angle subtended by the transverse extent
of the observation (or simulation) at the location of the observer

and � = 2πU is the corresponding angular multipole. The above
definition of C�(ν1, ν2) does not assume statistical homogeneity
and periodicity along the LoS. However, note that if one imposes
statistical homogeneity along the LoS, the MAPS C�(ν1, ν2) is
expected to depend only on the frequency separation �ν = |ν1

− ν2|, i.e. C�(ν1, ν2) ≡ C�(�ν).
The � range of each LC is divided into 10 equally spaced

logarithmic bins in our analysis, and each bin is tagged by the
bin-averaged value of � i.e. �i for the i-th bin. Note that the average
value �i varies from LC1 to LC2. In this work, we focus mainly on
the intermediate � bins as the detection of the signal will be difficult
at large scales (� � 250) due to the cosmic variance and at small
scales (� � 3500) due to the presence of large system noise. For
the LC1, we have shown our results at four different � bins that are
� = 469, 768, 1257, and 2071. These � values roughly correspond
to comoving scales 119, 72, 44, and 26 Mpc, respectively, at the
central frequency νc = 175.58 MHz of LC1. For the LC2, we
have shown the results at values of � = 486, 796, 1304, and 2147,
which roughly correspond to almost the same comoving scales as
for the LC1, at the central frequency νc = 157.08 MHz. Fig. 4
shows the scaled MAPS 
2(ν1, ν2) = [�(� + 1)C�(ν1, ν2)/2π] at
four aforementioned values of � for the LC1 simulation, which is
centred at a redshift having x̄H I ≈ 0.50. Fig. 5 shows the same for
the LC2 simulation, which is centred at a redshift with x̄H I ≈ 0.75.
We see that the MAPS peaks when ν1 = ν2, i.e. along the diagonal
line. The diagonal C�(ν, ν) evolves considerably with the observed
frequency ν. This is a direct consequence of the fact that the signal is
non-ergodic along the frequency axis. We also find that the MAPS
rapidly falls as the frequency separation |ν1 − ν2| increases and
oscillates around zero for the larger frequency separation. Unlike
the 3D power spectrum P (k), which captures only the information
regarding the ergodic and periodic part of the signal, the MAPS
C�(ν1, ν2) contains the full information regarding the two-point
statistics of the signal (Mondal et al. 2018). One can, in principle, use
the entire information contained in C�(ν1, ν2), i.e. all the diagonal
and off-diagonal elements to better constrain the EoR. However, we
focus mostly on the diagonal terms C�(ν, ν). It will be difficult
to detect the off-diagonal C�s, except for the small frequency
separation |ν1 − ν2| ∼ 1 MHz, due to poor SNR. We refer the
readers to Section 5 for a detailed discussion on the detectability of
the MAPS.

Fig. 6 shows the diagonal components of the scaled MAPS

2(ν, ν) as a function of ν for � values considered above for
both simulations LC1 (black) and LC2 (red). It also shows the
ergodic part of the signal 
2(νc, νc) that is calculated at the central
frequency νc, which is different for the LC1 and LC2 simulation.
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Figure 5. Same as Fig. 4 at � = 486, 796, 1304, and 2147 (from left to right respectively) for the LC2 at νc = 157.08 MHz.

Figure 6. This shows the diagonal components of the scale-independent MAPS 
2(ν, ν) for LC1 (black) and LC2 (red). The LC1 and LC2 are, respectively,
centred at frequency 175.58 and 157.08 MHz (vertical dashed lines). We also show the ergodic component (mean) of MAPS [�(� + 1)CE

� (ν, ν)/2π] (horizontal
dashed lines). The x̄H I values corresponding to the frequencies are shown in the top x-axis.

The 3D power spectrum P (k) misses the part that is deviated from
these horizontal dashed lines. We further see in Fig. 6 that 
2(ν,
ν) peaks around a frequency corresponding to the global neutral
fraction x̄H I ≈ 0.35 for both simulations. This is due to the presence
of a significant number of large ionized bubbles at that stage of the
EoR. The power spectrum at higher frequency decreases due to the
rapid decline of the neutral fraction x̄H I. The characteristic size of
ionized bubbles decreases at lower frequencies, which causes the
power spectrum to decrease. Similar results have been found in
earlier studies (McQuinn et al. 2007; Lidz et al. 2008; Choudhury,
Haehnelt & Regan 2009; Mesinger, Furlanetto & Cen 2011). We
also notice that there is a ‘dip’ in the power spectrum 
2(ν, ν)
around a frequency corresponding to the global neutral fraction
x̄H I ≈ 0.8 for all � modes for both simulations. During the early
stages of reionization, the high-density regions get ionized first,
and as a consequence, the large-scale power decreases. This is
reflected by the drop in the power across the four � panels when
the neutral fraction is large. Later, as the reionization progresses
further, the creation and growth of the ionized regions increase
the power spectrum which peaks around x̄H I ≈ 0.35. Datta et al.
(2014) have investigated the impact of the LC effect considering a
similar reionization model and find a similar dip around x̄H I ∼ 0.8.
The frequencies at which the minimum and maximum occur may

change for different � values. However, we do not see any significant
change in the locations of the maxima and minima for the � modes
we consider.

Fig. 7 shows the angular power spectrum of the EoR 21-cm
brightness temperature fluctuations as a function of � at four
different frequency ν = 185 (LC1), 170 (LC1), 155 (LC2), and
140 MHz (LC2). Note that the angular power spectrum shown in
this plot is a special case of MAPS where ν1 = ν2. The basic
assumption of our model is that the hydrogen traces the underlying
dark matter distribution. As a result of this, the shape of the 21-
cm angular power spectra is roughly the same as the dark matter
angular power spectrum at the start of reionization (ν � 140 MHz).
As discussed above (Fig. 6), during the early stages of reionization,
the high-density regions get ionized first in the inside–out scenario,
and as a consequence, the power spectrum drops at ν = 155 MHz.
As reionization progresses, the creation and growth of the ionized
bubbles increase the power at ν = 170 MHz. The contrast of the
brightness temperature fluctuation field peaks on large scales at
ν ≈ 185 MHz which corresponds to x̄H I ≈ 0.35 in our fiducial
reionization model. This further raises the power of signal at small
� (large length-scales). However, growth of the ionized regions
reduces contrast of the signal at small length-scales showing drop
in power at the corresponding � values.

MNRAS 494, 4043–4056 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/3/4043/5823145 by R
am

an R
esearch Institute user on 11 June 2020



4048 R. Mondal et al.

Figure 7. This shows the angular power spectrum of the EoR 21-cm
brightness temperature fluctuations as a function of � at four different
frequency ν = 185 (LC1), 170 (LC1), 155 (LC2), and 140 MHz (LC2)
for a particular case of MAPS where ν1 = ν2.

4 O BSERVATIONA L C ONSIDERATIONS

We now consider observations with a radio interferometric array
where the fundamental quantity is the visibility that is measured
by each pair of antennas in the array. Considering any particular
pair with dn being the antenna separation projected on the plane
perpendicular to the LoS, the visibility measured at frequency ν i

and baseline Un = dn/λi provides a direct estimate of T̃b2(Un, νi)
at the Fourier mode Un. Taking into account T̃ N

b2(U, ν), the system
noise contribution that is inherent in any radio interferometric
observation, the measured visibility actually provides us with
T̃ t

b2(Un, νi) = T̃b2(Un, νi) + T̃ N
b2(Un, νi), where we have assumed

that the foregrounds have been completely removed and there are
no calibration errors. The system noise at different baselines and
frequency channels is uncorrelated. Using this in equation (6) for
the MAPS, we obtain

C t
�(ν1, ν2) = C�(ν1, ν2) + δK

ν1ν2
CN

� (ν1, ν2) , (7)

which can be estimated from the observed visibilities. Following the
prescription in Bharadwaj et al. (2018), it is possible to avoid noise
bias CN

� (ν1, ν2) and obtain an unbiased estimate of C�(ν1, ν2) from
the measured visibilities. However, the noise contributions still per-
sist in the error estimates and this cannot be avoided. In this work, we
compute the error variance to predict the SNR of measuring MAPS
using the upcoming SKA-Low. This also involves the estimation of
system noise for which we use the telescope specifications of SKA-
Low taken from the current proposed configuration document (see
footnote 7). Some important specifications8 that have been used in
the computation of CN

� (ν, ν) are tabulated in Table 1 .
We consider observations tracking a field at declination Dec.

= −30◦ for 8 h per night with 60 s integration time following the
formalism adopted by Shaw et al. (2019). We restrict our analysis
to the baselines U corresponding to the antenna separations | d |<

8The specifications assumed here may change in the final implementation
of the telescope.

Table 1. This tabulates the telescope specifications for
the current proposed configuration of SKA-Low.

Parameters Values

Number of stations 512
Diameter of each station (D) 35 m
Operation frequency range 50–350 MHz
Receiver temperature (Trec) 100 K
Maximum baseline separation ∼ 19 km

Figure 8. The SKA-Low uv coverage with phase centre at RA =
13h 2m 31.5s and Dec. = −26◦49

′
29

′′
for a total observation time of 2 h.

u and v are projected antenna separation (for | d |< 19 km) in the unit of
kλ at the central frequencies νc = 175.58 MHz (left) and νc = 157.08 MHz
(right).

19 km, as the baseline distribution falls off rapidly at larger | d |
values. Fig. 8 shows the simulated SKA-Low baseline U distribution
(uv coverage) at the two different central frequencies, corresponding
to LC1 and LC2, respectively. The signals at two different baselines
U separated by <D/λi are correlated due to the overlap of the
antenna beam pattern (Bharadwaj & Pandey 2003; Bharadwaj &
Ali 2005). We grid the baselines Um with a grid of size �Ux =
�Uy = D/λi and count the number of measurements τ (Ug) that lie
within a pixel centred at any grid point Ug.

We estimate the noise MAPS at the grid point Ug following the
calculation presented in White et al. (1999), Zaldarriaga, Furlanetto
& Hernquist (2004), and Shaw et al. (2019) as

CN
�g

(ν, ν) = T 2
sys λ4

Np Nt �t �ν a2 τ (Ug)
× 1∫

dU ′ | Ã(U − U ′) |2

= 8 hrs

tobs
× C0(ν)

τ (Ug)
. (8)

Here, the system temperature Tsys is a sum of the sky temperature
Tsky = 60λ2.55 K (Fixsen et al. 2011) and the receiver temperature
Trec. Np is the number of polarizations, Nt is the number of observed
nights, �t is the integration time, a is the area of individual antenna
in the array, and Ã(U) is the Fourier transform of the primary beam
of a station A(θ ), which is approximated with a Gaussian e−(θ/θo)2

(Choudhuri et al. 2014; Shaw et al. 2019). We express the total
observation time using tobs = 8 h × Nt, and this notation is used in
the rest of the paper.

4.1 The binned weighted MAPS estimator

The simulated observations under consideration have ∼300 × 300
grid points on the U plane and 313 frequency channels. This comes
out to ∼14 million independent measurements of the MAPS that
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Predictions for 21-cm MAPS 4049

is computationally very expensive to deal with. Another problem
is that the measurements at every individual grid point Ug will
be very noisy. To tackle these issues, we bin the U space. We,
however, lose the information at individual Ug modes. This not
only solves the computation problem but also increases the SNR
of measurement within a bin. We use the binned weighted MAPS
estimator Ĉ�

t
i(ν1, ν2), which is the sum of the weighted brightness

temperature fluctuation correlations between various grids within
the bin. Exploiting the symmetry Ĉ�

t
i(ν1, ν2) = Ĉ�

t
i(ν2, ν1), the esti-

mator Ĉ�

t
(ν1, ν2) for the i-th bin is written as

Ĉ�

t
i(ν1, ν2) = 1

2�

∑
Ugi

ŵ(Ugi , ν1) ŵ(Ugi , ν2)

× [
T̃ t

b2(Ugi , ν1) T̃ t
b2(−Ugi , ν2)

+ T̃ t
b2(Ugi , ν2) T̃ t

b2(−Ugi , ν1)
]
, (9)

where the sum
∑

Ugi
is over the Ug grids within the i-th bin and

ŵ(Ug, ν) is the weight associated with the grid Ug at frequency
ν. Here, the angular multipole �i = 2πUi (or Ui) is the weighted
average of all Ug in the i-th bin. We have used equally spaced
logarithmic binning, and the bins here are semi-annuli of the width
�Ui∝Ui (restricted to one half of the U plane as the signal is real,
i.e. T̃ t∗

b2 (Ugi , ν1) = T̃ t
b2(−Ugi , ν1)).

The ensemble average of the estimator gives the bin-averaged
MAPS〈
Ĉ�

t
i(ν1, ν2)

〉 ≡ C̄�
t
i(ν1, ν2)

= C̄�i(ν1, ν2) + δK
ν1ν2

C̄�
N
i (ν1, ν2). (10)

As mentioned earlier, it is possible to avoid the noise bias C̄�
N

(ν, ν)
(Bharadwaj et al. 2018) by subtracting out the contribution of the
self-correlation of visibility from itself. This also leads to a loss
of a part of the signal. However, this loss is extremely small (<
0.01 per cent) for long observations (tobs ∼ 100 h or larger) with
16 s integration time. It is therefore quite well justified to assume that
we can obtain an unbiased estimate of C̄�(ν1, ν2). In the subsequent
analysis, we also do not consider any change in the weights along
the frequency direction and express equation 9 as

Ĉ�

t
i(ν1, ν2) = 1

2�

∑
Ugi

w(Ugi )
[
T̃ t

b2(Ugi , ν1) T̃ t
b2(−Ugi , ν2)

+ T̃ t
b2(Ugi , ν2) T̃ t

b2(−Ugi , ν1)
]
. (11)

The weights w(Ugi ) are normalized such that
∑

Ugi
wgi = 1 where

the sum runs over each grid point within a particular U bin. As
discussed later, the weights are selected in order to maximize the
SNR of C̄�i(ν1, ν2) for each bin. This takes into account that the
baselines Um do not uniformly sample the different grid points Ug ,
and consequently the ratio C�gi

(ν1, ν2)/CN
�gi

(ν1, ν2) varies across the
different grid points within a bin.

4.2 The error estimates

The EoR 21-cm signal is a highly non-Gaussian field (see e.g.
Bharadwaj & Pandey 2005; Mondal et al. 2015; Yoshiura et al.
2015; Majumdar et al. 2018). The non-Gaussian effects will play
a significant role in the error estimates for the EoR 21-cm MAPS.
The Gaussian components in observed visibilities T̃b2(U, ν) are
independent at different baselines. It is the non-Gaussian compo-
nents that are correlated and give rise to non-zero higher order

statistics such as bispectrum, trispectrum etc. The cosmic variance
of the MAPS will get additional contributions from the non-zero
trispectra (see equation 2 of Mondal, Bharadwaj & Majumdar 2017)
that is essentially the Fourier conjugate of the four-point correlation
function (see e.g. equation 2 of Adhikari & Huterer 2019). The
angular trispectra will also introduce correlations between the errors
in MAPS at different � modes. Mondal, Bharadwaj & Majumdar
(2016) and Mondal et al. (2017) have quantitatively demonstrated
the impact of non-Gaussianity in the context of estimating the EoR
21-cm 3D power spectrum cosmic variance. Recently, Shaw et al.
(2019) have shown that, in presence of the Gaussian system noise
and foreground contamination, the contribution of trispectrum to the
error variance is significant within a limited range of k modes, and
mostly during the later stages of reionization (z � 10). Considering
the SKA-Low observations, we can ignore the contribution of
the non-Gaussianity of the signal in the observed MAPS error
covariance. Furthermore, estimating the angular trispectrum of the
LC signal is computationally challenging. Hence for simplicity, we
do not consider the non-Gaussian nature of the EoR 21-cm signal
in our calculations and assume the error estimate of the MAPS
is completely determined by that of the Gaussian random field
predictions. Following the calculation presented in Appendix A,
we write the MAPS error covariance as

X�i
12,34 = 〈[

δC t
�i

(ν1, ν2)
][

δC t
�i

(ν3, ν4)
]〉

= 1

2

∑
Ugi

w2
gi

[
C t

�gi
(ν1, ν3)C t

�gi
(ν2, ν4)

+C t
�gi

(ν1, ν4)C t
�gi

(ν2, ν3)
]
, (12)

where the sum is over all the Ugi
grids within the i-th bin and

wgi ≡ w(Ugi ). The variance in the measured C̄�
t
i(ν1, ν2) is thus given

by

X�i
12,12 = [

σ
�i
12

]2 = 〈[
δC t

�i
(ν1, ν2)

]2〉

= 1

2

∑
Ugi

w2
gi

[
C t

�gi
(ν1, ν1)C t

�gi
(ν2, ν2) + {

C t
�gi

(ν1, ν2)
}2]

= 1

2

∑
Ugi

w2
gi

[{
C�gi

(ν1, ν1) + CN
�gi

(ν1, ν1)
}

×{
C�gi

(ν2, ν2) + CN
�gi

(ν2, ν2)
}

+{
C�gi

(ν1, ν2) + δK
ν1ν2

CN
�gi

(ν1, ν2)
}2]

, (13)

where the sum is over the grids points Ugi within the i-th bin. We
know that the MAPS signal peaks along the diagonal elements ν1

= ν2, where the error variance (using equation 13) is given by

[
σ

�i
11

]2 =
∑
Ugi

w2
gi

[
C�gi

(ν1, ν1) + CN
�gi

(ν1, ν1)
]2

. (14)

The two terms in the right-hand side of equation 14 are due to
the cosmic variance and the system noise, respectively. We require
the EoR 21-cm MAPS C�g (ν1, ν2), the noise MAPS CN

�g
(ν, ν) and

appropriate weights wg to estimate the errors (equations 13 and 14).
We obtain the weights by extremizing the SNR with respect to wg

with an assumption that the EoR 21-cm MAPS does not vary much
within an �-bin and therefore C�gi

(ν1, ν2) = C̄�i(ν1, ν2). Note that we
consider the variation of the noise CN

�g
(ν, ν) across the grid points

within a bin. Considering two different frequency channels at ν1

and ν2, for a particular �-bin, we can then express the unnormalized
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4050 R. Mondal et al.

Figure 9. This shows the SNR for MAPS at � = 469, 768, 1257, and 2071 (from left to right, respectively) for tobs = 1024 h for the LC1.

Figure 10. Same as Fig. 9 at � = 486, 796, 1304, and 2147 (from left to right, respectively) for tobs = 1024 h for the LC2.

weights in equation 13 as

w̃g = [{
C�gi

(ν1, ν1) + CN
�gi

(ν1, ν1)
}{

C�gi
(ν2, ν2) + CN

�gi
(ν2, ν2)

}

+{
C̄�g(ν1, ν2) + δK

ν1ν2
CN

�g
(ν1, ν2)

}2]−1
. (15)

This implies that the grid points with higher noise have lower
weights and contribute less to the estimator. The grid points
that are unsampled during the observation (i.e. τ (Ug) = 0 and
CN

�g
(ν, ν) = ∞) have zero weights, hence they do not contribute.

Using equations (13) and (15), we have the expression for the error
variance

[
σ

�i
12

]2 = 1

2
× 1∑

Ugi
w̃gi

. (16)

We now discuss the behaviour of the error variance [σ �i
12]2

(equation 16) in two different scenarios. The MAPS error variance
consists of the cosmic variance and the system noise CN

�g
(ν, ν).

We see from equation 8 that the noise contribution drops off as
CN

�g
(ν, ν) ∝ 1/tobs with an increase in observation time. For small

observation times, the estimated error variance is thus dominated
by the large system noise, and from equation 16, we have

[
σ

�i
12

]2 � C0(ν1)C0(ν2) + δK
ν1ν2

[C0(ν1, ν2)]2

2 × ∑
Ugi

[τ (Ugi
)]2

×
(

8 h

tobs

)2

. (17)

In contrast, we have the other extreme CN
�g

(ν, ν) � 0 for very large
observation times (tobs → ∞). In this case, the error variance

approaches the cosmic variance (CV) limit and we have

[
σ

�i
12

]2 � C̄�gi (ν1, ν1)C̄�gi (ν2, ν2) + [C̄�gi (ν1, ν2)]2

2Ngi

, (18)

where Ngi is the number of sampled grid points in the i-th bin.

5 R ESULTS

Figs 9 and 10 show the SNR for measuring the MAPS at the
four representative � values considered here for LC1 and LC2,
respectively. For the moderate observation time tobs = 1024 h, we
see a correspondence of behaviour between the SNR for MAPS and
the signal (Figs 4 and 5). They both peak along the diagonal and
fall rapidly away from the diagonal. The previous error estimates
(Morales 2005; McQuinn et al. 2006; Zaroubi et al. 2012; Datta et al.
2014; Pober et al. 2014; Ewall-Wice et al. 2016; Shaw et al. 2019)
are restricted to individually analysing small frequency intervals
centred at a particular frequency. However, we see that the error
estimates, as well as the SNR values for MAPS, change with the
frequency across the bandwidth. We shall discuss this in more detail
in the following paragraph.

In the subsequent results, we focus on the diagonal elements ν1 =
ν2 of MAPS. Figs 11 and 12 show 
2(ν, ν) and the corresponding
5σ rms error estimates for LC1 and LC2, respectively. In these
figures, the bottom panels show the relative difference �
2/
2

= (
2(ν, ν) − 5σ 11)/
2(ν, ν). The positive values in the bottom
panels correspond to values that are above the 5σ noise level. In the
following analysis, we have considered four different observation
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Predictions for 21-cm MAPS 4051

Figure 11. This shows the diagonal components of the scale-independent MAPS 
2(ν, ν) and the corresponding 5σ rms error estimates for the LC1. We
consider four different observation times tobs. We also show CV that corresponds to tobs → ∞. The bottom panels show the relative difference �
2/
2 =
(
2(ν, ν) − 5σ 11)/
2(ν, ν). The positive values in the bottom panels correspond to values that are above the 5σ noise level.

Figure 12. Same as Fig. 11 for the LC2.

times tobs = 128, 1024, 10 000 , and 50 000 h. We also show CV,
which corresponds to tobs → ∞ and the system noise approaches
zero. As discussed above, the cosmic variance and the system noise
contribute to the total error budget (equation 14). Considering the
behaviour of rms error at large angular scales, we see that rms error
is not much affected even if tobs is increased. Whereas the rms error
decreases as tobs is increased at small angular scales. This confirms
the fact that the cosmic variance dominates the total error at small �

and the system noise contribution dominates at large �. We also see
that the rms error increases with decreasing frequency across the
bandwidth of our simulations. This is due to the fact that the system
noise contribution increases (equation 8) with decreasing frequency.
Considering Fig. 11, we see that for any feasible tobs a 5σ detection
the MAPS will not be possible at � ≤ 496. The condition improves
at � = 796, where SKA will be able to measure the MAPS at ≥5σ

confidence over ∼25 MHz frequency band for tobs ≥ 128 h. �= 1257
is a better scenario among the four � values, where 5σ detection
will be possible roughly across the entire observational bandwidth
for tobs ≥ 128 h. Whereas, the frequency band allowed for ≥5σ

detection reduces at � = 2071 due to system noise domination. We
find the behaviour in Fig. 12 is similar to that in LC1. The optimal
angular multipole for detection, among the four � values, is � =
1304 in Fig. 12. The difference here is that the MAPS signal peaks
at one end of the band as compared to LC1, where the signal peaks
around the centre of the frequency band.

Fig. 13 plots the SNR for the diagonal elements of MAPS as
a function of � and frequency for four observation times tobs =
128, 1024, 10 000, and 50 000 h (from left to right, respectively)
for LC1 simulation. It also shows various contours corresponding
to different SNR values. We see that the SNR peaks at intermediate
scales corresponding to � of a few thousand. This is because the
cosmic variance dominates the total error at large scales whereas the
system noise dominates at small scales. Since the cosmic variance
part is independent of the total observing time, the SNR at large
scales does not improve by increasing the total observing time.
However, the SNR at small scales (large �) increases with the
total observing time. Consequently, the scale at which the SNR
peaks moves towards the higher � values. The SNR drops at lower
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4052 R. Mondal et al.

Figure 13. This shows the SNR of the diagonal components of MAPS 
2(ν, ν) as a function � at tobs = 128, 1024, 10 000, and 50 000 h (from left to right
respectively) for the LC1.

frequencies (higher redshifts) because of the rise in the system
temperature. We find similar behaviour in Fig. 14 which shows
results for LC2 simulation. The only difference is that the SNR is
maximum at the highest frequency (lowest redshift) explored here.
This is because the power spectrum in this simulation is maximum
at the highest frequency unlike the LC1 simulation where the power
spectrum peaks at some intermediate frequency.

6 EF F E C T S O F FO R E G RO U N D S

Foregrounds pose a major challenge even for the statistical detection
of the EoR 21-cm signal. Two main approaches have been proposed
in the literature to tackle the foreground problem. One of them is the
foreground removal (Morales, Bowman & Hewitt 2006; Ali et al.
2008; Harker et al. 2009; Bonaldi & Brown 2015; Pober et al. 2016;
Mertens, Ghosh & Koopmans 2018; Mertens et al. 2020), in which
the foreground is modelled and removed from the observed 21-cm
signal. The forecast of this analysis till now has assumed that the
foregrounds have been completely removed, and we refer this as the
‘Optimistic’ scenario (Chatterjee & Bharadwaj 2018; Shaw et al.
2019).

The other technique is termed as foreground avoidance. The
foreground contamination is found to be restricted within a wedge
shaped region in the (k⊥, k‖) plane (Datta, Bowman & Carilli 2010)
with the wedge boundary defined by

k‖ =
[

rc sin (θL)

r ′
cνc

]
k⊥ , (19)

where rc is the comoving distance corresponding to the central
frequency νc, r ′

c = ∂rc
∂ν

|νc and θL is the angle on the sky with respect
to the zenith from which the foregrounds contaminate the EoR
21-cm signal. The value of θL and hence the slope of the wedge
is determined by the level of foreground contamination (Morales
et al. 2012; Hassan, Andrianomena & Doughty 2019). The region
outside the foreground wedge, the ‘EoR Window’, is utilized for
estimating the EoR 21-cm 3D power spectrum P (k) (Pober et al.
2013; Kerrigan et al. 2018). The upper limit of the wedge boundary
is set by the horizon for which θL = 90◦. We refer to this case as the
‘Pessimistic’ scenario (Chatterjee & Bharadwaj 2018; Shaw et al.
2019).

Ghosh et al. (2011) and Choudhuri et al. (2016) have shown that
tapering the sky response in telescope’s field of view restricts the
θL to an angle smaller than the horizon limit. In this analysis, we
consider two different tapering situations which assume θL = 3 ×
(FWHM/2) and θL = 9 × (FWHM/2). Here, FWHM is the full

width at half-maximum of the SKA-Low primary beam. We refer
these two tapered cases as the ‘Mild’ and ‘Moderate’ scenarios,
respectively (Chatterjee & Bharadwaj 2018; Shaw et al. 2019).

As mentioned earlier, our estimator C�(ν1, ν2) does not assume
that the signal is ergodic and periodic along the LoS direction.
Therefore, it is not straightforward to consider the foreground wedge
in our analysis as this explicitly assumes the signal to be ergodic
and periodic along LoS direction. Following Mondal et al. (2018),
we define CEP

� (ν1, ν2) which is the ergodic (E) and periodic (P)
component of C�(ν1, ν2). The CEP

� (ν1, ν2) is estimated from the
measured C�(ν1, ν2) by imposing the conditions CEP

� (ν1, ν2) = CEP
� (|

ν1 − ν2 |) = CEP
� (�ν) (ergodicity) and CEP

� (�ν) = CEP
� (B − �ν)

(periodicity). Under these assumptions, we can estimate CEP
� (�ν)

using equation (21) of Datta et al. (2007) as

CEP
� (�ν) = 1

πr2
c

∫ ∞

0
dk‖ cos (k‖r ′

c�ν) P (k⊥, k‖) . (20)

We compute the foreground ‘wedge’ boundary in (k⊥, k‖) plane
and discard the signal contained within it. A sharp cut-off at the
wedge boundary introduces ripples in the estimated CEP

� (�ν) while
performing the Fourier transform (equation 20). In order to avoid
this issue, we multiply the P(k⊥, k�) with a Butterworth filter of
order 16

B(k⊥, k‖) = 1√
1 +

(
r ′
c νc k‖

rc sin (θL) k⊥

)32
. (21)

The value of the Butterworth function is 1 within wedge and it
decays sharply but continuously to zero outside the wedge. The
value is 1/

√
2 at the wedge boundary. By changing the order of

the Butterworth function one can control its steepness and also
the amount of foreground spill into the EoR window (Chatterjee,
Bharadwaj & Marthi 2019). We then take Fourier transform of
P (k⊥, k‖)B(k⊥, k‖) to get the foreground contaminated CEP

� (�ν)
(equation 20). Finally, we use the ‘Foreground Avoidance’ MAPS
CFA

� (ν1, ν2) = C�(ν1, ν2) − CEP
� (�ν) for the MAPS SNR predic-

tions. This leads to subtraction of a part from MAPS at each
frequency at any particular � value.

Figs 15 and 16 show the SNR predictions for the diagonal
components of MAPS 
2(ν, ν) as a function � at tobs = 1024 h
for LC1 and LC2, respectively. In these figures, the four panels
show the predictions for the ‘Optimistic’, ‘Mild’, ‘Moderate’,
and ‘Pessimistic’ scenarios starting from the left to the right,
respectively. The first obvious point is that the SNR gradually
decreases from the Optimistic to the Pessimistic scenario. This
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Predictions for 21-cm MAPS 4053

Figure 14. Same as Fig. 13 for the LC2.

Figure 15. This shows the SNR of the diagonal components of MAPS 
2(ν, ν) as a function � at tobs = 1024 h for ‘Optimistic’, ‘Mild’, ‘Moderate’, and
‘Pessimistic’ (from left to right respectively) for the LC1.

Figure 16. Same as Fig. 15 for the LC2.

happens due to the fact that more number of k� modes are being
discarded from the Optimistic to the Pessimistic scenario due to
increase in foreground wedge. Note that the extent of the foreground
wedge increases at lower νc due to the factor rc/r

′
cνc ∼ √

1420/νc

and θL as well (Shaw et al. 2019). As a consequence, we see
the effects of the foreground wedge is more for LC2 (Fig. 16)
as compared to LC1 (Fig. 15). Considering the region where the
SNR exceeds the value 5 for LC1, we see the detection of MAPS is
possible over the full available bandwidth at � ∼ 2000 for Optimistic
scenario. However, the bandwidth for a 5σ detection reduces to
∼40, ∼25, and ∼20 MHz for Mild, Moderate, and Pessimistic
scenarios, respectively. We find qualitatively similar behaviour in
Fig. 16 which shows the results for LC2 simulation. As mentioned
above, the impacts of foreground avoidance is more for LC2 box

for being centred at a smaller frequency (higher redshift). Note that
this analysis is particularly valid where the signal is ergodic and
periodic along the LoS. However, at the moment we do not have a
clear picture of how to tackle the foreground problem in the context
of MAPS. This is a problem worthy of detailed investigations in
future.

7 D I SCUSSI ON AND C ONCLUSI ONS

Several observational efforts are underway to detect the EoR 21-
cm power spectrum P (k) using the presently operating radio
interferometers across the globe. One of the key science goals of the
future telescope SKA-Low is to measure the spherically averaged
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3D EoR power spectrum P(k). The definition of the spherically
averaged 3D power spectrum makes use of the assumption that the
signal is ergodic and periodic in all three spatial directions. However,
the LC effect breaks both ergodicity and periodicity along the LoS
of the observer. The problem is particularly severe during EoR
where the mean H I fraction x̄H I changes rapidly with redshift and
this affects large bandwidth observations with different telescopes
(Mondal et al. 2019). The spherically averaged 3D power spectrum
P(k) can no longer therefore be regarded as the correct estimator
to quantify the second-order statistics of the EoR 21-cm signal
(Mondal et al. 2018), and any estimation using this may lead to a
biased estimate for the statistics of the signal (Trott 2016). As an
alternative to P(k), we have used the MAPS C�(ν1, ν2) to quantify
the two-point statistics of the EoR 21-cm signal. This does not
assume the signal to be ergodic and periodic along the LoS. The
only assumption here is that the signal is statistically homogeneous
and isotropic in different directions on the observing plane of the
sky. In this work, we make predictions on the SNR for measuring the
EoR 21-cm MAPS using the future radio interferometer SKA-Low.

The sensitivity of any instrument to the measurement of the EoR
21-cm MAPS is limited by the errors, a part of which is inherent
to the signal itself (cosmic variance), and the other part arises
due to the system noise (external contamination). The EoR 21-
cm signal is expected to be a highly non-Gaussian field (Bharadwaj
& Pandey 2005; Mondal et al. 2015; Majumdar et al. 2018). The
effects of this inherent non-Gaussianity play a significant role in the
error estimates of the two-point correlation functions of the signal
(Mondal et al. 2016, 2017; Shaw et al. 2019). The non-Gaussianity
of the signal introduces non-zero trispectrum contribution in the
error covariance of the 21-cm MAPS. However in this work, we
assume that the observed 21-cm MAPS error covariance is well
approximated by that of a Gaussian field predictions and ignored
the trispectrum contribution for the simplicity of computations.
We have used a 3D radiative transfer code C2-RAY to generate
the EoR 21-cm LC signal and incorporated observational effects
like the system noise and the array baseline distribution to predict
the prospects of observing the bin-averaged MAPS using SKA-
Low. We have considered two observations LC1 centred at νc =
175.58 MHz, which corresponds to x̄H I ≈ 0.50, and LC2 centred
at νc = 157.08 MHz, corresponding to x̄H I ≈ 0.75. We also present
a detailed theoretical framework to quantify and interpret the error
estimates for the MAPS incorporating the system noise.

For moderate observation times, we have seen that the rms error
σ scales as 1/tobs and consequently we have SNR∝tobs. In this case,
we have found similar behaviour between the signal and the SNR for
MAPS (Figs 4, 5, 9, and 10). They both peak along the diagonal ν1

= ν2 and fall rapidly away from the diagonal. For further analysis,
we have focused on the diagonal elements of the MAPS. We have
found that the error predictions for MAPS are not much affected
by the choice of tobs at large angular scales. This is due to the fact
that cosmic variance dominates the total error budget at small �. We
have also found that the rms error decreases as tobs is increased at
small angular scales. This is because the system noise dominates
the total error at large �. We have found that a 5σ detection of
MAPS will not be possible with SKA-Low at � ≤ 496 for LC1, and
at � ≤ 486 for LC2. Although, we have found that the SKA will be
able to measure the MAPS at ≥5σ confidence roughly across the
∼44 MHz observational bandwidth at � ∼ 1300 with tobs ≥ 128 h.
Whereas, the frequency band allowed for ≥5σ detection reduces
at higher values of � due to system noise domination. We have
noted that the rms error increases with decreasing frequency across
the bandwidth of our simulations. This is due to the fact that the

system noise contribution increases (equation 8) with decreasing
frequency. We have extended our analysis to study how the SNR for
the diagonal elements of 21-cm MAPS changes with � (Figs 13 and
14). Note that the system noise contribution, at a fixed �, decreases
with as tobs increases but the cosmic variance remains unchanged.
However, the cosmic variance dominates the total error at larger
values of � for a fixed tobs. This interplay between the system noise
and cosmic variance (as a function of tobs) causes the peak of the
SNR for MAPS to shifts toward larger values of � as tobs is increased
(Figs 13 and 14).

In Section 5, we have assumed that the foregrounds are com-
pletely removed from the signal. We refer this as the ‘Optimistic’
scenario. In Section 6, we have then attempted to quantitatively
address the effects of foregrounds on MAPS detectability forecast.
The foreground contamination is found to be restricted within a
wedge shaped region in the (k⊥, k‖) plane (Datta et al. 2010) and
the region outside the foreground wedge is utilized for estimating
the EoR 21-cm 3D power spectrum P (k) in foreground avoidance
technique (Morales et al. 2012; Pober et al. 2013; Kerrigan et al.
2018; Hassan et al. 2019). We have considered three foreground
scenarios ‘Mild’, ‘Moderate’, and ‘Pessimistic’ respectively. We
have found that the SNR gradually decreases from the Optimistic
to the Pessimistic scenario. The bandwidth for a 5σ detection at
� ∼ 2000 reduces from full available bandwidth to ∼40, ∼25,
and ∼20 MHz for Mild, Moderate, and Pessimistic scenarios,
respectively for LC1. We have found qualitatively similar behaviour
for LC2. However, the impacts of foreground avoidance is more for
LC2 for being centred at a smaller frequency (higher redshift).

In conclusion, our study indicates that the EoR 21-cm MAPS,
which is directly related to the correlations between the visibilities
measured in radio interferometric observation, can be measured at
a confidence level of 5σ or more at angular multipole � ∼ 1300
for tobs ≥ 128 h across ∼44 MHz observational bandwidth using
SKA-Low. The framework presented in this paper is general and
can be applied to any radio interferometer given the array baseline
distribution.
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A P P E N D I X A : MA P S ER RO R C OVA R I A N C E

The error covariance of the MAPS measured at the i-th and the j-th
bins can be written as

X
�i�

′
j

12,34 = 〈[
Ĉ t

�i
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�i
(ν1, ν2)

][
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Ĉ t

�i
(ν1, ν2)Ĉ t
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�i

(ν1, ν2)C̄ t
�′

j
(ν3, ν4). (A1)

Using equation 11, the first term on the right side of the equa-
tion (A1) can be expressed as
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Using T̃ t
b2(U, ν) = T̃b2(U, ν) + T̃ N

b2(U, ν) and equation 7, the first
ensemble average in equation (A2) can be arranged as〈
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(A3)

where δK
U−U ′,0 and δK

U+U ′,0 are Kronecker’s delta. Here, we have

considered that T̃b2(U, ν) correlates at same baselines U and

T̃ N
b2(U, ν) correlates at same U and same frequency ν. We obtain

this expression after ignoring the non-Gaussianity of the EoR 21-
cm signal. However, the inherent non-Gaussianity gives rise to a
non-zero four point connected term (trispectrum; see equation 2 of
Adhikari & Huterer 2019) in the cosmic variance of MAPS. The
non-zero trispectra will introduce additional term in equation (A3)
which will eventually increase the variance and also introduce
correlations between errors in the estimated MAPS. We finally
ignore trispectrum contribution in our error analysis following the
discussion in Section 4.2.

The MAPS estimations are restricted to the upper half of the
baseline distribution. Hence, δK

U+U ′,0 = 0 and equation A3 reduces
to

〈
T̃ t

b2(U, ν1)T̃ t
b2(−U, ν2)T̃ t

b2(U ′, ν3)T̃ t
b2(−U ′, ν4)

〉

= �2
[
C t

�(ν1, ν2)C t
�′ (ν3, ν4) + δK

U−U ′,0 C t
�(ν1, ν4)C t

�′ (ν2, ν3)
]
.

(A4)

Similarly, one can write down the other three ensemble averages of
equation (A2) by permuting the frequency indices in equation (A4).
Combining equation (A1) and (A4) with the other ensemble
averages, we write the error covariance in compact form

X
�i�

′
j

12,34 = 1

2
δK

U−U ′,0

∑
U

∑
U ′

w(U)w(U ′)
[
C t

�i
(ν1, ν3)C t

�′
j
(ν2, ν4)

+ C t
�i

(ν1, ν4)C t
�′

j
(ν2, ν3)

]
. (A5)

Finally, exploiting the Kronecker’s delta, we obtain

X�i
12,34 = 1

2

∑
U

w2
[
C t

�(ν1, ν3)C t
�(ν2, ν4) + C t

�(ν1, ν4)C t
�(ν2, ν3)

]
.

(A6)
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