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We investigate the dynamics of hybrid junctions made of the topological superconductor (TS) and normal
metal (N) wires. We consider an X-Y-Z configuration for the junctions where X, Y, Z = TS, N. We assume the
wires X and Z are semi-infinite and in thermal equilibrium. We connect the wires X and Z through the short
Y wire at some time and numerically study time evolution of the full device. For TS-N-TS devices, we find a
persistent, oscillating electrical current at both junctions even in the absence of any phase, voltage, or thermal
bias. The amplitude and period of the oscillating current depend on the initial conditions of the middle N wire
indicating the absence of thermalization. This zero-bias current vanishes at long times for any of X and Z being
an N wire or a TS wire near a topological phase transition. Using properties of different bound states within the
superconducting gap, we develop a clear understanding of the oscillating currents.
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I. INTRODUCTION

Recent progress in search of Majorana zero modes
(MZMs) in condensed matter systems has generated massive
interest for better understanding, control, and engineering
of such systems featuring these exotic quasiparticles [1–4].
The MZMs have been theoretically proposed to emerge at
the edges of a topological superconductor (TS) wire and
to exhibit non-Abelian particle statistics [5–7]. Several ex-
periments have observed significant evidence of MZMs in
electrical transport measurements with engineered TS wires
[8–12]. These TS wires hosting Majorana quasiparticles are
expected to be an essential component of future quantum
devices such as fault-tolerant quantum computers. Therefore,
it is necessary to investigate various properties including
thermalization, transport, and braiding operations in hybrid
junctions of TS and normal metal (N) wires.

In the past ten years, there have been many theoretical
studies for electrical transport in different junctions of TS and
N wires [2,3]. Most of these studies discuss steady-state trans-
port to derive zero-bias conductance [13–17], current-voltage
characteristics [16,18], current-phase relation for fractional
Josephson effect [18–23], and robust Majorana conductance
peaks [24,25]. There are also some time-evolution studies
after a quantum quench [26–29] such as when an N wire is
suddenly connected to a TS wire. Interestingly, a systematic
study for the dynamics of tunneling current in these hybrid
devices is missing. In this paper, we study transient and
steady-state quantum transport in hybrid junctions of X-Y-Z
configuration where X, Y, Z = TS, N (see the cartoon in
Fig. 1). We primarily address route to equilibration in these
junctions by investigating the dynamics of tunneling current.
Ideally, we consider the wires X and Z to be semi-infinite
and in thermal equilibrium. However, we can only investigate
LX,Z/LY � 1 in our numerics for time evolution where LX,Z

and LY are the lengths of the wires X or Z and Y, respectively.
We connect the wires X and Z through the middle Y wire at

some time t0 and explore time evolution of the full system for
various initialization of the middle wire. We probe electrical
current through the X-Y and Y-Z junctions at every stage of
time evolution. Here we do not consider a voltage bias for
a TS-N-TS device which can be incorporated through time-
dependent phases in the tunnel couplings across the junctions
[18]. In the main part of the paper, we also ignore any effect
which can arise due to phase difference of superconducting
pairing potential across the junctions of TS wires; therefore,
we set the phase of the TS wires to be same (or zero for
simplicity) everywhere.

We find a nondecaying, oscillating electrical current at both
junctions of a TS-N-TS device even in the absence of any
thermal or voltage bias and for identical TS wires (no phase
difference). The amplitude and period of the oscillating cur-
rent depend on the energy eigenstates of the wires which are
localized around the junctions and within the superconducting
gap of the TS wires, and on the initial conditions of the N
wire. Since the wave functions of the energy eigenstates of the
N wire in the superconducting gap decay exponentially deep
inside the TS wire, they act as bound states. The presence of
such bound states prevent equilibration (thermalization) of the
middle N wire with the boundary wires [30], and this results
into the nonuniqueness (initial-condition dependence) of the
persistent current. There is no zero-bias oscillating current at
long times in an N-TS-N and an X-N-Z device when any of
the X and Z being an N wire or a TS wire near a topological
phase transition. In these latter cases, the energy spectrum of
one of the boundary wires is gapless. Thus, there is no more
bound state from the middle N wire, and the middle wire
gets equilibrated with the boundary wire(s). Using properties
of different bound states within the superconducting gap in
our devices, we develop a theory to reproduce the simulated
oscillating current with little numerics.

The details of our study are provided in the following
sections and appendices. In Sec. II, we model the TS wires as
a one-dimensional (1D) p− wave superconductor of spinless
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FIG. 1. Schematic of a hybrid device of X-Y-Z configuration

where X, Z are made of topological superconductors (TS) and Y is a
normal metal (N). It shows the individual components of the device
before (top) and after (bottom) their coupling via the tunneling rate
γXY and γYZ. The red dots indicate Majorana bound states appearing
at the edges of the TS wires.

fermions proposed by Kitaev, and we discuss our method here
to study the dynamics of such hybrid devices. We present
results of the time-evolution study for different hybrid devices
made of Kitaev chains in Sec. III. We show in Sec. IV that
the main conclusions obtained for Kitaev chains also survive
for a more realistic model of TS wires made of spin-orbit
coupled semiconductor-superconductor heterostructure in the
presence of magnetic field. In Sec. V, we carry out a numeri-
cally inexpensive study of the time evolution of density matrix
by solely keeping the contribution of the spatially localized
bound states. We discuss related recent studies and the pos-
sibility of an experimental test of our findings in Sec. VI.
We include four appendices: Appendix A and Appendix C
to present the temporal evolution of currents in an N-TS-N
device and a TS-N-N device, respectively; Appendix B to
show the change in the temporal evolution of currents in a
TS-N-TS device for a longer length of N wire and a phase
difference between the TS wires; and Appendix D to clarify
the role of tunnel coupling.

II. MODEL AND METHOD

We now introduce the Hamiltonian for various components
of the hybrid junctions. We model the N wire as a noninteract-
ing tight-binding chain of spinless fermions and the TS wire
by the Kitaev chain of a spinless p-wave superconductor [5]
everywhere except in Sec. IV where we extend our study to
an experimentally realizable model of TS wires [6–9]. We
write below a general Hamiltonian Hα which can be used to
represent N and TS wires by tuning the parameters,

Hα = −γα

Lα−1∑
l ′=1

(c†
l ′cl ′+1 + c†

l ′+1cl ′ ) − εα

Lα∑
l ′=1

c†
l ′cl ′

+�α

Lα−1∑
l ′=1

(c†
l ′c

†
l ′+1 + cl ′+1cl ′ ), (1)

where cl ′ (c†
l ′ ) indicates annihilation (creation) operator of a

spinless fermion at site l ′ of the wire segment α = X,Y,Z.
Here, the parameters γα, εα , and �α denote, respectively,

hopping, on-site energy, and superconducting pairing energy,
and we take them to be real. The Hamiltonian Hα indicates an
N wire in the absence of pairing (�α = 0). In the presence
of pairing �α �= 0, the superconducting wire undergoes a
topological phase transition as εα is increased across 2γα . The
wire is in a topological phase for |εα| < 2|γα| and the TS
wire hosts two MZMs at the opposite ends of the wire for
a relatively long wire. The wire is in a topologically trivial
phase without the MZMs for |εα| > 2|γα|. The topological
phase transition near |εα| = 2|γα| is also accompanied by a
bulk-gap closing. The superconducting wire has a large bulk
gap in its spectrum both in the topologically nontrivial and
trivial phases, and the gap vanishes at the topological phase
transition around |εα| = 2|γα|.

The tunneling Hamiltonian for the X-Y and Y-Z junction
is independent of nature of X, Y, Z, and we take it of the
following form:

Hαβ = −γαβ (c†
l ′cl ′+1 + c†

l ′+1cl ′ ), (2)

where αβ = XY, l ′ = LX, and αβ = YZ, l ′ = LX + LY, re-
spectively, for the X-Y and Y-Z junctions. For simplicity, we
assume here the tunneling rate γαβ (with γαβ � γα, γβ) to be
the same for both junctions, i.e., γXY = γYZ = γ ′. The full
Hamiltonian of the hybrid device is HF = HX + HY + HZ +
HXY + HYZ. The full device consists of L = LX + LY + LZ

number of fermionic sites. Using conservation of electrical
charges across the junctions, we define the electrical current
at the junctions as

Jαβ = iγαβ〈(c†
l ′cl ′+1 − c†

l ′+1cl ′ )〉, (3)

where again αβ = XY, l ′ = LX, and αβ = YZ, l ′ = LX + LY,
respectively, for the X-Y and Y-Z junctions. The expectation
〈..〉 defines averaging over the initial states of the wires.

Due to the pairing term �α in the superconducting parts
of the hybrid device, it is convenient to use a basis a ≡
(a1, a2, . . . , a2L−1, a2L )T = (c1, c†

1, . . . , cL, c†
L )T to write the

quadratic Hamiltonian HF = 1
2 a†HFa = 1

2

∑
l,m HF

lma†
l am in

terms of the matrix HF
lm [31,32]. Thus, a2l = a†

2l−1. Clearly,
the index l in al (or a†

l ) does not represent the actual physical
site of the wire. For a given l , one can define a map to the
physical site l ′ of spinless fermions as l ′ = (l + 1)/2 for odd
values of l and l ′ = (l/2) for even values of l . We consider the
wires X and Z are in thermal equilibrium at temperatures TX,Z

and chemical potentials μX,Z before we connect them through
the middle wire Y at time t0. For isolated X and Z wires,
we have Hα = 1

2

∑
l,m Hα

lma†
l am with l, m = 1, 2, . . . , 2LX for

α = X, and l, m = 2(LX + LY) + 1, 2(LX + LY) + 2, . . . , 2L
for α = Z. Therefore, we can write

∑
m

Hα
lmψα

q (m) = λα
qψα

q (l ), (4)

where ψα
q (m) and λα

q represent the eigenvectors and eigenval-
ues of the wire α = X,Z. Thus, the equilibrium density matrix
for sites on the isolated boundary wires

〈a†
l (t0)am(t0)〉 =

∑
q

ψα
q

∗(l )ψα
q (m) f

(
λα

q , μα, Tα

)
, (5)
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with l, m = 1, 2, . . . , 2LX for α = X and l, m =
2(LX + LY ) + 1, 2(LX + LY ) + 2, . . . , 2L for α = Z. Here,
f (λα

q , μα, Tα ) = 1/(e(λα
q −μα )/kBTα + 1) is the Fermi function.

We also assume that the operators from different X, Y,
Z wires are uncorrelated when they are disconnected at t0.
Therefore, we have

〈a†
l (t0)am(t0)〉 = 〈al (t0)a†

m(t0)〉
= 〈al (t0)am(t0)〉 = 〈a†

l (t0)a†
m(t0)〉 = 0 , (6)

where l and m represent indices corresponding to two different
wires of the hybrid device. We here do not take a thermal
distribution for the middle wire Y at t0. Instead, we choose
some arbitrary initial density matrix of wire Y, such as

〈a2l ′ (t0)a2m′−1(t0)〉 =
{

nl ′ when l ′ = m′
0 when l ′ �= m′ (7)

for physical sites: l ′, m′ ∈ {LX + 1, . . . , LX + LY} and nl ′ de-
notes the number of fermions at a site l ′. We wish to check
whether the density matrix of the full device in the long-
time limit t → ∞ becomes independent of the initial density
matrix of the middle wire. Such independence would indicate
thermalization of the Y wire by the X and Z wires. We carry
out this job by calculating time evolution of electrical current
at the junctions. So, we connect the wires by the tunneling
Hamiltonians at time t0 and study the time evolution of the full
device using the Heisenberg equations of motion. The solution
of these equations of motion is given by

a(t ) = iG+(t − t0)a(t0), (8)

where G+(τ ) = −ie−iHFτ θ (τ ) = ∑
l,m G+

lm(τ )a†
l am is the re-

tarded Green’s function of the full device and the matrix
elements are G+

lm(τ ) ≡ [−ie−iHFτ ]lmθ (τ ). Here, θ (τ ) is the
Heaviside step function. Suppose, �q(m) and �q denote the
eigenvectors and eigenvalues of the full Hamiltonian HF.
Therefore,

2L∑
m=1

HF
lm�q(m) = �q�q(l ), l = 1, 2, . . . , 2L. (9)

We apply the above relations to write the matrix elements of
the full Green’s function in the following form for t > t0:

G+
rs (t − t0) = −i

2L∑
q=1

�q(r)�∗
q (s)e−i�q (t−t0 ) , (10)

where r, s ∈ {1, . . . , 2L}. Now, we can write the time-evolved
density matrix of the full device as

〈a†
l (t )am(t )〉 =

2L∑
r,s=1

G+
ms(t − t0)〈a†

r (t0)as(t0)〉[G+
lr (t − t0)]†,

(11)

where we plug the initial density matrix 〈a†
r (t0)as(t0)〉 from

Eqs. (5)–(7). Using Eqs. (11) and (3), we evaluate the time
evolution of the electrical current at the junctions. These are

given by

JXY(t ) = 2γXYIm
[〈

a†
2LX+1(t )a2LX−1(t )

〉]
, (12)

JYZ(t ) = 2γYZIm
[〈

a†
2(LX+LY )+1(t )a2(LX+LY )−1(t )

〉]
. (13)

III. RESULTS FOR KITAEV CHAIN

In the following numerical analysis, we fix γX = γZ = γ >

γY so the bands of the boundary wires are broader than that
of the middle. An N-N-N device in the above setup has been
studied in detail in Ref. [30] and it has been shown that there
is a unique nonequilibrium steady state (independent of initial
values of nl ′ ) in the device when there is no single particle
bound state from the middle wire (the band of wire Y lies
within that of X and/or Z).

First, we investigate dynamics of an N-TS-N device whose
steady-state transport characteristics are extensively studied
both theoretically [13–17] as well as experimentally [8,9,12]
for detection of MZMs [33]. We here prepare the decoupled N
wires of our N-TS-N device initially in thermal equilibrium.
We find from our numerics (check Appendix A) that the
nonequilibrium steady-state transport in the N-TS-N device
seems to be independent of the initial conditions of the finite
TS wire when the band of the N wires is wider than that of
the TS wire. Our present finding of unique nonequilibrium
steady state in the N-TS-N device validates all those previous
steady-state transport analyses [16,17] in this system.

Next, we consider a TS-N-TS device which has been
investigated for the Josephson effect in topological systems
[18–20,22]. We take the temperature of both the TS wires to
be the same and very low, and set their chemical potential to
zero. Then, one would naively expect zero electrical current
in such junctions of identical TS wires at long times. Surpris-
ingly, we find a persistent and oscillating electrical current
at both the junctions of the TS-N-TS device. In Fig. 2, we
show time evolution of JXY(t ) from t0 = 0 for different initial
density nl ′ of the middle N wire. The amplitude and period
of the current oscillation in Figs. 2(a) and 2(b) depend on
the initial density of the N wire. For example, there is only
a single oscillation period in Fig. 2(a) for initial density, n1 =
n2 = n3 = 0, while there are two oscillation periods (a short
time and a long time) in Fig. 2(b) for n1 = 0, n2 = n3 = 1.
Thus, our TS-N-TS device does not equilibrate.

The absence of a unique long-time steady state (equilibra-
tion) in a TS-N-TS device is due to the presence of bound
states near the junctions. The wave functions of these bound
states decay exponentially deep inside the TS wires. The
energy of these bound states lies within the superconduct-
ing gap of the TS wires. Apart from the Majorana bound
states (MBSs) of the TS wires near the intersections, there
can be such bound states originating from the N wire, and
they are commonly known as the Andreev bound states.
We observe that the amplitude and period of the current
oscillation in the TS-N-TS device also depend on the to-
tal number of such bound states near the junctions (see
Appendix B). For example, there are two midgap states
with energy ±0.12236 at the edges of TS wires near the
intersections as well as two energy eigenstates (at energy
±0.16795) from the middle N wire inside the superconducting
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FIG. 2. Temporal evolution of the zero-bias current JXY(t ) in
a TS-N-TS device made of identical TS wires, and the role of N
wire’s initial density nl ′ . The blue curves are obtained from full
numerics and the red curves are from numerics with only bound
states. In all panels, LX = LZ = 900, LY = 3, γX = γZ = 1, γY =
0.5, �X = �Z = 0.3, εX = εZ = 0, εY = 0.05, γXY = γYZ = 0.25,
and TX = TZ = 0.02. The above parameters (except lengths) are in
units of γ .

gap for the TS-N-TS device in Fig. 2. The energy of midgap
states from the TS wires near the junctions is nonzero due
to hybridization of the MBSs of the TS wires through the
short middle wire (check Appendix E). From these bound
state energies, we derive the periods of short and long time
oscillations, respectively, as 2π/(0.16795 + 0.12236) ≈ 21.6
and 2π/(0.16795 − 0.12236) ≈ 137.8, which are in good
agreement with the simulated periods in Fig. 2. In Fig. 8, we
further show that the amplitudes of current oscillations remain
almost the same as in Fig. 2 when there is no hybridization of
the MBSs of the TS wires and the energy of midgap states
from the TS wires is almost zero (Appendix E). However,
the periods of current oscillations in Fig. 8 are different from
Fig. 2 due to the change in energy of the bound states.

To further illustrate the role of these bound states in the
absence of equilibration, we study time evolution in a TS-
N-Z device where we either apply an N wire for Z or tune
the on-site energy of a superconducting Z wire to sweep
through a topological phase transition. We do not find any
persistent, oscillating electrical current in a TS-N-N device
in the absence of bias and we show it in Appendix C. The
band of a semi-infinite N wire in our model is continuum
without a bulk gap. Therefore, the MBS of the TS wire near
the junctions as well as the energy levels of the middle N
wire do equilibrate with the boundary N wire; thus there is
no oscillating current.

We find persistent, oscillating currents [e.g., check
Fig. 3(a)] in a TS-N-Z device in the absence of voltage or
thermal bias when |εZ| < 2|γZ|, such that there are MBSs
at the edges of the topological Z wire, and the bulk gap
(∼|εZ − 2γZ|) in the energy spectrum of the Z wire is much
larger than γ 2

YZ–dissipation induced by the coupling between
Y and Z wires. Again, we can separately estimate the periods
of oscillating currents in Fig. 3(a) using the bound state
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FIG. 3. Nature of zero-bias currents in a TS-N-Z device when
the on-site energy of the superconducting Z wire is swept through
a topological phase transition. The blue full lines are for JXY(t )
and the red dashed lines are for JYZ(t ). The on-site energy εZ =
1, 2, 2.5 in panels (a), (b), and (c), respectively. In all panels, LX =
LZ = 900, LY = 3, γX = γZ = 1, γY = 0.5, �X = �Z = 0.3, εX =
0, εY = 0.05, γXY = γYZ = 0.25, nl ′ = 0, and TX = TZ = 0.02. The
above parameters (except lengths) are in units of γ .

energies, and they are 2π/(0.15455 + 0.11557) ≈ 23.3 and
2π/(0.15455 − 0.11557) ≈ 161.2. Regardless of the initial
density of the middle N wire, there is no persistent, oscillating
electrical current at the long time in a TS-N-Z device for
|εZ| ≈ 2|γZ| when there is either no bulk gap in the energy
spectrum or a bulk gap which is smaller or the same order of
γ 2

YZ. In Fig. 3(b), we show rapid decays of JXY(t ) and JYZ(t )
to zero with time from initial time t0 = 0 when |εZ| = 2|γZ|.
We also notice in Fig. 3(b) that the amplitude of JYZ(t ) is
much smaller than JXY(t ) in the time duration when they are
nonzero. The last fact indicates that such decays of JXY(t ) and
JYZ(t ) are due to equilibration by the thermal Z wire which
affects the YZ junction more than the XY junction. Finally,
we show oscillating JXY(t ) and JYZ(t ) in Fig. 3(c) when the Z
wire is in a topologically trivial phase with a large bulk gap for
|εZ| > 2|γZ|. However, the amplitude of JYZ(t ) is almost two
orders smaller than JXY(t ) due to the large bulk gap and the
absence of MBS in the Z wire, making the effective coupling
between the Y and Z wires much smaller than that between the
Y wire and the MBS in the TS wire. The pattern of oscillation
in Fig. 3(c) differs from that in Fig. 3(a) due to the presence
of an extra MBS in the topological Z wire near the junction
in case of Fig. 3(a). The energy of MBS near the junction
of the left TS wire remains almost zero due to negligible
hybridization when the Z wire is topologically trivial (check
Appendix E). The period of current oscillation in Fig. 3(c)
is then estimated solely by the bound-state energy from the
middle N wire as 2π/0.14833 ≈ 42.4.

It is clear from Figs. 2 and 3 that the zero-bias current os-
cillations of sizable amplitude persist in these hybrid devices
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only when there is a midgap state or an MBS at that junction
from the adjoining TS wire. Therefore, we can conclude
that the large-amplitude zero-bias current oscillation in these
systems is a direct signature of midgap bound states (due to
hybridized or nonhybridized MBSs) of the superconducting
boundary wire(s).

IV. PERSISTENT OSCILLATING CURRENTS IN
SEMICONDUCTOR-SUPERCONDUCTOR

HETEROSTRUCTURE JUNCTION

In the preceding sections, we have discussed the absence
of equilibration and the persistent current oscillations in ide-
alistic TS-N-TS device where these TS wires are 1D p-wave
superconductors of spinless fermions proposed by Kitaev. The
Kitaev’s spinless p-wave chain can be experimentally realized
in a 1D semiconductor-superconductor heterostructure which
consists of a spin-orbit coupled semiconductor nanowire
proximity coupled to an s-wave superconductor, and in the
presence of Zeeman spin splitting along the direction of

the wire. For a particular value of Zeeman field B above
the critical field Bc(= √

�2 + ε2), this heterostructure (semi-
conductor Majorana wire) hosts MBSs at the edges [1,6].
Here, � is the s-wave superconducting pairing potential
proximity induced in the semiconductor and ε is the chem-
ical potential of the semiconductor nanowire. To investi-
gate the fate of persistent oscillating current in an ex-
perimentally realizable system, we consider a generalized
model of the junction in which the middle Y wire is
also a Rasbha spin-orbit-coupled semiconductor (SM) wire
with Zeeman interaction. We choose such a junction be-
cause it would be convenient to realize in experiments
with the TS wires made of semiconductor-superconductor
heterostructures [8,9,12]. The full Hamiltonian of such
TS-SM-TS device is given by

HF = HSS
X + HSM

Y + HSS
Z + HXY + HYZ. (14)

The Hamiltonian of the TS wires derived from semiconductor-
superconductor heterostructures in the presence of a magnetic
field is represented by HSS

α :

HSS
α =

Nα−1∑
l ′=Iα

[
− γα

∑
σ=↑,↓

(c†
l ′,σ cl ′+1,σ + c†

l ′+1,σ
cl ′,σ ) + ζα (c†

l ′+1,↑cl ′,↓ − c†
l ′+1,↓cl ′,↑ + c†

l ′,↓cl ′+1,↑ − c†
l ′,↑cl ′+1,↓)

]

+ 2(εα − γα )
Nα∑

l ′=Iα

∑
σ=↑,↓

(
c†

l ′,σ cl ′,σ − 1

2

)
+ 2

Nα∑
l ′=Iα

[Bα (c†
l ′,↑cl ′,↓ + c†

l ′,↓cl ′,↑) − �α (c†
l ′,↑c†

l ′,↓ + cl ′,↓cl ′,↑)],

where α = X, Z for X and Z wires, respectively, with IX = 1, NX = LX, and IZ = LX + LY + 1, NZ = LX + LY + LZ. Here, c†
l ′,σ

denotes the creation operator of a fermion with spin σ at the physical site l ′. The parameters ζα , Bα , and �α are the strength of
Rashba spin-orbit coupling, Zeeman field, and s-wave superconducting pairing potential, respectively. For Bα >

√
�2

α + ε2
α , the

αth nanowire is in a topological phase and hosts MBSs at the edges. The Hamiltonian of the middle Y wire reads as

HSM
Y =

LX+LY−1∑
l ′=LX+1

⎡
⎣−γY

∑
σ=↑,↓

(c†
l ′,σ cl ′+1,σ + c†

l ′+1,σ
cl ′,σ ) + ζY (c†

l ′+1,↑cl ′,↓ − c†
l ′+1,↓cl ′,↑ + c†

l ′,↓cl ′+1,↑ − c†
l ′,↑cl ′+1,↓)

⎤
⎦

+2 (εY − γY)
LX+LY∑

l ′=LX+1

∑
σ=↑,↓

(
c†

l ′,σ cl ′,σ − 1

2

)
+ 2BY

LX+LY∑
l ′=LX+1

(c†
l ′,↑cl ′,↓ + c†

l ′,↓cl ′,↑) , (15)

where ζY and BY are, respectively, the strength of Rashba spin-orbit coupling and the Zeeman field of the middle wire. In the
above two Hamiltonians, γα and εα denote, respectively, the hopping and the chemical potential of the αth wire. We further
consider that the tunneling Hamiltonians also include spin-orbit-coupling terms. Thus, the tunneling Hamiltonians for the X-Y
and Y-Z junctions are the following:

Hαβ = −γαβ

∑
σ=↑,↓

(c†
l ′,σ cl ′+1,σ + c†

l ′+1,σ
cl ′,σ ) + ζαβ (c†

l ′+1,↑cl ′,↓ − c†
l ′+1,↓cl ′,↑ + c†

l ′,↓cl ′+1,↑ − c†
l ′,↑cl ′+1,↓) , (16)

where αβ = XY, l ′ = LX, and αβ = YZ, l ′ = LX + LY, respectively, for the X-Y and Y-Z junction. Similarly, ζαβ represents
the strength of Rashba spin-orbit coupling at the tunnel junction. From the definitions of tunneling Hamiltonians, it follows that
the current operators can be written as

JXY(t ) = 2γXY

∑
σ=↑,↓

Im
[〈

c†
LX+1,σ (t ) cLX,σ (t )

〉] + 2ζXY
(
Im

[〈
c†

LX+1,↓(t ) cLX,↑(t )
〉] − Im

[〈
c†

LX+1,↑(t ) cLX,↓(t )
〉])

, (17)

JYZ(t ) = 2γYZ

∑
σ=↑,↓

Im
[〈

c†
LX+LY+1,σ (t ) cLX+LY,σ (t )

〉]

+ 2ζYZ

(
Im

[〈
c†

LX+LY+1,↓(t ) cLX+LY,↑(t )
〉] − Im

[〈
c†

LX+LY+1,↑(t ) cLX+LY,↓(t )
〉])

. (18)
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FIG. 4. Temporal evolution of the zero-bias current JXY(t ) and
JYZ(t ) in a TS-SM-TS device made of semiconductor Majorana
wires. The initial density nl ′,σ of the middle semiconductor wire
is indicated on the heading of the panels. In all panels, LX =
LZ = 900, LY = 3, γX = γZ = γ = 1, γY = 0.5, �X = �Z = 0.3,
εX = εZ = 0, εY = 0.05, ζX = ζY = ζZ = 0.2, BX = BY = BZ =
0.4, γXY = γYZ = 0.25, ζXY = ζYZ = 0.2, and TX = TZ = 0.02. All
above parameters except lengths are in units of γ .

We also generalize the initial density matrix of the bound-
ary wires and the middle wire of the TS-SM-TS device fol-
lowing the previous definitions for the spinless fermions of the
TS-N-TS device in Sec. II. Now, nl ′,σ represents the number
of fermions with spin σ (=↑,↓) at a physical site l ′ of the
middle wire Y initially. We again perform our numerical time
evolution from the initial density matrix and evaluate elec-
trical currents at the junctions by using the current operators
in Eqs. (17) and (18). As expected, we find the absence of a
unique long-time steady state (equilibration) in the TS-SM-TS
device (with a realistic model of TS wires) when both the
TS wires are in topological phase and there are bound states
within the superconducting gap from the middle wire. We also
observe initial-condition-dependent persistent current oscil-
lations at both the junctions of aforesaid TS-SM-TS device
made of semiconductor Majorana wires. We summarize our
findings in Fig. 4.

V. TRUNCATED NUMERICS WITH BOUND STATES

We learn from our discussion in Sec. III for Figs. 2
and 3 that the persistent current oscillation in different hybrid
devices in the absence of bias is due to the bound states
and their initial preparation. We show below that we can
almost reproduce the long-time persistent current oscillations
in Figs. 2 and 3 by solely keeping the contributions of the
bound states in the current operators in Eqs. (12) and (13).
These bound states may be formed inside the middle wire
as well as at the edges of the boundary TS wires. To study
the contribution of these bound states to the time evolution of
density matrix, let us first rewrite the matrix elements of full

Green’s function G+
rs (t − t0) in the following way [30]:

G+
rs (t − t0) = Gb+

rs (t − t0) + Gc+
rs (t − t0)

= −i
∑

b

�b(r)�∗
b (s)e−i�b(t−t0 )

− i
∫

dξρc
rs(ξ )e−iξ (t−t0 ) , (19)

where �b and �b are the full system’s eigenvectors and eigen-
values corresponding to the bound states localized around
the junctions and the density matrix ρc

rs is given by a sum
over extended (continuum) states �q of the system, ρc

rs(ξ ) =∑c
q �q(r)�∗

q (s)δ(ξ − �q). Clearly, Gb+(t − t0) includes all
the contributions from the bound states of the full system,
while Gc+(t − t0) incorporates the contribution of the con-
tinuum states. If the system does not support bound states,
the first term becomes zero and the second term controls the
steady-state behavior of the system. However, the scenario
changes drastically in the presence of bound states in the
system.

Since the bound states are localized, the magnitude of the
elements of Gb+(t − t0) becomes small if we move away from
the spatial regions where the bound states are localized. This
property of Gb+(t − t0) is very useful for our computational
purpose. Suppose we know that all the bound states are
localized within the region R0. Then it is legitimate to choose
the elements of Gb(t − t0) to be zero outside the region R0,
and we calculate the elements of Gb+(t − t0) within the region
R0 only. Although the boundary of R0 is not unique, one can
extract the essential features of Gb+(t − t0) even with a choice
of region R0, which merely encompasses the spatial extent of
all the overlapping bound states.

In our numerics for studying persistent current oscillation,
we consider a TS-N-TS device where both the boundary TS
wires, modeled as the Kitaev chains, have the same chemical
potential and temperature. Moreover, we also keep both the
superconducting wires in the topologically nontrivial phase
away from the topological phase transition. For such a system,
there exist two MBSs at the ends of each TS wire. If the
TS wires are taken to be sufficiently long, the overlap of
the Majorana modes from opposite ends of an individual TS
wire becomes almost negligible. However, the overlap be-
tween the Majorana modes from the right end of left boundary
TS wire and the left end of right boundary TS wire remains
finite as long as the length of the middle N wire is not very
large. Further, there may also exist bound states within the
middle N wire, and it can have nonzero overlap with the
Majorana modes localized at the inner edges of the boundary
TS wires. In such a situation, essential behavior of the currents
in the junctions can be studied with the bound-state-dependent
part of the Green’s function, i.e., Gb+(t − t0). As it has been
argued already, this Gb+(t − t0) is chosen to be zero for the
region outside R0 where R0 is extended from LX − δ to
LX + LY + δ, where LY is the length of the N wire, LX is
the length of left boundary TS wire, and δ (� LX, LY, LZ)
is the number of sites inside the boundary wires. The value
of δ solely depends on the spatial extent of bound-state wave
functions inside the boundary wires. For example, if the
wave functions of the bound states around the junctions have

214514-6



DYNAMICS OF HYBRID JUNCTIONS OF MAJORANA … PHYSICAL REVIEW B 99, 214514 (2019)

nonzero amplitude up to the Lδ number of sites inside the
boundary wires from the junction edge, then δ ≈ Lδ . For our
simulation, we find that it is sufficient to choose δ � 10 for
the boundary wires with size LX(Z) � 103 and the middle wire
length LY � 10.

Given the above discussion, it may be possible to
study the time evolution of the bound-state-dependent
part of the density matrix using the following
expression:

〈a†
l (t )am(t )〉b =

2LX∑
r,s=2(LX−δ)

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉[Gb+
lr (t − t0)

]† +
2(LX+LY )∑
r,s=2LX+1

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉[Gb+
lr (t − t0)

]†

+
2(LX+LY+δ)∑

r,s=2(LX+LY )+1

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉[Gb+
lr (t − t0)

]†
, (20)

where 〈a†
r (t0)as(t0)〉 in the first and third terms denotes the initial equilibrium density matrix of the left and right boundary wires,

respectively, and 〈a†
r (t0)as(t0)〉 in the second term represents the initial density matrix of the middle wire. This simplified analytic

expression is quite useful in studying the characteristic features of the full density matrix, ηlm(t ) = 〈a†
l (t )am(t )〉, provided the

system hosts bound states with nonzero overlap among themselves. However, if the system does not possess bound states, or the
bound states have negligible overlap, the expression in Eq. (20) may fail to depict the actual dynamics of η(t ) as the continuum
part of the full Green’s function [Gc+(t − t0)] starts to play a dominant role. If Eq. (20) fails, then we need to restore to the
original expression in Eq. (11) for studying the time evolution, even though it is numerically expensive.

Presence of MBSs at the edges of the boundary TS wires helps us to further simplify the analytical expression for 〈a†
l (t )am(t )〉b

in some cases. To this end, let us write the initial equilibrium density matrix of the boundary wires as a summation of two
contributions,

〈a†
r (t0)as(t0)〉 = 〈a†

r (t0)as(t0)〉b′ + 〈a†
r (t0)as(t0)〉c

=
∑

b′
ψα

b′
∗(r)ψα

b′ (s) f
(
λα

b′ , μα, Tα

) +
∑

c

ψα
c

∗(r)ψα
c (s) f

(
λα

c , μα, Tα

)
, (21)

where ψα
q and λα

q are the eigenvectors and eigenvalues of the boundary wires α = X, Z [see Eq. (4)], and r, s = 2(LX −
δ), . . . , 2LX for α = X, and r, s = 2(LX + LY) + 1, . . . , 2(LX + LY + δ) for α = Z. In the second line of Eq. (21), the first
term represents the contribution of MBSs localized at the edges of boundary TS wires in the topologically nontrivial phase, and
the second term denotes the participation of the continuum states of the boundary wires. Here b′ and c subscripts designate the
bound states and the continuum states of the boundary TS wires, respectively.

Substituting Eq. (21) in Eq. (20), we get

〈a†
l (t )am(t )〉b =

2LX∑
r,s=2(LX−δ)

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉b′
[
Gb+

lr (t − t0)
]† +

2(LX+LY )∑
r,s=2LX+1

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉[Gb+
lr (t − t0)

]†

+
2(LX+LY+δ)∑

r,s=2(LX+LY )+1

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉b′
[
Gb+

lr (t − t0)
]† +

2LX∑
r,s=2(LX−δ)

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉c
[
Gb+

lr (t − t0)
]†

+
2(LX+LY+δ)∑

r,s=2(LX+LY )+1

Gb+
ms (t − t0)〈a†

r (t0)as(t0)〉c
[
Gb+

lr (t − t0)
]†

, (22)

where the initial density matrix in the first and third terms
depends on the bound states of the boundary wires, that of
the second term relies entirely on the initial conditions at
the middle wire, whereas the initial density matrix in the
fourth and final term depends on the continuum states of the
boundary wires. For the sake of brevity, we can further rewrite
Eq. (22) in the following form:

〈a†
l (t )am(t )〉b = 〈a†

l (t )am(t )〉B
b + 〈a†

l (t )am(t )〉c
b, (23)

where 〈a†
l (t )am(t )〉B

b represents first three terms on the right-
hand side of Eq. (22), and 〈a†

l (t )am(t )〉c
b represents the rest of

the terms on the right-hand side of the same equation.

Interestingly, we observe that the temporal evolution of the
zero-bias current in a TS-N-TS device is controlled by the
initial density of the middle N wire, the density of the Majo-
rana bounds states formed at the inner edges of the boundary
wires and the bound states of the full system. Therefore, the
junction currents in Eqs. (12) and (13) can be approximated as

JXY(t ) ≈ 2γXYIm
[〈

a†
2LX+1(t )a2LX−1(t )

〉B
b

]
, (24)

JYZ(t ) ≈ 2γYZIm
[〈

a†
2(LX+LY )+1(t )a2(LX+LY )−1(t )

〉B
b

]
. (25)

It can be noted that the above approximation remains valid as
long as the boundary wires are in the topologically nontrivial
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phase away from the phase boundary. However, near the
topological phase transition point, continuum states of TS
wires contribute substantially to the junction currents; thus
the above approximation fails. The calculated currents from
such truncated computation with bound states are shown
in Fig. 2 to compare them with the currents from the full
simulation. They show an excellent match at long times.

Strong initial density dependence of junction currents in a
TS-N-TS device can be explained with the help of Eqs. (19)
and (22). For a uniform initial density nl ′ of the middle N wire,
the amplitudes of the oscillating modes solely depend on the
wave functions of the bounds states of the full system. Thus,
the initial density of the N wire can be treated as a constant
factor. However, the amplitudes of the oscillating modes are
also affected by the initial densities for a nonuniform initial
density at the middle wire. As the wave functions of different
bound states are also spatially nonuniform, the combined
effect of wave functions of bound states and inhomogeneous
initial density results in suppression of the amplitudes of some
selected frequency modes and (or) enhancement of others
in the persistent current oscillations. So, the overall time-
evolution dynamics of the density matrix for a nonuniform
initial density of the middle wire behaves very differently
from that for a uniform initial density.

VI. CONCLUSION

Supercurrent sensitive to initial conditions in a phase-
biased superconducting nanojunction of topologically trivial
BCS superconductors has been investigated in Refs. [34–37].
However, the role of initial conditions is much more intriguing
and robust in the presence of midgap states or MBSs in TS
wires studied here. For example, there is a persistent oscillat-
ing current even in the absence of phase-bias in a TS-N-TS
device, and the amplitude of such oscillation is two orders of
magnitude higher in the topologically nontrivial phase com-
pared to the topologically trivial phase of the boundary wire.
We have also shown survival of such persistent oscillating
current in an experimentally realized TS system. Therefore,
a detection of the zero-bias persistent oscillating current can
be potentially useful as a probe of topological phase and the
related topological phase transition in such hybrid devices.

It is apt to point out here some experimental challenges
in detecting the zero-bias persistent current in a TS-N-TS
device. There are many mechanisms including quasiparticle
poisoning, stronger tunnel coupling, the presence of phonon
or photon baths at the junction which can affect the lifetime of
the subgap bound states exist inside the superconducting gaps.
A stronger tunnel coupling between superconductors and
metal or semiconductor allows for substantial single-electron
tunneling from metal or semiconductor, and it is related to so-
called quasiparticle poisoning. Inelastic relaxation of subgap
bound states would affect the persistent current oscillation,
and the zero-bias electrical current oscillation would decay
with time. The TS-N-TS junction can thermalize depend-
ing on the strength of these inelastic relaxation/broadening
mechanism of subgap bound states. Therefore, we suggest
that experiments should be carried out at a relatively low
temperature (compared to the bulk gap) with a moderate

tunnel coupling (see Appendix D) and a large bulk gap for
detecting the zero-bias persistent oscillating current.

The fractional Josephson effect with a characteristic 4π

periodic current-phase relation in TSs has been investigated
for an unambiguous detection of MZMs [5,6,19,38,39]. There
are also many tunneling spectroscopy studies with N and
superconducting tips to probe various magnetic and non-
magnetic bound states in conventional and unconventional
superconductors [10,11,40–42]. Our present dynamical study
can in principle be tested in both these above setups. Our
finding of lack of equilibration in the presence of bound
states in a device with superconducting boundary wires having
a bulk gap poses challenge for direct detection of dc or
ac fractional Josephson effect as well as electrical current
measurements in such device. We conclude that the necessary
condition for equilibration (or a unique steady state) in these
hybrid junctions is either the absence of bound states near the
junctions or the band of one or both the boundary wires being
continuum without a bulk gap.
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APPENDIX A: N-TS-N DEVICE

In the main text, we have mentioned that the nonequilib-
rium steady-state transport in an N-TS-N device seems to be
independent of the initial conditions of the finite TS wire when
the band of the N wires is wider than that of the TS wire. In
Fig. 5, we present plots to support our claim. In Ref. [26],
the time evolution of the many-electron wave function of an
N-TS junction is studied after a quantum quench in which the
N and TS wires of equal and extended lengths are connected at
some initial time. The decoupled N and TS wires are initially
prepared in their respective ground states, and the overlap
between the time-evolved wave function with the initial state
(the Loschmidt echo) is found to decay with a universal
power law in time for large times after the quench. We here
instead prepare the decoupled N wires of our N-TS-N device
initially in thermal equilibrium. In Fig. 5, we show that the
electrical currents at long times do not depend on the initial
density of the middle TS wire. We find from our numerics
that the currents at both the junctions reach a constant nonzero
value when there is a voltage bias across the TS wire due to
the chemical potential difference in the boundary N wires. The
simulated steady-state current in Fig. 5 from time evolution of
the Heisenberg equations of motion matches with that from
the Fourier transform solution at steady state [16,17].

APPENDIX B: TS-N-TS DEVICE: LONGER LENGTH OF N
WIRE AND PHASE DIFFERENCE BETWEEN TS WIRES

In Fig. 6, we show how the amplitude and period of the cur-
rent oscillation in a TS-N-TS device change with an increas-
ing length of the middle N wire. The number of bound states

214514-8



DYNAMICS OF HYBRID JUNCTIONS OF MAJORANA … PHYSICAL REVIEW B 99, 214514 (2019)

−0.04

0.00

0.04

J
X

Y
(t

),
J

Y
Z
(t

) (a)

nl = 0, l = 1, 2 . . . 20

JXY (t)

JY Z(t)

0 100 200 300 400 500 600 700 800 900
t/γ

−0.04

0.00

0.04

J
X

Y
(t

),
J

Y
Z
(t

) (b)

n1 = n20 = 0, nl = 1, l = 2, 3 . . . 19

JXY (t)

JY Z(t)

FIG. 5. Temporal evolution of the currents in an N-TS-N device
under a voltage bias and presence of a unique nonequilibrium steady
state. The initial density of the TS wire (modeled as a Kitaev chain)
is indicated on the heading of the panels. In all panels, LX = LZ =
900, LY = 20, γX = γZ = 1, γY = 0.5, �X = �Z = 0, �Y = 0.1,
εX = εY = εZ = 0, γXY = γYZ = 0.25, TX = TZ = 0.2, and μX =
−0.2, μZ = 0.2. All above parameters except lengths are in units
of γ .

from the middle N wire can increase with increasing wire
length. The current oscillations in the TS-N-TS device seem to
survive for relatively long N wire length. We have seen finite
persistent current oscillation in the junctions for LY = 50.
However, the pattern of current oscillation, e.g., oscillation
period, becomes a bit complicated in the presence of multiple
bound states for a longer LY. We present in Fig. 6 plots for
LY = 4, 6 for zero initial density of the middle N wire.
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FIG. 6. Temporal evolution of the zero-bias current JXY(t ) in a
TS-N-TS for different length of the middle N wire. The length of
the middle N wire is indicated on the heading of the panels. In all
panels, LX = LZ = 900, LY = 4, 6, γX = γZ = 1, γY = 0.5, �X =
�Z = 0.3, εX = εZ = 0, εY = 0.05, γXY = γYZ = 0.25, nl ′ = 0, and
TX = TZ = 0.02. All above parameters except lengths are in units
of γ .
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FIG. 7. Temporal evolution of the current JXY(t ) and JYZ(t ) in
a TS-N-TS device with a phase difference of π/4 between the
TS wires. The initial density of the middle N wire is indicated
on the heading of the panels. In all panels, LX = LZ = 900, LY =
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μX = μZ = 0. All above parameters except lengths and phases are
in units of γ .

Until now, we have discussed the dynamics in a TS-N-
TS device in the absence of any phase difference between
the TS wires. However, it is also interesting to study the
dynamics of such a device in the presence of phase difference
between the TS wires, which should in principle lead to the
fractional Josephson effect. For this, we take the pairing �X

and �Z complex, and write them as �X = |�X|eiφX and �Z =
|�Z|eiφZ . We apply a nonzero phase difference (φX − φZ �= 0)
between the TS wires modeled as the Kitaev chains. We
present time evolution of electrical current at the left and
right junctions of the TS-N-TS device in Figs. 7 and 8 in the
absence of any thermal or voltage bias. Similar to Fig. 2, we
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FIG. 8. Temporal evolution of the current JXY(t ) and JYZ(t ) in a
TS-N-TS device with a phase difference of π between the TS wires.
All the parameters except φX = π are as in Fig. 7.
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again find the current at the junctions depends on the initial
conditions of the middle wire indicating the absence of unique
steady state.

−0.04

0.00

0.05

J
X

Y
(t

),
J

Y
Z
(t

)

(a)

JXY (t)

JY Z(t)

−0.05

0.00

0.05

J
X

Y
(t

),
J

Y
Z
(t

) (b)

0 100 200 300 400 500 600 700 800 900

t/γ

−0.02

0.00

0.02

J
X

Y
(t

),
J

Y
Z
(t

) (c)

FIG. 10. Temporal evolution of the currents in a TS-N-Z device
when the on-site energy of the superconducting Z wire is swept
through the topological phase transition, and role of tunnel coupling.
The blue full lines are for JXY(t ) and the red dashed lines are for
JYZ(t ). The on-site energy εZ = 1.99, 2.05, 2.05 and tunnel coupling
γYZ = 0.25, 0.25, 0.1 in panels (a)–(c), respectively. In all panels,
LX = LZ = 900, LY = 3, γX = γZ = 1, γY = 0.5, �X = �Z = 0.3,
εX = 0, εY = 0.05, γXY = 0.25, nl ′ = 0, and TX = TZ = 0.02. The
above parameters (except lengths) are in units of γ .
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FIG. 11. Density of energy eigenstates (dos) of a TS-N-Z device
with different on-site energy of the superconducting Z wire and var-
ious phase difference between the boundary wires. The red and blue
lines (arbitrary scale) denote the energy eigenvalues of midgap states
near the junction originating from the boundary TS wires and the
middle N wire, respectively. The on-site energy εZ = 0, 1, 2.5, 0, 0
and the phase φX = 0, 0, 0, π/4, π in panels (a)–(e), respectively. In
all panels, LX = LZ = 900, LY = 3, γX = γZ = 1, γY = 0.5, �X =
�Z = 0.3, εX = 0, εY = 0.05, γXY = γYZ = 0.25, and φZ = 0. The
above parameters (except lengths) are in units of γ .

Nevertheless, in contrast to zero time-averaged currents
in the absence of phase-bias in Figs. 2 and 3, the time-
averaged currents in Fig. 7 are nonzero when φX − φZ =
π/4, although the time-averaged currents in Fig. 8 are again
zero when φX − φZ = π . The time-averaged current seems
to have a 2π periodicity over the phase difference instead
of a 4π periodicity for the dc fractional Josephson effect in
a phase-biased Josephson junction. Similar initial-condition-
dependent Josephson current and related quasiparticle trap-
ping in superconducting point contacts of topologically trivial
s-wave superconductors have been studied in recent years
[34–36].

APPENDIX C: TS-N-N DEVICE

We have gotten a unique nonequilibrium steady state in a
TS-N-N device, and we do not see here any persistent electri-
cal current oscillation in the absence of voltage or temperature
bias. In Fig. 9, we plot electrical currents at both the junctions
of a TS-N-N device for two different initial densities in the
middle N wire. We also apply a voltage bias across the middle
N wire by using a nonzero chemical potential for the boundary
N wire. We find that the electrical currents at both junctions
are independent of the initial density in the middle N wire.
The nonequilibrium steady-state currents are also the same at
both intersections. Therefore, we conclude that the middle N
wire in a TS-N-N device equilibrates with the boundary wires
due to a continuous band of the boundary N wire.
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APPENDIX D: ROLE OF TUNNEL COUPLING

In the main text, we have discussed equilibration in a
TS-N-Z device when the Z wire transits through a topolog-
ical phase transition. The closing of superconducting bulk
gap near the topological phase transition is the reason for
equilibration. In Fig. 10, we further show that the electrical
current in a TS-N-Z device decays to zero at long times when
there is a bulk gap in the Z wire which is the smaller or same
order of γ 2

YZ. The tunnel coupling γYZ induces broadening of
the energy of the bound states. Thus, the energy-broadened
bound states near the junctions can overlap with the band
(delocalized states) of the Z wire when the bulk-gap is small.
Therefore, we expect equilibration of bound states and decay
of electrical currents when the ratio between the bulk gap and
γ 2

YZ is low. For example, this ratio is 0.16, 0.8, 5, respectively,
for three plots in Figs. 10(a)–10(c). While the current JXY(t )
in Figs. 10(a) and 10(b) shows clear decay with time, the
decay of JXY(t ) is relatively slow in Fig. 10(c). Therefore, a
stronger tunnel coupling can effectively reduce the bulkgap
in superconducting boundary wires and hence can help in
equilibration. Nevertheless, there can also be other mecha-
nisms of equilibration such as electron-phonon interaction at
the middle wire or irradiation of radiation on the Josephson
junctions for the measurement of Shapiro steps in current-
voltage curves. The bound states can equilibrate when the

phonon or the radiation at the junctions is wide band such that
the band of phonon or radiation closes the superconducting
gaps.

APPENDIX E: ENERGY SPECTRA OF
THE TS-N-TS DEVICE

The properties (especially the periods) of persistent current
oscillations in the TS-N-TS device depend on the energy
eigenvalues of the midgap states originating from the bound-
ary TS wires as well as the middle N wire. In Fig. 11, we
present some examples of these energy eigenvalues along with
the density of energy eigenstates (dos) of the bulk spectrum
of the full TS-N-Z device. We particularly select those values
of on-site energy of the superconducting Z wire and phase
difference between the boundary wires which are used in
Figs. 2, 3(a), 3(c), 7, and 8. The energy of the MBSs is
almost zero in the absence of hybridization through the middle
wire when the phase difference between the boundary TS
wires is π , or one of the boundary superconducting wires
is nontopological. While the periods of persistent current
oscillations are sensitive to the energy of midgap states, the
amplitude of the persistent current oscillations is large as long
as there is a midgap state at that junction from the adjoining
boundary TS wire.
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