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ABSTRACT
We consider the size distribution of superbubbles in a star-forming galaxy. Previous studies
have tried to explain the distribution by using adiabatic self-similar evolution of wind-driven
bubbles, assuming that bubbles stall when pressure equilibrium is reached. We show, with
the help of hydrodynamical numerical simulations, that this assumption is not valid. We also
include radiative cooling of shells. In order to take into account non-thermal pressure in
the ambient medium, we assume an equivalent higher temperature than implied by thermal
pressure alone. Assuming that bubbles stall when the outer shock speed becomes comparable
to the ambient sound speed (which includes non-thermal components), we recover the size
distribution with a slope of ∼−2.7 for typical values of interstellar medium pressure in Milky
Way, which is consistent with observations. Our simulations also allow us to follow the
evolution of size distribution in the case of different values of non-thermal pressure, and we
show that the size distribution steepens with lower pressure, to slopes intermediate between
only-growing and only-stalled cases.
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1 IN T RO D U C T I O N

The distribution of sizes of superbubbles created by stellar winds
and supernovae (SNe) of OB associations can be a diagnostic
of the star formation process in a galaxy. The seminal paper
by Oey & Clarke (1997) [hereafter OC97] showed that if the
mechanical luminosity function of OB associations is described
by a power law , φ(L) ∝ L−β , then for a constant star formation rate
(SFR), the differential size distribution of superbubbles is given
by N(R) ∝ R1 − 2β , for bubbles whose evolution is dominated by
ambient pressure and have stalled. For typical parameters, OC97
estimated this stalling radius to be ≤1 kpc, which implies that
observed superbubbles are in this phase of evolution. This robust
prediction of the size distribution to have a power law with index
1 − 2β makes it a useful diagnostic of the star formation process in
a galaxy. This predicted distribution has been confirmed by The HI
Nearby Galaxy Survey, which studied the properties of H I holes in
nearby galaxies (Bagetakos et al. 2011). They found that the size
distribution has a power-law index of ∼−2.9, which implies β ≈
2, which in turn is consistent with independent observations of OB
association (McKee & Williams 1997).

The robustness of this predicted size distribution, however, raises
the question whether or not it depends on parameters such as
ambient pressure, density, and so on, and if so, how. Since it
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was derived assuming that ambient pressure does not affect the
adiabatic expansion of a stellar wind bubble (Weaver et al. 1977)
other than to impose a stall criterion, it is not possible to answer
these questions without going beyond these assumptions. Although
the average distribution in THINGS came out to have a power law
of ∼−2.9, individual galaxies had distributions whose power law
ranged between −2 and −4. Early-type spiral galaxies showed a
steeper slope than late-type spirals and dwarf galaxies. Bagetakos
et al. (2011) explained this by invoking the fact that scale heights
of discs in early-type spirals are smaller than in late-type spirals,
and are easy to break out of. This would limit the size of the largest
holes, and consequently steepen the size distribution. However, one
could also envisage a scenario in which a truncated or steepened
OB association luminosity function in early-type galaxies produce
a steep size distribution of H I holes, as is known to also manifest
in the H II region luminosity function (Oey & Clarke 1998). In
order to disentangle the effects, one would have to calculate the
size distribution beyond the assumptions of adiabaticity, which
is inherent in the self-similar evolution of bubbles. And then the
question remains as to how the power-law distribution with index
∼−3 derived from such assumptions match the observations.

In this paper, we relax the assumptions of self-similarity in
the bubble evolution, include radiative cooling, with the help
of 1D hydrodynamic numerical simulation, and derive the size
distribution. We assume a constant SFR for simplicity. The paper
is structured as follows. We first review the results of OC97 in
light of Monte Carlo simulations in Section 2. Then, we discuss
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the results when ambient pressure is included in the dynamics of
superbubbles, in Section 3. In Section 4, we discuss the effects of
cooling and present the results in Section 5. The implications are
discussed in Section 6.

2 SELF-SIMILAR SUPERBU BBLES

We first review the essence of OC97 calculations. They assumed
that the mechanical luminosity function of OB association is given
by φ(L) ∝ L−β . The luminosity of each cluster is assumed to be
constant in time, until the lowest mass SN progenitors expire at te

∼ 40 Myr. The wind bubble is assumed to evolve in a self-similar
manner, so that the radius scales as, R ∝ L1/5t3/5 (Weaver et al.
1977). Note that this assumes adiabatic expansion of the bubble.
The pressure inside then evolves as pi ∝ L2/5t−4/5. If the ambient
pressure is p0, then these bubbles are assumed to stall when p0 = pi.
This implies a stalling time, for the bubble to reach a final radius,
of tf ∝ L1/2. This in turn leads to a scaling of the final stalling radius
Rf ∝ L1/5t

3/5
f ∝ L1/2.

If the superbubbles are produced at a constant rate ψ , then after
time t, the number of bubbles with radii in the range R to R + dR
will be dependent on φ(L)dL, where L and dL are the luminosity
and range corresponding to this interval in radius R. Therefore, the
differential size distribution will be given by,

N (R) ∝ ψφ(L)

(
∂Rf

∂L

)−1

∝ L−β+1/2 ∝ R1−2β, (1)

where the last proportionality follows from Rf ∝ L1/2 for stalled
final radii derived above. Therefore, the above scalings imply
a size distribution N(R) ∝ R1 − 2β , for stalled bubbles. In case
of expanding bubbles in the momentum conserving phase, one
again has R ∝ L1/4t1/2. In this case, OC97 considered stalling of
bubbles when bubble speed becomes comparable to ambient sound
speed (or, equivalently, ambient pressure being comparable to ram

Figure 1. Size distribution of self-similar superbubbles for a constant SFR
at different epochs, for an ambient pressure p0 = 2.76 × 10−12 dyne cm−2,
and ambient temperature Tamb = 4 × 104 K. The square boxes on the blue
and red lines show the values of the maximum stall radius at 5 and 10 Myr.
The distribution at each epoch has been fitted with a power law below
the maximum size shown by the square boxes, and the fitted slope are all
roughly close to −3, below the maximum stall radius. The inset shows the
distribution at 30 Myr in detail (with smaller bin size), which has the R2/3

rising part for small and growing bubbles (the straight line shows a power
law of index 2/3).

pressure of the outer shock). This again leads to tf ∝ L1/2, and
Rf ∝ L1/2, leading to N(R) ∝ R1 − 2β . They showed that stalled
bubbles dominate the size distributions. They also estimated that
for typical interstellar medium (ISM) parameters, the largest size
of stalled bubbles is ∼1 kpc, given the lifetime of OB associations.
Bubbles larger than this would break out of the disc (the radius being
much larger than the scale height), and need not be considered.
Therefore, the size distribution for typical ISM parameters would
be dominated by stalled bubbles.

We show this size distribution with the help of Monte Carlo
calculation. For simplicity we assume a uniform SFR of 1 M�
yr−1. The luminosity function of OB association is taken as φ(L) =
AL−β , with β = 2, as inferred from H II region luminosity function
(McKee & Williams 1997; Oey & Clarke 1998). The mechanical
luminosity is related to the mass of the cluster in the following way.
Given a Kroupa initial mass function (Kroupa 2002), there is one
OB star for 100 M� cluster mass, and each OB star can be assumed
to give 1051 erg. The average luminosity of the cluster (given a
lifetime of ∼37 Myr, corresponding to the main-sequence lifetime
of a 8 M� star), is

L ≈ 9 × 1033 erg s−1

(
Mcl

M�

)
. (2)

This is very close (within a factor of a few) to the result of
mechanical luminosity of star clusters including the effect of stellar
winds and SNe, as calculated by Leitherer et al. (1999). Therefore,
the mass function of the clusters can be written as

dN

dMcl
= A

(
Mcl

M�

)−β

. (3)

Assuming the minimum and maximum mass of clusters to be 100
and 106 M� respectively, the average cluster mass is found to be
∼1360 M�, corresponding to an average mechanical luminosity
of ∼1.2 × 1037 erg s−1. The luminosity range is ∼9 × 1035–9 ×
1039 erg s−1.

The size distribution of bubbles is shown in Fig. 1, for different
times after the onset of star formation, for bubbles growing in a
self-similar manner as mentioned above. The ambient pressure is
assumed to be P0 = 2.76 × 10−12 dyne cm−2 as was considered
by OC97. As expected from the arguments in OC97, the dominant
slope of the distribution is roughly 1 − 2β = −3, for radii below the
maximum size of stalled bubbles at a given epoch. OC97 estimated
the stalling time-scale and the stalled sizes. Initially, low-luminosity
bubbles stall, and at a given epoch, bubbles up to a certain size stall,
beyond which the bubbles are in a growing phase. We show this
upper limit of stalled sizes with square boxes on the red and blue
lines, corresponding to 5 and 10 Myr (using equation 31 of OC97).
(At later times, the biggest stalled bubbles cross the limit of sizes
considered by us.) Fig. 1 shows that the fitted power laws until
this maximum size has an index close to −3. However, there is
also another class of small bubbles that are growing at any given
epoch, arising from either massive but young clusters or low-mass
clusters.

We assume the bubbles to start forming at a continuous rate at
t = 0 = tl. The inset in Fig. 1 plots the size distribution at 30 Myr
with smaller bin size, to clearly show the case of small and growing
bubbles. These bubbles show a distribution that scales as R2/3 as
predicted by OC97 (their equation 39). These bubbles are dominated
by clusters which have not yet reached stalling phase. In this case,
R ∝ L1/5t3/5, which gives ∂R

∂L
∝ L−4/5t3/5. This distribution is then

integrated from tl until a time, tu, for which the minimum luminosity
cluster is still growing. This time-scale is given by tu ∝ R5/3L−1/3

min
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(from self-similar evolution). Therefore, the size distribution of
growing bubble is given by

N (R) ∝
∫ tu

L−β

(
∂R

∂L

)−1

dt ∝ R4−5β t−2+3β
u ∝ R2/3 (4)

Our Monte Carlo runs for self-similar case show these growing
bubbles with a size distribution as predicted.

The increasing (R2/3) and decreasing R−3) regimes of the size
distribution give rise to a peak in the size distribution, and the peak
shifts towards large radii with time, until the time when the oldest
population of minimum luminosity clusters has achieved stalling
radius. In the case depicted in Fig. 1, the minimum luminosity
cluster achieves this status at ∼1 Myr (using equations 24 and 31 of
OC97 for the minimum luminosity), after which the peak does not
shift. The bubble size corresponding to the peak of the distribution
is not small or negligible from an observational point of view. For
example, after 5 Myr, the peak is found to be at ∼40 pc.

We note here that the assumption of constant luminosity with time
for low-mass clusters is justified because the mechanical luminosity
not only arises from SNe, which in the case of low-mass clusters
would be few and far between, but also from stellar winds of massive
stars. Since the typical mechanical power of stellar winds from OB
stars is ∼1036 erg s−1 (Seo, Kang & Ryu 2018), which is also
coincidentally comparable to (1051 erg/35 Myr), the mechanical
power of OB associations before and after the first SNe events differ
at the most by a factor of 2. This is also borne out by the estimates
of mechanical power using STARBURST99 (Leitherer et al. 1999).

3 BEYOND ZERO-PRESSURE AMBIENT
M E D I U M

When we consider the growth of bubbles beyond the self-similar
evolution, we need to fully account for the effect of ambient pressure
and radiative cooling. The effect of radiative cooling cannot be
included without resorting to hydrodynamical simulation. However,
the effect of ambient pressure can be calculated numerically, and
before going to the full solution of hydrodynamical simulation, we
will discuss this effect next.

The wind bubble has four regions: a free wind region in which
energy and mass are injected, a shocked wind region, a contact
discontinuity and a shocked ISM region. The radius of the contact
discontinuity evolves in the presence of an ambient pressure p0, as
(equations 54 and 56 in Weaver et al. 1977)

d

dt

(
4π

3
R3ρ0

)
= 4πR2(p − p0) ,

dp

dt
= 2

3

L

(4π/3)R3
− p

(
5

R

dR

dt

)
(5)

Note that OC97 did not include p0 in this relation, and only used
p0 to as a criterion for stalling bubble growth. We continue with
the assumption of OC97 that the bubbles stall when the interior
pressure becomes equal to the ambient pressure. The results of
equation (5) show that the interior pressure decreases less rapidly
than that assumed in OC97, and consequently, the bubble size grows
to larger values than are admitted in self-similar evolution. We
show two examples in Fig. 2, where the evolution of the bubble
sizes in the self-similar case is compared with that determined from
equations 5, for two values of ambient pressure. The curves are
for an average luminosity (given the above-mentioned luminosity
function), Lav = 1.2 × 1037 erg s−1. We also show in Fig. 3 the
evolution of interior pressure in these two cases. The curves show

Figure 2. Evolution of bubbles for ambient pressure p0 = 3 ×
10−12 dyne cm−2 and p0 = 5 × 10−13dyne cm−2, for average luminosity
L = 1.2 × 1037 erg s−1.

Figure 3. Evolution of pressure inside bubbles for the same cases as in
Fig. 2.

Figure 4. The size distribution of bubbles for adiabatic evolution for an
ambient pressure p0 = 2.76 × 10−12 dyne cm−2, at 10, 20, and 30 Myr.
The distributions have a slope ∼−4, much steeper slope than −3 in the case
of self-similar evolution. Numerical values of the slopes are indicated in the
diagram.

that the interior pressure evolves slower than in the case of self-
similar case, as mentioned above.

The corresponding distribution will be steeper than the self-
similar case. This is shown in Fig. 4 for three different epochs.
The slopes of the distribution is close to ∼−4, in this particular
example, much steeper than −3 in the case of self-similar evolution.
The largest bubbles are mostly produced by massive clusters, with
large mechanical luminosity, and for which the revised relation
for the ambient pressure (equation 5) does not make substantial
difference to the bubble size evolution. The number of large bubbles
therefore remain more or less the same, whereas the number of
smaller bubbles grow to larger sizes than before. This will make the
size distribution steeper than the self-similar case.
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The main reason for the steepness is the fact that growing bubbles
dominate the population of superbubbles at any time, since the
bubbles tend to grow for a longer time in this case. In the case
of domination by growing bubbles, supposing a power-law scaling
relation between radius and luminosity as R ∝ Lx, the slope of the
size distribution is given by

N (R) ∝ φ(L)

(
∂R

∂L

)−1

∝ R
1−x−β

x . (6)

For example, for self-similar solution of Weaver et al. (1977), x =
1/5 and N(R) ∝ R4 − 5β , as shown by OC97. In our case, since the
power-law index is close to −4.1, it implies x ≈ 1/3.1, although there
is no simple analytical scaling relation for radius and luminosity for
this case. We have confirmed this from our numerical results.

However, the assumption of bubble stalling when pressure
equilibrium is reached is not valid, since the bubble shell continues
to move outward because of its momentum. This will continue to
make the bubbles bigger in size until the outer shock speed becomes
comparable to the sound speed of the ambient medium. This
can be demonstrated with the help of numerical hydrodynamical
simulations, which we describe below.

4 SIMULATION R ESULTS

Here, we include the effect of radiative cooling in the evolution
of superbubbles. We have used PLUTO for 1D numerical hydrody-
namical calculations (Mignone et al. 2007). We have solved the
following equations:

∂ρ

∂t
+ �·(ρv) = Sm

∂(ρv)

∂t
+ �·(ρv ⊗ v) = −�p

∂e

∂t
+ �·[(e + p)v] = Se − q− (7)

Here, total energy e = ρ(ε + 1
2 v2), ε is specific energy, ρ is mass

density, p is pressure, and v is the fluid velocity. The terms Sm and
Se correspond to the mass-loss rate Ṁ/V and input mechanical
energy (L/V) respectively, which are related to each other by the
wind speed, vw, as, L = 0.5Ṁv2

w, and we assume vw = 2000 km
s−1 (Chevalier & Clegg 1985). We have introduced the source
terms as per the model of Chevalier & Clegg (1985). We have
kept the ambient particle density (namb) and ambient temperature
(Tamb) constant for each run. Equations (7) have been solved in 1D
spherical coordinate using the HLLC solver (CFL number = 0.3).

Since the appropriate medium for embedding the superbubbles is
the warm neutral medium of ISM, we use namb = 0.5 cm−3 for all our
runs (Wolfire et al. 2003). However, we consider the case of different
equivalent ISM pressures by assuming different Tamb. It is known
that non-thermal pressures in ISM, especially in neutral medium
that we are concerned with here, can be substantial (Elmegreen &
Scalo 2004) and even more than the thermal pressure. For example,
in the solar neighbourhood, Jenkins & Tripp (2011) estimated that
turbulent and magnetic pressures are comparable in magnitude,
and are roughly three times larger than the thermal pressure. In
order to take into account the effect of non-thermal pressure, we
use a corresponding equivalent ambient temperature, keeping namb

fixed. We use Tamb = 4 × 104 K, for corresponding ISM pressures
p0 = 2.8 × 10−12 dyne cm−2 for our fiducial runs, but have also
varied the value of Tamb in order to study its influence on size
distribution.

Figure 5. Evolution of radius bubbles from hydrodynamical simulations
is compared to the self-similar case. The upper two panels are for L =
2 × 1036 erg s−1 and lower panels, for L = 1039 erg s−1. The left-
hand panels show the case for ambient pressure p0 = 2.76 × 10−12 dyne
cm−2, and the right-hand panels, for p0 = 1.36 × 10−12 dyne cm−2. Red
curves plot the adiabatic self-similar evolution (assuming stalling at pressure
equilibrium). Blue curves show the results of using equation (5, assuming
stalling at pressure equilibrium). Cyan curves show the results of numerical
simulation without cooling, and green curves show the results of simulation
with cooling, assuming stalling when outer shock speed equals ambient
sound speed.

Mass and energy are continuously injected within a small radius
rc. We use rc = 1 pc, in order to minimize non-physical cooling
losses at the early stages of shock formation (see equation 4 in
Sharma et al. 2014). According to this criterion, for the lowest
luminosity considered here (L = 1036 erg s−1), rc should be less
than ≤2.5 pc. Hence the source terms Sm = Ṁ/Vc and Se = L/Vc are
non-zero for r < rc, where Vc = 4π

3 r3
c . In the last equation for energy

conservation, q− = nine	(T), 	(T) being the cooling function. We
have used a tabulated cooling function for solar metallicity. We
turn-off cooling when temperature comes down to 104 K, to mimic
the effect of photoionization heating in the bubble.

We show the results of simulations with and without cooling in
Fig. 5. The luminosities used here is a low value of L = 2 × 1036

erg s−1 (top panels), and a high luminosity of L = 1039 erg s−1

(bottom panels) . The left-hand panels are for Tamb = 4 × 104

K, and the right-hand panels, for Tamb = 2 × 104 K. The self-
similar case is show in red, and the result of using equation (5) is
shown for comparison in dark blue, although without the condition
of stalling at equal pressure. The results of simulations with and
without cooling are shown in green and cyan, respectively.

We first notice that in the case of no radiative cooling (cyan),
the evolution of the shell is roughly similar to that of equation (5),
except for high mechanical luminosity, in which case the PLUTO

runs give a slightly smaller radius (Fig. 5). This is because of the
fact that equation (5) do not take into account mass injection, which
is higher in our calculations for higher luminosities (since the wind
speed is considered equal in all cases). The injected mass increases
the inertia of the shell and decelerates it to some extent.

Secondly, increasing the ambient pressure (without increasing
the gas density) makes the bubbles smaller, as expected physically.
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Figure 6. Scatter plot of bubbles in the parameter space of mechanical
luminosity L and bubble age, without cooling, after 30 Myr of the onset of
star formation, in which the colour of the data points refer to bubble sizes,
as shown in the colour palette on the right.

4.1 Adiabatic case

Let us first discuss the size distribution in the adiabatic case.
As mentioned above, the results of the simulations confirm our
analytical results in Section 3, where the pressure gradient term
is included in the dynamics of bubbles. We had seen in that case
that size distribution is steeper than −3, because of domination
of growing bubbles. This is confirmed by the simulation results
in which cooling is turned off, and we get a size distribution for
the fiducial case with a power-law index ≈−4. The scatter plot of
bubbles in this case is shown in Fig. 6 as a function of mechanical
luminosity (up to 1037 erg s−1) and bubble age, for a snapshot
at 30 Myr. The size of the bubbles are shown in different colours
according to the colour palette shown on the right, the red ones being
the largest and blue ones being the smallest. It can be seen that the
envelopes for different colours (which can be thought of iso-size
contours) delineate curves lines in the parameter space. Consider
the self-similar case for a moment, in which the combination Lt3

appear together in the relation for size R ∝ (Lt3)1/5. If bubbles were
to grow with this scaling, then these envelopes would be curves of
t ∝ L−1/3. But these curves in Fig. 6 are more complicated, signifying
non-self-similar evolution of bubbles, even in the adiabatic case,
because of the presence of pressure gradient term that is neglected
in the Weaver et al. (1977) solution.

4.2 Effects of cooling

Let us now discuss the effects of cooling. We notice from Fig. 5
that the inclusion of radiative cooling leads to a large difference in
the evolution of the shell radius.

The evolution of the bubbles of different luminosities in the pres-
ence of cooling and the pressure difference between ambient and gas
inside the bubble, can be roughly described by a single parameter
η, which can take into account radiation loss, where η is defined in
terms of R = 0.76(ηLt3/ρ)1/5 (the pre-factor ( 250

308π )
1
5 ≈ 0.76 applies

to the adiabatic case Weaver et al. 1977). We show in Fig. 7 the
ratio of radius to L1/5 versus time for bubbles of four different
luminosities. The curves show that they are nearly superposed on
one another, which indicates that a single value of η can describe
their evolution, whose value in this case (for the choices of ambient
conditions) is inferred to be ∼0.25. Similar conclusions have been
reached by previous workers, e.g. Mac Low & McCray (1988) and

Figure 7. Logarithm of the ratio of radius to mechanical luminosity L in
bubbles (in units of cm (erg s−1)−1) is plotted against time (in Myr), for
four different values of L, shown in different colours. The ambient pressure
is Pamb = 2.76 × 10−12 dyne cm−2, and equivalent temperature is 4 × 104

K. The near superposition of the cases of all luminosities show that a single
value of η is able to describe the evolution of bubbles in the presence of
radiative cooling. The factor η is found to be ≈0.25, making the bubbles a
fraction ≈0.76 times smaller than their adiabatic case.

Krause & Diehl (2014). More recently, Sharma et al. (2014) showed
that bubbles can retain a fraction of the input energy, of order 0.2–
0.4 depending on ambient conditions (their figs 7 and 8). They also
showed that this conclusion is valid even in the presence of thermal
conduction. Yadav et al. (2017) further showed that this fraction
decreases with increasing ambient density (η ∝ n

−2/3
amb ) and is of

order ∼20 per cent for ambient density of 0.5 cm−3 (their fig. 8),
consistent with our estimate in the present work. Fig. 7 shows that
at early epochs, the value of η can vary with luminosity, since the
curves for different luminosities do not quite overlap. However, they
roughly do so by the time of bubble stalling, which is more relevant
to our present work. In general, bubbles with lower luminosity
suffer more loss of energy due to radiation (or, η is smaller for
lower L), although this trend is reversed below 4 × 1037 erg. This
is because of the fact that the outer shock speed is lower for low-
luminosity shells, and the resulting post-shock temperature is also
reduced, leading to a higher rate of radiative loss, since the cooling
function in the relevant temperature range is a decreasing function of
temperature. At the lowest luminosities considered here, the post-
shock temperature is close to 104 K even at the earliest epochs,
where the cooling function drops, reversing the trend.

We also notice that, as argued previously, bubbles do not stall
when pressure inside becomes equal to the ambient pressure.
However, the continuation of expansion seen in the simulation
is also misleading, because our use of equivalent temperature for
non-thermal pressure of the ambient medium has limitations. The
non-thermal pressure in the ambient medium due to turbulence
and other process will fragment or distort the shell, robbing it
of its momentum which would have otherwise make it expand
further. This is not easy to simulate without initially introducing
density inhomogeneities and turbulence in the ambient medium
in the numerical set-up, which would increase the number of
free parameters in the calculations. The fact that shells would
not be able to retain their identity when their nominal speed
becomes comparable to the ambient medium sound speed is self-
evident. For example, for SNe blast waves, this was the condition
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Figure 8. Scatter plot of bubbles in the parameter space of mechanical
luminosity L and bubble age, after 30 Myr of the onset of star formation,
in which the colour of the data points refer to bubble sizes, as shown in the
colour palette on the right.

imposed by McKee & Ostriker (1977) in their three phase model
of ISM.

Therefore, we impose a condition of stalling the shell when
the outer shock speed equals the (isothermal) sound speed of the
ambient medium. This is shown by the horizontal section of the
green curves in Fig. 5.

5 R ESULTS

We first show in Fig. 8 a scatter plot of the bubbles as a function
of mechanical luminosity (up to 1037 erg s−1) and bubble age, for
a snapshot at 30 Myr after the onset of star formation. The bubble
sizes being shown in different colours according the colour palette
shown on the right, the red ones being the largest and blue ones
being the smallest. The SFR is considered to be uniform and equal
to 1 M� yr−1, and the luminosity function of clusters is assumed to
obey a power law with index β = 2. If we take a snapshot at 30 Myr
for bubbles triggered by mechanical luminosity up to 1037 erg s−1,
then these are the bubbles that would show up. They will have
different ages, as shown by their distribution along the vertical axis.
the vertical colour stripes indicate that most bubbles have stalled,
being at the same radius at different times, except for the bubbles
in the bottom of the figure. This is in contrast to the case without
cooling, in which the population of superbubbles is dominated by
growing bubbles, in Fig. 6.

The scatter plot shows that at any given time (here, at 30 Myr), the
smallest bubbles are produced mostly by low-luminosity clusters
(blue circles) and they are predominantly young. This is shown
by the fact that blue dots mostly appear at the left bottom corner
of this plot. The largest bubbles are created by clusters at the high-
luminosity end and can be both young and old. Most of the points in
the scatter plot, however, arise due to stalled bubbles. Leaving aside
the smallest bubbles (blue), there are vertical columns of different
colours (different sizes) in the figure. This implies that the sizes
of the bubbles mostly correspond to the mechanical luminosity of
the bubbles, and almost independent of the age. This is because
of the stalling condition we have imposed at the time of outer
shock speed becoming comparable to the ambient medium sound
speed.

The stalled radii can also be written in terms of the stalling time
ts as (equating the ambient isothermal sound speed of

√
P0/ρ with

Figure 9. Final bubble size as a function of mechanical luminosity, in the
case of self-similar evolution (where stalling is assumed to occur at pressure
equilibrium stage, OC97), and from simulations with cooling (in which
stalling is imposed when outer shock speed equals the ambient isothermal
sound speed).

the outer shock speed, 3
5 R/t),

Rcool,e = 5

3
P

1/2
0 ρ−1/2 ts, (8)

and the corresponding luminosity is given by,

Le =
(

5

3

)5 (
250

308π

)−5

P
5/2
0 ρ−3/2 t2

s η−1/2. (9)

These expressions allow us to estimate the largest bubble size Re

that is reached after t = ts = te ≈ 40 Myr, after which the OB stars in
a cluster drop off the main sequence and the mechanical luminosity
ceases to power any further growth of the bubble. For the same
fiducial ISM parameters as above, we get Rcool, e = 1388.4 pc (in
the notations of OC97) and the corresponding luminosity is Le ≈
6 × 1039 erg s−1. Clusters with luminosity larger than this will
continue to grow and not stall even at te(40) Myr. We find that these
values are similar to the ones considered in OC97 (Re = 1300 pc
and Le = 2.2 × 1039 erg s−1). These estimates also give us an idea
of bubbles that are still evolving and have not reached steady state
at a certain epoch. For example, for the same ISM parameters, at
10 Myr (after the onset of star formation), bubbles smaller than
347 pc (corresponding to L ∼ 3.8 × 1038 erg s−1) have reached
steady state and larger ones are still evolving.

Fig. 9 shows the relation between final bubble size from our
simulations (red points) as a function of mechanical luminosity
and shows that the size scales as L1/2. This follows from the
fact that radius of a bubble scales as R ∝ (ηL)1/5t3/5, where η ∼
0.25 takes into account the energy loss by radiation and pressure
gradient, as mentioned earlier. This implies an outer shock speed
v ∝ (ηL)1/5t−2/5. Since the bubbles are assumed to stall when this
speed becomes comparable to the ambient sound speed, the stalling
time-scales as ts ∝ L1/2, and consequently, Rf ∝ L1/2.

This stalling condition is similar to that used by OC97, since
the ram pressure of the outer shock is related to the pressure of
the shocked wind region in a bubble (Weaver et al. 1977), which
dominates the pressure inside a bubble. Therefore, it is not a surprise
that we get a similar relation between radius and luminosity as in
OC97. However, the magnitudes of these two types of pressure are
different. The inner pressure is roughly ∼0.8 of the ram pressure
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(Gupta et al. 2018). Therefore when the inner pressure comes to
equilibrium with ambient pressure, the forward shock speed is still
higher than the ambient sound speed. The stalling criterion based
on speed therefore yields a larger radius by a factor ∼1.2. However
when radiative cooling is taken into account, then this criterion gives
a smaller radius because of radiation loss.

In the OC97 case, the stalled size is given by (using their
equations 31 and 32),

Rf,OC ≈ 5 × 71/4

√
550π

P
3/4
0 (μmH n)1/4 L1/2

≈ 305 pc

(
P0

2.76 × 10−12 dyne cm−2

)−3/4

×
( n

0.5 cm−3

)1/4
(

L

1038 erg s−1

)1/2

. (10)

This relation is shown by the green line in Fig. 9. For the case
of cooling in our simulation, equating the shock speed with the
ambient (isothermal) sound speed leads to,

Rcool ≈
(

5

3

)−3/2 (
250

308π

)1/2

P
−3/4
0 (μmH n)1/4 (ηL)1/2

≈ 180 pc

(
P0

2.76 × 10−12 dyne cm−2

)−3/4

×
( n

0.5 cm−3

)1/4
(

L

1038 erg s−1

)1/2 ( η

0.25

)1/2
. (11)

The determination of the outer shock speed and the stalling time,
however, involves the smoothening of the outer shock speed versus
time, and the final determination of the stalled radius has an
uncertainty of order �20 per cent owing to this. The stalled radii in
the case of cooling are shown with red points in Fig. 9.

The second reason why we get a similar scaling between radius
and luminosity is the fact that radiation and ambient pressure affects
the size evolution through a single factor η, leaving the dependency
of size on luminosity the intact. These two facts contrive to make
the results in OC97 and in the present work look similar, even in
the presence of cooling.

The corresponding size distribution is, therefore, again expected
to of the type N(R) ∝ R1 − 2β , and it is shown in Fig. 11. The
fitted power-law indices at different epochs (10, 20, 30 Myr) are

Figure 10. Same as in Fig. 6, but for luminosities in the range 1037–6 × 1038

erg s−1.

Figure 11. Size distribution of bubbles in our simulation, for ambient
pressure p0 = 2.76 × 10−12 dyne cm−2, at 10, 20, and 30 Myr. The
distributions at different epochs are fitted with power law, and the power-law
indices are found to be ∼2.7.

roughly ∼2.7–2.9. This is close to the value of 1 − 2β(=−3), and
the difference from −3 stems from the fact that η weakly depends
on luminosity. Had η been totally independent of L, then, the size
distribution would have been exactly 1 − 2β(= −3). Since η is
somewhat smaller for lower L than its fiducial value, the shells for
low-luminosity clusters at stalled phase are somewhat smaller (see
equation 11), leading to a somewhat flatter size distribution than the
fiducial 1−2β value. Since the radii of bubbles have decreased in
general by a factor of 1.7, and the peak radius has decreased by a
similar factor compared to the adiabatic case in Fig. 1, to ∼10 pc.
While determining the size distribution we did not consider holes
smaller than 10 pc, and therefore we do not see any rising part in
the distribution with radiative cooling.

One notes in Fig. 11 that the slope slowly changes with time, and
becomes flatter. This is because of the fact that bubbles with large
luminosity take a while to stall, and in any given snapshot, there
would be newly formed (large luminosity) bubbles which would be
in a growing phase. The stalling time-scale is given by

ts ≈ 9.2 Myr

(
P0

2.76 × 10−12 dyne cm−2

)−5/4

×
( n

0.5 cm−3

)3/4
(

L

2 × 1038 erg s−1

)1/2 ( η

0.25

)1/2
. (12)

This implies that over time, the number of large luminosity bubbles,
or consequently, large size bubbles would increase, whereas the
small bubbles would have stalled quickly and their numbers would
more or less freeze. This is shown in the scatter plot for the bubbles,
in Fig. 10 for the range of luminosities 1037–6 × 1038 erg s−1. The
large luminosity bubbles are seen to be growing in this plot, and the
time-scale for attaining stalled phase for L ∼ 2 × 1038 erg s−1 is
≈9 Myr (shown by the fact that the onset of vertical bright yellow
line corresponding to this luminosity in the figure), as expected
from equation (12). This will make the size distribution evolve over
time, and make it flatter with time, as is seen in Fig. 11.

We show in Appendix A that our results are robust with respect
to numerical resolution, although we note that our simulation does
not address the issues of turbulence and mixing that may affect
radiative losses at different resolutions.
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Figure 12. Scatter plot for bubbles for ambient pressure p0 = 1.38 × 10−12 dyne cm−2 (left), and 6.9 × 10−13 dyne cm−2 (right), at 30 Myr.

Figure 13. Size distribution of bubbles for ambient pressure p0 = 2.76 × 10−12 dyne cm−2 (blue), 1.38 × 10−12 dyne cm−2 (red), and 6.9 × 10−13 dynes
cm−2 (green), at 10 and 30 Myr.

The above results pose question, whether or not one always
expects stalled bubbles (and consequently, a size distribution with
slope ≈−2.7) in the presence of cooling, or if this depends on the
ambient pressure. In order to answer the question, we have run our
simulations for two different pressures.

Fig. 12 shows the scatter plot of bubbles (similar to Figs 6 and
8 for our fiducial ISM pressure) for two different values of ISM
pressures, at 30 Myr. Essentially, we have decreased the non-thermal
contribution in the ambient pressure, by reducing the equivalent
temperature from 4 × 104 to 2 × 104 K (left-hand panel) and then
to 104 K (right-hand panel). Comparing with Figs 6 (adiabatic case)
and 8, we find that the bubbles in these two cases are not dominated
by stalled bubbles, as was the case for Fig. 8. For the left-hand panel,
we find that bubbles with L ∼ 5 × 1036 erg s−1 stall after a time-scale
of ∼7 Myr, and bubbles bigger than that at latter times. When the
pressure is further lowered, in the right-hand panel, all bubbles keep
growing until 30 Myr, and the circumstance is similar to Fig. 6. We
recall that, in these cases of domination by growing bubbles, the size
distribution is likely to be steeper than 1 − 2β, as we confirm below.

We show in Fig. 13 the size distribution of the bubbles for
these values of pressure at two different times after the onset of
star formation (10 and 30 Myr). In general, we find that lowering
pressure steepens the size distribution, by allowing low -luminosity
bubbles to grow to larger sizes. This trend is shown in Fig. 14, for
two different epochs, 10 and 30 Myr. At lower pressures, there is
an evolution of the slope between these time-scales, since bubbles

Figure 14. The slope of size distribution as a function of ISM pressure, for
two different epochs, 10 Myr (green) and 30 Myr (red).

keep growing in low ambient pressure, compared to high-pressure
environments.

The distributions at lower (non-thermal) pressures also show a
positive part at small sizes, in addition to the falling numbers at large
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sizes as we have seen earlier. The rising part comes from growing
young bubbles whose age is smaller than the stalling time of the
bubble with the lowest luminosity. This generates a peak in the
distribution. The peak depends upon the radius of the stalled bubble
with the lowest luminosity at the time being observed. Fig. 13 shows
that at higher pressures the peak radius is independent of time but
starts varying with time as soon as we start decreasing the pressure.
This occurs due to the fact that at higher pressures (such as, at
2.76 × 10−12 dyne cm−2), the bubbles with low luminosities stall
much before 10 Myr hence the peak occurs at the same radius even
when we observe the distribution at 30 Myr. However at lower
pressures like p0 = 6.9 × 10−13 dyne cm−2 the bubbles with low
luminosities stall much after 30 Myr, and hence the peak shifts
towards larger radii with time. In other words, the deviation of the
slope from −3 in low-pressure environments indicate evolution of
the bubbles, which breaks the relation of L ∝ R2 of stalled bubbles,
which would have produced a −3 slope.

6 D ISCUSSION

It is known that observations support the 1−2β power law for the
superbubble size distribution. For example, Bagetakos et al. (2011)
found a power-law index of ≈−2.9 in The HI Nearby Galaxy Survey
of 20 nearby galaxies. This is consistent with β ≈ 1.9.

They also reported a variation of the power-law index with galaxy
type, with early-type galaxies showing a steeper index (≈4) than
late-type galaxies. This indicates, a preponderance of small size
holes in early-type galaxies. They associated this phenomenon with
the level of star formation activity in different galaxy types. One
obvious connection is that in early-type galaxies, the observed
mass function of star clusters is steeper than late-type galaxies,
as evidenced by the H II region luminosity function (e.g. Kennicutt,
Edgar & Hodge 1989). While the luminosity function in Sb–Sc
galaxies has an index of ∼−2, the index varies from ∼−1.7 in
Sc−Im galaxies (Banfi et al. 1993) to ∼2.6 in Sa galaxies (Caldwell
et al. 1991). Oey & Clarke (1998) explained this variation in the H II

region luminosity function in terms of a truncation in the maximum
value of the luminosity distribution that depends on Hubble type.
This corresponds to early-type galaxies having a maximum cluster
mass that is much lower than for late-type galaxies.

We mention in passing that it is also possible that lower SFR
in early-type galaxies would lead to lower non-thermal pressure,
as has been seen in simulations (Joung, Mac Low & Bryan 2009).
According to their results, the turbulent pressure scales with surface
density of star formation as Pturb ∝ �2/3

∗ . Since our results indicate
that decreasing non-thermal pressure steepens the size distribution,
this remains another possibility. Future observations will be able to
point towards the right explanation.

We note that our calculations do not take into account the merging
of superbubbles and its effect on the size distribution. This was
discussed by OC97 in terms of a porosity parameter Q (Cox & Smith
1974), which is the ratio of superbubble volume to total ISM volume.
For the Milky Way, the SFR is near the critical point where Q ∼
1. It can be shown that the total volume occupied by superbubbles
can exceed the volume of Milky Way ISM, considering a cylinder
of 10 kpc radius and 500 pc thickness, within ≤1 Myr, if the SFR
is assumed to be ∼3 M� yr−1. Following Clarke & Oey (2002),
if one takes the average mass of clusters as ∼1300 M�, then the
number of superbubbles produced per Myr is ∼2200, for an SFR
of 3 M� yr−1. Then with a size distribution with a slope of −3,
the total volume exceeds the Milky Way ISM volume in ≤1 Myr.
This is also supported by the estimates of Krause et al. (2015). At

the same time, the observed volume filling factor of H I shells in
the Milky Way is less than ∼10 per cent (Bagetakos et al. 2011).
This implies that merging of superbubbles is important. It is also
evident from the observations of Simpson et al. (2012) that roughly
∼30 per cent of H I shells show signs of merging. OC97 also explore
how the Milky Way Q varies with the assumed value of β. Merging
among superbubbles likely flattens the size distribution to some
extent, by increasing the number of large bubbles at the expense of
smaller bubbles. However, it is difficult to estimate the magnitude
of this effect without a simulation that includes non-uniformity in
the spatial distribution of star clusters.

7 C O N C L U S I O N S

We have studied the form and evolution of the size distribution of
H I holes in the ISM of galaxies owing to superbubbles triggered
by OB associations, taking into account radiative cooling, with the
help of numerical hydrodynamical simulations. Previous works had
assumed bubble growth stalls when the inner pressure of adiabatic
bubbles equals the ambient pressure, which is not valid since the
bubbles maintain momentum-driven growth. Assuming that bubbles
stall when the expansion speed becomes comparable to the ambient
sound speed, we show that the inclusion of radiative cooling and
ambient pressure results in a power-law index of the size distribution
with slope ∼−2.7 for an ISM pressure of p0 = 2.8 × 10−12 dyne
cm−2 and density n = 0.5 cm−3. This is consistent with observations
by THINGS. We have further shown that decreasing the ISM
pressure can make the population of growing bubbles dominating
over stalled ones, consequently making the size distribution steeper.
Our results imply that the size distribution can help interpret the
evolution of bubbles, with the slope being ∼−2.7 in the case of
domination by stalled bubbles, and with a steeper slope for the case
of growing bubbles. We have discussed the possibility that the size
distribution in early-type galaxies is steeper than late-type galaxies
because of the difference in the intrinsic luminosity function as
a function of galaxy type. A steeper luminosity function of star
clusters in late-type galaxies leads to a steep size distribution, as
observed.
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APPEN D IX A : C ONVERGENCE TEST

Here, we present the convergence tests of the numerical runs for
superbubble evolution for our fiducial case, for a different spatial
resolution, with �r = 0.1 pc, instead of 0.16 pc used earlier. Fig. A1
shows the size distribution and fitted slopes at 10, 20, and 30 Myr,
for the fiducial case of P0 = 2.76 × 10−12 dyne cm−2. The slopes
(−2.93, −2.67, −2.67) are similar to the ones (−2.87, −2.74,
−2.64) obtained for a coarser resolution (Fig. 11). This confirms
the convergence of our results with respect to numerical resolution.

This implies that η has also reached convergence limit, and we
show in Fig. A2 the logarithm of ratio of radius to L1/5 versus time
for different luminosities, superimposed on the expected evolution
for η = 0.25. The curves show (as in Fig. 7) that η depends on
luminosity rather weakly.

We should note that our runs do not simulate the effects of tur-
bulent mixing in ISM, which might render numerical convergence
ineffective (e.g. Gentry et al. 2019; Fierlinger et al. 2016). However,
those effects are beyond the scope of the present work.

Figure A1. Similar to Fig. 11 except that it is for �r = 0.1 pc.

Figure A2. Similar to Fig. 7 except that this is for �r = 0.1 pc.
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