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A scheme for characterizing entanglement using the statistical measure of correlation given by the Pearson
correlation coefficient (PCC) was recently suggested that has remained unexplored beyond the qubit case.
Towards the application of this scheme for the high-dimensional states, a key step has been taken in a very recent
work by experimentally determining PCC and analytically relating it to Negativity for quantifying entanglement
of the empirically produced bipartite pure state of spatially correlated photonic qutrits. Motivated by this work,
we present here a comprehensive study of the efficacy of such an entanglement characterizing scheme for a
range of bipartite qutrit states by considering suitable combinations of PCCs based on a limited number of
measurements. For this purpose, we investigate the issue of necessary and sufficient certification together with
quantification of entanglement for the two-qutrit states comprising maximally entangled state mixed with white
noise and colored noise in two different forms, respectively. Further, by considering these classes of states for
d = 4 and 5, extension of this PCC-based approach for higher dimensions (d) is discussed.
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I. INTRODUCTION

Seminal discoveries of the applications of quantum en-
tanglement in cryptography [1], superdense coding [2], and
teleportation [3] have given rise to a rich body of works
that have demonstrated the remarkable power of entanglement
as resource for quantum communication and information
processing tasks, ranging from secure key distribution [4],
quantum computational speed-up [5], reduction of communi-
cation complexity [6,7], to device-independent certification of
genuine randomness [8,9]. These explorations have primarily
focused on considering the two-dimensional (qubit) systems.
Alongside, though, it is important to note that there have
been a number of studies indicating a range of advantages
gained by using high-dimensional entangled states, for exam-
ple, achieving more robust quantum key distribution protocols
with higher key rate [10–13], ensuring increased security of
the device independent key distribution protocols against even
tiny imperfection in randomness generation [14], enhancing
quantum communication channel capacity [15,16], as well
as lowering the rate of entanglement decay arising from
atmospheric turbulence in the context of free-space quantum
communication [17] and reducing the critical detection effi-
ciency required for more robust tests of quantum nonlocality
[18].
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Thus, in light of this promising potentiality of high-
dimensional entangled states, the characterization of such
experimentally produced entangled states is of much signif-
icance. Here it needs to be noted that the tomographic char-
acterization of quantum states is constrained by the require-
ment to determine a large number of independent parameters
depending upon the dimension of the system [19]. Hence,
in order to obviate this difficulty, the study of characteriza-
tion of high-dimensional entangled states based on a limited
number of measurements has been attracting an increasing
attention. Further, since which of the proposed schemes for
characterizing entanglement would be most readily amenable
to experimental implementation is a priori an open question,
the search for various effective schemes on this issue acquires
considerable significance. It is in this context, the present
paper seeks to systematically investigate the formulation of a
scheme for the characterization of high-dimensional entangle-
ment based on a well-known statistical measure of correlation
known as the Pearson correlation coefficient. In order to set
the appropriate backdrop for this work, we first briefly recall
the relevant important studies to date.

On the one hand, there are schemes making use of en-
tanglement witnesses to provide lower bounds on the en-
tanglement measures [20,21], on the other hand, operational
quantification of entanglement in a measurement-device-
independent way has been analyzed within the context of
a subclass of semiquantum nonlocal games [22] and this
approach has been used [23] to provide measurement-device-
independent bounds on entanglement quantifiers like Nega-
tivity. Also, of particular interest in this context are the recent
studies [24–26] formulating approaches to provide sufficient
characterization of bipartite high-dimensional entanglement
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based on determining a lower bound to the entanglement of
formation from a limited number of measurements. Among
these approaches, the scheme used by Bavaresco et al. [26]
gives an optimal estimate of the lower bound for entan-
glement of formation, and this scheme is easier to experi-
mentally implement because it involves only two local mea-
surements in each wing of the bipartite system. A different
approach [27] based on the violation of entropic inequali-
ties witnessing steerability of high-dimensional entanglement
with only two local measurements, too, has been shown
to provide an optimal lower bound to the entanglement of
formation.

However, all such approaches focusing essentially on pro-
viding bounds on entanglement measures do not provide
quantification of entanglement in terms of determining the
actual value of an entanglement measure like entanglement
of formation or Negativity. On the other hand, while the
characterization of entanglement for bipartite and multipartite
qubit states was earlier discussed in terms of appropriate
inequalities involving Bell correlations [28], a recent rel-
evant study [29] proposes using the Son-Lee-Kim (SLK)
inequality (a bipartite Bell-type inequality whose violation
can show nonlocality of high-dimensional states) for entan-
glement characterization by relating the nonzero value of the
measurable SLK function to Negativity (concurrence) in the
case of high-dimensional pure states (isotropic mixed states)
based on measurements of an appropriately chosen set of
observables. However, this approach has the limitation that
nonzero value of the SLK function is not a sufficient con-
dition for certifying entanglement since there are separable
mixed states for which the SLK function is nonzero for the
measurements of the observables specified in this approach.
Now, while such approaches make use of linear inequalities,
there have also been studies [30,31] formulating nonlinear
entanglement witnesses that are more effective in detecting
entanglement than the linear entanglement witnesses, how-
ever, still not quantifying entanglement in the sense mentioned
earlier.

Next, considering the other approaches that have been
proposed for the characterization of entanglement for high-
dimensional bipartite systems, the following are particularly
noteworthy. A scheme based on the sum of mutual informa-
tion using two mutually unbiased bases (MUBs) has been
invoked to certify various noisy mixed entangled states in
higher-dimensional cases using the notion that a bipartite
multidimensional state in even dimension can be regarded
as an ensemble of bipartite qubit states [32]; however, this
scheme provides only a sufficient criterion for detecting entan-
glement and quantifies entanglement in terms of entanglement
of formation, essentially restricted to the maximally entangled
state [33]. Another approach based on the notion of mutual
predictability has led to the argument that the condition of the
sum of mutual predictabilities pertaining to MUBs exceed-
ing a certain bound can serve as a necessary and sufficient
criterion for certifying entanglement of pure and isotropic
mixed states in any dimension [34]. On the other hand,
using measurements pertaining to correlations present in two
appropriately chosen MUBs, the experimental feasibility of a
scheme [35] has been argued that can determine essentially a
lower bound to the entanglement of formation for any state,

while providing only sufficient certification of entanglement
of the colored-noise and isotropic mixed states.

The preceding discussion, thus, underscores the lack of
schemes that, apart from necessary and sufficient certification,
can also quantify high-dimensional entanglement in the sense
of determining the actual value of an appropriate entangle-
ment measure in terms of a limited number of experimen-
tally measurable quantities. Of course, in such analyses, it
is assumed at the outset that the empirical procedure for
preparing a bipartite correlated state can specify it to be pure
or mixed, and if mixed, the type of noise that is involved in the
preparation procedure. The approach we adopt here is based
on analytically linking an empirically accessible statistical
measure of correlation with a suitable entanglement measure.
For this purpose, Maccone et al. [33] had suggested the
use of Pearson correlation coefficient [36] for entanglement
characterization. The Pearson correlation coefficient (PCC)
for any two random variables A and B is defined as

CAB ≡ 〈AB〉 − 〈A〉 〈B〉√
〈A2〉 − 〈A〉2

√
〈B2〉 − 〈B〉2

, (1)

whose values can lie between −1 and 1, and 〈·〉 is an average
value. Note that although PCC is a well known measure of
correlation that has been applied extensively in different areas
of statistical applications, surprisingly, it has so far been used
in physics only in a few cases such as for quantifying the
temporal correlation between classical trajectories in the con-
text of synchronization problems [37], for the quantification
of synchronization in the context of temporal dynamics of
local observables of a bipartite quantum system [38], and for
formulating a Bell-CHSH-type inequality in terms of PCCs
[39].

Now, let us explore the application of PCC in the context
of the following scenario: suppose a bipartite pure or mixed
state of the given dimension d is shared between Alice and
Bob; Alice (Bob) performs two d-outcome measurements A1

(B1) and A2(B2) on her (his) subsystem. Then, for A1 = B1 =∑
j a j |a j〉〈a j | and A2 = B2 = ∑

j b j |b j〉〈b j |, where {|a j〉} is
mutually unbiased to {|bj〉}, the following condition has been
conjectured by Maccone et al. to certify entanglement of
bipartite systems: ∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ > 1, (2)

which is postulated to imply entanglement. However, this
procedure based on PCCs has been applied for entanglement
characterization restricted to only the qubits [33].

In this context, it is important to take note of the line of
studies that has been recently initiated by measuring PCCs
for a bipartite photonic qutrit pure state which has been pro-
duced using a novel pump beam modulation-based technique
[40]. Subsequently, very recently, by analytically relating the
experimentally measurable quantity PCC with Negativity as
a measure of entanglement, the value of Negativity for the
empirically prepared nearly maximally entangled state has
been inferred, thereby constituting the first work using PCC
demonstrating entanglement detection and quantification be-
yond the two-qubit case [41]. While in that work, specifically,
pure two-qutrit states have been considered, in this paper
we embark on a comprehensive study of the application of
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PCC-based entanglement characterizing scheme. In particu-
lar, we explore the above mentioned conjecture of Maconne
et al. by considering a range of mixed states like isotropic and
two-types of colored-noise mixed states, as well as the Werner
and Werner-Popescu states in terms of the sum of suitable
number of PCCs.

Here it is relevant to note that the particular significance
of the qutrit systems stems from the considerable practical
advantages as compared to qubits that have been decisively
shown in the context of quantum cryptography [42], quantum
computation [43], and robustness against entanglement decay
[17]; moreover, because of the intriguing nature of the rela-
tionship that has been pointed out for the qutrits between the
magnitude of violation of Bell-type inequality and the amount
of entanglement [44–46], the study of entangled qutrits ac-
quires an added fundamental significance.

A salient feature of our treatment worth stressing is that it is
the idea of Negativity as a measure of entanglement that turns
out to be useful for relating it to PCCs in a way that enables
effective characterization of entanglement for the classes of
states considered in this paper. Here it is relevant to recall that
introduction of the idea of Negativity by Zyczkowski et al.
[47] stimulated its use as an entanglement measure through
demonstration that it is an entanglement monotone for any
finite-dimensional bipartite entangled state [48]. Later, appli-
cations of this quantity, defining it as the absolute value of
the sum of negative eigenvalues of partial transposed density
matrix, were pointed out in different contexts like relating its
lower bound to the violations of Bell-CHSH inequality and
steering inequality, respectively, [49,50]. A physical meaning
of Negativity has been provided by arguing that Negativity
can be viewed as an estimator of the number of degrees of
freedom of the two subsystems that are entangled, as well
as can be viewed as determining in a device-independent
way the minimum number of dimensions that contribute to
the quantum correlation [51]. In this context, the relation-
ship between Negativity and PCCs found in this paper can
have interesting implications revealing further aspects of the
physical meaning of Negativity for higher dimensional sys-
tems.

Now, let us summarize the salient results obtained in Sec. II
for the qutrit case:

(a) We consider maximally entangled state mixed with
white noise in two different forms, isotropic mixed states
[52–54] and Werner-Popescu states [52,55]. For both these
classes of mixed states, it is found that by appropriately
choosing four mutually noncommuting bases which are not
MUBs, the sum of four PCCs being greater than 1 provides the
necessary and sufficient condition for certifying entanglement,
as well as the quantification of entanglement is obtained
through an analytically derived monotonic relation in terms
of Negativity.

(b) We consider two types of colored noise mixed with a
maximally entangled state. In one of the types, a colored-noise
state having perfect correlation in the computational basis is
mixed with the maximally entangled state [32]. For this family
of states, we find that one can choose two appropriate MUBs
so that the sum of two PCCs being greater than 1 gives the
necessary and sufficient condition for certifying entanglement;

quantification of entanglement is also obtained similar to the
earlier cases in terms of Negativity.

In the other type, a colored-noise state having anticorrela-
tion in the computational basis is mixed with the maximally
entangled state [56]. For this class of states, we find that
for the appropriately chosen four mutually noncommuting
bases which are not MUBs, the sum of four PCCs being
greater than 1 furnishes the certification and quantification of
entanglement, provided Negativity is nonvanishing.

(c) Considering the entanglement characterization of
Werner state [57], which, in any arbitrary dimension, is a
mixture of projectors onto the antisymmetric subspace and
white noise in the higher dimensional case, it turns out that
by using the sets of four appropriate mutually noncommuting
bases, MUBs as well as non-MUBs, we can show the sum
of four PCCs to be providing a sufficient criterion for the
certification of entanglement, as well as the quantification of
entanglement can be achieved by relating it to Negativity.

It is thus evident that for the effective characterization
of entanglement using PCCs for the different types of qutrit
mixed states, the number of measurements suffice to be lim-
ited to either only two or four MUBs or noncommuting bases.
An interesting point to note is that while the schemes for
efficient tomography and those invoking the notions of mutual
information and mutual predictability usually use MUBs,
the approach proposed for entanglement characterization in
terms of PCCs can work for some specific classes of states
like isotropic mixed states, a type of colored-noise, Werner,
and Werner-Popescu states, even using mutually noncommut-
ing bases that are not MUBs. This is similar to the case
of nonlocality studies using Bell-type inequalities involving
measurements pertaining to mutually noncommuting bases
which do not necessarily need to be MUBs [46]. Here we
may also mention that apart from its other applications, the
procedure of entanglement characterization and quantification
using PCCs in the qutrit case, together with the results of stud-
ies on the nonlocality of bipartite qutrit states can provide a
powerful experimental platform for a comprehensive probing
of hitherto unexplored quantitative aspects of the relationship
between entanglement and nonlocality [44–46,58–63].

In Sec. III towards exploring the potentiality of this method
for higher dimensions d > 3, the results of studies probing
extension of this scheme for the dimensions d = 4 and 5
will be discussed, in particular, for the pure as well as the
isotropic, two types of colored-noise, Werner, and Werner-
Popescu mixed states (see Fig. 1 which gives a schematic
outline of this entanglement characterization approach). We
now proceed to delve into the specifics, beginning with the
case of isotropic mixed states.

II. TWO-QUTRIT STATES

A. Isotropic mixed states

Let us begin by writing the general expression for the two-
qudit isotropic mixed state [52–54] given by

ρI (F ) = 1 − F

d2 − 1
(I − |φ+

d 〉〈φ+
d |) + F |φ+

d 〉〈φ+
d |, (3)
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FIG. 1. Entanglement characterization approach based on the
sum of Pearson correlation coefficients (PCCs). Two experimental-
ists, Alice and Bob, have access to the subsystems of a bipartite
d × d quantum system. Alice and Bob perform two or d + 1 local
measurements in mutually unbiased bases or noncommuting bases.
From the measurement statistics, Alice and Bob can check whether
the sum of two PCCs given by CA1B1 + CA2B2 (in the case of pure
states) or the sum of d + 1 PCCs given by

∑d+1
i, j=1 CAiB j (in the case

of mixed states) is greater than 1 to determine whether the given
bipartite quantum state is entangled or not.

where F = 〈φ+
d |F |φ+

d 〉 satisfying 0 � F � 1 is the fidelity of
ρI (F ) and

|φ+
d 〉 = 1√

d

2∑
i=0

|i〉 ⊗ |i〉 , (4)

which is the maximally entangled state in dimension d and I
is the identity matrix of dimension d × d . For the two-qudit
isotropic mixed state ρI (p), Negativity as defined in Ref. [48]
can be computed from the partial transposed density matrix
and is given by

N (ρI (F )) = max

{
dF − 1

2
, 0

}
, (5)

which is nonzero if and only if F > 1/d . Interestingly, it turns
out that the two-qudit isotropic mixed state ρI (F ) is entangled
if and only if the same condition is satisfied, viz., F > 1/d
[52]. Therefore, it follows that the Negativity of this class of
states as given by Eq. (5) provides the necessary and sufficient
quantification of entanglement for any d .

For our purpose here for the necessary as well as sufficient
certification of entanglement, we now construct the following
set of four noncommuting bases which are not MUBs:

{|aj〉} ={|0〉 , |1〉 , |2〉},
{|bj〉} ={(|0〉 + |1〉 + |2〉)/

√
3,

(|0〉 + ω |1〉 + ω2 |2〉)/
√

3,

(|0〉 + ω2 |1〉 + ω |2〉)/
√

3},

{|e j〉} ={(|0〉 + eiπ/3 |1〉 + e2iπ/3 |2〉)/
√

3,

(|0〉 − |1〉 + |2〉)/
√

3,

(|0〉 + ω2eiπ/3 |1〉 + ωe2iπ/3 |2〉)/
√

3},
{|gj〉} ={(ω2 |0〉 + ω |1〉 − |2〉)/

√
3,

(|0〉 + |1〉 − |2〉)/
√

3,

(ω |0〉 + ω2 |1〉 − |2〉)/
√

3}, (6)

where ω = e2iπ/3. Here, the eigenvalues a j of the computa-
tional basis [64] are given by a0 = +1, a1 = 0, and a2 =
−1, the second basis {|bj〉} corresponds to what we call the
generalized σx basis (with the eigenvalues b0 = 0, b1 = +1,
b2 = −1), the third basis {|e j〉} corresponds to what we call
the generalized σy basis (with the eigenvalues b0 = +1, b1 =
0, b2 = −1), and the eigenvalues g j of the fourth basis are
given by g0 = +1, g1 = 0, and g2 = −1.

Here we may remark that what we call the generalized σ̂x

and the generalized σ̂y bases mentioned above which will be
used later are obtained from the general expression for the d-
dimensional basis invoked by Scarani et al. [65] in the context
of studies related to the CGLMP inequality, and also used in
the treatment by Spengler et al. [34]. This eigenbasis {�x(a)}
of a d-dimensional observable as invoked by these authors can
be written in terms of the computational basis as

�x(a) ≡
d−1∑
k=0

ei(2π/d )ak

√
d

(eikφx |k〉), (7)

where a = 0, 1, 2 . . . (d − 1) label the different eigenvectors.
For d � 3, we call the basis {�x(a)} with φx = 0 and φx =
π/d the generalized σx basis and the generalized σy basis
respectively. This terminology is used in the sense that in the
case of d = 2, the above expression reduces to the eigenbases
corresponding to σx and σy observables, respectively.

Next, using the earlier mentioned bases given by Eq. (6),
we find that the necessary and sufficient certification of en-
tanglement for the two-qutrit isotropic states can be obtained
in terms of the sum of four PCCs

∑4
i=1 |CAiBi |, where A1 =

B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 = B3 =∑
j e j |e j〉〈e j |, and A4 = B4 = ∑

j g j |g j〉〈g j |, whence the sum
of these four PCCs is given by

4∑
i=1

∣∣CAiBi

∣∣ = |9F − 1|
2

> 1 iff F > 1/3. (8)

See Appendix A for the derivation of the above expression for
the sum of four PCCs. Now, from Eqs. (5) and (8) it follows
that since, as mentioned earlier, the two-qutrit isotropic mixed
state is entangled if and only if F > 1/3 whence Negativity
is nonzero, the sum of four PCCs as given above being
greater than 1 provides necessary and sufficient certification of
entanglement. Next, we argue that the sum of PCCs given by
Eq. (8) also provides quantification of certified entanglement
of the two-qutrit isotropic states in the following sense.

Now, note that using Eq. (5), one can write Negativity of
the two-qutrit isotropic mixed state for F > 1/3:

N (ρI (F )) = 3F − 1

2
. (9)
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From Eq. (9), using Eq. (8) it follows that for F > 1/3

4∑
i=1

∣∣CAiBi

∣∣ = 1 + 3N (ρI (F )). (10)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

B. Colored noise mixed with maximally entangled state

Here we consider two families of two-qutrit mixed states
having maximally entangled state mixed with two types of
colored noise. In one of them (labeled A), a colored-noise
state has perfect correlation in the computational basis and
in the other type (labeled B), a colored-noise state has perfect
anticorrelation in the computational basis.

Colored-noise mixed states-A. Let us write the general
expression for the colored-noise two-qudit maximally entan-
gled state, which is a mixture of the two-qudit maximally
entangled state |φ+

d 〉 and the colored-noise two-qudit state
1/d

∑d−1
i=0 |ii〉〈ii| given by

ρcc(p) = p|φ+
d 〉〈φ+

d | + (1 − p)

d

d−1∑
i=0

|ii〉〈ii|, (11)

where p is the mixed parameter, 0 � p � 1. In Ref. [32]
experimental verification of entanglement of the above class
of states was demonstrated by using the approach based on
the sum of mutual information. It can be checked that the
above class of states is entangled for p �= 0 by using the
positive partial transpose criterion [66]. For this class of states,
Negativity as defined in Ref. [48] can be calculated from the
partial transposed density matrix is given by

N (ρcc(p)) = (d − 1)
p

2
. (12)

Since the one-parameter family of states given by Eq. (11) is
separable for p = 0 and for p �= 0, N (ρcc(p)) > 0, this class
of states is entangled if and only if p > 0.

Let us now consider the colored-noise two-qutrit maxi-
mally entangled state, i.e., ρcc(p) given by Eq. (11) with
d = 3. Let the basis {|a j〉} of the pair of observables A1B1

in Eq. (2) be the computational basis and the basis {|bj〉} of
the pair of observables A2B2 in Eq. (2) be the generalized σy

basis. For this choice of two MUBs, the sum of two PCCs
for the colored-noise two-qutrit maximally entangled state is
given by∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + p > 1 iff p > 0, (13)

which implies that the above sum of two PCCs being greater
than 1 provides a necessary and sufficient criterion for certifi-
cation of entanglement of the colored-noise mixed with two-
qutrit maximally entangled state since, as mentioned earlier,
this class of mixed states is entangled if and only if p �= 0.
See Appendix B for the derivation of the above expression for
the sum of two PCCs.

It is then readily seen from the expression of Negativity for
the colored-noise two-qutrit maximally entangled state given
by Eq. (12) with d = 3 that the sum of PCCs given by Eq. (13)

is related to Negativity as follows:∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + N (ρcc(p)), (14)

thereby providing quantification of entanglement in this case.
On the other hand, it can be checked that for any two non-
commuting bases which are not MUBs chosen from the set
given by Eq. (6), the sum of two PCCs being greater than 1
provides only sufficient certification of entanglement of the
colored-noise two-qutrit maximally entangled state.

Colored-noise mixed states-B. In addition to the above
type of mixed state involving colored noise, we now consider
the following type of state which was first introduced by
Eltschka et al. in Ref. [56] and later used by Sentis et al. in
Ref. [67].

Let us write as follows the general expression for this type
of mixed state which is a mixture of the two-qudit maximally
entangled state |φ+

d 〉 and the colored-noise two-qudit state of
the type given by 1/(d (d − 1))

∑d−1
i �= j=0 |i j〉〈i j|:

ρac(p) = p|φ+
d 〉〈φ+

d | + (1 − p)

d (d − 1)

d−1∑
i �= j=0

|i j〉〈i j|, (15)

where 0 � p � 1. For this class of states, Negativity as de-
fined in Ref. [48] can be calculated from the partial transposed
density matrix, given by

N (ρac(p)) = max

{
d p − 1

2
, 0

}
. (16)

Let us now consider the colored-noise two-qutrit maxi-
mally entangled state, i.e., ρac(p) given by Eq. (15) with
d = 3. It can be checked that for the two MUBs which are
the computational bases and the generalized σy basis, the sum
of two PCCs for the colored-noise mixed states given by
Eq. (15) with d = 3 is greater than 1 only when the Negativity
is greater than certain value. Therefore, we proceed to check
whether the sum of four PCCs for this family of mixed states
is greater than 1 for some suitable set of four noncommuting
bases if and only if the Negativity of the state is nonzero. We
now use the set of four noncommuting bases (which are not
MUBs) given in Eq. (6) which we have used for certifying
and quantifying entanglement of the above mentioned two-
qutrit isotropic state using the sum of four PCCs. For these
noncommuting bases, the sum of four PCCs for the colored-
noise two-qutrit mixed state given by Eq. (15) with d = 3 is
given by

4∑
i=1

∣∣CAiBi

∣∣ = 9p − 1

2
> 1 iff p > 1/3, (17)

which implies that the above sum of two PCCs is greater
than 1 if and only if the Negativity N (ρac(p)) �= 0. See
Appendix C for the derivation of the above expression for the
sum of four PCCs. It is then readily seen from the expression
of Negativity for the colored-noise two-qutrit maximally en-
tangled state given by Eq. (16) with d = 3 that the sum of
PCCs given by Eq. (17) is related to Negativity as

4∑
i=1

∣∣CAiBi

∣∣ = 1 + 3N (ρac(p)), (18)
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thereby providing quantification of certified entanglement,
similar to the quantification of entanglement of the two-qutrit
isotropic states given by Eq. (10).

C. Werner states

In Ref. [57], Werner introduced a class of mixed two-qudit
states for which there are separable as well as entangled
subsets, the latter containing states for which local realist
model exists. These mixed two-qudit states are called Werner
states. Here we consider a particular form of such a state in
any dimension which is a convex mixture of the projector onto
the antisymmetric space and white noise [68] given by

ρW (p) = p

d (d − 1)
2Panti + (1 − p)

d2
I, (19)

where

1 − 2d

d + 1
� p � 1

and

Panti = 1

2

⎛
⎝I −

d−1∑
i j=0

|i〉〈 j| ⊗ | j〉〈i|
⎞
⎠,

which is the projector onto the antisymmetric space. Note
that for d = 2, the above class of states is a mixture of the
maximally entangled state and white noise.

For the two-qudit Werner state ρW (p) given by Eq. (19),
Negativity as defined in Ref. [48] can be computed from the
partial transposed density matrix and is given by

N (ρW (p)) = max

{
(d + 1)p − 1

d2
, 0

}
, (20)

which is nonzero if and only if p > 1/(d + 1). Also, note
that the two-qudit Werner state ρW (p) given by Eq. (19) is
entangled if and only if p > 1/(d + 1) [57,68]. Therefore, it
follows that the Negativity of this class of states as given by
Eq. (20) provides the necessary and sufficient quantification of
entanglement for any d . We may note here that for d � 3, the
existence of an entanglement witness for such class of states
which is experimentally measurable has been shown [69] but
the quantification of certified entanglement of the Werner
states has remained uninvestigated. Thus, in this context, the
following procedure of entanglement characterization using
the measurable PCCs is of particular significance.

Let us now consider the two-qutrit Werner state, i.e., ρW (p)
given by Eq. (19) with d = 3. For the four noncommuting
bases (which are not MUBs) given in Eq. (6), i.e., A1 =
B1 = ∑

j a j |a j〉〈a j |, A2 = B2 = ∑
j b j |b j〉〈b j |, A3 = B3 =∑

j e j |e j〉〈e j |, and A4 = B4 = ∑
j g j |g j〉〈g j |, the sum of four

PCCs for the two-qutrit Werner state is given by

4∑
i=1

∣∣CAiBi

∣∣ = 2|p| > 1 iff p > 1/2. (21)

See Appendix D for the derivation of the above expres-
sion. Since, as mentioned earlier, the Werner states given by
Eq. (19) with d = 3 are entangled for p > 1/4, it follows from
Eq. (21) that the sum of four PCCs being greater than 1 pro-
vides a sufficient criterion for the certification of entanglement

of the state given by Eq. (20) with d = 3. Interestingly, it is
found that the expression for the sum of four PCCs obtained in
Eq. (21) for the two-qutrit Werner states can also be obtained
by the set of four MUBs given by Eq. (E1) in Appendix
E. Next, we argue that the sum of PCCs given by Eq. (21)
also provides quantification of certified entanglement of the
Werner states.

Note that using Eq. (20), Negativity of the two-qutrit
Werner state for p > 1/4 given by

N (ρW (p)) = 4p − 1

9
. (22)

From Eq. (22), using Eq. (21) it follows that for p > 1/4

4∑
i=1

∣∣CAiBi

∣∣ = 1 + 9N (ρW (p))
2

. (23)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

D. Werner-Popescu states

The so-called Werner-Popescu state [52,55] in arbitrary
dimension d which is a convex mixture of the maximally
entangled pure two-qudit state and white noise is given by

ρW P(p) = 1 − p

d2
I + p |φ+

d 〉〈φ+
d |, (24)

which has also been discussed elsewhere, for instance, in
Ref. [32]. For d = 2, Werner-Popescu states become same as
the Werner states up to local unitary.

Note that the isotropic mixed state given by Eq. (3) can be
written in the form of ρW P(p) given above with F = (d2−1)p+1

d2 ,
for F � 1/d2 since p lies between 0 and 1. Now, F > 1/d
implies p > 1/(d + 1) and, as mentioned earlier, the two-
qudit isotropic state is entangled if and only if F > 1/d . It
thus follows that the two-qudit Werner-Popescu state ρW P(p)
given by Eq. (24) is entangled if and only if p > 1/(d + 1)
[52].

Let us now consider the two-qutrit Werner-Popescu state,
i.e., ρW P(p) given by Eq. (24) with d = 3. For the choice of
four noncommuting bases (not MUBs) given by Eq. (6), the
sum of four PCCs for the two-qutrit Werner-Popescu state is
given by

4∑
i=1

∣∣CAiBi

∣∣ = 4p > 1 iff p > 1/4. (25)

See Appendix G for the derivation of the above expression for
the sum of four PCCs. Since, as mentioned earlier, the Werner-
Popescu state given by Eq. (24) with d = 3 is entangled if and
only if p > 1/4, the sum of four PCCs as given above being
greater than 1 provides necessary and sufficient certification
of entanglement.

While the above demonstration of necessary and sufficient
certification of entanglement has been in terms of four non-
commuting bases which are not MUBs, it can be checked
that for the set of four MUBs which include the computa-
tional basis and generalized σx basis, the sum of four PCCs
being greater than 1 provides only sufficient certification of
entanglement of the two-qutrit Werner-Popescu states. Next,
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we argue that the sum of PCCs given by Eq. (25) also pro-
vides quantification of certified entanglement of the two-qutrit
Werner-Popescu states in the following sense.

For the two-qutrit Werner-Popescu state ρW P(p) given by
Eq. (24) with d = 3, Negativity as defined in Ref. [48] can
be computed from the partial transposed density matrix and is
given by

N (ρW P(p)) = max

{
4p − 1

3
, 0

}
, (26)

which is nonzero if and only if p > 1/4. Interestingly, the two-
qutrit isotropic mixed state ρW P(p) is entangled if and only if
p > 1/4 [52]. Therefore, it follows that the Negativity of this
class of states as given by Eq. (26) provides the necessary and
sufficient quantification of entanglement.

Now, note that using Eq. (26), one can write Negativity of
the two-qutrit Werner-Popescu state ρW P(p) for p > 1/4

N (ρW P(p)) = 4p − 1

3
. (27)

From Eq. (27), using Eq. (25) it follows that for p > 1/4

4∑
i=1

∣∣CAiBi

∣∣ = 1 + 3N (ρW P(p)). (28)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

Next, we proceed to investigate to what extent the approach
using PCCs can provide certification and quantification of
entanglement for the pure states and the above classes of states
for d = 4 and 5 as well as pure states.

III. TWO-QUDIT STATES FOR d = 4 AND d = 5

A. Pure states

For d = 4. Let us consider the pure two-qudit state of
dimension d = 4 of the form

|ψ4〉 = c0 |00〉 + c1 |11〉 + c2 |22〉 + c3 |33〉 , (29)

where 0 � c0, c1, c2, c3 � 1, and
∑3

i=0 c2
i = 1. For the above

class of states, the expression for Negativity is given by

N (|ψ4〉) = c0c1 + c0c2 + c0c3 + c1c2 + c1c3 + c2c3. (30)

The above expression can be obtained from the general
formula for Negativity for a pure two-qudit state |ψd〉 given
by [56]

N (|ψd〉) =
d−1∑

p�=q=0,p〉q
cpcq, (31)

where |ψd〉 is of the Schmidt decomposition form

|ψd〉 =
d−1∑
i=0

ci |ii〉 . (32)

In Sec. II A, the generalized σz basis and the generalized
σy basis have been defined for any dimension d � 3. For this
choice of two MUBs in the case d = 4, the sum of two PCCs
for the pure two-qudit states of dimension d = 4 given by

Eq. (29) can be shown to be given by∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣
= 1 + 9c2c3 + c1(9c2 + 2c3) + c0(9c1 + 2c2 + 9c3)

10
, (33)

where A1 = B1 = ∑
j a j |a j〉〈a j | and A2 = B2 = ∑

j b j |b j〉
〈b j |, with {|a j〉} and {|b j〉} being the generalized σz basis
and the generalized σy basis, respectively, and the eigenvalues
are given by a0 = b0 = +2, a1 = b1 = +1, a2 = b2 = −1,
and a3 = b3 = −2. From Eqs. (30) and (33) it follows that
if and only if any two of ci’s are nonzero, then Negativity
is nonzero as well as the sum of PCCs given by Eq. (33) is
greater than 1. Now, since a pure two-qudit state is entangled
if and only if Negativity is nonvanishing, we can argue that
for the pure two-qudit states of dimension d = 4, the sum of
PCCs being greater than 1 provides necessary and sufficient
certification of entanglement. Note that the sum of PCCs
given by Eq. (33) attains the algebraic maximum of 2 for the
maximally entangled state for which all cis in Eq. (33) are
equal to 1/

√
4.

As regards quantification of entanglement, it can be
checked that the sum of PCCs given by Eq. (33) is related
to Negativity as

∣∣CA0B0

∣∣ + ∣∣CA1B1

∣∣ = 1 + 9N (|ψ4〉) − 7χ

10
, (34)

where χ = c0c2 + c1c3 which takes value in the interval 0 �
χ � 1/2. The relationship between the sum of PCCs and
Negativity given above implies that for any class of pure states
for which the quantity χ takes a constant value c, the sum of
PCCs given by Eq. (33) is a monotonic function of Negativity.
This means that for any pair of pure states within a class
of pure states for which χ = c, a higher value of the sum
of PCCs given by Eq. (34) always implies higher degree of
entanglement.

For the more general class of pure states given by Eq. (29),
whether the sum of PCCs for any other possible two MUBs is
a monotonic function of Negativity is a critical issue.

For d = 5. Let us consider the general pure two-qudit state
of dimension d = 5 given by

|ψ5〉 = c0 |00〉 + c1 |11〉 + c2 |22〉 + c3 |33〉 + c4|44〉, (35)

where 0 � c0, c1, c2, c3, c4 � 1, and
∑4

i=0 c2
i = 1. For the

above class of states, the general expression for Negativity
given by Eq. (31) reduces to

N (|ψ5〉) = c0(c1 + c2 + c3 + c4) + c1(c2 + c3 + c4)

+ c2(c3 + c4) + c3c4. (36)

For the two MUBs which are taken to be the generalized σz

basis and the generalized σy basis for d = 5, the sum of two
PCCs for the pure two-qudit states of dimension d = 5 given
by Eq. (35) can be shown to be given by∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣
= 1 + 5 + √

5

10
(c0c1 + c0c4 + c1c2 + c2c3 + c3c4)

+ 5 − √
5

10
(c0c2 + c0c3 + c1c3 + c1c4 + c2c4), (37)
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where, similar to that mentioned for d = 4, we have taken
A1 = B1 = ∑

j a j |a j〉〈a j | and A2 = B2 = ∑
j b j |b j〉〈b j |, with

{|a j〉} and {|b j〉} being the generalized σz basis and the gener-
alized σy basis, respectively, and the eigenvalues are given by
a0 = b0 = +2, a1 = b1 = +1, a2 = b2 = 0, a3 = b3 = −1,
and a3 = b3 = −2. The above sum of PCCs given by Eq. (37)
attains the algebraic maximum of 2 for the maximally entan-
gled state for which all cis in Eq. (37) are equal to 1/

√
5.

Now, from Eqs. (36) and (37) it follows that if and only if
any two of ci’s are nonzero, then Negativity is nonzero as well
as the sum PCCs given by Eq. (33) is greater than 1. Thus,
for the pure two-qudit states of dimension d = 5, the sum of
PCCs being greater than 1 provides necessary and sufficient
certification of entanglement.

As regards quantification of entanglement, it can be
checked that the sum of PCCs given in Eq. (37) is related to
the Negativity as

∣∣CA0B0

∣∣ + ∣∣CA1B1

∣∣ = 1 + (5 + √
5)N (|ψ5〉) − 2

√
5χ

10
, (38)

where χ = c0c2 + c0c3 + c1c3 + c1c4 + c2c4 which takes
value in the interval 0 � χ � 1. Similar to the case of d = 4
pure states, the relationship between the sum of PCCs and
Negativity given above implies that for any pair of pure states
drawn from a class of pure states for which the quantity
χ takes a constant value c, a higher value of the sum of
the PCCs given by Eq. (38) always implies higher value of
entanglement.

B. Isotropic mixed states

Now, following the procedure of entanglement character-
ization using the measurable PCCs as shown for two-qutrit
isotropic mixed states, we now proceed to address the d = 4
and d = 5 cases.

For d = 4. Now, to certify entanglement of the isotropic
mixed state given by Eq. (3) in dimension d = 4, we
use the sum of five PCCs

∑5
i=1 |CAiBi |, where A1 =

B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 = B3 =∑
j e j |e j〉〈e j |, A4 = B4 = ∑

j g j |g j〉〈g j |, and A5 = B5 =∑
j k j |k j〉〈k j | with the eigenvalues a0 = b0 = e0 = g0 =

k0 = +2, a1 = b1 = e1 = g1 = k1 = +1, a2 = b2 = e2 =
g2 = k2 = −1, and a3 = b3 = e3 = g3 = k3 = −2. Detailed
expressions for the five bases corresponding to these
observables are given by Eq. (F1) in Appendix F. For
this choice of five mutually unbiased bases, the sum of five
PCCs is given by

5∑
i=1

∣∣CAiBi

∣∣ = |16F − 1|
3

> 1 iff F > 1/4. (39)

Since the isotropic mixed state [given by Eq. (3)] is entangled
for F > 1/4 for dimension d = 4, it follows that the sum of
five PCCs given by Eq. (39) being greater than 1 provides
a necessary and sufficient criterion for the certification of
entanglement of the isotropic mixed state given by Eq. (3)
in dimension d = 4. Next, we argue that the sum of PCCs
given by Eq. (39) also provides quantification of certified
entanglement of the isotropic mixed state given by Eq. (3) in
dimension d = 4.

Note that using Eq. (5), one can write Negativity of the en-
tangled isotropic mixed state [given by Eq. (3)] in dimension
d = 4 for F > 1/4 given by

N (ρI (p)) = 4F − 1

2
. (40)

From Eq. (40), using Eq. (39) it follows that for F > 1/4

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 8

3
N (ρI (p)). (41)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

For d = 5. Similarly, now, to certify entanglement of
the isotropic mixed state given by Eq. (3) in dimension
d = 5, we use the sum of six PCCs

∑6
i=1 |CAiBi |,

where A1 = B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |,
A3 = B3 = ∑

j e j |e j〉〈e j |, A4 = B4 = ∑
j g j |g j〉〈g j |, A5 =

B5 = ∑
j k j |k j〉〈k j |, and A6 = B6 = ∑

j l j |l j〉〈l j | with the
eigenvalues a0 = b0 = e0 = g0 = k0 = l0 = +2, a1 = b1 =
e1 = g1 = k1 = l1 = +1, a2 = b2 = e2 = g2 = k2 = l2 = 0,
a2 = b2 = e2 = g2 = k2 = l2 = −1, and a3 = b3 = e3 =
g3 = k3 = l3 = −2. Detailed expressions for the six bases
corresponding to these observables are given by Eq. (F2)
in Appendix F. For this choice of six noncommuting bases
which are not MUBs, the sum of six PCCs is given by

6∑
i=1

∣∣CAiBi

∣∣ = |25F − 1|
4

> 1 iff F > 1/5. (42)

Since the isotropic mixed state given by Eq. (3) is entangled
for F > 1/5 for dimension d = 4, it follows that the sum of
six PCCs given by Eq. (42) being greater than 1 provides
a necessary and sufficient criterion for the certification of
entanglement of the isotropic mixed state given by Eq. (3)
in dimension d = 5. Similar to the case d = 4, we now
argue that the sum of PCCs given by Eq. (42) also provides
quantification of certified entanglement of the isotropic mixed
state given by Eq. (3) in dimension d = 5 in the following
sense.

Now, note that using Eq. (5), one can write Negativity
of the entangled isotropic mixed state [given by Eq. (3)] in
dimension d = 5 for p > 1/5 given by

N (ρI (F )) = 5F − 1

2
. (43)

From Eq. (43), using Eq. (42) it follows that for F > 1/5

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 5

2
N (ρI (F )). (44)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

C. Colored-noise mixed with maximally entangled state

Here we consider two types of a colored-noise state
mixed with the maximally entangled two-qudit state given by
Eqs. (11) and (15) which are abbreviately called colored-noise
mixed states-A and colored-noise mixed states-B, respectively.
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1. Colored-noise mixed states-A

For d = 4. In order to certify entanglement of the colored-
noise two-qudit maximally entangled state [given by Eq. (11)]
in dimension d = 4 as in the case for d = 3, we use the
criterion given by Eq. (2). Let the basis {|a j〉} of the pair of
observables A1B1 in Eq. (2) be the computational basis and
the basis {|b j〉} of the pair of observables A2B2 in Eq. (2) be
the generalized σy basis. For this choice of two MUBs, the
sum of two PCCs computed for the state given by Eq. (11) for
d = 4 is given by

∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + p > 1 iff p > 0, (45)

from which it follows that the above sum of two PCCs being
greater than 1 provides a necessary and sufficient criterion
for certification of entanglement of the colored-noise mixed
with two-qudit maximally entangled state in dimension d =
4 since, as mentioned earlier, this class of mixed states is
entangled if and only if p �= 0. It is also readily seen from
Eqs. (45) and (12) for d = 4 that the sum of PCCs is related
to Negativity as follows:

∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + 2

3
N (ρcc(p)), (46)

thereby providing quantification of entanglement in this case.
For d = 5. Similar to the above case, we consider the

basis {|aj〉} of the pair of observables A1B1 in Eq. (2) to be
the computational basis and the basis {|bj〉} of the pair of
observables A2B2 in Eq. (2) to be the generalized σy basis.
For this choice of two MUBs, the sum of two PCCs computed
using the state given by Eq. (11) for d = 5 is given by

∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + p > 1 iff p > 0, (47)

which shows, similar to the earlier case for d = 4, that the
above sum of two PCCs being greater than 1 provides a
necessary and sufficient criterion for certification of entangle-
ment of the colored-noise mixed with two-qudit maximally
entangled state in dimension d = 5. It is then also seen from
Eqs. (47) and (12) for d = 5 that the sum of two PCCs is
related to Negativity as follows:

∣∣CA1B1

∣∣ + ∣∣CA2B2

∣∣ = 1 + 1

2
N (ρcc(p)) > 1 iff N > 0,

(48)
thereby providing quantification of entanglement in this case.

2. Colored-noise mixed states-B

For d = 4. Now, to certify entanglement of the colored-
noise mixed state given by Eq. (15) in dimension d = 4, we
use the sum of five PCCs

∑5
i=1 |CAiBi | for the five noncom-

muting bases given by Eq. (F1) in Appendix F which we
have used in the case of entanglement certification of isotropic
mixed states in d = 4. This sum of PCCs takes the following
expression for the colored-noise mixed state given by Eq. (15)
in dimension d = 4:

5∑
i=1

∣∣CAiBi

∣∣ = |16p − 1|
3

> 1 iff p > 1/4. (49)

The colored-noise mixed state [given by Eq. (15)] has Nega-
tivity for dimension d = 4 given by

N (ρac(p)) = 4p − 1

2
, (50)

for p � 1/4 which implies that the sum of five PCCs given by
Eq. (49) is greater than 1 if and only if the Negativity of the
state is nonzero. Next, we argue that the sum of PCCs given by
Eq. (50) also provides quantification of certified entanglement
of the mixed state given by Eq. (15) in dimension d = 4. From
Eq. (50), using Eq. (49) it follows that for p > 1/4

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 8

3
N (ρac(p)). (51)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies certified entanglement.

For d = 5. Similarly, now, to certify entanglement of the
colored-noise mixed state given by Eq. (15) in dimension
d = 5, we use the sum of six PCCs

∑6
i=1 |CAiBi | for the

six noncommuting bases given by Eq. (F2) in Appendix F
with the eigenvalues a0 = b0 = e0 = g0 = k0 = l0 = +2,
a1 = b1 = e1 = g1 = k1 = l1 = +1, a2 = b2 = e2 = g2 =
k2 = l2 = 0, a3 = b3 = e3 = g3 = k3 = l3 = −1, and
a4 = b4 = e4 = g4 = k4 = l4 = −2. This sum of six PCCs
takes the following expression for the colored-noise mixed
state given by Eq. (15) in d = 5:

6∑
i=1

∣∣CAiBi

∣∣ = |25p − 1|
4

> 1 iff p > 1/5. (52)

The colored-noise mixed state [given by Eq. (15)] has Nega-
tivity for dimension d = 5 given by

N (ρac(p)) = 5p − 1

2
(53)

for p � 1/5, which implies that the sum of six PCCs given by
Eq. (52) is greater than 1 if and only if the Negativity of the
state is nonzero. Next, we argue that the sum of PCCs given by
Eq. (53) also provides quantification of certified entanglement
of the mixed state given by Eq. (15) in dimension d = 5. From
Eq. (53), using Eq. (52) it follows that for p > 1/5

6∑
i=1

∣∣CAiBi

∣∣ = 1 + 5

2
N (ρac(p)). (54)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies certified entanglement.

D. Werner states

Now, following the procedure of entanglement characteri-
zation using the PCCs as shown for two-qutrit Werner states,
we now proceed to address the d = 4 and d = 5 cases.

For d = 4. In order to certify entanglement of the
Werner state given by Eq. (19) in dimension d = 4, we
invoke the sum of five PCCs

∑5
i=1 |CAiBi |, where A1 =

B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 = B3 =∑
j e j |e j〉〈e j |, A4 = B4 = ∑

j g j |g j〉〈g j |, and A5 = B5 =∑
j k j |k j〉〈k j |. Using the five noncommuting bases which are
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MUBs given by Eq. (F1) in Appendix F with the eigen-
values a0 = b0 = e0 = g0 = k0 = +2, a1 = b1 = e1 = g1 =
k1 = +1, a2 = b2 = e2 = g2 = k2 = −1, and a3 = b3 =
e3 = g3 = k3 = −2, the sum of five PCCs in this case com-
puted for the state given by Eq. (19) for d = 4 is

5∑
i=1

∣∣CAiBi

∣∣ = 5

3
|p| > 1 iff p > 3/5. (55)

Since the Werner states given by Eq. (19) are entangled for
p > 1/5 in dimension d = 4, it follows that the sum of five
PCCs given by Eq. (55) being greater than 1 provides a
sufficient criterion for the certification of entanglement of the
Werner states in dimension d = 4. Next, we argue that the
sum of PCCs given by Eq. (55) also provides quantification
of certified entanglement of the Werner states in the following
sense.

For the two-qudit Werner state ρW (p) given by Eq. (19) in
dimension d = 4, Negativity as defined in Ref. [48] computed
from the partial transposed density matrix is given by

N (ρW (p)) = max

{
5p − 1

16
, 0

}
, (56)

which is nonzero if and only if p > 1/5. Now, note that using
Eq. (56), one can write for p > 1/5

N (ρW (p)) = 5p − 1

16
. (57)

From Eq. (57), using Eq. (55) it follows that for p > 1/5

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 16N (ρW (p))
3

. (58)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement for the Werner state [Eq. (19)]
for d = 4.

For d = 5. In order to certify entanglement of the
Werner state given by Eq. (19) in dimension d = 5,
we use the sum of six PCCs

∑6
i=1 |CAiBi |, where A1 =

B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 = B3 =∑
j e j |e j〉〈e j |, A4 = B4 = ∑

j g j |g j〉〈g j |, and A5 = B5 =∑
j k j |k j〉〈k j |. For the six noncommuting bases (which

are not MUBs) given by Eq. (F2) in Appendix F with the
eigenvalues a0 = b0 = e0 = g0 = k0 = l0 = +2, a1 = b1 =
e1 = g1 = k1 = l1 = +1, a2 = b2 = e2 = g2 = k2 = l2 = 0,
a3 = b3 = e3 = g3 = k3 = l3 = −1, and a4 = b4 = e4 =
g4 = k4 = l4 = −2, the sum of six PCCs is given as

6∑
i=1

∣∣CAiBi

∣∣ = 3

2
|p| > 1 iff p > 2/3. (59)

Since the Werner states given by Eq. (19) are entangled for
p > 1/6 in dimension d = 5, it follows that the sum of six
PCCs given by Eq. (59) being greater than 1 provides a
sufficient criterion for the certification of entanglement of
the Werner states given by Eq. (19) in dimension d = 5.
Interestingly, it is found that the expression for the sum of
six PCCs obtained in Eq. (59) can also be obtained by the
set of six MUBs given by Eq. (E2) in Appendix E. Next, we

argue that the sum of PCCs given by Eq. (59) also provides
quantification of certified entanglement of the Werner states.

For the two-qudit Werner state ρW (p) given by Eq. (19) in
dimension d = 5, Negativity as defined in Ref. [48] computed
from the partial transposed density matrix is given by

N (ρW (p)) = max

{
6p − 1

25
, 0

}
, (60)

which is nonzero if and only if p > 1/6. Now, note that using
Eq. (60), one can write for p > 1/6

N (ρW (p)) = 6p − 1

25
. (61)

From Eq. (61), using Eq. (59) it follows that for p > 1/6

6∑
i=1

∣∣CAiBi

∣∣ = 1 + 25N (ρW (p))
4

. (62)

Thus the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement for the Werner state [Eq. (19)]
for d = 5.

E. Werner-Popescu states

Here we address the entanglement characterization of the
two-qudit Werner-Popescu states in the d = 4 and d = 5 cases
using PCCs, similar to the way discussed for the two-qutrit
Werner-Popescu states.

For d = 4. Now, to certify entanglement of the
Werner-Popescu state given by Eq. (24) in dimension
d = 4, we use the sum of five PCCs

∑5
i=1 |CAiBi |, where A1 =

B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 = B3 =∑
j e j |e j〉〈e j |, A4 = B4 = ∑

j g j |g j〉〈g j | and A5 = B5 =∑
j k j |k j〉〈k j |. For the choice of five mutually unbiased bases

given by Eq. (F1) in Appendix F with the eigenvalues a0 =
b0 = e0 = g0 = k0 = +2, a1 = b1 = e1 = g1 = k1 = +1,
a2 = b2 = e2 = g2 = k2 = −1, and a3 = b3 = e3 = g3 =
k3 = −2, the sum of five PCCs is given by

5∑
i=1

∣∣CAiBi

∣∣ = 5p > 1 iff p > 1/5. (63)

Since the Werner-Popescu state [given by Eq. (24)] is entan-
gled for p > 1/5 for dimension d = 4, it follows that the sum
of five PCCs given by Eq. (63) being greater than 1 provides
a necessary and sufficient criterion for the certification of
entanglement of the Werner-Popescu state given by Eq. (24)
in dimension d = 4. Next, we argue that the sum of PCCs
given by Eq. (63) also provides quantification of certified
entanglement of the Werner-Popescu state given by Eq. (24)
in dimension d = 4.

For the Werner-Popescu state [given by Eq. (24)] in d = 4,
Negativity as defined in Ref. [48] can be computed from the
partial transposed density matrix and is given by

N (ρW P(p)) = max

{
3(5p − 1)

8
, 0

}
, (64)

which is nonzero if and only if p > 1/5. Therefore, it follows
that Negativity of the Werner-Popescu state given by Eq. (24)
in d = 4 provides the necessary and sufficient quantification

022112-10



PEARSON CORRELATION COEFFICIENT AS A MEASURE … PHYSICAL REVIEW A 101, 022112 (2020)

I

II

III

IV

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Negativity

S
u

m
of

P
C

C
s

I Colored noise Mixed State A
II Isotropic Mixed State and Colored noise Mixed State B
III Werner State
IV Entanglement Threshold

FIG. 2. For d = 3, the sum of PCCs is plotted as a function of Negativity for the six families of two-qudit states indicated in the right-hand
side. The dotted line (I) corresponds to the sum of two PCCs versus Negativity for the colored-noise mixed state A given by Eq. (13).
The dot-dashed line (II) denotes the sum of four PCCs versus Negativity for the isotropic mixed state, colored-noise mixed state B and
Werner-Popescu state given by Eqs. (8), (17), and (25), respectively. The dashed line (III) indicates the sum of four PCCs versus Negativity for
the Werner states given by Eq. (23). The horizontal line (IV) specifies entanglement threshold above which the states are entangled.

of entanglement. Note that using Eq. (64), one can write
Negativity of the entangled isotropic mixed state in d = 4 as

N (ρW P(p)) = 3(5p − 1)

8
. (65)

From Eq. (65), using Eq. (63) it follows that for p > 1/5

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 8

3
N (ρW P(p)). (66)

Hence the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case.

For d = 5. Similarly, now, to certify entanglement of
the Werner-Popescu state given by Eq. (24) in dimension
d = 5, we use the sum of six PCCs

∑6
i=1 |CAiBi |, where

A1 = B1 = ∑
j a j |a j〉〈a j |, A2 = B2 = ∑

j b j |b j〉〈b j |, A3 =
B3 = ∑

j e j |e j〉〈e j |, A4 = B4 = ∑
j g j |g j〉〈g j |, A5 = B5 =∑

j k j |k j〉〈k j | and A6 = B6 = ∑
j l j |l j〉〈l j |. For the choice

of six noncommuting bases which are not MUBs given by
Eq. (F2) in Appendix F with the eigenvalues a0 = b0 = e0 =
g0 = k0 = l0 = +2, a1 = b1 = e1 = g1 = k1 = l1 = +1,
a2 = b2 = e2 = g2 = k2 = l2 = 0, a3 = b3 = e3 = g3 =
k3 = l3 = −1, and a4 = b4 = e4 = g4 = k4 = l4 = −2, the
sum of six PCCs is given by

6∑
i=1

∣∣CAiBi

∣∣ = 6p > 1 iff p > 1/6. (67)

Since the generalized Werner-Popescu state given by given
by Eq. (24) is entangled for p > 1/6 for dimension d = 5,
it follows that the sum of six PCCs given by Eq. (67) being
greater than 1 provides a necessary and sufficient criterion
for the certification of entanglement of the isotropic mixed
state (24) in dimension d = 5. Similar to the case d = 4,
we now argue that the sum of PCCs given by Eq. (67)
also provides quantification of certified entanglement of the
generalized Werner-Popescu state (24) in dimension d = 5 in
the following sense.

For the Werner-Popescu state [given by Eq. (24)] in d = 5,
Negativity as defined in Ref. [48] is given by

N (ρW P(p)) = max

{
2(6p − 1)

5
, 0

}
, (68)

which is nonzero if and only if p > 1/6. Therefore, Negativity
of the Werner-Popescu state in d = 5 provides the necessary
and sufficient quantification of entanglement. Now, using
Eq. (68), Negativity of the entangled Werner-Popescu state in
d = 5 is given by

N (ρW P(p)) = 2(6p − 1)

5
. (69)

Using Eq. (67) it then follows that for p > 1/6

5∑
i=1

∣∣CAiBi

∣∣ = 1 + 5

2
N (ρW P(p)). (70)

Thus, the sum of PCCs is a linear function of Negativity and
hence quantifies entanglement in this case, too.

Note that Negativity of the Werner-Popescu state does not
have a closed form of expression for arbitrary dimension d
as in the case of isotropic state. Nevertheless, it is interesting
that the relationship between the sum of d + 1 PCCs and Neg-
ativity for the two-qudit Werner-Popescu state in the cases of
d = 3, 4, and 5 given by Eqs. (28), (66), and (70), respectively,
has the same form as that for the two-qudit isotropic state in
these cases given by Eqs. (10), (41), and (44), respectively.

IV. CONCLUDING REMARKS

In a nutshell, the work reported here demonstrates for
dimensions d = 3, 4, and 5 that the scheme formulated here
relating the experimentally measurable Pearson correlation
coefficients (PCCs) with Negativity as an entanglement mea-
sure is able to provide necessary and sufficient certification
as well as quantification of entanglement for a range of phys-
ically relevant mixed states such as isotropic states, colored-
noise mixed states-A and Werner-Popescu states (see Figs. 2–4
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FIG. 3. For d = 4, the sum of PCCs is plotted as a function of Negativity for the six families of two-qudit states indicated in the right-hand
side. The dotted line (I) corresponds to the sum of two PCCs versus Negativity for the colored-noise mixed state A given by Eq. (46).
The dot-dashed line (II) denotes the sum of five PCCs versus Negativity for the isotropic mixed state, colored-noise mixed state B and
Werner-Popescu state given by Eqs. (41), (51), and (63), respectively. The dashed line (III) indicates the sum of five PCCs versus Negativity
for the Werner states given by Eq. (58). The horizontal line (IV) specifies entanglement threshold above which the states are entangled.

illustrating the results). Even for the Werner states in higher
dimensions whose entanglement characterization has re-
mained less explored by other approaches, the scheme dis-
cussed here in terms of PCCs is shown to furnish sufficient
certification along with quantification of entanglement for di-
mensions d = 3, 4, and 5 (also shown in Figs. 2–4). Compar-
ing the sufficient certification of entanglement for the Werner
states using the PCC-based approach with that provided by
the entanglement certification procedure [69] based on d + 1
mutually unbiased measurements, an interesting feature is
noted that the range of values of the mixedness parameter for
which the Werner states for d = 3, 4, and 5 are, respectively,
certified to be entangled by both the approaches turn out to
be the same (see Table I). However, the quantification of
entanglement in these cases has remained unanalyzed in terms
of the other approach [69], while in our paper the PCC-based
approach is shown to be able to quantify entanglement of the
Werner states for d = 3, 4, and 5. Further, for the colored-
noise mixed states-B, we show that PCCs can be used for
quantification of certified entanglement when Negativity is
nonvanishing. Thus, the range of results obtained in this paper

serve to reveal the strength of the PCC-based approach and
provides impetus for investigating its extension for entangle-
ment characterization in even higher dimensions than what
has been considered in this work.

A key revelation of our treatment is that, among different
measures of entanglement in high dimensions, it is Negativity
as the measure of entanglement which is found to be analyti-
cally and monotonically related to the quantitative measure of
correlations using combinations of PCCs in noncommuting
bases (which may or may not be mutually unbiased). On
the other hand, for pure states in any dimension, it has been
argued that it is the correlation in mutually unbiased bases as
quantified by a suitable information-theoretic measure which
is directly related to the entanglement of formation [70,71].
The physical meaning of the latter as entanglement measure
for the higher dimensional systems, interestingly, contrasts
with that of Negativity. While entanglement of formation
signifies the minimum number of “ebits” required to prepare
a given state using local operations and classical communi-
cation [72,73], Negativity, as mentioned earlier [51], can be
regarded as an estimator of how many degrees of freedom of
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FIG. 4. For d = 5, the sum of PCCs is plotted as a function of Negativity for the six families of two-qudit states indicated in the right-hand
side. The dotted line (I) corresponds to the sum of two PCCs versus Negativity for the colored-noise mixed state A given by Eq. (48).
The dot-dashed line (II) denotes the sum of six PCCs versus Negativity for the isotropic mixed state, colored-noise mixed state B, and
Werner-Popescu state given by Eqs. (44), (54), and (67), respectively. The dashed line (III) indicates the sum of six PCCs versus Negativity for
the Werner states given by Eq. (62). The horizontal line (IV) specifies entanglement threshold above which the states are entangled.
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TABLE I. The parameter ranges in which the Werner states for dimensions d = 3, 4, and 5 are, respectively, entangled are given in the
first row. The second and third rows show, respectively, the parameter ranges in which the entanglement of Werner states in d = 3, 4, and 5 are
certified, respectively, using the PCC-based approach and by invoking mutually unbiased measurements [69].

Werner state in d = 3 Werner state in d = 4 Werner state in d = 5

Range of entanglement p > 1
4 p > 1

5 p > 1
6

Entanglement certification
by d + 1 PCCs with noncommuting/MU bases p > 1

2 p > 3
5 p > 2

3
Entanglement certification based on

d + 1 mutually unbiased measurements [69] p > 1
2 p > 3

5 p > 2
3

the subsystems are entangled, or, as determining the minimum
number of dimensions involved in the quantum correlation.
These notions, thus, require a deeper holistic probing by
taking into account the various theoretical studies on different
entanglement measures [74–80] and the comparison between
Negativity and entanglement of formation experimentally
studied for the first time for higher dimensional system in the
accompanying paper [41].

Regarding the issue of physical implication of measures
in terms of PCCs, it may be stressed that PCC is essentially a
normalized covariance and covariance of measurement results
is a natural measure of correlations widely used in diverse
areas of science. Results presented in this paper showing that
the sum of PCCs exceeding the classical bound certifies en-
tanglement, highlights that quantum correlations underlying
entanglement are stronger than corresponding classical cor-
relations. Interestingly, even Bell-type local realist inequality
has been formulated in terms of PCCs, which is extendable
to two-qutrit states [39]. Thus, PCCs can be used not only
for entanglement certification and quantification as discussed
in this paper, but also for demonstrating nonlocality for two-
qubit and two-qutrit states. Hence Pearson correlators could
be key ingredients for empirically probing the quantitative
relationship between entanglement and nonlocality. On the
other hand, a PCC-based measure can also be useful for
studying entanglement of distillation since PCCs are related
to Negativity which, in turn, is related to the upper bound of
entanglement of distillation [81].

Finally, it is important to note that our treatment has
been restricted to NPT states. Thus, the extent to which
the PCC-based approach for certifying entanglement would
be applicable for PPT entangled (nondistillable) states is an
open question. Our preliminary study using certain specific
examples of two-qutrit bound entangled states indicates the
following features: (a) For all the two-qutrit states belonging
to the one parameter family of Horodecki bound entangled
states [82], it is found that the sum of PCCs for the set of four
noncommuting bases specified by Eq. (6) is always less than
1, thereby showing inapplicability of the PCC-based entan-
glement certification scheme for such states. (b) On the other
hand, it is found that for both the two-qutrit bound entangled
states [83,84] which show nonlocality through the violation
of a suitable Bell-type inequality, the sum of PCCs for the set
of four MUBs specified by Eq. (E1) with a different choice
of eigenvalues and for the set of four noncommuting bases
specified by Eq. (6) with a different choice of eigenvalues,
respectively, is greater than 1, thereby certifying entanglement
for such states. These results, therefore, underscore the need
for a comprehensive study of the extent of applicability of the

PCC-based approach for the entanglement characterisation of
bound entangled states.
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APPENDIX A: DERIVATION OF EQ. (8) FOR THE SUM OF
FOUR PCCs FOR THE TWO-QUTRIT ISOTROPIC

MIXED STATES

For A1 = B1 = ∑
j a j |a j〉〈a j | in which the basis {|a j〉} is

the computational basis and the eigenvalues aj are given by
a0 = +1, a1 = 0, and a2 = −1, calculating the relevant single
and joint expectation values of the two-qutrit isotropic states
given by Eq. (5) with d = 3, it can be checked that the PCC
in this case takes the value

CA1B1 = −1 + 9p

8
. (A1)

For A2 = B2 = ∑
j b j |b j〉〈b j |, where the basis {|b j〉} is

given in Eq. (6) and the eigenvalues bj are given by b0 = 0,
b1 = ±1, and b2 = ∓1, calculating the relevant single and
joint expectation values, it can be checked that the PCC in
this case is given by

CA2B2 = 1 − 9p

8
. (A2)

For A3 = B3 = ∑
j e j |e j〉〈e j |, where the basis {|e j〉} is

given in Eq. (6) and the eigenvalues e j are given by e0 = +1,
e1 = 0, and e2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
takes the value

CA3B3 = 1 − 9p

8
. (A3)

For A4 = B4 = ∑
j g j |g j〉〈g j |, where the basis {|g j〉} is

given in Eq. (6) and the eigenvalues gj are given by g0 = +1,
g1 = 0, and g2 = −1, calculating the relevant single and joint
expectation values, the PCC in this case is given by

CA4B4 = 1 − 9p

8
. (A4)
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Then Eq. (8) follows from Eqs. (A1)–(A4).

APPENDIX B: DERIVATION OF EQ. (13) FOR THE SUM OF
TWO PCCs FOR THE COLORED-NOISE TWO-QUTRIT

MAXIMALLY ENTANGLED STATE-A

For A1 = B1 = ∑
j a j |a j〉〈a j | in which the basis {|a j〉} is

the computational basis and the eigenvalues aj are given by
a0 = +1, a1 = 0, and a2 = −1, the relevant single and joint
expectation values for the colored-noise two-qutrit maximally
entangled state given by Eq. (11) with d = 3, it can be
checked that the PCC in this case takes the value

CA1B1 = 1. (B1)

For A2 = B2 = ∑
j b j |b j〉〈b j | in which the basis {|b j〉} is

the generalized σy basis and the eigenvalues b j are given by
b0 = +1, b1 = 0, and b2 = −1, calculating the relevant single
and joint expectation values, it can be checked that the PCC
in this case is given by

CA2B2 = −p. (B2)

Then Eq. (13) follows from Eqs. (B1) and (B2).

APPENDIX C: DERIVATION OF EQ. (17) FOR THE SUM OF
FOUR PCCs FOR THE COLORED-NOISE TWO-QUTRIT

MAXIMALLY ENTANGLED STATE-B

For A1 = B1 = ∑
j a j |a j〉〈a j | in which the basis {|a j〉} is

the computational basis and the eigenvalues aj are given by
a0 = +1, a1 = 0, and a2 = −1, the relevant single and joint
expectation values of the colored-noise two-qutrit maximally
entangled state given by Eq. (15) with d = 3, it can be
checked that the PCC in this case takes the value

CA1B1 = −1 + 3p

2
. (C1)

For A2 = B2 = ∑
j b j |b j〉〈b j |, where the basis {|b j〉} is

given in Eq. (6) and the eigenvalues bj are given by b0 = 0,
b1 = ±1, and b2 = ∓1, calculating the relevant single and
joint expectation values, it can be checked that the PCC in
this case is given by

CA2B2 = −p. (C2)

For A3 = B3 = ∑
j e j |e j〉〈e j |, where the basis {|e j〉} is

given in Eq. (6) and the eigenvalues e j are given by e0 = +1,
e1 = 0, and e2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
takes the value

CA3B3 = −p. (C3)

For A4 = B4 = ∑
j g j |g j〉〈g j |, where the basis {|g j〉} is

given in Eq. (6) and the eigenvalues gj are given by g0 = +1,
g1 = 0, and g2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
is given by

CA4B4 = −p. (C4)

Then Eq. (17) follows from Eqs. (C1)–(C4).

APPENDIX D: DERIVATION OF EQ. (21) FOR THE SUM OF
PCCs FOR THE TWO-QUTRIT WERNER STATES

For A1 = B1 = ∑
j a j |a j〉〈a j | in which the basis {|a j〉} is

the computational basis and the eigenvalues aj are given by
a0 = +1, a1 = 0, and a2 = −1, the relevant single and joint
expectations of the two-qutrit Werner states given by Eq. (19)
with d = 3, it can be checked that the PCC in this case takes
the value

CA1B1 = −p

2
. (D1)

For A2 = B2 = ∑
j b j |b j〉〈b j |, where the basis {|b j〉} is

given in Eq. (6) and the eigenvalues bj are given by b0 = 0,
b1 = ±1, and b2 = ∓1, calculating the relevant single and
joint expectation values, it can be checked that the PCC in
this case is given by

CA1B1 = −p

2
. (D2)

For A3 = B3 = ∑
j e j |e j〉〈e j |, where the basis {|e j〉} is

given in Eq. (6) and the eigenvalues e j are given by e0 = +1,
e1 = 0, and e2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
takes the value

CA3B3 = −p

2
. (D3)

For A4 = B4 = ∑
j g j |g j〉〈g j |, where the basis {|g j〉} is

given in Eq. (6) and the eigenvalues gj are given by g0 = +1,
g1 = 0, and g2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
is given by

CA4B4 = −p

2
. (D4)

Then Eq. (21) follows from Eqs. (D1)–(D4).

APPENDIX E: d + 1 MUTUALLY UNBIASED BASES
WHICH CAN BE USED FOR CERTIFYING

ENTANGLEMENT OF d = 3 AND 5 WERNER STATES

To obtain the expression for the sum of four PCCs given in
Eq. (21) for the two-qutrit Werner states, one can also use the
following four mutually unbiased bases:

{|a j〉} = {|0〉 , |1〉 , |2〉},
{|bj〉} = {(|0〉 + ω |1〉 + ω2 |2〉)/

√
3,

(|0〉 + |1〉 + |2〉)/
√

3,

(|0〉 + ω2 |1〉 + ω |2〉)/
√

3},
{|e j〉} = {(|0〉 + ω |1〉 + ω |2〉)/

√
3,

(|0〉 + |1〉 + ω2 |2〉)/
√

3,

(|0〉 + ω2 |1〉 + |2〉)/
√

3},
{|g j〉} = {(|0〉 + ω2 |1〉 + ω2 |2〉)/

√
3,

(|0〉 + |1〉 + ω |2〉)/
√

3,

(|0〉 + ω |1〉 + |2〉)/
√

3}, (E1)

where ω = e2iπ/3.
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The expression obtained for the sum of six PCCs in
Eq. (21) for the Werner states in d = 5 can also be obtained
by using the following six mutually unbiased bases:

{|a j〉} = {|0〉 , |1〉 , |2〉 , |3〉 , |4〉},
{|bj〉} = {(|0〉 + ω3 |1〉 + ω |2〉 + ω4 |3〉 + ω2 |4〉)/

√
5,

(|0〉 + ω4 |1〉 + ω3 |2〉 + ω2 |3〉 + ω |4〉)/
√

5,

(|0〉 + |1〉 + |2〉 + |3〉 + |4〉)/
√

5,

(|0〉 + ω |1〉 + ω2 |2〉 + ω3 |3〉 + ω4 |4〉)/
√

5,

(|0〉 + ω2 |1〉 + ω4 |2〉 + ω |3〉 + ω3 |4〉)/
√

5},
{|e j〉} = {(|0〉 + ω3 |1〉 + ω3 |2〉 + |3〉 + ω4 |4〉)/

√
5,

(|0〉 + ω4 |1〉 + |2〉 + ω3 |3〉 + ω3 |4〉)/
√

5,

(|0〉 + |1〉 + ω2 |2〉 + ω |3〉 + ω2 |4〉)/
√

5,

(|0〉 + ω |1〉 + ω4 |2〉 + ω4 |3〉 + ω |4〉)/
√

5,

(|0〉 + ω2 |1〉 + ω |2〉 + ω2 |3〉 + |4〉)/
√

5},
{|g j〉} = {(|0〉 + ω4 |1〉 + ω2 |2〉 + ω4 |3〉 + |4〉)/

√
5,

(|0〉 + |1〉 + ω4 |2〉 + ω2 |3〉 + ω4 |4〉)/
√

5,

(|0〉 + ω |1〉 + ω |2〉 + |3〉 + ω3 |4〉)/
√

5,

(|0〉 + ω2 |1〉 + ω3 |2〉 + ω3 |3〉 + ω2 |4〉)/
√

5,

(|0〉 + ω4 |1〉 + |2〉 + ω |3〉 + ω |4〉)/
√

5},
{|k j〉} = {(|0〉 + |1〉 + ω |2〉 + ω4 |3〉 + ω |4〉)/

√
5,

(|0〉 + ω |1〉 + ω4 |2〉 + ω |3〉 + |4〉)/
√

5,

(|0〉 + ω2 |1〉 + |2〉 + ω4 |3〉 + ω4 |4〉)/
√

5,

(|0〉 + ω4 |1〉 + ω2 |2〉 + ω2 |3〉 + ω4 |4〉)/
√

5,

(|0〉 + ω4 |1〉 + ω4 |2〉 + |3〉 + ω2 |4〉)/
√

5},
{|l j〉} = {(|0〉 + ω |1〉 + |2〉 + ω2 |3〉 + ω2 |4〉)/

√
5,

(|0〉 + ω2 |1〉 + ω2 |2〉 + |3〉 + ω |4〉)/
√

5,

(|0〉 + ω3 |1〉 + ω4 |2〉 + ω4 |3〉 + |4〉)/
√

5,

(|0〉 + ω4 |1〉 + ω |2〉 + ω |3〉 + ω4 |4〉)/
√

5,

(|0〉 + |1〉 + ω3 |2〉 + ω4 |3〉 + ω3 |4〉)/
√

5}, (E2)

where ω = 2iπ/5.

APPENDIX F: d + 1 NONCOMMUTING BASES USED FOR
CALCULATING THE SUM OF d + 1 PCCs IN THE CASE OF

d = 4 AND 5 ISOTROPIC AND WERNER STATES

For calculating the sum of five PCCs in the case of d = 4
isotropic states and Werner states, we consider the following
choice of five mutually unbiased bases:

{|a j〉} = {|0〉 , |1〉 , |2〉 , |3〉},
{|bj〉} = {(|0〉 + |1〉 + |2〉 + |3〉)/2,

(|0〉 + |1〉 − |2〉 − |3〉)/2,

(|0〉 − |1〉 − |2〉 + |3〉)/2,

(|0〉 − |1〉 + |2〉 − |3〉)/2},
{|e j〉} = {(|0〉 + |1〉 + i |2〉 − i |3〉)/2,

(|0〉 − |1〉 + i |2〉 + i |3〉)/2,

(|0〉 − |1〉 − i |2〉 − i |3〉)/2,

(|0〉 + |1〉 − i |2〉 + i |3〉)/2},
{|gj〉} = {(|0〉 − i |1〉 − |2〉 − i |3〉)/2,

(|0〉 + i |1〉 + |2〉 − i |3〉)/2,

(|0〉 − i |1〉 + |2〉 + i |3〉)/2,

(|0〉 + i |1〉 − |2〉 + i |3〉)/2},
{|k j〉} = {(|0〉 + i |1〉 − i |2〉 + |3〉)/2,

(|0〉 − i |1〉 + i |2〉 + |3〉)/2,

(|0〉 + i |1〉 + i |2〉 − |3〉)/2,

(|0〉 − i |1〉 − i |2〉 − |3〉)/2}. (F1)

Now, for calculating the sum of six PCCs in the case of d =
5 isotropic states and Werner states, we consider the following
choice of six noncommuting bases:

{|a j〉} = {|0〉 , |1〉 , |2〉 , |3〉 , |4〉},
{|bj〉} = {(|0〉 + ω3 |1〉 + ω |2〉 + ω4 |3〉 + ω2 |4〉)/

√
5,

(|0〉 + ω4 |1〉 + ω3 |2〉 + ω2 |3〉 + ω |4〉)/
√

5,

(|0〉 + |1〉 + |2〉 + |3〉 + |4〉)/
√

5,

(|0〉 + ω |1〉 + ω2 |2〉 + ω3 |3〉 + ω4 |4〉)/
√

5,

(|0〉 + ω2 |1〉 + ω4 |2〉 + ω |3〉 + ω3 |4〉)/
√

5},
{|e j〉} = {(|0〉 + eiπ/5 |1〉 + e2iπ/5 |2〉 + e3iπ/5 |3〉 + e4iπ/5 |4〉)/

√
5,

(|0〉 + ωeiπ/5 |1〉 + ω2e2iπ/5 |2〉 + ω3e3iπ/5 |3〉 + ω4e4iπ/5 |4〉)/
√

5,

(|0〉 + ω2eiπ/5 |1〉 + ω4e2iπ/5 |2〉 + ωe3iπ/5 |3〉 + ω3e4iπ/5 |4〉)/
√

5,
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(|0〉 + ω3eiπ/5 |1〉 + ωe2iπ/5 |2〉 + ω4e3iπ/5 |3〉 + ω2ei4π/5 |4〉)/
√

5,

(|0〉 + ω4eiπ/5 |1〉 + ω3e2iπ/5 |2〉 + ω2e3iπ/5 |3〉 + ωe4iπ/5 |4〉)/
√

5},
{|g j〉} = {(ω2 |0〉 + ω3 |1〉 + ω |2〉 + ω4 |3〉 + |4〉)/

√
5,

(ω |0〉 + ω4 |1〉 + ω3 |2〉 + ω2 |3〉 + |4〉)/
√

5,

(|0〉 + |1〉 + |2〉 + |3〉 + |4〉)/
√

5,

(ω4 |0〉 + ω |1〉 + ω2 |2〉 + ω3 |3〉 + |4〉)/
√

5,

(ω3 |0〉 + ω2 |1〉 + ω4 |2〉 + ω |3〉 + |4〉)/
√

5},
{|k j〉} = {(e4iπ/5 |0〉 + eiπ/5 |1〉 + e2iπ/5 |2〉 + e3iπ/5 |3〉 + |4〉)/

√
5,

(ω4e4iπ/5 |0〉 + ωeiπ/5 |1〉 + ω2e2iπ/5 |2〉 + ω3e3iπ/5 |3〉 + |4〉)/
√

5,

(ω3e4iπ/5 |0〉 + ω2eiπ/5 |1〉 + ω4e2iπ/5 |2〉 + ωe3iπ/5 |3〉 + |4〉)/
√

5,

(ω2ei4π/5 |0〉 + ω3eiπ/5 |1〉 + ωe2iπ/5 |2〉 + ω4e3iπ/5 |3〉 + |4〉)/
√

5,

(ωe4iπ/5 |0〉 + ω4eiπ/5 |1〉 + ω3e2iπ/5 |2〉 + ω2e3iπ/5 |3〉 + |4〉)/
√

5},
{|l j〉} = {(ω3 |0〉 + ω |1〉 + ω4 |2〉 + ω2 |3〉 − |4〉)/

√
5,

(ω4 |0〉 + ω3 |1〉 + ω2 |2〉 + ω |3〉 − |4〉)/
√

5,

(|0〉 + |1〉 + |2〉 + |3〉 − |4〉)/
√

5,

(ω |0〉 + ω2 |1〉 + ω3 |2〉 + ω4 |3〉 − |4〉)/
√

5,

(ω2 |0〉 + ω4 |1〉 + ω |2〉 + ω3 |3〉 − |4〉)/
√

5}, (F2)

where ω = 2iπ/5. It can be checked that the above noncom-
muting bases are not unbiased to each other.

APPENDIX G: DERIVATION OF EQ. (25) FOR THE SUM
OF FOUR PCCs FOR THE TWO-QUTRIT

WERNER-POPESCU STATES

For A1 = B1 = ∑
j a j |a j〉〈a j | in which the basis {|a j〉} is

the computational basis and the eigenvalues aj are given by
a0 = +1, a1 = 0, and a2 = −1, the relevant single and joint
expectation values of the two-qutrit Werner-Popescu states
given by Eq. (24) with d = 3, it can be checked that the PCC
in this case takes the value

CA1B1 = p. (G1)

For A2 = B2 = ∑
j b j |b j〉〈b j |, where the basis {|b j〉} is

given in Eq. (6) and the eigenvalues bj are given by b0 = 0,
b1 = ±1, and b2 = ∓1, calculating the relevant single and
joint expectation values, it can be checked that the PCC in

this case is given by

CA2B2 = −p. (G2)

For A3 = B3 = ∑
j e j |e j〉〈e j |, where the basis {|e j〉} is

given in Eq. (6) and the eigenvalues e j are given by e0 = +1,
e1 = 0, and e2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
takes the value

CA3B3 = −p. (G3)

For A4 = B4 = ∑
j g j |g j〉〈g j |, where the basis {|g j〉} is

given in Eq. (6) and the eigenvalues gj are given by g0 = +1,
g1 = 0, and g2 = −1, calculating the relevant single and joint
expectation values, it can be checked that the PCC in this case
is given by

CA4B4 = −p. (G4)

Then Eq. (25) follows from Eqs. (G1)–(G4).
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