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Abstract

We present a formalism to extract the H I power spectrum from the epoch of reionization for drift scans using radio
interferometers. Our main aim is to determine the coherence timescale of time-ordered visibilities. We compute the
two-point correlation function of the H I visibilities measured at different times to address this question. We
determine, for a given baseline, the decorrelation of the amplitude and the phase of this complex function. Our
analysis uses primary beams of four ongoing and future interferometers—Precision Array for Probing the Epoch of
Reionization, Murchison Widefield Array, Hydrogen Epoch of Reionization Array, and Square Kilometre Array
(SKA1-Low). We identify physical processes responsible for the decorrelation of the H I signal and isolate their
impact by making suitable analytic approximations. The decorrelation timescale of the amplitude of the correlation
function lies in the range of 2–20minutes for baselines of interest for the extraction of the H I signal. The phase of
the correlation function can be made small after scaling out an appropriate term, which also causes the coherence
timescale of the phase to be longer than the amplitude of the correlation function. We find that our results are
insensitive to the input H I power spectrum, and therefore, they are directly applicable to the analysis of the drift
scan data. We also apply our formalism to a set of point sources and statistically homogeneous diffuse correlated
foregrounds. We find that point sources decorrelate on a timescale much shorter than the H I signal. This provides a
novel mechanism to partially mitigate the foregrounds in a drift scan.

Unified Astronomy Thesaurus concepts: Reionization (1383); Early universe (435); Nonclassical interferometry
(1120); Cosmology (343); Astronomical techniques (1684); Drift scan imaging (410); Radio interferometry (1346);
Astronomical methods (1043); Observational cosmology (1146); Radio astronomy (1338); Interferometric
correlation (807)

1. Introduction

The probe for the end of the cosmic dark age remains an
outstanding issue in modern cosmology. From a theoretical
consideration, we expect the first luminous objects to appear at a
redshift z ; 30. The radiation from these first-light sources
ionized and heated the neutral hydrogen (H I) in their
neighborhood. As the universe evolved, these ionized regions
grew and merged, resulting in a fully ionized universe by z;6,
as suggested by the measurement of Gunn-Peterson troughs of
quasars (Fan et al. 2006). Recent Planck results on cosmic
microwave background (CMB) temperature and polarization
anisotropies fix the reionization epoch at z ; 7.7 (Planck
Collaboration et al. 2018). The cosmic time between the
formation of the first-light sources (z ; 30, the era of cosmic
dawn) and the universe becoming fully ionized (z ; 6) is
generally referred to as the epoch of reionization (EoR). Many
important astrophysical processes during this era, e.g., the
growth and evolution of large-scale structures and the nature of
first-light sources, can be best probed using the hyperfine
transition of H I. Due to the expansion of the universe, this line
redshifts to frequencies 70–200MHz (z ; 6–20), which can be
detected using meter-wave radio telescopes.

Several existing and upcoming radio telescopes aim to detect
the fluctuating component of this signal, e.g., radio inter-
ferometers—the Murchison Widefield Array (MWA; Bowman
et al. 2013; Tingay et al. 2013; Wayth et al. 2018), Low
Frequency Array (LOFAR; van Haarlem et al. 2013), Donald
C. Backer Precision Array for Probing the Epoch of
Reionization (PAPER; Parsons et al. 2014), Hydrogen Epoch
of Reionization Array (HERA; DeBoer et al. 2017), and Giant

Metrewave Radio Telescope (GMRT; Paciga et al. 2011). In
addition, there are multiple ongoing experiments to detect the
global (sky-averaged) H I signal from this era—e.g., Experi-
ment to Detect the Global EoR Signature (EDGES) and Shaped
Antenna measurement of the background RAdio Spectrum
(SARAS; Bowman et al. 2018; Singh et al. 2018).
We focus on the fluctuating component of the H I signal in

this paper. There are considerable difficulties in the detection of
this signal. Theoretical studies suggest that the strength of this
signal is of the order of 10mK while the foregrounds are
brighter than 100K (for a detailed review, see Furlanetto et al.
2006; Morales & Wyithe 2010; Pritchard & Loeb 2012). These
contaminants include diffuse galactic synchrotron, extragalactic
point and extended radio sources, supernova remnants, free–
free emission, etc. Current experiments can reduce the thermal
noise of the system to suitable levels in many hundred hours of
integration. The foregrounds can potentially be mitigated by
using the fact that the H I signal and its correlations emanate
from the three-dimensional large-scale structure at high
redshifts. On the other hand, foreground contamination is
dominated by spectrally smooth sources. This means that even
if foregrounds can mimic the H I signal on the plane of the sky,
the third axis, corresponding to the frequency, can be used to
distinguish between the two. All ongoing experiments exploit
this spectral distinction to isolate the H I signal from foreground
contamination (e.g., Parsons & Backer 2009; Parsons et al.
2012).
Using data from ongoing experiments, many pipelines have

been developed to analyze the signal (Paciga et al. 2011; Dillon
et al. 2015; Beardsley et al. 2016; Choudhuri et al. 2016;
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Paul et al. 2016; Trott et al. 2016; Patil et al. 2017). PAPER
(Ali et al. 2015) had placed the tightest constraint on the H I
power spectrum, but the result has since been retracted (Ali
et al. 2018). Their revised upper limit is (200 mK)2 at redshift
z=8.37 for k ; 0.37Mpc−1 (Kolopanis et al. 2019). The
current best upper limits on the H I power spectrum are
(79.6 mK)2, k;0.053hMpc−1, and z ; 10.1 (LOFAR, Patil
et al. 2017) and (62.5 mK)2, = -k h0.2 Mpc 1, and z ; 7
(MWA, Barry et al. 2019). More recently, Bowman et al.
(2018) reported the detection of an absorption trough of
strength 500 mK in the global H I signal in the redshift range
15<z<19.

Given the weakness of the H I signal, strong foregrounds,
and the requirement of hundreds of hours of integration for
detection, one needs extreme stability of the system, precise
calibration, and reliable isolation of foregrounds. Drift scans
constitute a powerful technique to achieve instrumental
stability during an observational run. During such a scan, the
primary beam and other instrumental parameters remain
unchanged while the sky intensity pattern changes. Two
ongoing interferometers, PAPER and HERA, work predomi-
nantly in this mode while the others can also acquire data in
this mode. Different variants of drift scans have been proposed
in the literature: m-mode analysis (Shaw et al. 2014, 2015,
applied to OVRO-LWA data in Eastwood et al. 2018), cross-
correlation of the H I signal in time (Paul et al. 2014), drift and
shift method (Trott 2014), and fringe-rate method (Parsons
et al. 2016, applied to PAPER data). Trott (2014) provided a
framework to estimate the uncertainty in the measurement of
H I power spectrum based on visibility covariance. Using
simulations of visibility covariance, Lanman & Pober (2019)
showed that the sample variance can increase up to 20% and
30% on the shortest redundant baselines of HERA and MWA,
respectively.

Owing to changing intensity patterns, it is conceptually
harder to extract the H I signal from drift scans. As the H I
signal is buried beneath instrumental noise, it is imperative that
the correct algorithm be applied to retain this sub-dominant
component and prevent its loss (e.g., Cheng et al. 2018).

In this paper, we extend the work of Paul et al. (2014) to
delay space and, additionally, identify the effects of phase
covariance and primary beam size. We also apply our
formalism to foregrounds by considering a set of isotropically
distributed point sources and statistically homogeneous corre-
lated diffuse emission. We work in both frequency and delay
space, the preferred coordinate for separating foregrounds from
the H I signal (e.g., Datta et al. 2010; Parsons et al. 2012). Our
primary aim is to determine the correlation timescales of time-
ordered visibilities of the H I signal in drift scan observations.
This information can be used to establish how the H I signal
can be extracted from drift scans using the correlation of
visibilities measured at different times.

In the next section, we motivate the issue, develop our
general formalism, and apply it to the H I signal in frequency
and delay space. We use primary beams of PAPER, MWA,
HERA, and SKA1-Low for our work. We discuss in detail the
analytic approximation of numerical results in this section and
AppendixB. In Section 3, we discuss the nature of foregrounds
and compute the visibility correlation functions for a set of
point sources and diffuse foregrounds. In Section 4, we
elaborate on how our formulation can be applied to drift scan

data. We discuss many different approaches to the analysis of
data, including comparison with earlier attempts. In the final
section, we summarize our main results.
Throughout this paper, we use a spatially flat ΛCDM model

with = - -H h100 Km s Mpc0
1 1, h=0.67, and ΩΛ=0.6911

(Planck Collaboration et al. 2016).

2. H I Visibility Correlation in Drift Scans

The measured visibilities are a function of frequency,
baseline, and time. The aim of this section is to determine
the correlation structure of visibilities in these domains. In
particular, our focus is on the correlation structure of visibilities
as a function of time as the intensity pattern changes, for a fixed
primary beam, during a drift scan.
This information allows us to average the data in the uv

space with optimal signal to noise and prevent possible H I
signal loss. The signal loss could occur if the data are averaged
over scales larger than the scales of correlation (see, e.g.,
Cheng et al. 2018). For instance, the visibilities owing to H I
signal are correlated for baselines separated by roughly the
inverse of the primary beam, so averaging data over pixels
larger than the inverse of the primary beam would result in the
loss of H I signal. However, if the data are averaged using
pixels much smaller than the correlation scale, then it would
result in suboptimal signal to noise.
In this paper, we determine the timescales over which

measured visibilities (for a given baseline, etc.) are coherent in
time and therefore could be averaged in a drift scan to yield
optimal signal to noise without any loss in H I signal. For this
purpose, we derive the correlation function of visibilities,
arising from the EoR H I signal, measured at two different
times in a drift scan.
A pair of antennas of a radio interferometer measures the

visibility Vν, which is related to the sky intensity pattern as
(Equation (2.21)) of Taylor et al. 1999)

( ) ( ) ( )

[ ( ( ))]
( )

ò
p

=

´ - + + -

n n n n n n

n n n

V u v w
dldm

n
A l m I l m

i u l v m w n

, , , ,

exp 2 1 .
1

Here, ν is the observing frequency. (uν, vν, wν) are the
components of the baseline vector between two antennas
measured in units of wavelength. (l, m, n) define the direction
cosine triplet in the sky with = - -n l m1 2 2 . Aν(l, m) is
the primary beam power pattern of an antenna element, and
Iν(l, m) is the specific intensity pattern in the sky. We further
define vectors ( )=n n nu u v, and ( )q = l m, . The intensity
pattern owing to the EoR H I gas distribution ( )qnI can be
decomposed into mean and fluctuating components as

( ) ¯ ( ) ( )q q= + Dn n nI I I . 2

As an interferometer measures only fluctuating components of
the signal, we can write

( ) ( ) ( )

[ ( · ( ))] ( )

ò q q

q

q

p

= D

´ - + -

n n n n n

n n

u

u

V w
d

n
A I

i w n

,

exp 2 1 . 3

2

The H I inhomogeneities ( )d kH I arise from various factors such
as H I density fluctuations, ionization inhomogeneities, etc. The

2
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fluctuation in the specific intensity ( )qD nI can be related to the
H I density fluctuations in Fourier space, ( )d kH I :

( ) ¯
( )

( ) [ · ] ( )òq
p

dD =n n k k rI I
d k

i
2

exp . 4
3

3 H I

Here, r is the three-dimensional (comoving) position vector and
its Fourier conjugate variable is k; k, the magnitude of the k

vector, is ∣ ∣  = = + = + +^ ^ ^kk k k k k k2 2
1

2
2

2 2 , where
k⊥ and kP are the (comoving) components on the plane of the
sky and along the line of sight, respectively. The position
vector r can be written in terms of the line-of-sight (parallel)
and perpendicular components as ˆ q= +n nr r n r ; rν is the
comoving distance. Equation (4) reduces to

( ) ¯
( )

( ) [ ( · )] ( )òq q
p

dD = +n n n ^k kI I
d k

ir k
2

exp . 5
3

3 H I

As the H I fluctuations are statistically homogeneous, we can
define the H I power spectrum PH I(k) as

1

( ) ( ) ( ) ( ) ( ) ( )d d p dá ¢ ñ = - ¢k k k k P k2 . 6H I H I
3 3

H I*

In tracking observations, the primary beam of the telescope
follows a particular patch of the sky. In a drift scan, the sky
pattern moves with respect to the fixed primary beam. This
change of the sky intensity with respect to the fixed phase
center introduces a time-dependent phase ( )J t in the expres-
sion of ( )qD nI in Equation (5), which gives us the fluctuating
component of the specific intensity as a function of time:

( ) ¯
( )

( ) [ ( · ( ( )))]

( )

òq q J
p

dD = + -n n n ^k kI t I
d k

ir k t,
2

exp .

7

3

3 H I

In Equation (3), we use the expression of ( )qD nI t, and expand
terms containing n up to first nonzero order2 as d2θ/n ; d2θ
and ( ) ( ) q- - + = -n n nw n l m w w1 2 22 2 2 . This gives us
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Next, we compute the two-point visibility correlation function
between two different frequencies, baselines, and times:
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Using Equation (6) in Equation (8) gives the two-point correlation
function in terms of the H I power spectrum PH I(k). We first
note that the time dependence of Equation (8) occurs as the time
difference,Δt, in just one term ( ) ( ) ( )J J J¢ ¢ - = D Dt t t , which
is obtained by dropping the frequency dependence of rν. This
approximation is discussed in detail in the next subsection.
Equation (49) is used to express the time-dependent part of the
correlation function explicitly in terms of change in the hour angle
ΔH (for details see Appendix A). This gives us
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Here, f is the latitude of the telescope, and the Fourier beam
(or 2D Q-integral) is defined as
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In this paper, we consider only the zenith drift scan.
Nonzenith drift scans can be treated by replacing f with
f+χ, where χ is the angle between the latitude of the zenith
and the phase center of the observed field (for details, see
Appendix A in Paul et al. 2014). This does not impact our main
results. Equation (9) can be numerically solved for a given
primary beam pattern ( )qnA . We next discuss the visibility
correlation in delay space, the preferred coordinate for
analyzing the data.

1 We also assume here that the H I signal is statistically isotropic, which
allows us to write the power spectrum as a function of ∣ ∣k . Statistical isotropy is
broken owing to line-of-sight effects such as redshift-space distortion and line-
cone anisotropies, which would make the power spectrum depend on the angle
between k and the line of sight.
2 As discussed below, we use primary beams corresponding to many ongoing
and future radio telescopes for our analysis. For all cases, this approximation
holds for the main lobe of the primary beam, which means, as we show later,
that our main results are unaffected.

3
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2.1. Visibility Correlation in Delay Space

To compute the H I visibility correlation function in delay
space (τ), we define

( ) ( ) [ ] ( )ò n p tn=t
n

n
n n n

-

+
u uV w t d V w t i, , , , exp 2 . 14

B

B

0 0
2

2

0

0

Throughout this paper, the subscript “0” under any variable
denotes the value of that variable at the central frequency.
Throughout this paper, we use ν0 ; 154 MHz and bandpass
B ; 10 MHz. Its cross-correlation in delay space can be
expressed as

∬
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Equation (15) can be reduced to a more tractable form by
making appropriate approximations. We expand frequency-
dependent variables in exponents around ν0 up to the first
order. Thus, ( ) ˙ n- - Dn n ¢r r r0 , denoting ( ) ˙n =n ndr d r00 ,
n n n¢ - = D . To the same order, the approximation made
following Equation (9) is also valid. We further approximate
nu u0 and drop the weak frequency dependence of the mean

specific intensity and primary beam within the observing
bandwidth B. We discuss the impact of these approximations in
Section 2.2. This gives us

( )∬
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The integrals over ν and ν′ can be solved in two ways. They
can be solved by changing the variables from (n n¢, ) to (x y, ).

n n n= ¢ - = Dx and ( )n n= ¢ +y 2. They can also be
solved by separating n n nD = ¢ - and integrating over ν and
n¢ individually. The resulting function peaks sharply at

˙ ( )t p= -r k 20 . The major contribution to the integral in
Equation (16) occurs when kP=−2πτ/ṙ0, which gives us the
well-known correlation scale along the line-of-sight direction
(e.g., Paul et al. 2016). We use the δ-function approximation
for frequency integrals:
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This approximation preserves the area under the curve. We note
that the delta function approximation used in Equation (17)
could break down if B is small. For B=10 MHz, which we use
in the paper, it is an excellent assumption. For a much smaller B,
the sinc function in the equation can be directly integrated
without making any difference in our main results. We denote
˙ ∣ ˙ ∣= -r r0 0 because the comoving distance decreases with
increasing frequency. Using this in Equation (16), we find, with

∣ ˙ ∣ pt=k r2 0 ,
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Here, ( ∣ ˙ ∣)pt= + +^ ^k k k r21
2

2
2

0
2 . Equation (18) gener-

alizes the results of Paul et al. (2014) to delay space and also
accounts for the impact of the w term. To further simplify
Equation (18), we need an expression for the primary beam
pattern. We consider four radio interferometers in our analysis.
MWA: MWA has square-shaped antennas called tiles. Each

tile consists of 16 dipoles placed on a mesh and arranged in a
4×4 grid at a spacing of roughly 1.1m. The effective area of a
tile =A 21.5 meff

2 at 150MHz (Tingay et al. 2013). The
square of the absolute value of the 2D Fourier transform of the
antenna shape gives the antenna power response. For MWA,

( ) ( ) ( )p p=n n nA l m L l L m, sinc sinc2 2 . Here, ( )n n=nL L ;0

( )lºL A 2.4eff 0 is the length of the square tile in units
of central wavelength ( l 1.95 m0 ). Therefore, the 2D primary
beam response ( )nA l m, can be represented as a product of two
independent 1D patterns, ( ) ( ) ( )=n n nA l m A l A m, .
PAPER, HERA, and SKA1-Low: individual elements in

PAPER, HERA, and SKA1-Low correspond to dishes of
diameter 2m, 14m, and 35m, respectively. The beam
pattern at a frequency ν can be expressed as =nA
∣ ( ) ( ))∣p p+ +n nj d l m d l m4 1

2 2 2 2 2, where j1(x) is the
spherical Bessel function and dν is the diameter of the dish in
units of wavelength. Unlike MWA, this primary beam pattern is
not separable in l and m, or the double integral over angles in
Equation (10) cannot be expressed as a product of two separate
integrals over l and m. We do not consider LOFAR in our
analysis as its core primary beam, suitable for EoR studies, is
close to SKA1-Low.3 For MWA and SKA1-Low, f=−26.7°,
and for HERA and PAPER, f=−30.7°.
In Figure 1, we show the amplitude of the correlation

function (Equation (18)), normalized to unity for Δt=0 as a
function of the time difference, D º ¢ -t t t , in a drift scan. In
the figure, we use the H I power spectrum PH I(k) given by the
simulation of Furlanetto et al. (2006); we discuss the
dependence of our results on the input power spectrum below
in Section 2.2.1. The figure displays numerical results for
different primary beams as a function of baseline length

∣ ∣ = +u u v0 0
2

0
2 for w0=0 and τ=0. Our numerical results

further show that the visibility correlation function in the time
domain is nearly independent of τ. This is discussed and
justified in AppendixB using analytic approximations.
Figure 2 complements Figure 1 and allows us to study the
change in decorrelation time when the primary beam is
changed for a fixed baseline; it will be discussed in detail in
the next subsection.
To get analytic insights into the nature of the numerical

results displayed in Figures 1 and 2, we consider a separable
and symmetric Gaussian beam.

3 http://old.astron.nl/radio-observatory/astronomers/lofar-imaging-
capabilities-sensitivity/lofar-imaging-capabilities/lofa
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2.1.1. Fourier Beam and H I Correlation with Gaussian Beam

The Fourier beam introduced in Equation (10) is the
response of the primary beam in the Fourier domain. It has
two useful properties which make the computation of the
Fourier beam easier. If the primary beam is separable,

( ) ( ) ( )=n n nA l m A l A m, , then the Fourier beam is also separ-
able, ( ) ( ) ( )=n n n n n nuQ Q u Q v1 2 , and if the 1D primary beam
response, Aν(l), is an even function, then the 1D Fourier beam,
Q1
ν(uν), satisfies the following relations:

( ) ( )
( ) ( ) ( )
- =

- =
n n

n n

Q x y Q x y

Q x y Q x y

, ,

, , . 19

u u

u u

1 1

1 1*

The expressions above are also valid for ( )n nQ v2 . This shows that
it is sufficient to calculate the Fourier beam for only xu, y�0.
The variables x x y, , andu v are defined in Equations (11)–(13).
xu and xv determine the correlation scales in the neighborhood of
the Fourier mode, pu r2 0 0, at which the Q-integral receives
maximum contribution. The variable y can be viewed as an
effective w term. We note that when y is small, ( )nQ x y,u

1 is large
but falls very rapidly along xu. For larger values of y, ( )nQ x y,u

1 is

smaller and goes to zero slowly along xu. This behavior can
be understood as follows: the effective beam size shrinks for a
larger value of the w term, resulting in a decrease in signal
strength but an increase in the correlation scale (e.g., Cornwell
et al. 2008; Paul et al. 2016).
The discussion also applies to 2D Fourier beams. The 2D

Fourier beam is a function of Fourier coordinates xu, xv and
parameter y. The point (xu, xv)=(0, 0) receives the maximum
contribution and picks out Fourier modes, ^ ^k k,1 2. Large
beams have smaller Fourier beams, e.g., for PAPER, the
Fourier beam is the smallest of all the cases we consider. The
width of the Fourier beam decides the range of correlation
scales of the H I signal. This range is roughly on the order of

W d2 2 , where Ω is the primary beam solid angle and d is
the antenna size in units of wavelength. The amplitude of the
Fourier beam is more sensitive to y if the beam is larger
(PAPER, MWA).
To gain further analytic insights into the H I correlation

function, we use a Gaussian primary beam in our formalism to
compute the Fourier beam. For illustration, we choose the
Gaussian primary beam of solid angleW g0 at n = 154.24 MHz0

(W = L0.25g0
2 roughly matches the MWA primary beam).

Figure 1. Amplitude of the visibility correlation function as a function of Dt , normalized to unity for D =t 0. The quantity plotted in the figure is

( ) ( ) ( ) ( )á ¢ ñ á ñt t t tu u u uV w t V w t V w t V w t, , , , , , , ,0 0 0 0 0 0 0 0* * as a function of baseline length ∣ ∣ = +u u v0 0
2

0
2 and D = ¢ -t t t , for =u v0 0, =w 00 , and t = 0. The

amplitude of the correlation function decorrelates mainly due to the rotation of the intensity pattern. However, the impact of the traversal of the intensity pattern
becomes important for smaller primary beams on small baselines. As seen in the figure, for all baselines for PAPER and large baselines for MWA, HERA, and SKA1-
Low, the decorrelation timescales are proportional to ∣ ∣u1 0 and W1 . This effect is discussed in Section 2.1.1 (point (b)). On smaller baselines in the MWA, HERA,
and SKA1-Low panels, the traversal of the intensity pattern starts dominating the decorrelation. This effect is discussed in Section 2.1.1 (point (a)).
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This gives us

( ) ( )( )=n
- + WA l m e, . 20l m g

0

2 2
0

To compute the Fourier response of a Gaussian beam
analytically, we extend the limits of the integral from [−1, 1]
to [ ]-¥ ¥, , which is a valid procedure as the integrand falls
rapidly outside the support of the primary beam. Using
Equation (10), we obtain

( )

( )
( )

⎡
⎣⎢

⎤
⎦⎥

p
p

p
p

D =
W

- W

´ -
W +

- W

n k̂ uQ w H
i y

x x

i y

, , ,
1

exp
1

. 21

g

g

g u v

g

0 0
0

0

2
0

2 2

0

0

We assume = ¢u u0 0 and ( )p=k̂ ur2 0 0 to study the time
behavior of the correlation function relevant in a drift scan. The
time-dependent part of the visibility correlation function is
determined by the product of two Fourier beams separated by
drift time ΔH in Equation (18). For a Gaussian beam, this
product is

( ) ( )
( )

( )( )

∣ ∣

( )

⎡
⎣⎢

⎤
⎦⎥

p
p p

p f
p

D = D =
W

- W + W

´ -
W D

- W

n n

u

Q H Q H
i w i y

H

i y

0
1 1

exp
sin

1

22

g

g g

g

g

0
2

0 0 0

2
0 0

2 2 2

0

0 0
*

where only the dependence on the time variable is retained
in the left-hand side for brevity. As discussed above,

( )f= ¢ + Dy w u Hcos0 0 acts as an effective w term. For the
zenith drift scan we study in this paper, the w term is small, so
we put = ¢ =w w 00 0 . We find the amplitude of the product of

the Fourier beams to be

∣ ( ) ( )∣
( )

( )

∣ ∣
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

p

p f

p f

p f

D = D

=
W

+ W D

´ -
W D

+ W D

n n

u

Q H Q H

u H

H

u H

0

1 cos

exp
sin

1 cos
. 23

g

g

g

g

0
2

2
0
2

0
2 2 2

2
0 0

2 2 2

2
0
2

0
2 2 2

0 0
*

Equation (23), along with Equations (18) and (22), allows us to
read off several salient features of the visibility correlation
function in a drift scan.
Due to the rotation of Earth on its axis, the sources in the sky

move with respect to the fixed phase center (l= 0, m= 0) of a
telescope located at latitude f. The changing intensity pattern is
a combination of two motions: rotation around a fixed phase
center and the east–west translation of the pattern with respect to
the fixed phase center (Equation (47)). In Fourier space, the
rotation causes a time-dependent mixing of Fourier modes in the
plane of the sky, while the translation introduces a new time-
dependent phase that is proportional to k̂ 1, the component of the
Fourier mode in the east–west direction (Equation (49)). In
addition to these two effects, which are linear in the angle, we
also retain a second-order term that becomes important for large
beams (Equations (47) and (49)). The impact of each of these
effects on the visibility correlation function is discussed next:

(a) Traversal time of coherence scale. The phase term
proportional to ( )fD^ir k Hexp cos0 1 in Equation (18)
represents this effect. ( ) fD ^H r k1 cos0 1 is the time
over which a coherent feature of linear size k̂1 1 is
traversed in the east–west direction. As  p^r k u20 1 0,

( ) p fDH u1 2 cos0 appears to give a rough estimate
of the time over which the decorrelation occurs for a
given u0, the east–west component of the baseline.
However, it does not give a reasonable estimate for the
decorrelation timescale of the amplitude of the correlation

Figure 2. Left panel: the amplitude of the visibility correlation function is shown as a function ofDt for a fixed baseline for different primary beams. Right panel: the
isocontours of the decorrelation time are shown in the primary beam–baseline plane; the decorrelation time is defined asDt such that the amplitude of the correlation
function falls to half its value as compared toD =t 0. The figure assumes Gaussian beams (Equation (20)) with ( )= WFWHM 2 log 2e g0 . The region on the bottom

left is excluded because the shortest baseline + =u v d0
2

0
2

0, where d0 is the primary element of the telescope in units of the central wavelength, l0. There could be
minor differences between this figure and Figure 1 because we used a fixed telescope latitude f = -26.7 for all primary beams. The primary beams of the four
interferometers studied in this paper are marked on the figure. The white line demarcates the regions dominated by rotation (above the line) and traversal of intensity
pattern (for further discussion, see the text).
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function as Equation (18) can be multiplied and divided
by ( )p fDi u Hexp 2 cos0 , which allows us to absorb the
fastest changing term as the phase term of the correlation
function. The correlation timescale of the amplitude of
the correlation function depends on the slow phase

( ( ) )p f- D^i r k u Hexp 2 cos0 1 0 , whose contribution to
the visibility correlation is determined by the primary
beam as we discuss below.

(b) Rotation of the intensity pattern. This effect is captured
by the numerator in the Gaussian in Equation (23), which
shows that the decorrelation owing to the rotation of the
intensity pattern is proportional to ( ∣ ∣∣ ∣)fW u1 sing0

1 2
0 .

This effect, unlike (a), depends on the magnitude of
the baseline and not on its east–west component.
Equations (10)–(12), along with Equations (47) and
(49), allow us to understand this effect. When visibilities
at two times are correlated for a given baseline, they
respond to different Fourier modes of the H I power
spectrum owing to the rotation of the intensity pattern in a
drift scan (Equations (10)–(12)). The extent of correlation
of the visibilities which receive a contribution from
different Fourier modes depends on the primary beam:
the smaller the primary beam, the larger the range of
Fourier modes that contribute to the correlation. There-
fore, the decorrelation time is proportional to W-

g0
1 2.

(c) Large field of view. The terms proportional to W g0
2 in

Equation (23) (or more generally the terms proportional
to y in Equation (21)) are responsible for this effect.
These terms correspond to an effective w term, a part of
which arises from w0, and the remainder is the higher-
order time-dependent phase in a drift scan. This effect is
important when the primary beam or w0 is large.

4

We next discuss the relative importance of (a), (b), and (c) in
understanding Figures 1 and 2. We first note that (c) does not
play an important role in explaining the qualitative features
seen in the figures. Its impact is only mildly important for
PAPER at the smallest baselines we consider.

For PAPER, the decorrelation time in the figure scales
linearly as the inverse of the length of the baseline ∣ ∣u1 0 .
Figure 1 shows only the case =u v0 0. We have checked that
the behavior seen in the figure is nearly independent of the
individual components of the baseline. Also, a comparison of
the decorrelation times between PAPER and MWA shows that
the decorrelation times scale as W-

g0
1 2 for baseline ∣ ∣ u 250 . A

comparison of these two cases with large baselines ∣ ∣ u 1500
for HERA and SKA1-Low also shows the same scaling with
the primary beam. This means that (b) is the dominant
decorrelation mechanism in all these cases.

For short baselines for MWA, HERA, and SKA1-Low, the
behavior is markedly different. If (b) alone determined the
decorrelation in these cases, the decorrelation time would be
longer as the primary beam is smaller in these two cases, but this
behavior is seen only for longer baselines. Therefore, (a) plays an

important role in these cases. For large primary beams, (a) is
unimportant because the slow phase discussed above is closer to
zero, as it gets contribution from a small range of Fourier modes.
However, for narrower primary beams, this term gets contribution
from a larger range of Fourier modes, which results in cancellation
when integration over k̂ 1 is carried out. This results in a reduction
of correlation timescale. This effect is more dominant for smaller
baselines for the following reason: for a given u0, the range of
Fourier modes that contribute to the visibility correlation function
is ( )D Wk̂ r1 g1 0 0

1 2 (i.e., the size of the Fourier beam) centered
around p=k̂ u r21 0 0 (e.g., Equations (10)–(12)). It should be
noted that Dk̂ 1 is only determined by the size of the primary
beam while k̂ 1 scales with the east–west component of the
baseline. This implies that for long baselines,  D^ ^k k1 1. In this
case, the visibility correlation function is dominated by the
contribution of a single Fourier mode, which suppresses the
impact of possible cancellations that occur owing to the mixing of
Fourier modes, diminishing the impact of (a) for long baselines.
However, when D ^ ^k k1 1, the effect becomes important, and it
determines the decorrelation timescale for shorter baselines.
For small baselines and narrower primary beams, both (a) and

(b) play an important role so it is worthwhile to investigate the
dependence of the decorrelation time on the components of
baselines (Figure 1 assumes =u v0 0). We have checked many
different combinations of u0 and v0, and find that the qualitative
features of Figure 1 are largely determined by the length of the
baseline. But, as discussed below, the phase of the correlation
function is dominated by the east–west component of the baseline.
The correlation structure in the primary-beam–Dt–baseline

space is further explored in Figure 2. In the left panel, we show
the amplitude of the correlation function as a function ofDt for a
fixed baseline for different primary beams. The right panel
shows the isocontours of the decorrelation time in the primary-
beam–baseline plane; the decorrelation time is defined as the
time difference Δt at which the amplitude of the correlation
function falls to half its value at Δt=0. For each baseline, the
decorrelation time reaches a maximum value as a function of the
primary beam. Our formalism allows us to understand this
general behavior: for a smaller primary beam, the Fourier beam
is large, which causes decorrelation owing to mode mixing in the
transverse motion of the intensity pattern (point (a)). For a larger
primary beam, the rotation of the intensity pattern is responsible
for the decorrelation (point (b)). The decorrelation time scales
inversely with the baseline length and could reach an hour for
the shortest baselines and large primary beams, in agreement
with Figure 1. A notable feature of Figure 2 is the alignment of
the isocontours of decorrelation time. Its shape is determined by
the interplay of decorrelation owing to the rotation and the
traversal of the intensity pattern and can be derived analytically.
For large primary beams, the decorrelation time is

(∣ ∣ ∣ ∣) fWu1 sing0 0
1 2 (point (b), (Equation (23)); the decorrela-

tion profile for large primary beams is seen to follow this
function. For small primary beams, the decorrelation time is
 fW cosg0

1 2 , nearly independent of the length of the baseline
(point (a)). Equating these two expressions gives us

∣ ∣ ∣ ∣ fW utan 1g0 0 . This relation is shown in Figure 2 (white
line), and it separates the regions dominated by decorrelation
owing to the rotation (above the white line) from the regions in
which the translation plays the dominant role. Figure 2 shows
the white line adequately captures the essential physics of the
separation of the two regions. We note that the large field of
view (point (c) above) does not play an important role in our

4 Throughout our analysis, we assume =w 00 , and we only consider the
impact of the time-dependent term. Our assumption would be valid for a zenith
drift scan, which we assume, for a near-coplanar interferometric array.
Coplanarity is generally a good assumption as our focus for the detection of the
H I signal is short baselines, e.g., for MWA ∣ ∣ uw0 for a zenith scan. We can
gauge the quantitative impact of nonzero w0 using Equation (22). The main
effect of nonzero w0 is to yield a smaller effective primary beam (Cornwell
et al. 2008; Paul et al. 2016, 2014) and to introduce an additional phase in the
visibility correlation function (Equation (53)).
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study because of the range of telescope latitudes we consider,
which is motivated by the location of radio interferometers
studied here. For f 90 , both translation and large field-of-
view effects are negligible, while for f ; 0, the impact of
rotation is negligible while translation and wide field-of-view
effects dominate (Equation (23)).

2.1.2. The Phase of Visibility Correlation Function

In the foregoing, we studied the amplitude of the correlation
function. As the correlation function (in either frequency or
delay space Equation (9) or Equation (15)) is a complex
function, we need to know the correlation properties of its
phase in addition to complete the analysis.

In AppendixB, we discuss how suitable approximations allow
us to discern major contributors to the phase of the correlation
function. Equations (52) and(53) show that the phase angle is
p f y yD + +u H2 cos0 1 2. The term p fDu H2 cos0 has already
been discussed above (point (a) on traversal time of coherence
scale). It follows from Equation (53) that both ψ1 and ψ2 are
small compared to p fDu H2 cos0 as y µ Wg1 and y µ Wg2

2 for
p W <y 1g

2 2 2 . y2 can only be significant when effects arising
from a large field of view become important (Equation (53) and
discussion on point(c) above), which is not the case for =w 00
and the primary beams we consider in our analysis. The dominant

phase angle p fDu H2 cos0 can be explicitly identified in
Equation (52) in this case.
Motivated by our analytic results, we define the phase angle as

( ) ( ( )
( ) ( ) ) ( )

y p f¢ - = - D

´ á ¢ ñt t

u

u u

t t i u H

V w t V w t

, Arg exp 2 cos

, , , , . 24
0

0 0 0 0*

The multiplication by the additional phase allows for near
cancellation of the phase term ( )fD^ik r Hexp cos1 0 in
Equation (15) (or a similar term in Equation (9) for correlation
in frequency space if u0 and r0 are replaced by uν and rν,
respectively). In Figure 3 we present our numerical results. We
notice that the phase angle defined by Equation (24) is small for
a wide range of Δt, as suggested by our analytic results. This
means, as anticipated, that the phase of the correlation function
is nearly ( )p fDi u Hexp 2 cos0 .5 The implication of this result
for drift scan data analysis will be discussed below.

Figure 3. Absolute value of the phase angle of the visibility correlation function (Equation (24)) as a function of D = ¢ -t t t . This figure illustrates that the rapidly
fluctuating component of the phase of the complex correlation function (Equation (18)) can mostly be removed by multiplying it with ( )p f- Di u Hexp 2 cos0 . This
allows us to determine the timescales for averaging the time-ordered visibilities in drift scans (Section 2.1.2 and 4).

5 The origin of this phase can partly be explained by considering a simpler
case: a single point source of flux Fν at the phase center. In this case, the
visibility ( ) ( )=n n nuV F A 0 , where ( )nA 0 defines the primary beam response at
the phase center, l=0 and m=0. The correlation between visibilities separated
by ΔH in time in a drift scan is ( ) ( ) ( ) ( ) p fDn n n n nu uV V F A i u H0 exp 2 cos2 2* .
As discussed in Section 3.1, the same factor scales out of the correlation function
for a set of point sources also.
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2.2. Approximations and Input Quantities

Our results use an input H I power spectrum, different
primary beams, and a set of approximations to transform from
frequency to delay space. We discuss the impact of these
approximations and input physics on our analysis.

2.2.1. Dependence on Input Power Spectrum and the Shape of
Primary Beam

The results shown in Figure 1 were derived using the H I
power spectrum, ( ) P k k1 n, with n;2, for a range of scales
(Furlanetto et al. 2006). We tested our results with different
power-law H I power spectra with spectral indices in the range
n=1–3 and found our results to be insensitive to the input
power spectra.

The lack of dependence of the visibility decorrelation time
on the input H I power spectrum follows from our analysis.
Equations (51) and(52) show that relevant approximations
allow us to separate the input power spectrum from the time-
dependent part of the correlation function, which means
Figure 1 is independent of the H I power spectrum. These
equations show that the time dependence of the correlation
function is essentially captured by the response of the primary
beam in Fourier space. A similar expression was derived in
Parsons et al. (2016; their Equation (9)) for cases when the
Fourier beam (Equation (10)) has a narrow response (e.g.,
PAPER).

The only cases not covered by this approximation are small
primary beams and small baselines. However, for the limiting
cases, we discuss here, ∣ ∣ u 20 and SKA1-Low primary
beam, our numerical results show that the impact of the input
H I power spectrum on the decorrelation timescale is negligible.

Our results are insensitive to the shape of the primary beam.
We compare our numerical results for instrumental primary
beams with a symmetric, separable Gaussian beam by roughly
matching Ω0g and the main lobe of the instrumental primary
beam. We find excellent agreement in explaining the main
features of Figures 1–3. Equation (52) adequately explains
Figure 1, except for small baselines for HERA and SKA1-Low.

2.2.2. Approximations in Transforming from Frequency to Delay
Space

Following Equation (15), we discuss various approximations
used in making the correlation function in delay space more
tractable. In the tracking case, these approximations allow us to
find a one-to-one linear relation between the Fourier modes of
the H I signal with the variables of radio interferometers (e.g.,
Paul et al. 2016 and references therein). However, owing to the
frequency dependence of the primary beam, the coordinate
distance, and the baseline, these commonly used relations are
approximate. We assessed the impact of these approximations
in Paul et al. (2016) for the tracking case. For a bandwidth
B=10MHz (ν0=154 MHz) and MWA primary beam, the
error in these relations is less than 5% for 

-k 0.1 Mpc 1.
The modes corresponding to 

-k 0.1 Mpc 1 are buried in
the foreground wedge and therefore do not play a role in the
detection of the H I signal (e.g., Paul et al. 2016). The error
increases with bandwidth and primary beam and therefore is
expected to be smaller for HERA and SKA1-Low for the same
bandwidth. As we also use these approximations in our work
to separate the variables on the sky plane from those along the
line of sight, we reassess these approximations for a drift scan

and find these errors to be of similar magnitude for the drift
scan. As in the tracking case, these approximations allow us to
derive the relation between baseline and delay space parameter
τ and Fourier modes of the H I signal. This simplification
allows us to write the frequency-dependent terms in the form
expressed in Equation (16).
One outcome of this approximation for drift scans is that the

functional form of the decorrelation time shown in Figure 1 is
nearly the same in frequency and delay space. Therefore,
Figure 1 can be interpreted as displaying the decorrelation time
at the center of the bandpass. This assertion is borne out by
Equation (51).
Our study is based on the assumption n 154 MHz0 and
B 10 MHz. It can readily be extended to a different

frequency/bandpass by using Equation (51) and/or(52).
We discuss the approximation in transforming from

frequency to delay space further with regard to foregrounds
and the analysis of drift scan data in later sections (see
footnote 6).
It is worthwhile to reiterate the scope of the main

approximations we use: (a) for large primary beams and
baselines, Equation (51) provides an excellent approximation;
(b) for small bandwidths and primary beams, Equation (51) can
readily be extended to Equation (52); and (c) for small
baselines and primary beams, Equation (51) might not be valid
and Equation (18) has to be computed numerically.

3. Foregrounds in Drift Scans

In the tracking mode, the foregrounds can be isolated from
the H I signal (“EoR window”) by transforming to delay space
if the two-dimensional foregrounds are spectrally smooth and
therefore their correlation scales differ from the three-dimen-
sional H I signal along the line of sight. However, in tracking
mode, we cannot use the difference between correlation
properties of foregrounds and the H I signal on the sky plane.
In a drift scan, it is possible that the decorrelation time of the
H I signal is different from components of foregrounds, which
might give us yet another way to mitigate foregrounds.
The aim of this section is to study the decorrelation

timescales of two components of foregrounds: the near-
isotropic distribution of point sources of flux above 1Jy and
statistically homogeneous and isotropic diffuse foregrounds. In
our analysis, the delay space approach continues to be the
primary method used to isolate foregrounds from the H I signal,
and we therefore present all our results in this space.

3.1. Point Sources

In a drift scan, the phase center is held fixed while the
intensity pattern changes. The changing intensity pattern owing
to a set of point sources can be written as

( ) ( ( )) ( )åq q qd= -n nI t F t, . 25
m

m
m

2

Here, nFm is the flux of the mth source and ( )q tm its angular
position at time t. Here, all the angles are measured with respect
to the phase center, which is assumed to be fixed at q = 00 .
The visibility (retaining the w term) can readily be derived from
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the expression above:

( ) ( ( ))

[ ( · ( ) ( ( ) ))]
( )

å q

qp

=

´ - + -

n n n n n

n n

u

u

V w t F A t

i t w n t

, ,

exp 2 1 .
26

m

m
m

m m

To discern the main results of this section, we ignore the
frequency dependence of source fluxes and primary beam, even
though we allow these quantities to be frequency dependent in
our simulations.6 Using Equation (14), the visibility of point
sources in delay space is

( ) ( ( )) ( ¯ ( ))

( )

¯ ( )å q p tt
p n tuV w t F A t B B t e, , sinc

27
m

m
m

m i t
0 0 0 0

2 m
0

¯ ( ) ( · ( ) ( ( ) ))

( )

qt t
n

= - + -ut t w n twhere,
1

1 .

28

m
m m

0
0 0

The correlation function of the visibilities in delay space can be
written as

( ) ( )
( ( )) ( ( ))

( ¯ ( )) ( ¯ ( )) ( )(¯ ( ) ¯ ( ))

 åå q q

p t p t

á ¢ ñ

¢

´ ¢

t t

p n t t- ¢

u uV w t V w t

B F F A t A t

B t B t e

, , , ,

sinc sinc . 29
m n

m n
m n

m n i t t

0 0 0 0

2
0 0 0 0

2 m n
0

*

Here, the ensemble average implies averages over all pairs of
baselines and times for which ∣ ∣u0 and ¢ -t t are held fixed. To
understand Equation (29), we first consider the tracking case in
which source positions are independent of time. In this case,
the dominant contribution comes from qt p n= u2 . m0 0. This
defines the so-called foreground wedge, which is bounded by
the maximum value of θm, which is given approximately by the
size of the primary beam. It also follows from the equation that
the sum is dominated by terms for which m=n.

In a drift scan, the source position changes with respect to
the primary beam. It means the value of τ for which the sum in
Equation (29) peaks changes with time. While the broad wedge
structure is the same in this case as in the tracking case, given
that the dominant contribution comes from sources within the
primary beam, the correlation structure becomes more
complicated. As ( ) ( )q q¢ -t tn m remains unchanged during a
drift scan, the summation in this case would also generally be
dominated by m=n terms. However, it is possible that a
source at one position at a time drifts close to the position of
another source at another time. Even though the contribution of
this pair could be negligible in tracking mode, it would not be if

the visibilities are correlated at two different times. The impact
of this effect requires details of point-source distribution which
we model using a simulation in this paper.
For the case of m=n, the same source is correlated at two

different times. In this case, it follows from Equation (29) that the
visibility correlation diminishes as the time separation increases.
As the additional time-dependent phase acquired in the drift is
proportional to the length of the baseline, the decorrelation
timescale is expected to be shorter for longer baselines.
Point-source simulations: we generate 15,067 point sources

brighter than 1 Jy distributed isotropically on the southern
hemisphere (Hopkins et al. 2003). We assume the spectral index
of sources to be−0.7.7 For this source distribution, we compute
the power spectrum in delay space as a function of drift time. In
a drift scan, the coordinates of these sources evolve according
to Equation (47) with respect to the fixed phase center.
We compute visibilities in delay space for a one-hour drift

scan. The visibilities are then correlated in time, and the
visibility correlation function is computed by averaging over
the number of correlation pairs for which ¢ -t t and ∣ ∣u0 are
held fixed:

( ) ( )

( ) ( ) ( )
∣ ∣ ∣ ∣

∣ ∣

å å

á ¢ ¢ ¢ ñ

= ¢ ¢ ¢

t t

t t
¢ ¢

¢

u u

u u

V w t V w t

N N
V w t V w t

, , , ,

1 1
, , , , . 30

u u

N

tt t t

N

0 0 0 0

,
0 0 0 0

u tt

0 0

0

*

*

Here, ∣ ∣N u0
and ¢Ntt are the number of baseline pairs for fixed

∣ ∣u0 and - ¢t t , respectively.
To establish how the amplitude of the visibility correlation

behaves as a function of time, baselines, and the number of
points over which the average is computed, we choose two
representative baselines, ∣ ∣ =u 20, 1000 . We carry out averages
in a ring of width ∣ ∣D =u 4;0 each of these rings is populated,
randomly and uniformly, with ∣ ∣ =N 25, 50, 100, 200, 400u0

.
In Figure 4, the visibility correlation functions are plotted for

the two cases using the instrumental parameters of MWA
(primary beam and f) for τ=0 and w0=0. We notice the
following: (a) averaging over more baselines causes the
correlation function to decorrelate faster when the number of
baselines are small but the function converges as the number of
baselines is increased, (b) the correlation function decorrelates
faster for larger baselines, as anticipated earlier in the section
based on the analytic expression, Equation (29), and (c) a
comparison between Figures 4 and 1 shows that the
decorrelation timescale for the H I signal is much larger than
for a set of point sources. For ∣ ∣ =u 1000 , the point sources
decorrelate to 50% of the peak in less than a minute while this
time is nearly 10minutes for the H I signal.
The structure of the foreground wedge in a drift scan is

expected to be similar to the tracking mode; we verify it using
analytic estimates and simulations but do not show it here.

6 We ignore the frequency dependence of the intensity pattern and the
primary beam throughout this paper. As we compare our analytic results
against simulations in this section, it allows us to verify this assumption more
explicitly. We find this assumption to be extremely good for bandwidth B;10
MHz around a central frequency of ν0;154 MHz. This approximation can be
understood by considering a simpler case: a flat-spectrum source at the phase
center. While transforming to delay space, this source receives contribution
from only the τ=0 mode. If the source is now assumed to have a spectral
index, more delay space modes close to τ=0 begin to contribute. We find that
these modes do not contaminate the EoR window as they lie well within the
wedge given the bandwidth and spectral index of interest. The leakage into the
EoR window owing to finite bandwidth can be assuaged by using a frequency-
space convolving function such as a Blackman–Nuttall window or a Gaussian
window we discuss in the section on diffuse foregrounds. The frequency
dependence of baselines in phase plays a more important role and is needed to
explain the wedge structure for foregrounds (e.g., Paul et al. 2016).

7 Foreground components from both the point sources and diffuse galactic
emission are expected to be dominated by synchrotron radiation from the
power-law energy distribution of relativistic electrons. The galaxy is optically
thin to these photons; therefore, the observed spectrum retains the form of the
emitted spectrum, which is featureless. The main mechanism of the absorption
of radio photons in the interstellar medium is free–free absorption of thermal
and nonthermal electrons. The optical depth of free–free absorption

( )t n= ´ - - -T3.3 10 10 EM7 4 1.35 2.1 , where ν is in gigahertz and EM, the
emission measure, is observationally determined to be = -EM 5 pc cm 3 (e.g.,
Haffner et al. 1999); the optical depth is negligible at frequencies of interest
to us.
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3.2. Diffuse Correlated Foregrounds

An important contribution to the foregrounds comes from
diffuse galactic emission (DGE), which is correlated on the sky
plane; this component of the foregrounds is dominated by
optically thin galactic synchrotron emission. The spatial and
frequency dependence of this emission is separable if the
emission is optically thin, which, as noted above, is a good
assumption and is key to the separation of foregrounds from the
H I signal. We consider a statistically homogeneous and
isotropic component of the diffuse foreground here. This case
differs from the H I signal only in different frequency
dependencies of the two signals. Therefore, the formulation is
similar to the case of the H I signal discussed above.

As we assume the DGE to be statistically homogeneous and
isotropic, the two-point function of fluctuations on the plane of the
sky in Fourier space could be characterized by a power spectrum

Cq such that ∣ ∣= = +qq q q1
2

2
2 , where ( )=q q q,1 2 , with q1

and q2 being the two Fourier components on the sky plane. Cq can
be expressed as

( ) ( ) ( ) ( ) ( ) ( )p n n dá ¢ ñ = ¢ - ¢n n¢q q q qI I C2 , . 31q
2 2

For our analysis, we adopt the following form and normal-
ization of Cq, as appropriate for ν ; 150 (e.g., Ghosh et al.
2012 and references therein):

( ) ( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠n n

n
n

n
n

¢ =
¢a a g- - -

C a
q

,
1000

, 32q 0
0 0

where α=0.52 (Rogers & Bowman 2008) is the spectral
index and γ=2.34 (Ghosh et al. 2012) is the index of the
spatial power spectrum. The value of ( )n=a A k c2 B0 0 0

2 2 2 is
237Jy2 at ν0=154 MHz. It rescales the amplitude factor,
A0=513 mK2, given in Ghosh et al. (2012) from (mK)2 at
150MHz to Jy2 at ν0. For a single polarization, this factor
should be divided by 4.

Using the formalism used for analyzing the H I signal, it can
readily be shown that the visibility correlation function in

frequency space can be related to Cq as

( ) ( )

( )
( )

( ) ( ) ( )

ò p
n n

á ¢ ¢ ¢ ñ

= ¢

´ D = ¢ ¢ D

n n n n n n

f
n

n n n n n

¢ ¢ ¢

D

¢ ¢ ¢

u u

q u q u

V w t V w t

d q
C e Q

w H Q w H

, , , ,

2
,

, , , 0 , , , , 33

q
iq H

2

2
cos1

*

*

where the Fourier beam of DGE is

( ) ( )

· ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ò q

q

q

p q

D =

´ - -

n n n nq u

x

Q w H d A

i y

, , ,

exp 2
1

2
, 34u

2

2

( ) ( )
p

f= - + Dnx u q q Hwith
1

2
sin , 35u 1 2

( ) ( )
p

f= - - Dnx v q q H
1

2
sin , 36v 2 1

( )
p

f= + Dny w q H
1

2
cos . 371

In Equation (34), we have used Q-integrals (or 2D Fourier
beam) defined for the H I correlation function (Equation (10)).
Comparing Equations (34) and (10), we note the following
relation between the Fourier modes of correlated diffuse
foregrounds and the H I signal:  ^q kr0 .
As already shown for the H I signal, Equation (34) can be

made more tractable by assuming the primary beam to be
separable and symmetric. To establish general characteristics of
the DGE foreground, we carry out analytical calculations with
a symmetric Gaussian beam: ( )- + We l m g

2 2
, which allows us to

extend the integration limits from -¥ to +¥. Following the
H I analysis, we also expand n to first order. This gives us

( ) [ ( )] ( )p pD = W¢ - W¢ +n n nq uQ w H x x, , , exp , 38g g u v
2 2 2

where ( )pW¢ = W - Wi y1g g g . It should be noted that these
variables can be read off directly from Q-integrals defined for
the H I signal by putting k̂ qr0 . This shows the equivalence
of the H I signal and diffuse foregrounds in the Fourier domain
on the plane of the sky.

Figure 4. The visibility correlation function (Equation (30)) is shown as a function of Δt (normalized to unity for Δt=0) for two baselines + =u v 20, 1000
2

0
2 for

=u v0 0, for the MWA primary beam and latitude. The visibility correlation function is seen to fall to half its value in a few minutes.
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We next carry out frequency integrals to transform to delay
space. As already discussed in Section 3.1, the main results in
the delay space can be obtained by retaining only the frequency
dependence of baselines because the foreground wedge in the
two-dimensional power spectrum of foregrounds arises largely
due to the chromaticity of baselines (e.g., Paul et al. 2016).

The frequency integral can be computed numerically for a
finite bandpass. To carry out analytical calculations, the limits
of the frequency integral can be extended to infinity. However,
under this assumption, the baseline ( n n=nu u0 0) also
becomes infinity, and the integral does not converge.8 To
correctly pick the relevant scales of the diffuse foregrounds,
we apply a Gaussian window function in frequency space
( ( ( ) )n n- -cexp 2 0

2 ), which allows us to pick the relevant
scales within the bandwidth (B) of the instrument and also
enables us to extend the limits of integration.9 This gives us
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where (∣ ∣ )n= W¢qc 4u g1 0
2 , ( )=c bB12

2 , p=q u2u 0, = -a q1 1
pu2 0, and p= -a q v22 2 0. The parameter b is a numerical factor
that can be tuned to get the desired width of the Gaussian window
function. The argument of the factor [ ( )]p t- +c cexp 2 2 2

1 2 in
Equation (39) yields the linear relation corresponding to the
foreground wedge.
We can read off the correlation scales for diffuse correlation

foregrounds from Equation (39). A baseline u0 is most
sensitive to the Fourier mode qu. As in the case of the H I
signal, the decorrelation timescale for a drift scan can be
estimated readily by putting =q qu and simplifying the
expression. We finally obtain
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*
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Equation (40) gives the general expression for the visibility
correlation function in delay space for a drift scan observation. It
can be computed by using Equations (32) and (39) in
Equation (40). It reduces to the relevant expression for tracking
observation forD =H 0. In Figure 5, we show numerical results
obtained from solving Equation (40) for a Gaussian primary
beam matched to the main lobe of the MWA primary beam and
f=−26.7°. We display the power spectrum in  - ^k k plane
forD =H 0 and the correlation of diffuse correlated foregrounds
as a function of time. Our main conclusions are:

1. Like the point sources, diffuse correlated foregrounds are
confined to a wedge and the EoR window is clean for the
detection of the H I signal.

2. The diffuse foregrounds decorrelate on timescales
comparable to the H I signal. (We note that the difference
between the two cases for the shortest baseline is partly
because we use the exact MWA beam for the H I case

Figure 5. In the left panel, we show the two-dimensional power spectrum of DGE (ΔH=0) in the – ^k k plane in units of ( ) ( )-hmK Mpc2 1 3. The figure assumes
n = 154 MHz0 and bandwidth B=10 MHz. The relation applicable to the H I signal is used to transform from the telescope variables (u0, v0, τ) to the Fourier modes
(k̂ , k ) and to convert the power spectrum to the appropriate units (e.g., Paul et al. 2016). The figure highlights the separation of foregrounds from the EoR window;
the bandwidth determines the extent of the flat region parallel to the kP axis. In the right panel, the visibility correlation function (normalized to unity for Δt=0) for
DGE is shown for three baselines + =u v 25, 50, 1000

2
0
2 (Equation (40)). We also show the H I and point-source visibility correlation functions for comparison.

8 This highlights the main difference between the H I signal and the two-
dimensional diffuse foregrounds. In the former, the frequency integral picks the
scale along the line of sight k while no such scale exists for diffuse
foregrounds.
9 A similar window (e.g., Blackman–Nuttall window; e.g., Paul et al. 2016) is
applied to the data to prevent the leakage of foregrounds from the foreground
wedge to the clean EoR window.
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while we use the Gaussian beam for the diffuse
foreground.) This should be contrasted with point-source
foregrounds that decorrelate on a much shorter timescale
as compared to the H I signal.

4. Analyzing Drift Scan Data

Our study allows us to address the following question: over
what time period can the time-ordered visibility data be averaged
without diminishing the H I signal? We further seek the optimal
signal to noise for the detection of the H I signal. We computed the
two-point visibility correlation function to assess the coherence
timescale of visibilities. Our results are shown in Figures 1–2
(amplitude of the correlation function as a function ofDt, baseline
and primary beam) and 3 (the phase of the complex correlation
function). Our study shows that the range of timescales over which
time-ordered visibilities can be averaged without the loss of H I
signal lies in the range of a few minutes to around 20 minutes.

Motivated by our theoretical analysis, we define the quantity

( ) ( )
( ) ( ) ( )

p f¢ - º - D

´ á ¢ ñ
t

t t

 u

u u

w t t i u H

V w t V w t

, , exp 2 cos

, , , , . 41
0 0 0

0 0 0 0*

Notice that ( ) ( )¢ - = - ¢t t u uw t t w t t, , , ,0 0 0 0* . Our analysis
shows that the complex number ( )¢ -t u w t t, ,0 0 is dominated
by its real component with a phase that remains small over the
coherence timescale of the amplitude (Figures 3 and 2). Our aim is
to extract ( )¢ -t u w t t, ,0 0 from the data and then suitably
weight it to extract the H I signal, optimally and without the loss of
H I signal.10 We discuss two possible ways to extract the H I

signal. The first is based on averaging the visibilities before
computing the correlation function.

We consider visibilities measured with time resolution DH
(DH is assumed to be much smaller than the coherence scale of
visibilities for any baseline of interest to us, e.g., D =H 10 s).
Let us denote the measured visibilities as Vn, where n
corresponds to the time stamp; each visibility is a function of
baseline and either ν or τ. As noted above, we could use data in
either frequency or delay space. For the discussion here, we
consider delay space and express all quantities as functions of
n0. For brevity, we only retain the time dependence of
measured visibilities. We define

( ) ( )å p f= D
=

 i u Hn Vexp 2 cos . 42
n

N

n
1

0

The total time over which the visibilities are averaged = DT N H
should be small enough such that the signal decorrelation is
negligible (Figure 1). For instance, we could choose N such that
the decorrelation is 0.9, which corresponds roughly to 10minutes

for MWA for +u v 200
2

0
2 . It also follows that if the

visibilities are averaged for a period much longer than the
correlation scale of the signal, there would be serious loss of the
H I signal. Even though we define  for a single baseline u0, it
can also be obtained by averaging visibilities over all redundant
baselines. The correlation function that extracts the H I signal
∣ ( ) ( ) ∣á ñt tu uV w t V w t, , , ,0 0 0 0* then is

( ) 
N

1
. 43H I 2
*

Notice that H I is nearly the same as the expression in
Equation (41) in this case. A longer stream of data of length
K N can be divided into time slices of DN H . The

correlation function can be estimated for each slice using this
method (coherent averaging as the number of pairs is ;N2) and
then averaged further over different time slices (incoherent
averaging over K/N slices). H I is also optimal as the noise rms
is nearly the same for each pair of correlated visibilities. We
note that the H I signal is mostly contained in the real part of
this resulting function, as the phase angle is small for
timescales over which the visibilities are averaged (Figure 3).
A much better method to utilize the functional form shown

in Figure 1 is to use the estimator

( ( ))

( ) ( )

 åå p f- D ¢ -

´ ¢ -
¢

¢
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N

i u H n n

V V g n n

1
exp 2 cos

. 44
n n

n n

H I 2 0

1*

Here, ( )¢ -g n n corresponds to the time decorrelation function
shown in Figure 1; by construction, ( )¢ -g n n is real,

( )- =g n n 1, and ( ) ( )¢ - = - ¢g n n g n n . The difference
between this approach and the first method is that visibilities
are correlated first and then averaged. This yields the same final
expression as the first method if ( )¢ -g n n is applied for a
suitable time interval such that it is close to unity. A distinct
advantage of this method is that we could only retain cross-
correlations such that ¢ ¹n n, which allows us to avoid self-
correlation or noise bias; the total number of cross-correlations
areN 22 in this case. This estimator is unbiased with respect
to the detection of the H I signal but does not minimize noise
rms. The following estimator is both unbiased and optimal:

( ( )) ( )
( )

( )

å å
å å
p f

=
- D ¢ - ¢ -
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¢ ¢

¢


i u H n n V V g n n

g n n

exp 2 cos
.

45

n n n n

n n

H I

0

2

*

The estimator is unbiased for any choice of ( )¢ -g n n .
However, when using this estimator, small values of

( )¢ -g n n (e.g., ( )¢ - <g n n 0.3) should be avoided to prevent
averaging over very noisy visibility pairs. As in the first
method, the real part of this function dominates the H I signal.
The amplitude of H I for both the proposed estimators

extracts the visibility correlation function at equal time,
( ) ( )á ñt tu uV w t V w t, , , ,0 0 0 0* , which is real. The estimation of

H I power spectrum from this function has been extensively
studied in the analysis of EoR tracking data (e.g., Paul et al.
2016).
Our method has similarities with other approaches proposed

to analyze the drift scan data. In Parsons et al. (2016), the

10 To prevent H I signal loss, the simplest way to extract the H I signal from
drift scans would be to not use the coherence of visibilities in time. Assuming
visibilities are measured with time resolution much shorter than the coherence
timescale, visibilities with identical time stamps can be squared (after averaging
over redundant baselines) to compute the power spectrum. This gives an
unbiased estimator of the H I signal. However, in such a procedure, visibilities
measured at two different times are treated as uncorrelated, which results in an
estimator with higher noise compared to what is achievable using further
information regarding coherence of visibilities in time. If the time resolution of
visibilities is around 10s and the coherence time is around 10minutes, then the
noise rms of the visibility correlation is higher by roughly the square root of the
ratio of these two times.
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fringe-rate filters have been applied on the visibility data. We
apply a similar filter to reduce the rapid oscillations of the
phase of the correlation function. We note that the filter applied
in Parsons et al. (2016) takes into account all the components
of Earth’s rotation (Equation (49)). In our analysis, we identify
the different roles played by these components. We show how
the components responsible for the rotation and translation
of the intensity pattern cause the decorrelation of the amplitude
of the correlation function while the component that gives
rise to the translation dominates the phase of the correlation
function. In m-mode analysis (Shaw et al. 2014, 2015), the
intensity pattern is expanded using spherical harmonics and
the time variation of the intensity pattern is solely owing to the
change in the azimuthal angle f. This time variation can then
be Fourier transformed to extract m-modes of the data. The
filter we apply in Equation (42) corresponds to a similar
process. Equation (42) can be viewed as a Fourier transform
in which a single mode is extracted for a time window of
the duration given roughly by the decorrelation time of the
amplitude of the correlation function. Our analysis shows that
such a procedure, directly applied on measured visibilities, can
extract the relevant information of the H I signal.

4.1. Impact on Foregrounds

The measured visibilities are a linear sum of the H I signal,
foregrounds, and noise, which are uncorrelated with each other.
In this paper, we also compute the timescale of the
decorrelation of a set of point sources and statistically
homogeneous and isotropic diffuse foregrounds. Does our
method allow us to mitigate foregrounds?

First, we notice that the phase factor ( )p f- Di u Hexp 2 cos 0
we apply to curtail rapid oscillations of the correlation function
of the H I signal has the same form for the foregrounds
(Equations (33) and(29)). Hence, it does not play a role in
separating foregrounds from the H I signal.

However, the decorrelation timescale of point sources is
smaller than the H I signal. In this case, the following situation
is possible: two visibilities separated in time are correlated such
that the H I component is fully extracted ( ( )¢ - =g n n 1) but
the point-source component is uncorrelated. This means that
there would be partial decorrelation of this component of
foregrounds when either of the two methods discussed above
are used to extract the H I signal. But this argument does not
apply to diffuse foregrounds.

Therefore, it is possible to partly reduce the level of
foregrounds in a drift scan but the primary method of separating
foregrounds from the H I signal remains the transformation to
delay space, as in a tracking observation.

5. Summary and Conclusion

In this paper, we address the following question: over what
timescales are time-ordered visibilities coherent in a drift
scan for the EoR H I signal, set of point sources, and diffuse
correlated foregrounds? This is an extension of our earlier work
(Paul et al. 2014) and has similarities with other approaches in
the literature (Shaw et al. 2014; Parsons et al. 2016). Our main
theoretical tool is the complex two-point correlation function of
visibilities measured at different times. We consider the
primary beams of PAPER, MWA, HERA, and SKA1-Low
for our analysis. Our main results can be summarized as
follows:

1. Figure 1 shows the amplitude of the correlation function
of H I visibilities in time for four interferometers. The
correlation timescales vary from a few minutes to nearly
20minutes for the cases considered. We identify the
three most important factors that cause decorrelation: (a)
traversal time across a coherent feature, (b) rotation of
sky intensity pattern, and (c) large field of view.

2. The time variation of the phase of the H I correlation
function is dominated by a filter function that is
determinable in terms of measurable quantities (comp-
onent of east–west baseline, latitude of the telescope,
etc.). This filter function can be absorbed into an overall
phase. The phase angle of the resultant function is small,
which means the complex correlation function is
dominated by its real part. The phase angle remains
small over the coherence timescale of the amplitude of
the correlation function (Figure 3).

3. Our results are valid in both frequency and delay space
and are insensitive to the input H I power spectrum. By
implication, they are directly applicable to the analysis of
EoR drift scan data.

4. The nature of foregrounds in a drift scan is different from
the tracking mode owing to the time dependence of the
sky intensity pattern. We consider two components of
foregrounds for our analysis: the set of point sources and
statistically homogeneous diffuse correlated emission.
The decorrelation timescales for these components are
displayed in Figures 4 and 5. The point sources
decorrelate faster than the H I signal. This provides a
novel way to partly mitigate foregrounds using only
information on the sky plane. However, the diffuse
foreground decorrelation timescale is comparable to that
of the H I signal, and the contamination from this
component cannot be removed in a drift scan on the
sky plane. By implication, the delay space formalism
remains the principal method for isolating foregrounds
from the H I signal (Figure 5).

We discuss in detail how our formalism can be used to
extract the H I signal from the drift scan data. We argue that
many different approaches might be possible for the lossless
retrieval of the H I signal while optimizing the noise. In the
future, we hope to apply our formalism to publicly available
drift scan data.

Appendix A
Coordinate Transformation

Here we discuss the sky coordinate system (l m n, , ) in terms
of ( )d f H, , with d f H, , representing the declination, the
terrestrial latitude of the telescope, and the hour angle,
respectively. From Equation (A4.7) of Christiansen &
Hoegbom (1969),

( )

d
d f d f
d f d f

=
= -
= +

l H
m H
n H

cos sin
cos cos sin sin cos
cos cos cos sin sin . 46

In a drift scan, the primary beam remains unchanged with
respect to a fixed phase center chosen to be = =l m 0. The
coordinates of intensity pattern (l m n, , ) change with time, in
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the first order in ΔH, as

( )

( )

f f
f
f

D = + D
D =- D
D =- D

l m n H

m l H

n l H

sin cos
sin
cos . 47

The change in hour angle, ΔH, can be expressed in terms of
radians as

[ ] [ ] ( )p
D =

D
H

t
in rad

12

in minutes

60
. 48

We use Equation (47) to express the time-dependent part of
Equation (9) explicitly in terms of change in hour angle ΔH.
Equation (48) can be used to express ΔH in terms of drift time
Δt for a zenith scan:
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We use the flat-sky approximation ( ) - +n l m1 1

2
2 2 in

writing Equation (49).

Appendix B
Further Simplification of the Visibility Correlation

Function

In this appendix, we discuss how the visibility correlation
function can be further simplified for large primary beams and long
baselines. This allows us to discern several generic properties of
the correlation function. We start with the H I visibility correlation
function in frequency space (Equation (9)):
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The Fourier beam can be expressed as (Equation (10))
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We consider a Gaussian beam ( ) ( )= - + WA l m e, l m g
2 2

to
compute the Fourier beam:
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If Wg is large, e.g., PAPER or MWA beams, we can use the
δ-function approximation to solve ( )D =n n nk̂ uQ w H, , , 0 ,
which gives us
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This allows us to express the H I visibility correlation
function in frequency space as
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In the previous equation, we have used p= n nk̂ u r2 .
Equation (51) gives an excellent approximation for MWA
and PAPER, and for HERA and SKA1-Low for long baselines
in frequency space. This can be readily be computed at any
frequency and explains the features seen in Figure 1.
We can extend our analysis to the H I visibility correlation

function in delay space (Equation (15)):
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Here, B is the observational bandwidth. We make the same
approximations discussed in Section 2.1, which gives us
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In deriving this equation, we use the following result from
Section 2.1:
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The H I signal is strongly correlated when ∣ ∣- ¢ Wu u 2 g0 0
1 2,

which allows us to use ¢ »u u0 0. This gives us
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Equation (52) was derived using a Gaussian beam, it is in
excellent agreement with the numerical results for MWA and
PAPER, and for HERA and SKA1-Low for longer baselines
(∣ ∣ u 150) shown in Figure 1. Equation (52) also shows that
the decorrelation time is expected to be nearly independent of the
delay parameter τ.

We next give explicit forms of the amplitude and the phase
of the Fourier beam. We have
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On solving y ya a, , ,1 1 2 2 in terms of known quantities, we find
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The total phase acquired by the H I visibility correlation
function is p f y yD + +u H2 cos0 1 2.
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