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Abstract

We cast diffraction-based interferometry in the framework of post-selected unitary description
towards enabling it as a platform for quantum information processing (QIP). We express slit-
diffraction as an infinite-dimensional transformation and truncate it to a finite-dimensional transfer
matrix by post-selecting modes. Using such a framework with classical fields we show thata
customized double-slit setup is effectively a lossy beam splitter in a post-selected sense. Diffraction
optics provides a robust alternative to conventional multi-beam interferometry with scope for
miniaturization, and also has applications in matter wave interferometry. In this work, the classical
treatment of slit-diffraction sets the stage for quantization of fields and implementing higher-
dimensional QIP like that done with other platforms such as orbital angular momentum.

1. Introduction

Linear optical quantum information processing (QIP) [1, 2] has a mathematical representation in the form of
finite-dimensional unitary transfer matrices operating on a Hilbert space of vectors that represent qubits/qudits
[3, 4]. The qubits are usually encoded in the polarization degree of freedom of a single photon, and optical
components like beam splitters [5—-7] and phase-shifters are used to implement the unitary transformations on
them. For higher-dimensional QIP, systems such as orbital angular momentum (OAM) [7—11] of photons are
used. We map diffraction optics over a finite-dimensional unitary representation and connect it to qubit/qudit
processing.

The novel interpretation of slit-diffraction that we present here sets the stage for extending the scope of
application of diffraction interferometry to modern problems like higher-dimensional information processing.
Such a formalism provides an alternative to the implementation of higher-dimensional QIP using the OAM of
light [7]. Slit-diffraction based optical interferometers can be used to construct qudits encoded in spatial modes
[12, 13], with robustness, unlike in the case of OAM based qudits which have practical limitations in state-
preparation and state-readability [7]. Another potential advantage of the multi-slit-diffraction-based
interferometer is scalability of table-top experiments. Moreover, a finite-dimensional unitary description of
diffraction also has applications in the field of matter-wave interferometry [14—19].

We deal with diffraction of classical fields and show a formalism in which slit-diffraction is represented as a
finite-dimensional unitary transfer matrix [20] (in the post-selected sense). We project the three-dimensional
(3D) solutions of the Helmholtz equation [20, 21] on two-dimensional (2D) imaginary planes and call these
projections slices. The propagation and diffraction of the fields is expressed as a slice-to-slice map as one goes
from one slice to another from the sources to the detectors through the slits. By choosing an appropriate basis for
the slices, we get an infinite-dimensional transfer matrix representation of such a map. The transfer matrix is
reduced to an effective finite-dimensional matrix by post-selecting a finite number of basis elements on the slices
as post-selected modes. We show that such a truncated matrix is in general not unitary because of the losses in
diffraction, and that the underlying unitary transfer matrix can be revealed by performing a polar decomposition
[22] on the effective transfer matrix separating it into unitary and lossy (Hermitian) components.
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Using the post-selected unitary transfer matrix formalism of diffraction, we show that a customized double-
slit setup is effectively a lossy beam splitter in the classical regime. A cubic beam splitter is a two-input-two-
output optical device thathasa2 X 2 unitary transfer matrix that transforms the fields entering its input ports to
the fields exiting its output ports [5, 6]. This 4-port device, along with a phase-shifter which is a 2-port device
that imparts a phase, serves as the building blocks of any N-channel interferometer [23—27]. The novelty and
importance of our work lies in connecting one of the most elegant and fundamental experiments in scientific
history, i.e. double-slit-diffraction with other types of interferometries which are used to solve some of the most
important problems in modern physics, like QIP.

To verify the beam splitter like behavior of the double-slit setup, we compare the correlation of the classical
outputs with that of the cubic beam splitter. Moreover, by concatenation of two such double-slit based beam
splitters and using a phase-shifter, we construct an effective Mach—Zehnder interferometer (MZI) [28]. The 2D
transfer matrix representation of double-slit-diffraction validates the formalism and allows us to extend to
higher-dimensional system and find a transfer matrix representation for the same. Here we show such an
application by finding the transfer matrix for a triple-slit system, demonstrating the way to extend the formalism
from two slits to a higher number of slits.

2.Background

The transfer matrix representation of diffraction presented in this paper uses concepts from classical optics
(Helmholtz equation), signal processing (wavelets) as well as linear algebra. A brief discussion of these concepts
and their relevance in this work is presented in this section.

2.1. The Helmholtz equation and Hilbert space
To represent diffraction as a transformation in a Hilbert space, we use solutions of the Helmholtz equation
[20, 21, 29]. The Helmholtz equation is a self-adjoint linear partial differential equation. Therefore, its solutions
or fields have a vector in a Hilbert space associated with them. Moreover, the projections of the 3D fields on 2D
planes, say the xy plane also form a Hilbert space. It should be noted that there is a difference between 2D fields
and the projections of 3D fields on 2D planes. The 2D projections are referred to as slices of the 3D fields.
Diffraction of light is understood by solving the Maxwell’s equations [20, 21, 29], specifically the wave
equation, with appropriate boundary conditions. Generally, the time-dependence of solutions (or fields) is
considered harmonic, i.e. of the form e**, where wis the angular frequency. Consequently, the wave equation
reduces to the time-independent Helmholtz equation [20, 21, 29]. For a source p(r) inavolume V enclosed by a
surface OV on which the boundary condition is specified, the most general solution of the Helmholtz equation is

E(r) = ///V &Er' G(r, ) p(r') + //6 @A) - (EE VG, )~ Glr, #)VE), (1)

where 7 (') is unit normal to the surface and G (r, ') is the Green’s function for the Helmholtz equation.

We apply the Fraunhofer approximation to equation (1) (see appendix A for details) to find solutions of the
Helmholtz equation and project them onto the xy plane by fixing z. Using the surface term in equation (1) we
find a slice-to-slice map (see appendix B). To get a matrix representation of the slice-to-slice map, we represent
each slice as a column vector in a suitable basis on that slice. One set of orthonormal vectors that span the Hilbert
space on aslice, can be found by finding the eigensolutions of the homogeneous Helmholtz equation, with the
appropriate boundary conditions [21], and using them as modes. For example, the eigensolutions are standing
sinusoidal waves if the boundary condition is, say reflective. However, these modes are not localized and thus
unsuitable for finite number of detectors with a given size. Therefore, we choose a basis of 2D functions with
compact support, that spans the Hilbert space on a slice.

2.2.Haar wavelets
We use Haar wavelets and scaling function [30, 31] to construct orthonormal basis for a slice (projections of
fields on a plane, see section 2.1). Compact support of the wavelets makes them suitable modes for detectors that
have finite size. The orthogonality of the wavelets ensures that there is no overlap between measurements by two
detectors. For a detector with square-shaped window, the 2D Haar wavelets [32] are chosen.

Wavelets are square-integrable functions with compact support over a finite interval. The simplest example
is the Haar wavelet [30—-32], which is defined by its wavelet function ¢ (or mother function) and a scaling

function ¢ (or father function)
P(x) =T (Z(x — i)) —n (Z(x — %)), )
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Figure 1. Examples of dilated and translated Haar wavelets defined in equation (4). The plots of the functions clearly show the
orthogonality of the functions with respect to the overlap integral in equation (6) as the inner product.
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Figure 2. Examples of translated Haar scaling function at a particular scale j = —2. At this scale the translated Haar scaling functions
do not have any overlap with each other, making them orthogonal to each other.

P(x) =1 (x — 1/2), 3

respectively, where [Mis the box function. These functions are dilated and translated to create other Haar wavelets
and scaling functions

Y () = J;_mw(zim - n), @)
_ 1 X k 5
P (x) = ﬁ(ﬁ(; - )) (5

respectively, where m and j are dilation parameters whereas n and k are translation parameters, and all take
integer values. Examples of dilated and translated wavelet and scaling functions are shown in figures 1 and 2
respectively.

The Haar wavelets are orthogonal with respect to the inner product

<¢m,m ¢m’,n'> = I dx ¢j1,n(x)¢m’,n’(x) = 6m,m’6n,n” (6)
and the Haar scaling functions are also orthogonal, i.e.
<¢jo’k’ (b]'o’k/) = 6k’k” (7)

ata particular scale, say, j = j, (see figure 2). In signal processing, any signal f (x) can be decomposed into Haar
wavelets and scaling function of a particular scale jo [30—-32] as

3
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o0

fO= Y a6, 0+ Y Y bbb, ®)

k=—00 mz=j, n=-—00

where the scaling function is equivalent to a low-pass filter and the wavelet functions are equivalent to band-pass
filters.

By constructing a basis using Haar wavelets on each slice, we represent the projected field as a column vector
in that basis, and express the slice-to-slice map as a transfer matrix between two slices. To validate our formalism
we use this approach to show that a double-slit system is effectively a lossy beam splitter and verify it by studying
the correlation of the outputs of the double-slit setup and compare it with that of a cubic beam splitter.

Wavelets are used as a set of orthogonal functions in a similar manner as a Fourier basis [32]. The advantage
of Haar wavelets is that, unlike the Fourier basis functions which are localized only in frequency but are non-
local in space, Haar wavelets are localized in both frequency and space. This makes Haar wavelets suitable
postselected modes for detectors with rectangular-shaped windows.

2.3. Beam splitter and its transfer matrix

A beam-splitter is a ubiquitous two-input-two-output component in interferometry. In optics, a beam splitter is
commonly in the form of a glass cube, half-silvered mirror or fiber based, which have two input and two output
modes corresponding to each of their ports. In a 50:50 cubic beam splitter, for example, the modes are the k-
vectors corresponding to the plane wave entering each of its ports, forming a basis to represent the inputs and
outputs as 2D column vectors in a Hilbert space. In such a representation, the beam splitter transformation has a
2D transfer matrix representation [5, 6, 33], denoted here by

_ 1 1
UBS— \/5(1 1)) (9)

where each row corresponds to the superposition of the two input modes to form the outputs, and complex
elements of the matrix denote the phase-shift introduced in each input.

In general, if the source of light does not emit in a single mode (say, a divergent beam), the vector
representation of the inputs and outputs can be infinite-dimensional, yielding an infinite-dimensional transfer
matrix of the beam splitter. In such a case, two suitable input and two output modes can be post-selected to
reduce the infinite-dimensional transfer matrix to a post-selected 2 x 2 transfer matrix as in equation (9).

A consequence of such a transformation is that the outputs of the beam splitter are correlated, as discussed in
the next subsection. The correlation of the outputs, as a function of a parameter that distinguishes the inputs, isa
signature of a beam splitter. We use this signature to verify the claim that a double-slit setup is effectively a beam
splitter.

2.4. Correlated outputs of a beam splitter

In semi-classical theory of photo-detection [34, 35, 29], the probability of coincident photo-detections is
proportional to the intensity—intensity cross-correlation of light in the post-selected modes, falling on the
detectors. Such a correlation of the outputs of a 50:50 beam splitter plotted as a function of some
distinguishability parameter shows a dip [36—38] for identical pulses (or photon states in the quantum regime
[39]) at the input ports. A parameter, say, time-delay between the input pulses, distinguishes the otherwise
identical input pulses. The correlation depends on the shape of the input pulses and the fluctuations in the light
field. Specifically, if the fluctuation is uniform, the correlation shows a dip of 50% as the distinguishability
parameter (like time-delay) approaches zero. A brief discussion of this concept is in appendix C and a detailed
analysis of this phenomenon is presented in [40].

Combination of the above concepts have been used to cast diffraction optics in the framework of post-
selected unitary description. Consequently, the mathematical framework of diffraction optics becomes at par
with that of other types of interferometry. The classical treatment outlined in the coming sections sets the stage
for quantization of fields enabling diffraction optics as an alternative platform for QIP.

3. Approach and method

Here we discuss the approach towards the transfer matrix formalism of diffraction using a double-slit setup as an
example, and then extend its application to find the transfer matrix of a triple-slit setup. We discuss the slice
modes using Haar functions and the column vector representation of the slices. Then we truncate the
dimensionality by choosing certain Haar functions as post-selected in input/output modes, and finding an
effective2 x 2 transfer matrix for double-slit-diffraction, showing that it behaves like a lossy beam splitter. We
verify the efficacy of the double-slit beam splitter by studying the correlation of the outputs and, by making an

4
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Figure 3. An example of how a plane at some z can be segmented into non-overlapping square patches indexed by two integers k and
k’. The width of each patch is equal to the width of the available detector. To know the entire slice at z, all the patches must be
considered. But usually, there are a finite number of detectors so that only a few patches can be covered. In that case, only those Haar
wavelets and scaling functions are considered which have a compact support on the considered patches.

MZI1 by concatenating two double-slit beam splitters. Finally, we use the transfer matrix formalism to find the
transfer matrix of a triple-slit system demonstrating its application to higher-dimensional systems.

3.1. The slice modes

As discussed in section 2.1, non-local eigenfunctions of the Helmholtz equation do not make suitable modes for
detectors with finite-sized windows. Haar functions (section 2.2) on the other hand, have compact support over
agiven interval and therefore 2D Haar functions make suitable modes for the square-shaped detector windows.
The Haar wavelets and the Haar scaling functions, however, form an overcomplete set of orthonormal
functions [30, 31].

To remove the overcompleteness, we divide each slice into non-overlapping square patches, each with side-
length equal w, as shown in figure 3. The square patches are labeled using two indices k and k” which take integer
values.

Each square patch supports a countably infinite set of Haar wavelets that fall entirely within the patch.
Together with the Haar scaling function that covers the square patch, all the supported Haar wavelets form a
basis for any function that has support over the patch. The first element of this basis is the Haar scaling function
that covers the entire patch, i.e.

gl(xr }/: 21 jo) k: k/) = ¢j0)k(x) ¢j0)k’(y - jo)) (10)

where the dilation parameter of the scaling function, i.e. j, is set so that g (x, y; z, j,» k, k') covers the entire
patch (see equation (5)), and z = z, is the plane on which the slice is considered. The other elements of the basis
are all Haar wavelets with compact support over the square patch, i.e.

&5 ¥ 215 oo ks K'Y 1= P )Y (y — j) ¥V 1 >1 € ZT, (11)
where Z" is the set of positive integers. The subscript  is a meta-index for m, n, m’ and n’, and
m = j, (12)
ik < n o< 2ok + 1), (13)
m' = jo, (14)
2 ik < n! < 2m ik + 1), (15)

where the ranges ensure that all the wavelets have compact support over the square patch chosen. If such Haar
functions for all the square patches are combined, the slice can be resolved in terms of these functions using
equation (8).

Let Hy 1/(z;) denote the space of functions on a slice at z = z;, with compact support on the patch with index
(k, k') and By x/(z)) be the basis that spans it, which is given by equations (10) and (11) with constraints given by
equations (12)—(15). The space of functions with support over the entire slice is
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Figure 4. Schematic of the double-slit setup considered in this paper. Two point sources S; and S, emanate monochromatic linearly
polarized light with harmonic time-dependence. The imaginary plane at z = z; (represented by a dotted line) is for the input slice.
Twosslits A; and A, are placed atz = 0 where each slit is aligned center-to-center with one of the sources. A second pair of slits D; and
D, are placed at z = z, where each port is aligned center-to-center with one of the source. Behind each of these slits is a square-faced
detector which measures the integrated intensity of the light falling on it. The plane z = z, is also for projecting the output slice. A
perfectly absorbing barrier runs between z = 0 and z = z, that prevents the field from slit A; (A;,) from reaching port D, (D). The
dashed arrows represent the ray approximations of the fields from the sources to the detectors.

H(z) = @Hyx(2) (16)
kK’
with a complete basis
B(z)) = @ Bii(z1) (17)
kK’

that spans the entire slice.

3.2. The double-slit setup

We elaborate on the slice modes concept using a customized double-slit setup with two sources and two
detectors as shown in figure 4, where y extends into the plane of the paper. The slits are parallel to the xy plane
and so are the sources and the detectors at different values of z. The width of the apertures and other distances are
chosen such that far-field approximations can be applied to solutions of the Helmholtz equation. A perfectly
absorbing barrier is added that runs along the z direction and separates a slit from the detector across the barrier.
The purpose of the barrier is to prevent the high diffraction orders [20] from reaching the detectors and also to
isolate one detector from another to avoid an overlap of fields between the two.

The sources S; and S, are monochromatic point-like sources (practically a spherical source with diameter
~) emanating linearly polarized light as spherical waves (Y (6, ¢) spherical harmonic [21]) with wavelength \.
Theyare placed at rs, = (d/2, 0, —L)and rs, = (—d/2, 0, —L) respectively, where d = 20\ is the distance
between the two sources and L = 800\ is the distance between the sources and the slit plane along the z
direction. Without loss of generality, we choose A = 1.

In the far-field regime [20], these sources can be approximated by Dirac-delta functions 6°(r — r5) and
8 (r — 15,). We multiply the source-term with a factor of 10° so that the simulation results do not suffer
precision errors. As the sources are linearly polarized, the field from source S; at points far from the slits, before
diffraction, can be found by solving the Helmholtz equation for scalar fields and can be approximated by

EO(r) = G(r, 1s), (18)

where the use of the scalar equation is justified because the polarizations of field from both the sources are
collinear. Note that the approximation in equation (18) is valid only because the slit plane is far enough from the
plane at z;, so that the surface-effects are negligible.

6
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Two square-shaped slits A; and Ay, each with side-length w = 4\ are placed at z = 0 with the positions of
their centers ry, = (d/2, 0, 0)and ry, = (—d/2, 0, 0) respectively, and therefore aligned with the respective
sources. In the Fraunhofer regime, the diffracted field E}i) (r) from source S; through slit A, is calculated by
simplifying the surface term in equation (1) by applying the appropriate approximations (see appendix A). Note
that, due to the opaque barrier between the two detectors, detector port Dy is blocked from the field E](i) (r)
ifk = j.

Another pair of square-shaped slits D; and D,, aligned with A; and A, respectively, are placedatz = L,
behind each of which is a square-law detector (that measures the integrated squared magnitude of fields) whose
window is of the same shape and size as those of the slits. The detector is 100% efficient for light of wavelength .
The detectors could have been placed without the second pair of slits which play a role only when two such
double-slit setups are concatenated to construct interferometers.

Two imaginary planes areatz; = —0.9L and z, = L on which the input and output slices are considered
respectively, for the double-slit. The input slice is not placed at —L where the sources are, as the solution of the
Helmbholtz equation diverges at the sources. The 2D wavelets are used as basis functions (as discussed in
section 3.1) on each of these slices so that each slice can be represented as a column vector. By choosing the input
and the output slices on either side of the slits, a transfer matrix mapping the input slice to the output slice can be
calculated. However, the slice-to-slice map can also be done in a continuous manner where a propagator
sequentially maps one slice to another very close to it, gradually moving forward in the z direction. Such a map is
constructed using the surface term of the formal solution of the Helmholtz equation (see equation (1)), which is
discussed in appendix B. However, for the purpose of showing that a double-slit is effectively a beam splitter, a
direct transfer matrix between the input and output slices suffices.

3.3. The post-selected slice modes

The two detector-windows in the double-slit setup cover only two of the square patches. Consequently, they do
not intercept the entire slice, but only a portion of it. Nevertheless, each detector window supports a countably
infinite number of Haar functions. We justify the post-selection of two input and two output modes.

3.3.1. Output modes

As the width of the detector is w = 4, we setj, = —2 so that the Haar scaling function covers the entire patch.
According to the positions of the detectors in figure 4, the square patch occupied by the detector at port Dy is the
one with indices k = 2, k' = 0. Similarly, the patch covered by the detector at port D, is the one with

k = —3, k' = 0. From the infinite set of Haar functions supported by the square patches, two have to be post-
selected. There are two ways to achieve that.

One way is to design a detector that responds to the projection of light on a particular Haar wavelet or scaling
function. Although possible in principle, making such a detector is practically challenging because of the jump
discontinuities in the Haar wavelet functions. Another and more tractable approach is to construct the double-
slit setup in such a way that most of the light intercepted by the detectors has projection on a single Haar wavelet
or the scaling function, which becomes a detector mode. Consequently, even if the detector is multimode, the
detection is in single mode. The latter is the case with the double-slit setup considered in this work.

To find such modes, the diffracted fields intercepted by the detector windows (ports D; and D,) are resolved
in terms of the corresponding Haar functions. For example, the field E{” (x, y; z,) can be expanded as

o0
EN(x ys 2) = 30 Al@) (% y 2 =2, 2, 0), (19)
=1
where A, (z,) are the projections of the field on the corresponding Haar function. For convenient visualization,
thefieldaty = 0, 1i.e. El(l)(x, 0; z,) is shown in figures 5 and 6.

Although it takes more than one basis function to capture the fine features of the field, most of the power of
the light resides in just one mode, i.e. g1(x, ¥; 25, —2,2,0). The proof of this fact is in table 1, where the total power
intercepted by port D, is compared with the total power in the projection on g,(x, ; z,, —2, 2, 0). The calculation
shows that about 99.9956% of the total power is in the said projection. The field E{*(x, y; z,) also has most of
the power in this mode. The large projection of the field, intercepted by the detectors, on the Haar scaling
function is a consequence of the far-field design of the setup. As the detector is small compared to its distance
from the slits, the field intercepted by it varies very slowly over its window. As a result, the overlap of the field
with the Haar scaling function, which is constant over the detector window, is dominant.

Therefore, we ignore all the other Haar functions which have negligible contribution to the field. Similarly,
for detector port D,, the dominant contribution is from g, (x, y; z,, —2, —3,0). Henceforth, two post-selected
output modes are

el(x; )/; ZZ) = g1 (X, }’; 2 72; 2) 0): (20)
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Figure 5. Reconstruction of the real part of E("(x, 0, z,) using the wavelets supported over the patch k = 2, k' = 0, using
equation (19). The values of dilation parameter m for the Haar wavelets (as in equation (4)) is taken from —2 to 2 so that the Haar
wavelets are visible. A finer reconstruction can be done by taking m upto higher values. For m upto 6, the reconstruction is almost
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Figure 6. Reconstruction of the imaginary part of E{" (x, 0, z,) using the wavelets supported over the patch k = 2, k' = 0, using
equation (19). The values of dilation parameter m for the Haar wavelets (as in equation (4)) is taken from —2 to 2 so that the Haar
wavelets are visible. A finer reconstruction can be done by taking m upto higher values. For m upto 6, the reconstruction is almost

Table 1. A comparison of the total integrated intensity detected by the detectors and the square of the magnitudes of the
projections of the fields on the chosen modes. The ratios show that most of the light intercepted by the detectors are in the

chosen modes as in equations (20) and (21). Therefore the choice of modes is justified.

Integrated intensity intercepted Integrated projections on chosen modes Ratio

JL dxdy 1EV e, ys )P = 0633115 JE dxdy ez, EM@)alx, ys 22)P = 0.633087  99.995 6%
1 1

/fD dxdy |EV(x, y; 20)]F = 0.612 00 //D dxdy ey (z2), EV(z2))er(x, 5 z2) 2 = 0.611 971 99.995 2%
2 2

JL, dxdy 1EP e, ys )P = 0.612 00 IL dxdy ez, EP@))al, ys 22)P = 0.611971 99.995 2%
1 1

//D dxdy |EQ(x, y; ) = 0.633 115 //D dxdy [(ex(z2), B2 (z))er(x, y; z2) | = 0.633 087 99.995 6%
2 2

e ¥y 2) =g ¥y 2, —2, =3, 0),

which reduce the infinite-dimensional representation of the slice at z = z, to a 2D column vector

(e1(2), E ()

Y®(z,) = ) ,
2 ea@), EP ()

21

(22)

where E;i) (%, y; z2) is thefield from source S; diffracted by slit A; and therefore intercepted by the detector port

D;,and
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(@), EV@) = [~ dx [T dy efos sz B0y ) 23)

and similarly for the second entry in the column vector.

3.3.2. Input modes

Each source in the double-slit setup (figure 4) emits light in a particular mode, for example spherical mode
(approximately). The projection of the source modes on the slice at z = z; are projected on the Haar functions
on that plane. The input ports chosen are square patches on the plane at z, centered at the same positions on the
plane as the output ports are placed on plane at z,. Moreover, the post-selected input modes are similar to those
chosen for the output, i.e.

el(x) Vs Zl) = gl(xa Y 2, _2) 2) 0)) (24)
ex(x, y5 21) = g(x, y; 2, =2, —3, 0), (25)
with z; denoting that the modes are for a slice on plane z = z,. Note that the input and output modes are

distinguished using the parameter that denotes the plane on which the slice is, i.e. z. Therefore, the post-selected
2D vector representation of the input, i.e. sliceatz = z;

. e(z), EP(z
X0(z) = (e1(z1) 1(')( D)) ’ 26)
<€2 (2), E5' (21)>
where the superscript denotes that source S; is turned on.
3.4. The effective 2 X 2 transfer matrix
The transfer matrix T(z,, z;) must map the input vector X®(z) to the output vector Y?(z,), i.e.
T (2, 21) X(2) = Y(2), (27)

forie {1,2}, which gives a set of four simultaneous equations for the four elements of T(z,, z;). To solve the
equations, the double-slit setup is characterized numerically, by calculating X (z) and Y (z,) for each source
turned on at a time. The transformation equation for both sources are combined into one matrix equation

T(2, 2) XM (@) XP(2) =YV (2) YO (2), (28)

where (X (z) X@(z))isa2 x 2 matrix with XV(z)and X?(z) as columns, and similar for the right-hand
side. Inverting equation (28) yields

T(z,2) = (Y () YP(z) XV(z2) XD @)™, (29)

provided that (X(V(z)) X@(z))isinvertible. In general, (X (z) X@(z))is a symmetric matrix because of
the symmetry in the setup, and the diagonal elements are slightly different from the off-diagonal elements as the
projections of field from one source is not equal on both the post-selected modes. Such a matrix is always
invertible.

However, the effective transfer matrix is not unitary because diffraction is intrinsically a lossy process in
which most of the light incident on the slits are blocked by the opaque areas. Moreover, the wavelets, chosen as
bases of the Hilbert space of each slice, are not eigenfunctions of the Helmholtz equation. Therefore, there is
cross-talk between different modes as one moves from one slice to another. To reveal the underlying unitary
transformation, a polar decomposition of the transfer matrix is done. Such a decomposition factorizes the non-
unitary transfer matrix into a unitary matrix and a Hermitian matrix.

3.5. Verifying the double-slit beam splitter

To check the efficacy of this beam splitter, we study the cross-correlation of the outputs. As the solutions of the
Helmbholtz equation are time-independent, the cross-correlation is modified such that the distinguishing
parameter between the inputs is the angle of polarization [41] instead of the time-delay. Further, we concatenate
two such double-slit beam splitters to construct a MZI.

3.5.1. Cross-correlation of the post-selected output fields

Let the field from source S, have a phase ¢ with respect to that from source S;. Also, we rotate the polarization of
source S, so that 6 is the angle between the directions of polarizations of the fields from the two sources. When
both the sources are turned on, port D, intercepts the vector superposition of fields from sources S; and S,
through slit A;. The integrated intensity in the post-selected mode on port Dy, i.e. e1(x, y; 2,) is the projection of
the vector sum of the fields intercepted by the port, i.e.

9
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Figure 7. Using two double-slit setups a Mach—Zehnder interferometer is constructed by concatenating them such that both are
aligned center-to-center and parallel to each other. The output ports D; and D, of the first double-slit beam splitter serve as the inputs
for the second one. The two detectors are placed behind the output ports D] and D} of the second double-slit setup. A phase shifter is
placed at the output port D, which changes the phase of the field from that port by a.

||E+(ZZ) 6) SO) ||2 = ‘/'/Zz dxd)’ |E+(x) }’, 2, 9) So)lz

= l(e1(22), EP @) + Kei(22), EP (@)
+ 2Re{{e1(2), Efl)(zz)>* (e1(22), El(z) (22)) }cos  cos B, (30)

where 0 is the distinguishability parameter between the two sources. Similarly, the integrated intensity in the
post-selected mode on port D, is calculated by projecting E_ (x, y; 25, 6, () on to ex(x, y; z).

The cross-correlation between the two outputs as a function of 6 in equation (77) is modified for time-
independent fields as

Jde p(PIEw(z, 0, 9)|PIE-(22, 6, #) |
[de p(|E(z, 6, ©) P [de p(0)||E-(22, b, )|

C(0; ) = (31)

which is the intensity—intensity correlation of the two output modes of the sliceatz = z,.

3.5.2. Effective MZI

The double-slit beam splitters, discussed in this work, can be concatenated to construct more sophisticated
interferometers. As an example, figure 7 shows the schematic of an effective MZI [28] made by concatenating
two such double-slit modules.

The detectors behind ports D, and D, as in figure 4 are removed, and these ports now serve as inputs to the
second double-slit module. The fields from these ports get diffracted byslits A] and A and reach the output
ports Dj and D5, of the second double-slit module behind each of which is a detector.

A phase shifter (see appendix D on how the phase-shifter is implemented numerically) causes an
interference pattern at the output ports D] and D} as the phase, say « is changed in one of the arms of the MZI.
The interfernce pattern obtained is used as a signature to verify the double-slit based MZI.

The MZl is essentially a concatenation of two beam splitters. If both the beam splitters are identical 50:50
splitters with transfer matrix in equation (9) and the phase in one arm, say ais set to zero (the arm lengths are
considered equal), the transfer matrix for the MZI is [28]

606D -C o) @)

and therefore the transfer matrix for the double-slit MZI should be close to this. We use a similar approach as
that used for the double-slit setup, to find the transfer matrix for the effective MZI, with the output slice at z, (as
shown in figure 7).

10
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Figure 8. Schematic of a triple-slit setup constructed in a similar way as the double-slit setup in figure 4, by adding a source, slit and
detector to thelatter.

3.6. Extending to three dimensions
Abeam splitter is a two-input-two-output device which, as discussed above, can be effectively constructed using
double-slit diffraction. However, one of the key potential uses of slit-diffraction and the framework outlined in
this work is extension to higher dimensions. As an example, figure 8 shows a triple-slit setup in which a third
source Sz is placed at (—3d/2, 0, —L), aslit A; centered at (—3d/2, 0, 0) and a detector D; centered at (—3d/2, 0,
L). Similar to the double-slit case, the transfer matrix approach can be applied to this system.

For the triple-slit setup, three Haar scaling functions are chosen as post-selected input modes and three for
the post-selected output modes. According to the positions of the detectors (and slits) these modes are

elx, y; z1) = g(x ;5 21, —2, 2, 0), (33)
ex(x, y; z1) = g (%, 5 21, =2, =3, 0), (34)
e3(x, y; 21) = g (%, y5 21, —2, =8, 0), (35)

and similarly for slice at z,.
Like in the case of two slits, the post-selected input and output will have a 3D column representation similar
to those in equations (22) and (26). The equation for the effective transfer matrix is

T(z, 2)XV(z) XP(2) XP(@) =Y V() YP(z) YO(2), (36)

where the superscripts denote the source that is turned on.

4, Results

Numerical calculations of the solutions of the Helmholtz equation (with Fraunhofer approximations, see
appendix A) gives the resultant transfer matrices for the double and triple-slit setups. We also show the results of
the variation of the correlation of the post-selected outputs of the double-slit setup. Further, we show the
numerically calculated interference pattern at the two outputs of the MZI made by concatenating two double-
slit beam splitters, and also find its transfer matrix.

11



10P Publishing

NewJ. Phys. 21(2019) 113022 S Sadana et al

4.1. Effective transfer matrix for the double-slit setup

As discussed in section 3.4, the effective 2 X 2 transfer matrix is calculated by characterizing the double-slit
setup by turning one source on at a time. For each source the input and output slices have a post-selected vector
representation. For the double-slit setup under consideration, the input and output vectors when source S;
isonare

Xz~ (304761 — 414731\
@) ( 10.284 — 13.398i (37)
0.008 — 0.796i
W () ~
e (0.782 + 0.0081)’ (38)

with respect to the post-selected modes (see section 3.3). Similarly, the post-selected vector representations of
the input and output slice when source S, is on are

(39)

X (z) ~ ( 10.284 — 13.398i )

—394.761 — 41.473i

0.782 + 0.0081)

Y (2) ~ (
(@) 0.008 — 0.796i

(40)
We use the above results in equation (29) to calculate the effective transfer matrix.
With respect to the post-selected input and output vectors, the effective transfer matrix is

(41)

. 0.4867i1
(e 2) ~ e0'4767”( 207  1.90e 7”) 103,

1.90¢0-4867i 2.07

which is a symmetric matrix as expected from the symmetry of the double-slit setup (figure 4). Note that apart
from a factor of about %4767 x 2./2 x 103, the matrix T(z,, z,) is approximately (but not exactly) a 50:50
beam splitter matrix. The deviation from the ideal 50:50 beam splitter is due to the non-unitary nature of the
transfer matrix. To reveal the exact unitary transformation the polar decomposition of the transfer matrix is
performed.

4.2. The underlying unitary transformation
As expected, the transfer matrix T(z,, z;) is not unitary as can be seen from

90 0. e (1
T(z, 2)T' (2 21) ~ (g zg ggg) % 106 = (0 ?) (42)

because of reasons discussed in section 3.4. To reveal the underlying unitary transformation a polar
decomposition of T(z,, z;) is carried out which yields
T(2, z1) = U(z, 21) P(25, 21), (43)

where the result for the double-slit system considered in this paper, i.e. the polar decompostion of the transfer
matrix in equation (41)is

.1 (1.04 095
Uz, 21) ~ %4771 x —( ) 44
(o 2) % e /2 \0.951 1.04 (44)
2.81 0.06 B
P(z, z1) ~ (0 06 2 81) x 1073, (45)

where U'is the transformation of a 54:46 beam splitter upto a global phase (which is irrelevant as the detectors are
square-law type). The Hermitian component P(z,, z;) captures the non-unitarity of the transfer matrix. Its
diagonal elements show the fraction of the input that is detected by the detectors after post-selection. The off-
diagonal terms show cross-talk between the two modes.

Therefore, the double-slit setup in figure 4 is effectively a lossy beam splitter with respect to the post-selected
input and output modes. To verify this result, cross-correlation of the post-selected outputs is calculated and the
result is compared with what is expected from an ideal beam splitter (see appendix C).

4.3. Cross-correlation of the post-selected outputs
Here we show the result of the numerically calculated intensity—intensity cross-correlation of the post-selected
outputs using equation (31) with

p(e) = -, (46)
27

i.e. the relative phase between the two sources is uniformly random. Figure 9 shows the values of the correlation
as a function of the distinguishability parameter, which in this case is the relative polarization angle § between
the two sources. The function that fits the result is

12
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Figure 9. The intensity—intensity correlation of the output in the double-slit setup is calculated using equation (31) with ¢ chosen
from the probability distribution in equation (76). As is the case with a regular cubic 50:50 beam splitter, the correlation shows a

50% dip. The minimum is for § = 0 when both the inputs are indistinguishable, and maximum for # = 7/2 when they are completely
distinguishable. Compare this with figure 10.
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Figure 10. The cross-correlation function plotted as a function of the relative polarization angle 6 between the input pulses, for a cubic
beam splitter. The correlation is minimum when both the sources are indistinguishable, i.e. § = 0, and maximum when they are
completely distinguishable, i.e. § = 7/2. The detailed calculations are presented in appendix C.

Cs0(0) = 0.75 — 0.25 cos 26, (47)

the visibility of which is 0.5.

On the other hand, for a 50:50 cubic beam splitter (with transfer matrix as in equation (9)), if the relative
phase ¢ between the two sources is distributed uniformly over the interval [0, 27), the cross-correlation function
shows a visibility of 0.5 as shown in figure 10 (see appendix C for more details on the correlation of the outputs of
a cubic beam splitter). On comparing the variation of the correlation of the outputs of the double-slit setup with
that of the cubic beam splitter, we confirm the beam splitter like behavior of the double-slit setup.

For completeness, appendix E discusses the 100% dip in the correlation by using a suitable probability
distribution of phase, as suggested in [40].

4.4. The effective MZI
Here we show the interference pattern at the output of the double-slit based MZI as shown in figure 7. Similar to
the case of one double-slit setup, adopting the Fraunhofer approximation and calculating the integrated
intensities at the two detectors for different values of a yields an interference pattern shown in figure 11. Such an
interference pattern is a signature of an MZI.

The curves that fit the resultant integrated intensities at ports D] and D are approximately

L(a) = 2.41 x 1078(1 — sin(x — 2.45 x 107%)), (48)
L) = 2.41 x 1078(1 + sin(x + 2.45 x 107%)), (49)
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Figure 11. Interference pattern at the output of the MZI made of concatenated double-slit beam splitters.

respectively. The visibility Vy;z; of both the curves is
V = 99.94%, (50)

which means that the effective MZI using double-slit modules closely emulates an MZI with cubic beam splitters.
Therefore, the transfer matrix formalism applied to the setup in figure 7 should yield the transformation in
equation (32).

Using the method outlined in this paper, the transfer matrix for the double-slit Mach—Zehnder in figure 7 is

- .255 3.903 039 _
Ty~ eo08mi[ 0 . ) % 1077, 51
Mz (3.903 3T (255 1)

which after polar decomposition yields
0.061 0.998i —0.03mi
Umz ~ . X , 52
Mz (0.9981 0.061) ¢ (52)
__ (3.910 0.088 _

Pz~ (0.088 3.910) x 1075 (53)

Up to a global phase the transfer matrix method successfully reveals the underlying unitary operator for the
double-slit Mach—Zehnder which can be checked by comparing equations (32) and (52).

4.5. Transfer matrix for the triple-slit setup
We have verified our formalism using a double-slit setup and by comparing it to a well-known optical device, the
cubic beam splitter. Here, we apply the transfer matrix formalism to get the post-selected transfer matrix of a
triple-slit setup, demonstrating the extensibiltiy of the framework to higher-dimensional systems.

The effective 3 x 3 transfer matrix for the triple-slit setup in figure 8, with respect to the post-selected modes
discussed in section 3.6 is

_ 0.636 0.629i 0.594
Ti(z, z1) =~ e 0197 0.626i 0.637 0.626i | x 1073, (54)
0.594 0.629i 0.636

where subscript 3 denotes that the transfer matrix is for a triple-slit setup. The polar decomposition of the 3 x 3
transfer matrix results in

oiotsr (1493 0.844i —0.242
5 0.844i 1.255 0.844i |, (55)
3 \—0242 0.844i 1.493

Us(zp, z1) =

0.772  0.146i 0.730
Ps(z, z1) ~ | —0.1461 1.075 —0.146i| x 1073, (56)
0.730 0.146i 0.772

which reveals the underlying unitary transformation along with the losses captured by the Hermitian
component.
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By further increasing the number of slits in a similar fashion, even higher-dimensional transfer matrices can
be realized using slit-diffraction. Therefore, unlike with four-port devices like beam splitters, which have to be
concatenated to implement higher-dimensional transformations, a single N-slit setup can be used for an N-
dimensional transformation. This way of implementing higher-dimensional transfer matrices should prove to
be easier than that using OAM of light, because of the practical limits on obtaining high OAM states [7].

5. Conclusion

A post-selected unitary representation of slit-diffraction is achieved by projecting the solutions of the Helmholtz
equation on 2D plane and finding a transfer matrix that maps one slice to another. The Haar wavelets and scaling
functions are used as orthonormal modes that span the slice on each plane. From the infinite set of modes, two
input and two output modes are post-selected depending on the area and position of the detectors. The non-
unitary transfer matrix is polar decomposed to reveal the underlying unitary transformation and a Hermitian
component that captures the losses. Using this approach, a double-slit setup, with appropriate modification, is
effectively a 54:46 beam splitter.

The beam splitter behavior is verified by calculating the intensity—intensity cross-correlation of the outputs
and getting a Hong—Ou—Mandel like variation. Two such double-slit beam splitters are concatenated to
construct a MZI showing that sophisticated interferometers can be constructed using slit based diffraction.
Similar to a double-slit setup, a higher number of slits can be used to construct a multi-input-multi-output
devices, an example of which is shown by finding the post-selected transfer matrix for a triple-slit setup. The
future work involves quantizing the fields and making a quantum version of slit-diffraction-based
interferometers, which can be used for implementing QIP protocols.
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Appendix A. Fraunhofer approximation to solutions of Helmholtz equation

Here we derive the solutions of the Helmholtz equation when only source S, is switched on in the double-slit
setup in figure 4, i.e.

(V2 + K)E(r) = 8°(r — 1s), (57)

with the boundary conditions specified in appendix B. Here we have ignored the 10° factor that is the amplitude
of the source, as it will only re-scale the diffracted field by that factor. The first subsection considers the far-field
approximation and the second subsection considers the slit width to be very small compared to the distance
between the center of the slit and point at which the field is calculated.

A.1. Far-field approximations applied to the propagator
The complete solution of the Helmholtz equation (equation (57)) in a volume ) enclosed by a surface 9V is
Hﬂ:f&ﬂmjwwh4m+f(ﬁWMWHﬂVQnﬂ—GmMVHﬂ) (58)
y v
Consider the surface 9V to be at infinity such that there is no contribution from the surface termin

equation (58). As we have assumed that the opaque portions of the slit-plane are perfectly absorbing, the field
within the area of the slit is

E(r) = G(r, 1) (59)
and zero outside the area of the slit. Here
1 ik|[r—r'||
Glrr)=——— (60)
a7 ||r — 7’|

is the Green’s function of the Helmholtz equation in three dimension. To find the diffracted field from the slit,
consider a semi-infinite volume with the slit-plane as one part of the surface 9} and the other parts at infinity as
discussed in appendix B. This volume does not contain any source, but the surface on the slit-plane gives
contribution from the slits. Therefore, we use the surface term of equation (58) to calculate the diffracted field as
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f d&r'z - (G(r', r)V'G(r, ') — G(r, r)V'G(r, 7)), (61)
z=R;z
where the only contribution is from the slits-plane. To further simplify the expression for the diffracted field,
note that

1 ikeklr-nl  oikinn 1 eklnnl 1 7
V2 G(ry, 1) = —— - 2 W, — | = —— - 2 . , (62)
4 |ry — 1yl |ry — 4 |ry — |2 — 11| ) |r2 — 11l
which means that V|G (n, ) = —V4G(n, n) and from equation (60) G(r,, 1) = G(n, 1,). The far-field is
applied by assuming that |ik| > I ! |.Then
n—n
ViGl(ry, 1) ~ ik Gry, 1) —— (63)
|y — 1
With this approximation, equation (61) simplifies to
— 7 zZ —z
E(r) = —ik f ErG(, )G, | 22 + ’ . (64)
S |[r — 7| [r" — rf

A.2. Small slit approximation
The expression for the diffracted field simplifies further when the small-slit approximation is considered. Let R;
be the center of the slit with a width very small compared with its distance from the point of detection. A position
within the area of the slit can be writtenas r' = R, + A,. Therefore,

1 ekIR—r+A]

G, r)=—— —M,
L T

(65)

where the small slit approximation is applied as | A, /|[R; — r¢| < 1sothat

AL oA R

S

IR, — re + A= \/IRS - rfl2 + |A5|2 + 24 - (R; — rf) = |R; — rfl\/l +

|Rs - rflz |Rs - Tf|2
RS — r ) (Rs - T )
~ IR, — 1] 1A, Beom) ~ IR —rl[1+ A, ——L|
|Rs - rflz |Rs - rf|2
(66)
Furthermore, for far-field and small slit
- ! ~ ! (67)
[r" —rel  IRe — 1]
which results in
ik|Rg—rs| . Re-rp i Re—rp
G, 1) = ——— S = GR, 1) A, (68)
4 |R, — 1yl
Similarly,
G(r, ') = G(r, Ry e kAT, (69)
and using this approximation in equation (64) we get
. —ikAs-(%—Lr'f ] Z— 2z Zs — zf
E(r) = —ik f A, G(r, R) GR,, 1)) € R n . (70)
S |T' - Rsl |Rs - rfl

For arectangular slit w, wide along x and w,, along y, the integral is a sinc function and the final expression for the
field of the slice is

_ — — R, —r
E(r) = —ikwew, |22 ¢ 275 | Gr, R) GR., 1)) x sinc | K[ TR R 7w ) 4
[r — R |Rs — rfl 2 \|r— R |Rs — rfl

. kw,( r — R, R, — 1y R
X sinc | — — 48
2 \Ir — R |Rs — rfl
(71)

which with appropriate position vectors of the sources and slit in the double-slit setup yields the diffracted field
in that system.
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Appendix B. Slice-to-slice map

The surface term of the formal solution of the Helmholtz equation is used to find the slice-to-slice map as
follows. Consider the double-slit setup shown in figure 4 with only source S; switched on. The Helmholtz
equation for the field within this boundary is equation (57). As the slits are far from the source, the surface term
of the formal solution of the Helmholtz equation in equation (1) can be dropped and the field on the plane

z = zjisapproximately G (r, 15) (discussed in the main text in equation (18)) where r - z = z, i.e. the field is
projected on this plane and hence is a slice of the 3D solution.

The field at another plane, say z = z, can be calculated from the slice at z;. For this, consider a semi-infinite
volume enclosed by the planesz = z;, z — 00, x — —00, x — 00, y — —ooand y — o0. This volume
includes the double-slit, the source is now excluded, leading to a homogeneous Helmholtz equation within the
volume, albeit with complications due to the presence of the slits, whose opaque parts will have some dielectric
constant other than one. Because of this the Green’s function, say G(r, t")isno longer the free-space Green’s
function, near the slit plane.

However, this approach yields the slice-to-slice map directly, as the solution at any point within the volume
will have contribution only from the slice at z; because the other surfaces are at infinity. Therefore if one defines a
propagator

P(r, ') =2 - (E()V'G(r, ") — G(r, r)V'E1")), (72)

the field within the volume can be calculated from the slice at z; as
E(r) = // &r'P(r, ¥') E(r'), (73)

where the integration is over the plane z = z;. Finally, the slice at z, is the projection of the field on the plane
z = zp,1.e. E(1)|,,.
The basis constructed using Haar scaling functions and the wavelet functions form a discrete orthonormal
basis for the slices. This facilitates a matrix representation of the propagator that maps one slice to another. For
. . . . 12 N ..
example, the matrix representation of the free slice-to-slice propagator P(ry, r; z, z’) in the new basis is

Pz ) = // d’r, /f &l g,(ri; 2) Plri, rls 2, 2) g(ris 2), (74)

where g;(r; z) is a basis function on slice at zand 8 (r'; ") is that onslice at z’. Note that the basis is infinite-
dimensional and therefore so is the matrix representation of the free propagator.

Appendix C. The cross-correlation of outputs in a beam splitter

In semi-classical theory of photo-detection [34, 35, 29], the probability of coincident photo-detections is
proportional to the intensity—intensity cross-correlation of the outputs, a normalized version of which is

TO TO
Jdo p(o) [ AL 7 QP [ AVIE-(Ws T o)
T, 1, ’
| Jde pe) [ d Bt 7 o) |[ fdeipten [ e B 7o )P |

where E, and E_ are the output pulses when the input pulses have a time delay 7 between them and a relative
phase . The phase ¢ fluctuates with a probability distribution p(y) and, T, and T,gare detector on and off
times respectively. The delay 7 plays the role of a distinguishability parameter between the two input pulses. The
cross-correlation is a measure of the fourth-order interference between the two outputs. For a 50:50 beam
splitter, C(7) shows a variation dependent on the shape of the pulse. If the probability distribution p(y) is
uniform over the interval [0, 27), i.e.

C(7) = (75)

1

the curve shows a visibility of 0.5. A detailed analysis of this cross-correlation with classical pulses is discussed
in [40].

If the distinguishability parameter is the angle of polarization § between the two input pulses instead of time-
delay 7, the cross-correlation of the intensities can be redefined as

[de p(p) [dt|E((5 6, I [dH'[E(t'; 0, o))
[[de po) [dtIE 15 0, P ][ [de'p(e)) [de IE-55 0, )P ]

where the time-delay between the input pulses is zero. For a 50:50 beam splitter, C(f) shows a sinusoidal
variation as shown in figure C1, for uniformly randomized phase as in equation (76).

C(0) = (77)
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Figure C1. The cross-correlation function plotted as a function of the relative polarization angle 6, which is the distinguishability
parameter. The correlation is minimum when both the sources are indistinguishable, i.e. # = 0, and maximum when they are
completely distinguishable, i.e. @ = 7/2. The plot has been generated using equation (77) for a regular cubic 50:50 beam splitter with
two identical input pulses having zero delay between them. When the distinguishability parameter is 6 the shape of the pulses does not
affect the correlation.

The equation that fits the data in the plot of figure 10 is

Cui(6) = 0.75 — 0.25 cos 26, (78)

which has a visibility of 0.5.

As C(7) and C(0) are dependent on the probability distribution of the phase ¢, the visibility of the curves
can exceed 0.5, with an appropriate choice of the probability distribution. For some distribution, the
visibility can reach 1, classically [40]. The variation of the correlation as a function of the distinguishability
parameter is used as a signature of a beam splitter, which the double-slit setup, as is discussed in this work,
also exhibits.

Appendix D. The implementation of the phase shifter in MZI

The phase shifter in the double-slit MZI is modeled as a medium of thickness t and with refractive index n.
Within the medium the Green’s function (and hence the propagator) will change to

1 einklr—r’|
G(r,r'sn) = ————r, (79)
4w |r — /|

where the refractive index of the medium causes a change in the propagation constant resulting in bending of
light and a change in the phase. The thickness of the medium is small enough that the effect can be approximated

by an extra phase

o= 2—7r(n — t, (80)
A
imparted to the field and the net effect is captured by simply multiplying the output at port D, by ™.

Appendix E. 100% dip in correlation of the outputs of the double-slit beam splitter

The visibility of the correlation is dependent on the probability distribution p(¢). In particular, if
1 ™ 1 ™
= =6|0 — — +—6(9+—), 81
p(®) 5 ( 3 ) 3 5 (81

the correlation function shows a visibility of 1.0, as shown in figure E1. The function that fits the result is

C]()()(o) = 0.5 — 0.5 cos 20, (82)
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Figure E1. The intensity—intensity correlation of the output in the double-slit setup is calculated using equation (31) with ¢ chosen
from the probability distribution is equation (81). In this case the correlation shows a dip of 100%. Although the fields are classical, a
100% dip or a Hong—Ou-Mandel like dip is achieved if the probability distribution of the relative phase between the inputs are chosen
carefully.

which shows that although the fields are classical, a 100% dip or a Hong—Ou—Mandel like dip is achieved if the
probability distribution of the relative phase between the inputs are chosen carefully. A study of such an effect is
discussed in [40].
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