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Abstract
Wecast diffraction-based interferometry in the framework of post-selected unitary description
towards enabling it as a platform for quantum information processing (QIP).We express slit-
diffraction as an infinite-dimensional transformation and truncate it to a finite-dimensional transfer
matrix by post-selectingmodes. Using such a frameworkwith classicalfields we show that a
customized double-slit setup is effectively a lossy beam splitter in a post-selected sense. Diffraction
optics provides a robust alternative to conventionalmulti-beam interferometry with scope for
miniaturization, and also has applications inmatter wave interferometry. In this work, the classical
treatment of slit-diffraction sets the stage for quantization offields and implementing higher-
dimensionalQIP like that donewith other platforms such as orbital angularmomentum.

1. Introduction

Linear optical quantum information processing (QIP) [1, 2] has amathematical representation in the formof
finite-dimensional unitary transfermatrices operating on aHilbert space of vectors that represent qubits/qudits
[3, 4]. The qubits are usually encoded in the polarization degree of freedomof a single photon, and optical
components like beam splitters [5–7] and phase-shifters are used to implement the unitary transformations on
them. For higher-dimensional QIP, systems such as orbital angularmomentum (OAM) [7–11] of photons are
used.Wemap diffraction optics over afinite-dimensional unitary representation and connect it to qubit/qudit
processing.

The novel interpretation of slit-diffraction that we present here sets the stage for extending the scope of
application of diffraction interferometry tomodern problems like higher-dimensional information processing.
Such a formalism provides an alternative to the implementation of higher-dimensional QIP using theOAMof
light [7]. Slit-diffraction based optical interferometers can be used to construct qudits encoded in spatialmodes
[12, 13], with robustness, unlike in the case ofOAMbased qudits which have practical limitations in state-
preparation and state-readability [7]. Another potential advantage of themulti-slit-diffraction-based
interferometer is scalability of table-top experiments.Moreover, afinite-dimensional unitary description of
diffraction also has applications in the field ofmatter-wave interferometry [14–19].

We deal with diffraction of classicalfields and show a formalism inwhich slit-diffraction is represented as a
finite-dimensional unitary transfermatrix [20] (in the post-selected sense).We project the three-dimensional
(3D) solutions of theHelmholtz equation [20, 21] on two-dimensional (2D) imaginary planes and call these
projections slices. The propagation and diffraction of thefields is expressed as a slice-to-slicemap as one goes
fromone slice to another from the sources to the detectors through the slits. By choosing an appropriate basis for
the slices, we get an infinite-dimensional transfermatrix representation of such amap. The transfermatrix is
reduced to an effective finite-dimensionalmatrix by post-selecting afinite number of basis elements on the slices
as post-selectedmodes.We show that such a truncatedmatrix is in general not unitary because of the losses in
diffraction, and that the underlying unitary transfermatrix can be revealed by performing a polar decomposition
[22] on the effective transfermatrix separating it into unitary and lossy (Hermitian) components.
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Using the post-selected unitary transfermatrix formalismof diffraction, we show that a customized double-
slit setup is effectively a lossy beam splitter in the classical regime. A cubic beam splitter is a two-input-two-
output optical device that has a 2×2 unitary transfermatrix that transforms the fields entering its input ports to
thefields exiting its output ports [5, 6]. This 4-port device, alongwith a phase-shifter which is a 2-port device
that imparts a phase, serves as the building blocks of anyN-channel interferometer [23–27]. The novelty and
importance of our work lies in connecting one of themost elegant and fundamental experiments in scientific
history, i.e. double-slit-diffractionwith other types of interferometries which are used to solve some of themost
important problems inmodern physics, likeQIP.

To verify the beam splitter like behavior of the double-slit setup, we compare the correlation of the classical
outputs with that of the cubic beam splitter.Moreover, by concatenation of two such double-slit based beam
splitters and using a phase-shifter, we construct an effectiveMach–Zehnder interferometer (MZI) [28]. The 2D
transfermatrix representation of double-slit-diffraction validates the formalism and allows us to extend to
higher-dimensional system and find a transfermatrix representation for the same.Here we show such an
application byfinding the transfermatrix for a triple-slit system, demonstrating theway to extend the formalism
from two slits to a higher number of slits.

2. Background

The transfermatrix representation of diffraction presented in this paper uses concepts from classical optics
(Helmholtz equation), signal processing (wavelets) as well as linear algebra. A brief discussion of these concepts
and their relevance in this work is presented in this section.

2.1. TheHelmholtz equation andHilbert space
To represent diffraction as a transformation in aHilbert space, we use solutions of theHelmholtz equation
[20, 21, 29]. TheHelmholtz equation is a self-adjoint linear partial differential equation. Therefore, its solutions
orfields have a vector in aHilbert space associatedwith them.Moreover, the projections of the 3Dfields on 2D
planes, say the xy plane also form aHilbert space. It should be noted that there is a difference between 2D fields
and the projections of 3D fields on 2Dplanes. The 2Dprojections are referred to as slices of the 3Dfields.

Diffraction of light is understood by solving theMaxwell’s equations [20, 21, 29], specifically thewave
equation, with appropriate boundary conditions. Generally, the time-dependence of solutions (orfields) is
considered harmonic, i.e. of the form eiωt, whereω is the angular frequency. Consequently, thewave equation
reduces to the time-independentHelmholtz equation [20, 21, 29]. For a source r ( )r in a volume  enclosed by a
surface ¶ onwhich the boundary condition is specified, themost general solution of theHelmholtz equation is

 
r= ¢ ¢ ¢ + ¢ ¢ ¢ ¢ ¢ - ¢ ¢ ¢

¶
∭ ∬( ) ( ) ( ) ˆ( ) · ( ( ) ( ) ( ) ( )) ( )r r r r r r r r r r r r rE G n E G G Ed , d , , , 13 2

where ¢ˆ ( )rn is unit normal to the surface and ¢( )r rG , is theGreen’s function for theHelmholtz equation.
We apply the Fraunhofer approximation to equation (1) (see appendix A for details) tofind solutions of the

Helmholtz equation and project themonto the xy plane by fixing z. Using the surface term in equation (1)we
find a slice-to-slicemap (see appendix B). To get amatrix representation of the slice-to-slicemap, we represent
each slice as a column vector in a suitable basis on that slice. One set of orthonormal vectors that span theHilbert
space on a slice, can be found byfinding the eigensolutions of the homogeneousHelmholtz equation, with the
appropriate boundary conditions [21], and using them asmodes. For example, the eigensolutions are standing
sinusoidal waves if the boundary condition is, say reflective.However, thesemodes are not localized and thus
unsuitable forfinite number of detectors with a given size. Therefore, we choose a basis of 2D functionswith
compact support, that spans theHilbert space on a slice.

2.2.Haarwavelets
WeuseHaarwavelets and scaling function [30, 31] to construct orthonormal basis for a slice (projections of
fields on a plane, see section 2.1). Compact support of thewaveletsmakes them suitablemodes for detectors that
havefinite size. The orthogonality of thewavelets ensures that there is no overlap betweenmeasurements by two
detectors. For a detector with square-shapedwindow, the 2DHaarwavelets [32] are chosen.

Wavelets are square-integrable functionswith compact support over afinite interval. The simplest example
is theHaarwavelet [30–32], which is defined by its wavelet functionψ (ormother function) and a scaling
functionf (or father function)
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f -( ) ≔ ( ) ( )x x 1 2 , 3

respectively, where is the box function. These functions are dilated and translated to create otherHaarwavelets
and scaling functions
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respectively, wherem and j are dilation parameters whereas n and k are translation parameters, and all take
integer values. Examples of dilated and translatedwavelet and scaling functions are shown infigures 1 and 2
respectively.

TheHaarwavelets are orthogonal with respect to the inner product

*òy y y y d dá ñ =¢ ¢
-¥

¥

¢ ¢ ¢ ¢≔ ( ) ( ) ( )x x x, d , 6m n m n m n m n m m n n, , , , , ,

and theHaar scaling functions are also orthogonal, i.e.

f f dá ñ =¢ ¢ ( ), , 7j k j k k k, , ,
0 0

at a particular scale, say, j=j0 (see figure 2). In signal processing, any signal f (x) can be decomposed intoHaar
wavelets and scaling function of a particular scale j0 [30–32] as

Figure 1.Examples of dilated and translatedHaarwavelets defined in equation (4). The plots of the functions clearly show the
orthogonality of the functions with respect to the overlap integral in equation (6) as the inner product.

Figure 2.Examples of translatedHaar scaling function at a particular scale j=−2. At this scale the translatedHaar scaling functions
do not have any overlapwith each other,making themorthogonal to each other.
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where the scaling function is equivalent to a low-pass filter and thewavelet functions are equivalent to band-pass
filters.

By constructing a basis usingHaarwavelets on each slice, we represent the projected field as a column vector
in that basis, and express the slice-to-slicemap as a transfermatrix between two slices. To validate our formalism
we use this approach to show that a double-slit system is effectively a lossy beam splitter and verify it by studying
the correlation of the outputs of the double-slit setup and compare it with that of a cubic beam splitter.

Wavelets are used as a set of orthogonal functions in a similarmanner as a Fourier basis [32]. The advantage
ofHaarwavelets is that, unlike the Fourier basis functionswhich are localized only in frequency but are non-
local in space,Haarwavelets are localized in both frequency and space. ThismakesHaarwavelets suitable
postselectedmodes for detectors with rectangular-shapedwindows.

2.3. Beam splitter and its transfermatrix
Abeam-splitter is a ubiquitous two-input-two-output component in interferometry. In optics, a beam splitter is
commonly in the formof a glass cube, half-silveredmirror orfiber based, which have two input and two output
modes corresponding to each of their ports. In a 50:50 cubic beam splitter, for example, themodes are the k-
vectors corresponding to the planewave entering each of its ports, forming a basis to represent the inputs and
outputs as 2D column vectors in aHilbert space. In such a representation, the beam splitter transformation has a
2D transfermatrix representation [5, 6, 33], denoted here by

= ( ) ( )U
1

2
1 i
i 1

, 9BS

where each row corresponds to the superposition of the two inputmodes to form the outputs, and complex
elements of thematrix denote the phase-shift introduced in each input.

In general, if the source of light does not emit in a singlemode (say, a divergent beam), the vector
representation of the inputs and outputs can be infinite-dimensional, yielding an infinite-dimensional transfer
matrix of the beam splitter. In such a case, two suitable input and two outputmodes can be post-selected to
reduce the infinite-dimensional transfermatrix to a post-selected 2×2 transfermatrix as in equation (9).

A consequence of such a transformation is that the outputs of the beam splitter are correlated, as discussed in
the next subsection. The correlation of the outputs, as a function of a parameter that distinguishes the inputs, is a
signature of a beam splitter.We use this signature to verify the claim that a double-slit setup is effectively a beam
splitter.

2.4. Correlated outputs of a beam splitter
In semi-classical theory of photo-detection [34, 35, 29], the probability of coincident photo-detections is
proportional to the intensity–intensity cross-correlation of light in the post-selectedmodes, falling on the
detectors. Such a correlation of the outputs of a 50:50 beam splitter plotted as a function of some
distinguishability parameter shows a dip [36–38] for identical pulses (or photon states in the quantum regime
[39]) at the input ports. A parameter, say, time-delay between the input pulses, distinguishes the otherwise
identical input pulses. The correlation depends on the shape of the input pulses and thefluctuations in the light
field. Specifically, if the fluctuation is uniform, the correlation shows a dip of 50% as the distinguishability
parameter (like time-delay) approaches zero. A brief discussion of this concept is in appendix C and a detailed
analysis of this phenomenon is presented in [40].

Combination of the above concepts have been used to cast diffraction optics in the framework of post-
selected unitary description. Consequently, themathematical framework of diffraction optics becomes at par
with that of other types of interferometry. The classical treatment outlined in the coming sections sets the stage
for quantization offields enabling diffraction optics as an alternative platform forQIP.

3. Approach andmethod

Herewe discuss the approach towards the transfermatrix formalism of diffraction using a double-slit setup as an
example, and then extend its application tofind the transfermatrix of a triple-slit setup.We discuss the slice
modes usingHaar functions and the column vector representation of the slices. Thenwe truncate the
dimensionality by choosing certainHaar functions as post-selected in input/outputmodes, andfinding an
effective 2×2 transfermatrix for double-slit-diffraction, showing that it behaves like a lossy beam splitter.We
verify the efficacy of the double-slit beam splitter by studying the correlation of the outputs and, bymaking an
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MZI by concatenating two double-slit beam splitters. Finally, we use the transfermatrix formalism tofind the
transfermatrix of a triple-slit systemdemonstrating its application to higher-dimensional systems.

3.1. The slicemodes
As discussed in section 2.1, non-local eigenfunctions of theHelmholtz equation do notmake suitablemodes for
detectors with finite-sizedwindows.Haar functions (section 2.2) on the other hand, have compact support over
a given interval and therefore 2DHaar functionsmake suitablemodes for the square-shaped detector windows.
TheHaarwavelets and theHaar scaling functions, however, form an overcomplete set of orthonormal
functions [30, 31].

To remove the overcompleteness, we divide each slice into non-overlapping square patches, eachwith side-
length equalw, as shown infigure 3. The square patches are labeled using two indices k and ¢k which take integer
values.

Each square patch supports a countably infinite set ofHaarwavelets that fall entirely within the patch.
Togetherwith theHaar scaling function that covers the square patch, all the supportedHaarwavelets form a
basis for any function that has support over the patch. Thefirst element of this basis is theHaar scaling function
that covers the entire patch, i.e.

f f¢ -¢( ) ≔ ( ) ( ) ( )g x y z j k k x y j, ; , , , , 10j k j k1 1 0 , , 00 0

where the dilation parameter of the scaling function, i.e. j0 is set so that ¢( )g x y z j k k, ; , , ,1 1 0 covers the entire
patch (see equation (5)), and z=z1 is the plane onwhich the slice is considered. The other elements of the basis
are all Haarwavelets with compact support over the square patch, i.e.

y y¢ - " > Î¢ ¢
+( ) ≔ ( ) ( ) ( )g x y z j k k x y j ı, ; , , , 1 , 11ı m n m n1 0 , 0

where + is the set of positive integers. The subscript ı is ameta-index form, n, ¢m and ¢n , and

 ( )m j , 120

 < +- - ( ) ( )k n k2 2 1 , 13m j m j0 0

¢ ( )m j , 140

¢ ¢ < ¢ +¢- ¢ ¢- ¢( ) ( )k n k2 2 1 , 15m j m j0 0

where the ranges ensure that all thewavelets have compact support over the square patch chosen. If suchHaar
functions for all the square patches are combined, the slice can be resolved in terms of these functions using
equation (8).

Let  ¢( )zk k, 1 denote the space of functions on a slice at z=z1, with compact support on the patchwith index
¢( )k k, and  ¢( )zk k, 1 be the basis that spans it, which is given by equations (10) and (11)with constraints given by

equations (12)–(15). The space of functionswith support over the entire slice is

Figure 3.An example of how a plane at some z can be segmented into non-overlapping square patches indexed by two integers k and
¢k . Thewidth of each patch is equal to thewidth of the available detector. To know the entire slice at z, all the patchesmust be
considered. But usually, there are afinite number of detectors so that only a few patches can be covered. In that case, only thoseHaar
wavelets and scaling functions are considered which have a compact support on the considered patches.
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that spans the entire slice.

3.2. The double-slit setup
Weelaborate on the slicemodes concept using a customized double-slit setupwith two sources and two
detectors as shown infigure 4, where ŷ extends into the plane of the paper. The slits are parallel to the xy plane
and so are the sources and the detectors at different values of z. Thewidth of the apertures and other distances are
chosen such that far-field approximations can be applied to solutions of theHelmholtz equation. A perfectly
absorbing barrier is added that runs along the z direction and separates a slit from the detector across the barrier.
The purpose of the barrier is to prevent the high diffraction orders [20] from reaching the detectors and also to
isolate one detector from another to avoid an overlap offields between the two.

The sources S1 and S2 aremonochromatic point-like sources (practically a spherical sourcewith diameter
∼λ) emanating linearly polarized light as spherical waves ( q f( )Y ,0

0 spherical harmonic [21])withwavelengthλ.
They are placed at = -( )r d L2, 0,S1

and = - -( )r d L2, 0,S2
respectively, where d=20λ is the distance

between the two sources and L=800λ is the distance between the sources and the slit plane along the z
direction.Without loss of generality, we chooseλ=1.

In the far-field regime [20], these sources can be approximated byDirac-delta functions d -( )r r3
S1

and
d -( )r r3

S2
.Wemultiply the source-termwith a factor of 105 so that the simulation results do not suffer

precision errors. As the sources are linearly polarized, the field from source Si at points far from the slits, before
diffraction, can be found by solving theHelmholtz equation for scalarfields and can be approximated by

»( ) ( ) ( )( ) r r rE G , , 18i
Si

where the use of the scalar equation is justified because the polarizations offield fromboth the sources are
collinear. Note that the approximation in equation (18) is valid only because the slit plane is far enough from the
plane at z1, so that the surface-effects are negligible.

Figure 4. Schematic of the double-slit setup considered in this paper. Twopoint sources S1 and S2 emanatemonochromatic linearly
polarized light with harmonic time-dependence. The imaginary plane at z=z1 (represented by a dotted line) is for the input slice.
Two slits A1 andA2 are placed at z=0where each slit is aligned center-to-center with one of the sources. A second pair of slits D1 and
D2 are placed at z=z2 where each port is aligned center-to-center with one of the source. Behind each of these slits is a square-faced
detector whichmeasures the integrated intensity of the light falling on it. The plane z=z2 is also for projecting the output slice. A
perfectly absorbing barrier runs between z=0 and z=z2 that prevents thefield from slit A1 (A2) from reaching portD2 (D1). The
dashed arrows represent the ray approximations of the fields from the sources to the detectors.

6

New J. Phys. 21 (2019) 113022 S Sadana et al



Two square-shaped slits A1 and A2, eachwith side-lengthw=4λ are placed at z=0with the positions of
their centers = ( )r d 2, 0, 0A1

and = -( )r d 2, 0, 0A2
respectively, and therefore alignedwith the respective

sources. In the Fraunhofer regime, the diffracted field ( )( ) rEj
i from source Si through slit Aj, is calculated by

simplifying the surface term in equation (1) by applying the appropriate approximations (see appendix A). Note
that, due to the opaque barrier between the two detectors, detector port Dk is blocked from thefield ( )( ) rEj

i

if ¹k j.
Another pair of square-shaped slits D1 and D2, alignedwith A1 and A2 respectively, are placed at z=L,

behind each of which is a square-law detector (thatmeasures the integrated squaredmagnitude offields)whose
window is of the same shape and size as those of the slits. The detector is 100% efficient for light of wavelengthλ.
The detectors could have been placedwithout the second pair of slits which play a role only when two such
double-slit setups are concatenated to construct interferometers.

Two imaginary planes are at z1=−0.9L and z2=L onwhich the input and output slices are considered
respectively, for the double-slit. The input slice is not placed at−Lwhere the sources are, as the solution of the
Helmholtz equation diverges at the sources. The 2Dwavelets are used as basis functions (as discussed in
section 3.1) on each of these slices so that each slice can be represented as a column vector. By choosing the input
and the output slices on either side of the slits, a transfermatrixmapping the input slice to the output slice can be
calculated.However, the slice-to-slicemap can also be done in a continuousmannerwhere a propagator
sequentiallymaps one slice to another very close to it, graduallymoving forward in the z direction. Such amap is
constructed using the surface term of the formal solution of theHelmholtz equation (see equation (1)), which is
discussed in appendix B.However, for the purpose of showing that a double-slit is effectively a beam splitter, a
direct transfermatrix between the input and output slices suffices.

3.3. The post-selected slicemodes
The twodetector-windows in the double-slit setup cover only two of the square patches. Consequently, they do
not intercept the entire slice, but only a portion of it. Nevertheless, each detector window supports a countably
infinite number ofHaar functions.We justify the post-selection of two input and two outputmodes.

3.3.1. Outputmodes
As thewidth of the detector isw=4, we set j0=−2 so that theHaar scaling function covers the entire patch.
According to the positions of the detectors infigure 4, the square patch occupied by the detector at portD1 is the
onewith indices = ¢ =k k2, 0. Similarly, the patch covered by the detector at port D2 is the onewith
= - ¢ =k k3, 0. From the infinite set ofHaar functions supported by the square patches, two have to be post-

selected. There are twoways to achieve that.
Oneway is to design a detector that responds to the projection of light on a particularHaarwavelet or scaling

function. Although possible in principle,making such a detector is practically challenging because of the jump
discontinuities in theHaarwavelet functions. Another andmore tractable approach is to construct the double-
slit setup in such away thatmost of the light intercepted by the detectors has projection on a singleHaarwavelet
or the scaling function, which becomes a detectormode. Consequently, even if the detector ismultimode, the
detection is in singlemode. The latter is the case with the double-slit setup considered in this work.

Tofind suchmodes, the diffracted fields intercepted by the detector windows (ports D1 andD2) are resolved
in terms of the correspondingHaar functions. For example, the field ( )( )E x y z, ;1

1
2 can be expanded as

å= -
=

¥

( ) ( ) ( ) ( )( )E x y z A z g x y z, ; , ; , 2, 2, 0 , 19
ı

ı ı1
1

2
1

2 2

where ( )A zı 2 are the projections of the field on the correspondingHaar function. For convenient visualization,
thefield at y=0, i.e. ( )( )E x z, 0;1

1
2 is shown infigures 5 and 6.

Although it takesmore than one basis function to capture thefine features of thefield,most of the power of
the light resides in just onemode, i.e. g1(x, y; z2,−2, 2, 0). The proof of this fact is in table 1, where the total power
intercepted by portD1 is comparedwith the total power in the projection on g1(x, y; z2,−2, 2, 0). The calculation
shows that about 99.9956%of the total power is in the said projection. The field ( )( )E x y z, ;1

2
2 also hasmost of

the power in thismode. The large projection of thefield, intercepted by the detectors, on theHaar scaling
function is a consequence of the far-field design of the setup. As the detector is small compared to its distance
from the slits, the field intercepted by it varies very slowly over its window. As a result, the overlap of the field
with theHaar scaling function, which is constant over the detector window, is dominant.

Therefore, we ignore all the otherHaar functionswhich have negligible contribution to thefield. Similarly,
for detector port D2, the dominant contribution is from g1(x, y; z2,−2,−3,0). Henceforth, two post-selected
outputmodes are

-( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 2, 0 , 201 2 1 2
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- -( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 3, 0 , 212 2 1 2

which reduce the infinite-dimensional representation of the slice at z=z2 to a 2D column vector

=
á ñ

á ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )
( ) ( )

( )( )
( )

( )Y z
e z E z

e z E z

,

,
, 22i

i

i2
1 2 1 2

2 2 2 2

where ( )( )E x y z, ;j
i

2 is thefield from source Si diffracted by slit Aj and therefore intercepted by the detector port
Dj, and

Figure 5.Reconstruction of the real part of ( )( )E x z, 0,1
1

2 using thewavelets supported over the patch = ¢ =k k2, 0, using
equation (19). The values of dilation parameterm for theHaarwavelets (as in equation (4)) is taken from−2 to 2 so that theHaar
wavelets are visible. Afiner reconstruction can be done by takingm upto higher values. Form upto 6, the reconstruction is almost
perfect.

Figure 6.Reconstruction of the imaginary part of ( )( )E x z, 0,1
1

2 using thewavelets supported over the patch = ¢ =k k2, 0, using
equation (19). The values of dilation parameterm for theHaarwavelets (as in equation (4)) is taken from−2 to 2 so that theHaar
wavelets are visible. Afiner reconstruction can be done by takingm upto higher values. Form upto 6, the reconstruction is almost
perfect.

Table 1.Acomparison of the total integrated intensity detected by the detectors and the square of themagnitudes of the
projections of thefields on the chosenmodes. The ratios show thatmost of the light intercepted by the detectors are in the
chosenmodes as in equations (20) and (21). Therefore the choice ofmodes is justified.

Integrated intensity intercepted Integrated projections on chosenmodes Ratio

=∬ ∣ ¯ ( )∣( )x y E x y zd d , ; 0.633 115
D 1

1
2

2

1
á ñ =∬ ∣ ( ) ¯ ( ) ( )∣( )x y e z E z e x y zd d , , ; 0.633 087

D
1 2 1

1
2 1 2

2

1
99.995 6%

=∬ ∣ ¯ ( )∣( )x y E x y zd d , ; 0.612 00
D 2

1
2

2

2
á ñ =∬ ∣ ( ) ¯ ( ) ( )∣( )x y e z E z e x y zd d , , ; 0.611 971

D
2 2 2

1
2 2 2

2

2
99.995 2%

=∬ ∣ ¯ ( )∣( )x y E x y zd d , ; 0.612 00
D 1

2
2

2

1
á ñ =∬ ∣ ( ) ¯ ( ) ( )∣( )x y e z E z e x y zd d , , ; 0.611 971

D
1 2 1

2
2 1 2

2

1
99.995 2%

=∬ ∣ ¯ ( )∣( )x y E x y zd d , ; 0.633 115
D 2

2
2

2

2
á ñ =∬ ∣ ( ) ¯ ( ) ( )∣( )x y e z E z e x y zd d , , ; 0.633 087

D
2 2 2

2
2 2 2

2

2
99.995 6%
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*ò òá ñ =
-¥

¥

-¥

¥
( ) ( ) ( ) ( ) ( )( ) ( )e z E z x y e x y z E x y z, d d , ; , ; 23i i

1 2 1 2 1 2 1 2

and similarly for the second entry in the column vector.

3.3.2. Inputmodes
Each source in the double-slit setup (figure 4) emits light in a particularmode, for example sphericalmode
(approximately). The projection of the sourcemodes on the slice at z=z1 are projected on theHaar functions
on that plane. The input ports chosen are square patches on the plane at z1 centered at the same positions on the
plane as the output ports are placed on plane at z2.Moreover, the post-selected inputmodes are similar to those
chosen for the output, i.e.

-( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 2, 0 , 241 1 1 1

- -( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 3, 0 , 252 1 1 1

with z1 denoting that themodes are for a slice on plane z=z1. Note that the input and outputmodes are
distinguished using the parameter that denotes the plane onwhich the slice is, i.e. z. Therefore, the post-selected
2D vector representation of the input, i.e. slice at z=z1

=
á ñ

á ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ) ( )
( ) ( )

( )( )
( )

( )X z
e z E z

e z E z

,

,
, 26i

i

i1
1 1 1 1

2 1 2 1

where the superscript denotes that source Si is turned on.

3.4. The effective 2×2 transfermatrix
The transfermatrixT(z2, z1)mustmap the input vector ( )( )X zi

1 to the output vector ( )( )Y zi
2 , i.e.

=( ) ( ) ( ) ( )( ) ( )X YT z z z z, , 27i i
2 1 1 2

for iä {1, 2}, which gives a set of four simultaneous equations for the four elements ofT(z2, z1). To solve the
equations, the double-slit setup is characterized numerically, by calculating ( )( )X zi

1 and ( )( )Y zi
2 for each source

turned on at a time. The transformation equation for both sources are combined into onematrix equation

=( )( ( ) ( )) ( ( ) ( )) ( )( ) ( ) ( ) ( )X X Y YT z z z z z z, , 282 1
1

1
2

1
1

2
2

2

where ( ( ) ( ))( ) ( )X Xz z1
1

2
1 is a 2×2matrix with ( )( )X z1

1 and ( )( )X z2
1 as columns, and similar for the right-hand

side. Inverting equation (28) yields

= -( ) ( ( ) ( ) ( ( ) ( )) ( )( ) ( ) ( ) ( )Y Y X XT z z z z z z, , 292 1
1

2
2

2
1

1
2

1
1

provided that ( ( ) ( ))( ) ( )X Xz z1
1

2
1 is invertible. In general, ( ( ) ( ))( ) ( )X Xz z1

1
2

1 is a symmetricmatrix because of
the symmetry in the setup, and the diagonal elements are slightly different from the off-diagonal elements as the
projections of field fromone source is not equal on both the post-selectedmodes. Such amatrix is always
invertible.

However, the effective transfermatrix is not unitary because diffraction is intrinsically a lossy process in
whichmost of the light incident on the slits are blocked by the opaque areas.Moreover, thewavelets, chosen as
bases of theHilbert space of each slice, are not eigenfunctions of theHelmholtz equation. Therefore, there is
cross-talk between differentmodes as onemoves fromone slice to another. To reveal the underlying unitary
transformation, a polar decomposition of the transfermatrix is done. Such a decomposition factorizes the non-
unitary transfermatrix into a unitarymatrix and aHermitianmatrix.

3.5. Verifying the double-slit beam splitter
To check the efficacy of this beam splitter, we study the cross-correlation of the outputs. As the solutions of the
Helmholtz equation are time-independent, the cross-correlation ismodified such that the distinguishing
parameter between the inputs is the angle of polarization [41] instead of the time-delay. Further, we concatenate
two such double-slit beam splitters to construct aMZI.

3.5.1. Cross-correlation of the post-selected output fields
Let thefield from source S2 have a phasejwith respect to that from source S1. Also, we rotate the polarization of
source S2 so that θ is the angle between the directions of polarizations of thefields from the two sources.When
both the sources are turned on, portD1 intercepts the vector superposition offields from sources S1 and S2
through slit A1. The integrated intensity in the post-selectedmode on port D1, i.e. e1(x, y; z2) is the projection of
the vector sumof the fields intercepted by the port, i.e.
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q j q j

j q
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z
2

2
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2

1 2 1
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2
2

1 2 1
2

2
2

1 2 1
1

2 1 2 1
2

2

2

where θ is the distinguishability parameter between the two sources. Similarly, the integrated intensity in the
post-selectedmode on port D2 is calculated by projecting E−(x, y; z2, θ,j) on to e2(x, y; z2).

The cross-correlation between the two outputs as a function of θ in equation (77) ismodified for time-
independent fields as

ò
ò ò

q
j j q j q j

j j q j j j q j
+ -

+ -

   

   
( ) ≔

( ) ( ) ( )

( ) ( ) ( ) ( )
( )C z

p E z E z

p E z p E z
;

d , , , ,

d , , d , ,
312

2
2

2
2

2
2

2
2

which is the intensity–intensity correlation of the two outputmodes of the slice at z=z2.

3.5.2. EffectiveMZI
The double-slit beam splitters, discussed in this work, can be concatenated to constructmore sophisticated
interferometers. As an example, figure 7 shows the schematic of an effectiveMZI [28]made by concatenating
two such double-slitmodules.

The detectors behind portsD1 andD2 as infigure 4 are removed, and these ports now serve as inputs to the
second double-slitmodule. Thefields from these ports get diffracted by slits ¢A1 and ¢A2 and reach the output
ports ¢D1 and ¢D2, of the second double-slitmodule behind each of which is a detector.

A phase shifter (see appendixDon how the phase-shifter is implemented numerically) causes an
interference pattern at the output ports ¢D1 and ¢D2 as the phase, sayα is changed in one of the arms of theMZI.
The interfernce pattern obtained is used as a signature to verify the double-slit basedMZI.

TheMZI is essentially a concatenation of two beam splitters. If both the beam splitters are identical 50:50
splitters with transfermatrix in equation (9) and the phase in one arm, sayα is set to zero (the arm lengths are
considered equal), the transfermatrix for theMZI is [28]

= ( )( )( ) ( )i
i

1

2
1 i
i 1

1 i
i 1

0
0

, 32

and therefore the transfermatrix for the double-slitMZI should be close to this.We use a similar approach as
that used for the double-slit setup, tofind the transfermatrix for the effectiveMZI, with the output slice at z4 (as
shown infigure 7).

Figure 7.Using two double-slit setups aMach–Zehnder interferometer is constructed by concatenating them such that both are
aligned center-to-center and parallel to each other. The output ports D1 andD2 of thefirst double-slit beam splitter serve as the inputs
for the second one. The two detectors are placed behind the output ports ¢D1 and ¢D2 of the second double-slit setup. A phase shifter is
placed at the output portD2which changes the phase of thefield from that port byα.
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3.6. Extending to three dimensions
Abeam splitter is a two-input-two-output device which, as discussed above, can be effectively constructed using
double-slit diffraction.However, one of the key potential uses of slit-diffraction and the framework outlined in
this work is extension to higher dimensions. As an example, figure 8 shows a triple-slit setup inwhich a third
source S3 is placed at (−3d/2, 0,−L), a slit A3 centered at (−3d/2, 0, 0) and a detectorD3 centered at (−3d/2, 0,
L). Similar to the double-slit case, the transfermatrix approach can be applied to this system.

For the triple-slit setup, threeHaar scaling functions are chosen as post-selected inputmodes and three for
the post-selected outputmodes. According to the positions of the detectors (and slits) thesemodes are

-( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 2, 0 , 331 1 1 1

- -( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 3, 0 , 342 1 1 1

- -( ) ≔ ( ) ( )e x y z g x y z, ; , ; , 2, 8, 0 , 353 1 1 1

and similarly for slice at z2.
Like in the case of two slits, the post-selected input and outputwill have a 3D column representation similar

to those in equations (22) and (26). The equation for the effective transfermatrix is

=( )( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )( ) ( ) ( ) ( ) ( ) ( )X X X Y Y YT z z z z z z z z, , 362 1
1

1
2

1
3

1
1

2
2

2
3

2

where the superscripts denote the source that is turned on.

4. Results

Numerical calculations of the solutions of theHelmholtz equation (with Fraunhofer approximations, see
appendix A) gives the resultant transfermatrices for the double and triple-slit setups.We also show the results of
the variation of the correlation of the post-selected outputs of the double-slit setup. Further, we show the
numerically calculated interference pattern at the two outputs of theMZImade by concatenating two double-
slit beam splitters, and alsofind its transfermatrix.

Figure 8. Schematic of a triple-slit setup constructed in a similar way as the double-slit setup in figure 4, by adding a source, slit and
detector to the latter.
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4.1. Effective transfermatrix for the double-slit setup
As discussed in section 3.4, the effective 2×2 transfermatrix is calculated by characterizing the double-slit
setup by turning one source on at a time. For each source the input and output slices have a post-selected vector
representation. For the double-slit setup under consideration, the input and output vectors when source S1
is on are

» - -
-( )( ) ( )( )X z 394.761 41.473i

10.284 13.398i
, 371

1

» -
+

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( )Y z 0.008 0.796i

0.782 0.008i
, 381

2

with respect to the post-selectedmodes (see section 3.3). Similarly, the post-selected vector representations of
the input and output slicewhen source S2 is on are

» -
- -( )( ) ( )( )X z 10.284 13.398i

394.761 41.473i
, 392

1

» +
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( )Y z 0.782 0.008i

0.008 0.796i
. 402

2

Weuse the above results in equation (29) to calculate the effective transfermatrix.
With respect to the post-selected input and output vectors, the effective transfermatrix is

» ´p
p

p
-

⎛
⎝⎜

⎞
⎠⎟( ) ( )T z z, e 2.07 1.90e

1.90e 2.07
10 , 412 1

0.476 i
0.486 i

0.486 i
3

which is a symmetricmatrix as expected from the symmetry of the double-slit setup (figure 4). Note that apart
from a factor of about ´ ´p -e 2 2 100.476 i 3, thematrixT(z2, z1) is approximately (but not exactly) a 50:50
beam splittermatrix. The deviation from the ideal 50:50 beam splitter is due to the non-unitary nature of the
transfermatrix. To reveal the exact unitary transformation the polar decomposition of the transfermatrix is
performed.

4.2. The underlying unitary transformation
As expected, the transfermatrixT(z2, z1) is not unitary as can be seen from

» ´ ¹-( ) ( )( ) ( ) ( )†T z z T z z, , 7.90 0.35
0.35 7.90

10 1 0
0 1

, 422 1 2 1
6

because of reasons discussed in section 3.4. To reveal the underlying unitary transformation a polar
decomposition ofT(z2, z1) is carried outwhich yields

=( ) ( ) ( ) ( )T z z U z z P z z, , , , 432 1 2 1 2 1

where the result for the double-slit system considered in this paper, i.e. the polar decompostion of the transfer
matrix in equation (41) is

» ´p ( )( ) ( )U z z, e
1

2
1.04 0.95i
0.95i 1.04

, 442 1
0.47 i

» ´ -( )( ) ( )P z z, 2.81 0.06
0.06 2.81

10 , 452 1
3

whereU is the transformation of a 54:46 beam splitter upto a global phase (which is irrelevant as the detectors are
square-law type). TheHermitian componentP(z2, z1) captures the non-unitarity of the transfermatrix. Its
diagonal elements show the fraction of the input that is detected by the detectors after post-selection. The off-
diagonal terms show cross-talk between the twomodes.

Therefore, the double-slit setup infigure 4 is effectively a lossy beam splitter with respect to the post-selected
input and outputmodes. To verify this result, cross-correlation of the post-selected outputs is calculated and the
result is comparedwithwhat is expected from an ideal beam splitter (see appendix C).

4.3. Cross-correlation of the post-selected outputs
Herewe show the result of the numerically calculated intensity–intensity cross-correlation of the post-selected
outputs using equation (31)with

j
p

=( ) ( )p
1

2
, 46

i.e. the relative phase between the two sources is uniformly random. Figure 9 shows the values of the correlation
as a function of the distinguishability parameter, which in this case is the relative polarization angle θ between
the two sources. The function that fits the result is
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q q= -( ) ( )C 0.75 0.25 cos 2 , 4750

the visibility of which is 0.5.
On the other hand, for a 50:50 cubic beam splitter (with transfermatrix as in equation (9)), if the relative

phasej between the two sources is distributed uniformly over the interval [0, 2π), the cross-correlation function
shows a visibility of 0.5 as shown infigure 10 (see appendix C formore details on the correlation of the outputs of
a cubic beam splitter). On comparing the variation of the correlation of the outputs of the double-slit setupwith
that of the cubic beam splitter, we confirm the beam splitter like behavior of the double-slit setup.

For completeness, appendix E discusses the 100%dip in the correlation by using a suitable probability
distribution of phase, as suggested in [40].

4.4. The effectiveMZI
Herewe show the interference pattern at the output of the double-slit basedMZI as shown infigure 7. Similar to
the case of one double-slit setup, adopting the Fraunhofer approximation and calculating the integrated
intensities at the two detectors for different values ofα yields an interference pattern shown infigure 11. Such an
interference pattern is a signature of anMZI.

The curves thatfit the resultant integrated intensities at ports ¢D1 and ¢D2 are approximately

a = ´ - - ´- -( ) ( ( )) ( )I x2.41 10 1 sin 2.45 10 , 481
8 4

a = ´ + + ´- -( ) ( ( )) ( )I x2.41 10 1 sin 2.45 10 , 492
8 4

Figure 9.The intensity–intensity correlation of the output in the double-slit setup is calculated using equation (31)withj chosen
from the probability distribution in equation (76). As is the casewith a regular cubic 50:50 beam splitter, the correlation shows a
50%dip. Theminimum is for θ=0when both the inputs are indistinguishable, andmaximum for θ=π/2when they are completely
distinguishable. Compare this with figure 10.

Figure 10.The cross-correlation function plotted as a function of the relative polarization angle θ between the input pulses, for a cubic
beam splitter. The correlation isminimumwhen both the sources are indistinguishable, i.e. θ=0, andmaximumwhen they are
completely distinguishable, i.e. θ=π/2. The detailed calculations are presented in appendix C.
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respectively. The visibilityVMZI of both the curves is

= ( )V 99.94%, 50

whichmeans that the effectiveMZI using double-slitmodules closely emulates anMZIwith cubic beam splitters.
Therefore, the transfermatrix formalism applied to the setup infigure 7 should yield the transformation in
equation (32).

Using themethod outlined in this paper, the transfermatrix for the double-slitMach–Zehnder infigure 7 is

» ´p
p

p
-

⎛
⎝⎜

⎞
⎠⎟ ( )T e 0.255 3.903 e

3.903 e 0.255
10 , 51MZ

0.08 i
0.39 i

0.39 i
7

which after polar decomposition yields

» ´ p-( ) ( )U 0.061 0.998i
0.998i 0.061

e , 52MZ
0.03 i

» ´ -( ) ( )P 3.910 0.088
0.088 3.910

10 . 53MZ
7

Up to a global phase the transfermatrixmethod successfully reveals the underlying unitary operator for the
double-slitMach–Zehnder which can be checked by comparing equations (32) and (52).

4.5. Transfermatrix for the triple-slit setup
Wehave verified our formalism using a double-slit setup and by comparing it to awell-known optical device, the
cubic beam splitter. Here, we apply the transfermatrix formalism to get the post-selected transfermatrix of a
triple-slit setup, demonstrating the extensibiltiy of the framework to higher-dimensional systems.

The effective 3×3 transfermatrix for the triple-slit setup infigure 8, with respect to the post-selectedmodes
discussed in section 3.6 is

» ´p- -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )T z z, e

0.636 0.629i 0.594
0.626i 0.637 0.626i
0.594 0.629i 0.636

10 , 543 2 1
i0.16 3

where subscript 3 denotes that the transfermatrix is for a triple-slit setup. The polar decomposition of the 3×3
transfermatrix results in

»
-

-

p- ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )U z z,

e

3

1.493 0.844i 0.242
0.844i 1.255 0.844i

0.242 0.844i 1.493
, 553 2 1

i0.15

» - - ´ -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )P z z,

0.772 0.146i 0.730
0.146i 1.075 0.146i

0.730 0.146i 0.772
10 , 563 2 1

3

which reveals the underlying unitary transformation alongwith the losses captured by theHermitian
component.

Figure 11. Interference pattern at the output of theMZImade of concatenated double-slit beam splitters.
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By further increasing the number of slits in a similar fashion, even higher-dimensional transfermatrices can
be realized using slit-diffraction. Therefore, unlike with four-port devices like beam splitters, which have to be
concatenated to implement higher-dimensional transformations, a singleN-slit setup can be used for anN-
dimensional transformation. This way of implementing higher-dimensional transfermatrices should prove to
be easier than that usingOAMof light, because of the practical limits on obtaining highOAMstates [7].

5. Conclusion

Apost-selected unitary representation of slit-diffraction is achieved by projecting the solutions of theHelmholtz
equation on 2Dplane andfinding a transfermatrix thatmaps one slice to another. TheHaarwavelets and scaling
functions are used as orthonormalmodes that span the slice on each plane. From the infinite set ofmodes, two
input and two outputmodes are post-selected depending on the area and position of the detectors. The non-
unitary transfermatrix is polar decomposed to reveal the underlying unitary transformation and aHermitian
component that captures the losses. Using this approach, a double-slit setup, with appropriatemodification, is
effectively a 54:46 beam splitter.

The beam splitter behavior is verified by calculating the intensity–intensity cross-correlation of the outputs
and getting aHong–Ou–Mandel like variation. Two such double-slit beam splitters are concatenated to
construct aMZI showing that sophisticated interferometers can be constructed using slit based diffraction.
Similar to a double-slit setup, a higher number of slits can be used to construct amulti-input-multi-output
devices, an example of which is shown byfinding the post-selected transfermatrix for a triple-slit setup. The
futurework involves quantizing the fields andmaking a quantum version of slit-diffraction-based
interferometers, which can be used for implementingQIP protocols.
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AppendixA. Fraunhofer approximation to solutions ofHelmholtz equation

Herewe derive the solutions of theHelmholtz equationwhen only source S1 is switched on in the double-slit
setup infigure 4, i.e.

d + = -( ) ( ) ( ) ( )r r rk E , 572 2 3
S1

with the boundary conditions specified in appendix B.Herewe have ignored the 105 factor that is the amplitude
of the source, as it will only re-scale the diffracted field by that factor. Thefirst subsection considers the far-field
approximation and the second subsection considers the slit width to be very small compared to the distance
between the center of the slit and point at which thefield is calculated.

A.1. Far-field approximations applied to the propagator
The complete solution of theHelmholtz equation (equation (57)) in a volume  enclosed by a surface ¶ is

 
ò òd= ¢ ¢ ¢ - + ¢ ¢ ¢ ¢ ¢ - ¢ ¢ ¢

¶
( ) ( ) ( ) ˆ ( ) · ( ( ) ( ) ( ) ( )) ( )r r r r r r r n r r r r r r rE G E G G Ed , d , , . 583 3

S
2

1

Consider the surface ¶ to be at infinity such that there is no contribution from the surface term in
equation (58). Aswe have assumed that the opaque portions of the slit-plane are perfectly absorbing, the field
within the area of the slit is

=( ) ( ) ( )r r rE G , 59f

and zero outside the area of the slit. Here

p
¢ = -

- ¢

- ¢

 

 
( ) ( )r r

r r
G ,

1

4

e
60

r rki

is theGreen’s function of theHelmholtz equation in three dimension. Tofind the diffracted field from the slit,
consider a semi-infinite volumewith the slit-plane as one part of the surface ¶ and the other parts at infinity as
discussed in appendix B. This volume does not contain any source, but the surface on the slit-plane gives
contribution from the slits. Therefore, we use the surface termof equation (58) to calculate the diffracted field as
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ò ¢ ¢ ¢ ¢ - ¢ ¢ ¢
=

ˆ · ( ( ) ( ) ( ) ( )) ( )
·ˆ

r z r r r r r r r rG G G Gd , , , , , 61
R zz

f f
2

s

where the only contribution is from the slits-plane. To further simplify the expression for the diffracted field,
note that

p p
 = -

-
-

-
 - = -

-
-

-
-
-

- - - ⎛
⎝⎜

⎞
⎠⎟( )

∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

∣ ∣ ∣ ∣ ∣ ∣
r r

r r r r
r r

r r r r

r r

r r
G

k
k,

1

4

i e e 1

4

e
i

1
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whichmeans that  = -( ) ( )r r r rG G, ,1 2 1 2 2 1 and from equation (60) =( ) ( )r r r rG G, ,2 1 1 2 . The far-field is
applied by assuming that
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With this approximation, equation (61) simplifies to
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A.2. Small slit approximation
The expression for the diffracted field simplifies furtherwhen the small-slit approximation is considered. Let Rs

be the center of the slit with awidth very small comparedwith its distance from the point of detection. A position
within the area of the slit can bewritten as D¢ = +r Rs s. Therefore,
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where the small slit approximation is applied as D - ∣ ∣ ∣ ∣R r 1s s f so that
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Furthermore, for far-field and small slit
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Similarly,
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and using this approximation in equation (64)we get
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For a rectangular slitwxwide along x andwy along y, the integral is a sinc function and the final expression for the
field of the slice is
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whichwith appropriate position vectors of the sources and slit in the double-slit setup yields the diffracted field
in that system.
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Appendix B. Slice-to-slicemap

The surface termof the formal solution of theHelmholtz equation is used tofind the slice-to-slicemap as
follows. Consider the double-slit setup shown infigure 4with only source S1 switched on. TheHelmholtz
equation for thefieldwithin this boundary is equation (57). As the slits are far from the source, the surface term
of the formal solution of theHelmholtz equation in equation (1) can be dropped and the field on the plane
z=z1 is approximately ( )r rG , S1

(discussed in themain text in equation (18))where =·r z z1, i.e. thefield is
projected on this plane and hence is a slice of the 3D solution.

Thefield at another plane, say z=z2 can be calculated from the slice at z1. For this, consider a semi-infinite
volume enclosed by the planes z=z1,  ¥z ,  -¥x ,  ¥x ,  -¥y and  ¥y . This volume
includes the double-slit, the source is now excluded, leading to a homogeneousHelmholtz equationwithin the
volume, albeit with complications due to the presence of the slits, whose opaque parts will have some dielectric
constant other than one. Because of this theGreen’s function, say ¢˜( )r rG , is no longer the free-spaceGreen’s
function, near the slit plane.

However, this approach yields the slice-to-slicemap directly, as the solution at any point within the volume
will have contribution only from the slice at z1 because the other surfaces are at infinity. Therefore if one defines a
propagator

 ¢ ¢ ¢ ¢ - ¢ ¢ ¢( ) ≔ ˆ · ( ( ) ˜( ) ˜( ) ( )) ( )r r z r r r r r rE G G E, , , , 72

thefieldwithin the volume can be calculated from the slice at z1 as

= ¢ ¢ ¢
=

∬( ) ( ) ( ) ( )r r r r rE Ed , , 73
z z

2

1

where the integration is over the plane z=z1. Finally, the slice at z2 is the projection of thefield on the plane
z=z2, i.e. ( )∣rE z2

.
The basis constructed usingHaar scaling functions and thewavelet functions form a discrete orthonormal

basis for the slices. This facilitates amatrix representation of the propagator thatmaps one slice to another. For
example, thematrix representation of the free slice-to-slice propagator  ¢ ¢^ ^( )r r z z, ; , in the newbasis is

 = ¢ ¢ ¢^ ^ ^ ^ ^ ^∬ ∬( ) ( ) ( ) ( ) ( )ȷ ȷr r r r r rz z g z z z g z, d d ; , ; , ; , 74ı ı2 1
2 2

2 2 1 1

where ( )rg z;i is a basis function on slice at z and ¢ ¢( )rg z;j is that on slice at ¢z . Note that the basis is infinite-
dimensional and therefore so is thematrix representation of the free propagator.

AppendixC. The cross-correlation of outputs in a beam splitter

In semi-classical theory of photo-detection [34, 35, 29], the probability of coincident photo-detections is
proportional to the intensity–intensity cross-correlation of the outputs, a normalized version of which is

ò ò ò

ò ò ò ò
t

j j t j t j

j j t j j j t j

¢ ¢

¢ ¢ ¢

+ -

+ -
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ≔
( ) ∣ ( )∣ ∣ ( )∣

( ) ∣ ( )∣ ( ) ∣ ( )∣
( )C

p t E t t E t

p t E t p t E t

d d ; , d ; ,

d d ; , d d ; ,
, 75T

T

T

T

T

T

T

T

2 2

2 2

on

off

on

off

on

off

on

off

where E+ andE−are the output pulses when the input pulses have a time delay τ between them and a relative
phasej. The phasej fluctuates with a probability distribution p(j) and,Ton andToff are detector on and off
times respectively. The delay τ plays the role of a distinguishability parameter between the two input pulses. The
cross-correlation is ameasure of the fourth-order interference between the two outputs. For a 50:50 beam
splitter,C(τ) shows a variation dependent on the shape of the pulse. If the probability distribution p(j) is
uniformover the interval p[ )0, 2 , i.e.

j
p

=( ) ( )p
1

2
, 76

the curve shows a visibility of 0.5. A detailed analysis of this cross-correlationwith classical pulses is discussed
in [40].

If the distinguishability parameter is the angle of polarization θ between the two input pulses instead of time-
delay τ, the cross-correlation of the intensities can be redefined as
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where the time-delay between the input pulses is zero. For a 50:50 beam splitter,C(θ) shows a sinusoidal
variation as shown infigure C1, for uniformly randomized phase as in equation (76).
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The equation thatfits the data in the plot of figure 10 is

q q= -( ) ( )C 0.75 0.25 cos 2 , 78fit

which has a visibility of 0.5.
AsC(τ) andC(θ) are dependent on the probability distribution of the phasej, the visibility of the curves

can exceed 0.5, with an appropriate choice of the probability distribution. For some distribution, the
visibility can reach 1, classically [40]. The variation of the correlation as a function of the distinguishability
parameter is used as a signature of a beam splitter, which the double-slit setup, as is discussed in this work,
also exhibits.

AppendixD. The implementation of the phase shifter inMZI

The phase shifter in the double-slitMZI ismodeled as amediumof thickness t andwith refractive index n.
Within themedium theGreen’s function (and hence the propagator)will change to

p
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e
, 79

r rnki

where the refractive index of themedium causes a change in the propagation constant resulting in bending of
light and a change in the phase. The thickness of themedium is small enough that the effect can be approximated
by an extra phase

a
p
l

= -( ) ( )n t
2

1 , 80

imparted to thefield and the net effect is captured by simplymultiplying the output at port D2 by e
iα.

Appendix E. 100%dip in correlation of the outputs of the double-slit beam splitter

The visibility of the correlation is dependent on the probability distribution p(j). In particular, if

j d q
p

d q
p
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1

2 2

1

2 2
, 81

the correlation function shows a visibility of 1.0, as shown infigure E1. The function thatfits the result is

q q= -( ) ( )C 0.5 0.5 cos 2 , 82100

FigureC1.The cross-correlation function plotted as a function of the relative polarization angle θ, which is the distinguishability
parameter. The correlation isminimumwhen both the sources are indistinguishable, i.e. θ=0, andmaximumwhen they are
completely distinguishable, i.e. θ=π/2. The plot has been generated using equation (77) for a regular cubic 50:50 beam splitter with
two identical input pulses having zero delay between them.When the distinguishability parameter is θ the shape of the pulses does not
affect the correlation.
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which shows that although thefields are classical, a 100%dip or aHong–Ou–Mandel like dip is achieved if the
probability distribution of the relative phase between the inputs are chosen carefully. A study of such an effect is
discussed in [40].
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