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Broadcasting of quantum correlations in qubit-qudit systems
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Quantum mechanical properties like entanglement, discord, and coherence act as fundamental resources in
various quantum information processing tasks. Consequently, the technique of generating more resources from
a few, typically termed as broadcasting, serves as a promising candidate for the design of quantum networks.
One way to broadcast resources could be using a cloning operation. In this article, broadcasting of quantum
resources beyond 2 ⊗ 2 systems is investigated. In particular, in 2 ⊗ 3 dimensions, a class of states not useful
for broadcasting of entanglement is characterized considering an optimal universal Heisenberg cloning machine.
The broadcasting ranges for maximally entangled mixed states and two-parameter class of states are obtained
to exemplify our protocol. A significant derivative of our protocol is that the cloning operation generates
a qutrit (3 ⊗ 3) entangled pair with positive partial transpose on one of the local sides, and an absolutely
separable qubit (2 ⊗ 2) pair on the other side of the input bipartite 2 ⊗ 3-dimensional resource state. Moving
beyond entanglement, in 2 ⊗ d dimensions, the impossibility to optimally broadcast quantum discord and
quantum coherence (l1 norm) is established. However, some significant illustrations are provided to highlight
that nonoptimal broadcasting of discord and coherence is still possible.
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I. INTRODUCTION

Quantum entanglement [1] acts as an invaluable resource
in most information processing tasks [2–8]. It cannot be
increased by local operations and classical communication
(LOCC). However, nonlocal unitary operations on the com-
posite system can generate entanglement between separable
states, a fact used in experimental generation of entangled
states [9]. However, there are absolutely separable states
which preserve their separability under any nonlocal uni-
tary action. Their characterization is an important problem
in quantum computing, especially in the context of NMR-
based quantum computing [10]. Another important feature
in entanglement theory is the existence of entangled states
with positive partial transpose (PPT) [11,12]. Though these
PPT entangled states (PPTES) aren’t commonly useful for
information processing tasks, they aid in some cryptographic
protocols [13].

A quantum network with entangled nodes can perform
quantum information processing tasks by creating, distribut-
ing, and processing quantum information [14]. Precise routing
of entanglement along with controlled manipulation of re-
mote quantum entanglement through the nodes of a quantum

*Present affiliation: Raman Research Institute, Sadashivanagar,
Bangalore, Karnataka-560080, India.

network would be a major stepping stone towards a quantum
internet [14–16] including various other applications such as
distributed quantum computing [17], precision sensing [18],
and blind quantum computing (i.e., computing on encrypted
data) [19]. In such a quantum network, there can always be
an exigency in increasing the number of available entangled
pairs across the various nodes. One way to accomplish the
task, primarily termed as “broadcasting of entanglement,” is
via the application of local [20,21] and nonlocal (global)
[21,22] copying operations. Although perfect cloning [23]
as well as perfect broadcasting of correlation [24] of an
arbitrary quantum state is impossible, approximate versions
of both cloning [25,26] and broadcasting [20–22] operations
on an arbitrary quantum state has been successfully achieved.
In the technique of “broadcasting of entanglement,” two
parties namely Alice and Bob, either use local cloners on
their individual subsystems or nonlocal cloner jointly on the
entire (combined) system to create two output pairs which
remain entangled over a finite range of input state parame-
ters. More particularly, in Ref. [27], researchers showed that
universal quantum cloning machines (UQCMs) [25] having
fidelity above 1

2 (1 + 1√
3

) can broadcast entanglement via local
cloning operations. There they also proved that entanglement
in the input state is optimally broadcast only if the quantum
cloner used for local coping is optimal [28]. Later, it was
shown that optimal broadcasting of entanglement is only
possible when symmetric cloners are used [29,30]. Recent
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works on broadcasting of entanglement were done by using
symmetric [21] and asymmetric cloners [30], considering
two-qubit general bipartite states as the input resource.

Quantum discord [31,32] is a type of quantum correlation
which extends beyond the idea of entanglement. Besides
supplementing the measure of entanglement defined on the
system of interest, discord can also act as a resource [33]. Sim-
ilar to broadcasting of entanglement, broadcasting of quantum
correlations beyond entanglement (discord) has been explored
in two-qubit systems [21,30]. The motivation to study the
broadcasting of such correlations is not only for their use in
qutrits and higher qudits in quantum information theory, but
also for the study of spins chains with spin values larger than
1
2 [34,35].

Just like entanglement and discord, quantum coherence
is also a critical resource [36] for many information pro-
cessing tasks. It outlines the departure of the classical from
the quantum world and is often considered as a measure of
superposition of quantum states [37]. Quantum coherence has
been used for crucial processes like better cooling [38,39], or
for work extraction in nanoscale thermodynamics. Coherence
has also played a part in quantum algorithms [40–42], in
biological processes [43], and in establishing a general wave-
particle duality relation [44–46]. Owing to the significant
utility of these resources in quantum information processing,
in literature, researchers have successfully demonstrated the
generation of more pairs with lesser degree of coherence given
a highly coherent pair using the technique of broadcasting
via cloning operation [47]. It is important to clarify here
that the coherence we are referring to belongs to the general
superposition of basis states with respect to the choice of
orthonormal bases [37]. In literature, this is referred to as
speakable coherence [48] and considering it, many resource
theories have been formulated [36,49]. However, there also
exists another notion of coherence defined from perspective
of quantum thermodynamics called unspeakable coherence
[48]. This coherence takes into account the superposition of
energy eigenstates of a given Hamiltonian. Unlike speakable
coherence, the allowed set of transformations for unspeakable
coherence are limited to only covariant operations [48]. It
was shown in [50] that this later kind of coherence cannot be
broadcast.

Broadcasting of entanglement still remains an unexplored
topic in higher dimensional systems. Such a question gains
practical importance as higher dimensional entanglement pro-
vides a larger information processing capability than the
conventional two-dimensional (qubit) entangled pairs [51]. It
also plays a major role in quantum communication [52,53],
quantum computation [54,55], and quantum cryptography
[56,57] tasks where mere qubit entanglement is not enough.
This increase in quantum information processing capability
with the availability of higher dimensional quantum resources
is not confined to entanglement but also, in general, extends
to discord and coherence. To investigate this unexplored di-
rection, in this article, we increase the dimension on one of
the partitions of our input bipartite resource to an arbitrary
value “d > 2”. As a first step, we study the broadcasting
of entanglement and then for other resources (like discord
and coherence) in such qubit-qudit (2 ⊗ d) systems with
symmetric cloning operations. Here, it is crucial to mention

that our results are consistent with the previous studies in
lower dimensions and for the d = 2 case, they reduce to
those in [21,22,27,47]. In order to prohibit the violation of
the “no-broadcasting theorem” [24] and the “monogamy of
entanglement” [58], we constrain our methods to achieve
approximate broadcasting of correlations via cloning.

In the present contribution, we study the problem of broad-
casting of quantum resources (i.e., entanglement, discord,
and coherence) in 2 ⊗ 3 (qubit-qutrit) and, more generally,
in 2 ⊗ d (qubit-qudit)-dimensional systems. This article is
structured as follows. In Sec. II, we give a brief description
of the related concepts which have been used to derive the
results in the subsequent sections of this article. In Sec. III,
we study broadcasting of entanglement considering the most
general class of state in 2 ⊗ 3 dimensions as the input re-
source and we provide the nonbroadcastable ranges for it.
We further exemplify our study by considering maximally
entangled mixed states (MEMS) and two parameter class of
states (TPCS) individually as our input resources. For each of
these example classes, we also characterize the broadcastable
zones. As an important derivative of our protocol, in 2 ⊗ 3
dimensions, we observe that the cloned qubit pair on Alice’s
local side is an absolutely separable state, while the cloned
qutrit pair on Bob’s local side belongs to the PPTES class. In
Sec. IV, we provide rigorous proofs to claim the impossibility
of optimal broadcasting of discord and coherence in general
qubit-qudit systems. Thereafter we consider few examples and
corresponding graphical illustrations to show that nonoptimal
broadcasting of these resources is, however, possible. These
findings help us to generalize the impossibilities derived in
[21,47]. Finally, we provide the concluding remarks in Sec. V.
A summary of the previous contributions in this direction, in
contrast to those in this work is explicitly presented in Table I.

II. USEFUL DEFINITIONS AND CONCEPTS

In this section, we give a brief introduction to various
concepts which will be useful and related to the main theme
of the article.

A. General qubit-qudit mixed state

In this article, we have considered a general qubit-qudit
mixed state as a resource state which is represented in the
canonical form as

ρ = 1

2d

⎛
⎝I2 ⊗ Id +

3∑
i=1

xiσi ⊗ Id +
d2−1∑
j=1

y jI2 ⊗ Oj

+
3∑

i=1

d2−1∑
j=1

Ti jσi ⊗ Oj

⎞
⎠. (1)

Here xi = Tr[ρ(σi ⊗ Id )], y j = Tr[ρ(I2 ⊗ Oj )], Ti j =
Tr[ρ(σi ⊗ Oj )], σi’s are 2 × 2 Pauli matrices, and Oj’s are
(d2 − 1) linearly independent operators defining an operator
basis for the d-dimensional subsystem with an additional
property Tr(OiOj ) = δi j . Here, Id is the identity matrix of
order d . Tr is the trace operation on a given matrix and δi j

is the Kronecker delta symbol.
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TABLE I. Summary of earlier results along with those in the present work on broadcasting of entanglement, discord, and coherence. The
abbreviations such as NME, MEMS, TPCS, two-qubit general, qubit-qutrit general, and qubit-qudit general stand for nonmaximally entangled
state, maximally entangled mixed state, two-parameter class of states, general two-qubit mixed state, general qubit-qutrit mixed state, and
general qubit-qudit mixed state classes, respectively.

System’s dimension Resource state Broadcasting of Cloning operation Author(s)

2 ⊗ 2 NME Entanglement Symmetric Buzek et al. and Hillery [20,22]
2 ⊗ 2 NME Entanglement Symmetric Bandyopadhyay et al. [27]
2 ⊗ 2 NME Entanglement Asymmetric Ghiu [29]
2 ⊗ 2 Two-qubit general Entanglement and discord Symmetric Chatterjee et al. [21]
2 ⊗ 2 Two-qubit general Entanglement and discord Asymmetric Jain et al. [30]
2 ⊗ 2 Two-qubit general Coherence Symmetric Sharma et al. [47]
2 ⊗ 3 Qubit-qutrit general Entanglement Symmetric This work
2 ⊗ 3 MEMS and TPCS Entanglement Symmetric This work
2 ⊗ d Qubit-qudit general Discord Symmetric This work
2 ⊗ d Qubit-qudit general Coherence Symmetric This work

As an example, a general qubit-qutrit mixed entangled state
ρ12 is given by

ρ12 = 1

6

(
I6 +

3∑
i=1

xiσi ⊗ I3 +
8∑

i=1

yiI2 ⊗ Gi

+
3∑

i=1

8∑
j=1

Ti jσi ⊗ Gj

⎞
⎠ = { �X , �Y , T }, (2)

where xi = Tr[ρ12(σi ⊗ I3)], yi = Tr[ρ12(I2 ⊗ Gi )], Ti j =
Tr[ρ12(σi ⊗ Gj )], σi’s are Pauli matrices, and Gj’s are Gell-
Mann matrices. �X , �Y , and T are the Bloch vectors and the
correlation matrix, respectively.

B. Detection of entanglement

In order to test the separability of a given bipartite state, we
generally use the Peres-Horodecki (PH) criterion [59]. This
criterion is a necessary and sufficient condition for detection
of entanglement for bipartite systems with dimensions 2 ⊗ 2
and 2 ⊗ 3.

1. Peres-Horodecki criterion

If at least one of the eigenvalues of a partially transposed
density operator for a bipartite state ρ defined as ρT

mμ,ηv =
ρmv,ημ turns out to be negative, then we can say that the state
ρ is entangled. Equivalently, this criterion can be translated to
the condition that the determinant of at least one of the two
matrix,

W3 =
⎛
⎝ W2

ρ00,10

ρ00,11

ρ10,00 ρ11,00 ρ10,10

⎞
⎠ or

W4 =

⎛
⎜⎝ W3

ρ01,10

ρ01,11

ρ11,10

ρ10,01 ρ11,01 ρ10,11 ρ11,11

⎞
⎟⎠, (3)

is negative; with determinant of W2 = [ρ00,00 ρ01,00
ρ00,01 ρ01,01

] being si-
multaneously non-negative.

As PH criterion requires us to compute eigenvalues, it is
not always computationally feasible to compute eigenvalues
of the density matrix that have several variables as an ar-
gument. To overcome this problem, we have used another
separability criterion in terms of Bloch parameters ( �X , �Y , T )
which is comparatively easier to compute.

2. Separability criterion in terms of Bloch parameters

In order to check separability, we have used the separability
criterion [60] in terms of Bloch sphere representation of two
quantum mechanical systems. This criterion makes use of the
Ky Fan matrix norm. Let A be a matrix that belongs to Cm×n.
The Ky Fan matrix norm is defined as the sum of singular
values χi,

||A||KF =
min{m,n}∑

i=1

χi = Tr
√

A†A. (4)

This criterion states that if a bipartite state of M ⊗ N satisfies√
2(M − 1)

M
||X ||2 +

√
2(N − 1)

N
||Y ||2

+
√

4(M − 1)(N − 1)

(MN )
||T ||KF � 1, (5)

then it is a separable state. Here ||.||2 is the Euclidean norm.
Therefore if a bipartite state of 2 ⊗ 3 dimensions with

Bloch representation (2) satisfies

||X ||2 +
√

4

3
||Y ||2 +

√
4

3
||T ||KF � 1, (6)

then it is a separable state. However, if the state violates this
condition, we cannot conclude whether the state is separable
or entangled.

C. Absolutely separable states

In the resource theory of entanglement, local operations
and classical communication are considered to be free oper-
ations, as entanglement does not increase under LOCC. Local
unitaries are subsets of LOCC, and under their action, en-
tanglement remains unchanged. However, nonlocal or global
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unitary operations are not free as they can turn a separable
state into an entangled state. The CNOT operation is one of the
fundamental global unitary operations which can change even
a product state to an entangled state.

However, there are separable states which can preserve
separability under any arbitrary global unitary operation.
These states are termed as absolutely separable states [61].
If we denote the set of separable states by S and absolutely
separable states by AS, then AS = {χ : UχU † ∈ S ∀ U }.
Here U denotes an unitary operator. It has been proven in [62]
that a two-qubit state is absolutely separable iff λ1 � λ3 +
2
√

λ2λ4, where λi’s are the eigenvalues of the density matrix
of the state arranged in descending order. Later on in [63],
the condition was extended to states in 2 ⊗ d dimensions.
Another interesting feature of the absolutely separable states
is that they form a convex and compact set within the set of
separable states [64].

D. PPT entangled states

Pure entangled states can be distilled from a large number
of mixed entangled states for use in quantum information
protocols. However, there are mixed entangled states from
which no pure entangled state can be extracted. Subsequently,
they came to be known as bound entangled states [11].

It was noted that any entangled state which has a positive
partial transpose is bound entangled (also known as undistil-
lable) and literature is rich with examples of entangled states
having positive partial transpose [12]. However, the question
whether a state which has a negative partial transpose (NPT)
is bound entangled is still open.

Although a weaker form of entanglement, PPTES have
found utility in information protocols like quantum key gener-
ation [13]. Therefore, both from a mathematical and physical
perspective, generation of PPTES is an intriguing problem in
quantum information science. Most of the constructions of
PPTES have been through mathematical rigor, the number of
physical constructions being rare.

The realignment criterion is one of the simplest tests
that can detect entanglement in PPT states. It states that all
separable states ρ ∈ Mm ⊗ Mn satisfy ||R(ρ)||tr � 1, where
R: Mm ⊗ Mn → Mm,n ⊗ Mm,n is the linear “realignment” map
defined on elementary tensors by R(|i〉〈 j| ⊗ |k〉〈l|) = |i〉〈k| ⊗
| j〉〈l|. ||R(ρ)||tr > 1, is a signature of the entanglement
of ρ.

E. Cloning

As stated previously, the no-cloning theorem states that
given an arbitrary quantum state |ψ〉, there doesn’t exist any
completely positive trace preserving map (CPTP) C that can
transform a single copy of |ψ〉 to two copies of |ψ〉, i.e.,
C : |ψ〉 
→ |ψ〉 ⊗ |ψ〉.

In our work, we are interested in symmetric 1 → 1 +
1 cloning machines. We use the symmetric version of the
optimal universal asymmetric Heisenberg cloning machine.
This machine creates the second clone with maximal fi-
delity for a given fidelity of the first one. The general uni-
tary transformation for cloning of qudit by this machine is

given by

U | j〉a|00〉bc

→
√

2

d + 1

(
| j〉a| j〉b| j〉c + 1

2

d−1∑
r=1

| j〉a| j + r〉b| j + r〉c

+1

2

d−1∑
r=1

| j + r〉a| j〉b| j + r〉c

)
. (7)

Here, suffixes “a” and “b” represent clones, “c” represents the
ancillary state, and “d” denotes the dimension.

F. Broadcasting of quantum resources by cloning

In this subsection, we give a brief exposure to the idea of
broadcasting of resources with the help of cloning machines.
It is known that entanglement, discord, and coherence can be
used as a resource for a wide range of information processing
tasks. Given that, there is always a necessity of creating
a greater number of resource pairs with lesser resourceful-
ness from a single resource pair with a higher degree of
resourcefulness. The process of decomposing a resource pair
to a greater number of resource pairs is called broadcasting
of quantum resources. We apply different strategies to do
broadcasting of resources. One such strategy is to apply
local cloning operations on each party subsystem sharing the
resource. In the subsequent subsections, we describe how the
broadcasting happens in qubit-qudit systems.

1. Broadcasting of entanglement

Let us consider that Alice and Bob share a general qubit-
qudit mixed quantum state ρ12 (1) as an input state. Also,
qubit 3 and qudit 4 serve as the initial blank state in Alice’s
and Bob’s individual subsystem, respectively. We apply local
cloning unitaries Ua ⊗ Ub (7) on qubits (1,3) and qudits (2,4).
Tracing out the ancilla qubit and ancilla qudit on Alice’s and
Bob’s side, respectively, we get the output state as ρ̃1234.
We trace out the (2, 4) and (1, 3) subsystems to obtain the
local output states ρ̃13 on Alice’s side and ρ̃24 on Bob’s side,
respectively. Similarly, after tracing out appropriate qubits
and qudits from the output state, we obtain the two plausible
groups of nonlocal output states ρ̃14 and ρ̃23. The process is
illustrated in Fig. 1.

The expression for nonlocal outputs states across the sub-
systems of Alice and Bob are given by

ρ̃14 = Tr23[ρ̃1234]

= Tr23[Ua ⊗ Ub(ρ12 ⊗ B34 ⊗ M56)U †
a ⊗ U †

b ],
(8)

ρ̃23 = Tr14[ρ̃1234]

= Tr14[Ua ⊗ Ub(ρ12 ⊗ B34 ⊗ M56)U †
a ⊗ U †

b ],

while the expression for local output states within Alice’s and
Bob’s individual subsystem are given by

ρ̃13 = Tr24[ρ̃1234]

= Tr24[Ua ⊗ Ub(ρ12 ⊗ B34 ⊗ M56)U †
a ⊗ U †

b ],
(9)

ρ̃24 = Tr13[ρ̃1234]

= Tr13[Ua ⊗ Ub(ρ12 ⊗ B34 ⊗ M56)U †
a ⊗ U †

b ].
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FIG. 1. A schematic depicting the application of local cloning
unitaries Ua and Ub on a qubit-qutrit state shared between Alice
and Bob. The qutrit system (d = 3) on Bob’s side is illustrated
with a three-sphere or glome [65] structure in the four-dimensional
Euclidean space. Stereographic projection of the hypersphere’s par-
allels (magenta), meridians (cyan), and hypermeridians (black) are
illustrated separately, as subfigures on the right column, beside the
glome qutrit for clarity. The projection being conformal, the circular
curves intersect each other orthogonally at the yellow points. The
rectangular box with a solid olive green boundary represents the
input state ρ12; the dotted rectangular envelopes in blue and orange
highlight the cloned local output pairs ρ̃13 and ρ̃24, respectively.
Further, the dotted oval-shaped envelopes in red and green depict
the cloned nonlocal output pairs ρ̃14 and ρ̃23, respectively.

Here B34 = |00〉〈00| and M56 = |00〉〈00| represent the ini-
tial blank state and machine state, respectively.

The requirement is to broadcast entanglement between the
desired pairs (1,4) and (2,3); we need to maximize the entan-
glement between nonlocal pairs (1,4) and (2,3) irrespective of
the local pairs (1,3) and (2,4). However, for optimal broadcast-
ing, we should ideally have no entanglement between local
pairs, thereby increasing the amount of entanglement between
nonlocal pairs.

Nonoptimal broadcasting of entanglement. An entangled
state ρ12 is said to be broadcast after the application of local
cloning operation (Ua ⊗ Ub), if the nonlocal output states
{ρ̃14, ρ̃23} are inseparable for some input state parameters.

Optimal broadcasting of entanglement. An entangled
state ρ12 is said to be broadcast optimally after the application
of local cloning operation (Ua ⊗ Ub), if the nonlocal output
states {ρ̃14, ρ̃23} are inseparable and the local output states
{ρ̃13, ρ̃24} are separable for some input state parameters.

Suboptimal broadcasting of entanglement. An entangled
state ρ12 is said to be broadcast suboptimally after the applica-
tion of local cloning operation (Ua ⊗ Ub) for some input state
parameters if the following conditions simultaneously hold.

(1) The nonlocal output states {ρ̃14, ρ̃23} are inseparable.
(2) Only one of the local output states {ρ̃13, ρ̃24} is sepa-

rable.
In this article, for suboptimal broadcasting, we have con-

sidered the inseparability of nonlocal output states (ρ̃14, ρ̃23)
and separability of local output states on Alice’s side (ρ̃13).

2. Broadcasting of quantum discord

In the last decade, it was observed that entanglement is
not sufficient to encapsulate all quantum correlations. It was
also observed that there are correlations that go beyond the
notion of entanglement and these quantum correlations can be
used as a resource for some operational tasks as they allow
us to do them more efficiently than the conventional classical
procedures. It is therefore equally important to broadcast
correlations from a pair of states to a larger number of states.
In a recent work, we have shown how to broadcast quantum
correlations beyond entanglement like quantum discord in
2 ⊗ 2 systems [21,30]. In this article, we have chosen geomet-
ric discord (DG) to quantify the quantum correlations beyond
entanglement.

Geometric discord (DG). The geometric measure of quan-
tum discord DG is a quantifier of general nonclassical correla-
tions in bipartite quantum states. It is the distance between the
quantum state and the nearest classical state. For an arbitrary
general qubit-qudit state ρ12 (shared by parties numbered 1
and 2), it is defined as DG(ρ12) = minχ ||ρ12 − χ ||2, where χ

is the classical state. Such a classical state, in general, can be
written as χ = ∑d1

i piπ
1
i ⊗ ρ2

i , where d1 is the dimension of
subsystem 1 and π1

i are its projectors. ρ2
i are density matrices

describing states of subsystem 2.
However, for an arbitrary qubit-qudit system, an analytical

expression of DG has been obtained [66], which is defined as
follows:

DG(ρ12) = 1

2d
(||�x||2 + ||T ||2 − λmax), (10)

where �x is the Bloch parameter and λmax is the maximal
eigenvalue of the matrix ω = (�x �xt + T T t ). Here superscript
“t” denotes the transpose and T is the correlation matrix
of ρ12.

Local broadcasting of discord is very similar to the notion
of local broadcasting of entanglement. Let DG be the total
amount of discord produced as a result of local cloning opera-
tions. Dl

G and Dnl
G represent the amount of discord among local

and across nonlocal parties, then DG = Dl
G + Dnl

G . In order to
maximize Dnl

G , Dl
G should be ideally zero.

Nonoptimal broadcasting of discord. A quantum corre-
lated state ρ12 is said to be broadcast after the application of
local cloning operation (Ua ⊗ Ub), if the amount of discord of
nonlocal output states {ρ̃14, ρ̃23} is nonzero for some input
state parameters.

Optimal broadcasting of discord. A quantum correlated
state ρ12 is said to be broadcast optimally after the application
of local cloning operation (Ua ⊗ Ub), if the amount of discord
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of nonlocal output states {ρ̃14, ρ̃23} is nonzero and the amount
of discord of local output states {ρ̃13, ρ̃24} is zero for some
input state parameters.

3. Broadcasting of quantum coherence

Quantum coherence has its application in a variety of
fields, ranging from quantum information processing to quan-
tum sensing, metrology, thermodynamics [39], and biology
[43], and it can act also as a resource in each of these domains.
Therefore, it becomes important to investigate the possibility
of creating a greater number of coherent states from an
existing coherent pair. In a recent study, it has been shown that
it is impossible to clone quantum coherence perfectly [67]. In
addition to this, just like entanglement, we have shown the
possibility of broadcasting coherence using quantum cloning
in the 2 ⊗ 2 quantum system [47]. Due to the basis dependent
property of quantum coherence, researchers have introduced
the concept of genuine quantum coherence which is invariant
under change of basis. In the process of cloning we have a
blank state (suppose ρ = I

2 ) which is genuinely an incoherent
state. So, if through the process of cloning, we try to increase
coherence of the blank state, then the process is termed as
broadcasting of quantum coherence. Given a quantum state ρ,
the amount of coherence present in the state ρ in the basis |i〉
is given as follows:

C(ρ) =
∑
i 
= j

|〈i|ρ| j〉|. (11)

We will calculate quantum coherence in the two-qubit com-
putational basis |00〉, |01〉, |10〉, |11〉. This is l1 norm and it
does not depend upon diagonal elements and coherence will
be zero in the eigenbasis of the density matrix.

To broadcast coherence between the desired pairs (1,4)
and (2,3), one needs to maximize the amount of coherence
between the nonlocal output pairs (1,4) and (2,3) irrespective
of that between the local output pairs (1,3) and (2,4). In order
to broadcast coherence optimally, the amount of coherence
between local output pairs should be zero.

Nonoptimal broadcasting of coherence. A coherent input
state ρ12 is said to be broadcast after the application of local
cloning operation (Ua ⊗ Ub), if the nonlocal output states
{ρ̃14, ρ̃23} are coherent, i.e., C(ρ̃14) 
= 0, C(ρ̃23) 
= 0 for some
input state parameters.

Optimal broadcasting of coherence. A coherent input
state ρ12 is said to be broadcast optimally after the application
of local cloning operation (Ua ⊗ Ub), if the nonlocal output
states {ρ̃14, ρ̃23} are coherent, i.e., C(ρ̃14) 
= 0 and C(ρ̃23) 
=
0, while the local output states {ρ̃13, ρ̃24} are incoherent, i.e.,
C(ρ̃13) = 0 and C(ρ̃24) = 0, for some input state parameters.

III. BROADCASTING OF ENTANGLEMENT IN
2 ⊗ 3 DIMENSIONS

In this section, we will demonstrate the broadcasting of
entanglement in the 2 ⊗ 3 system. Our input resource state is a
general qubit-qutrit mixed state ρ12 [as in Eq. (2)]. This state
is shared between two parties, Alice and Bob. Both of them
locally apply the optimal universal symmetric Heisenberg
cloning machine as given in Eq. (7).

After cloning, we trace out the ancilla qubit and the ancilla
qutrit on Alice’s and Bob’s side, respectively. The state of this
composite system is then given by ρ̃1234. We trace out 2,3 and
1,4 to get the nonlocal output states ρ̃14 and ρ̃23, respectively.
Since we are using a symmetric cloner, both the nonlocal
output states turn out to be the same.

The expression of the reduced density operator for the
nonlocal output states become

ρ̃14 = ρ̃23 = {
2
3

�X , 5
8
�Y , 5

12 T
}
. (12)

Here �X = {xi}i∈{1,2,3}, �Y = {y j} j∈{1,..,8}, and T is the correla-
tion matrix of the original input state.

Now, we need to apply the entanglement detection criterion
to check the inseparability of nonlocal output states for the
case of nonoptimal broadcasting. Since it is not computa-
tionally feasible to calculate the eigenvalues of the partial
transposed version of the matrix ρ̃14, we cannot apply the
Peres-Horodecki criterion in this generalized case to charac-
terize the inseparability region. As a result, we have used the
separability criterion [Eq. (6)] in terms of Bloch parameters
to check for the separability region of the nonlocal outputs.
Since this criterion doesn’t satisfy the sufficiency condition,
so by applying it we can only comment on the states which
are not broadcastable. The nonbroadcastable range is

2

3

8∑
j=1

√√√√ 3∑
i=1

t2
i j �

12 − 8 ∗ A − 15 ∗ B

10
√

3
, (13)

where A =
√∑3

k=1 x2
k , B =

√∑8
k=1 y2

k , and ti j is the
element of the ith row and the jth column of the correlation
matrix. In other words, for the states which lie beyond the
range given in Eq. (13), characterized by this criterion, we
cannot say whether they are broadcastable or not broad-
castable.

To demonstrate the nonbroadcastable states, we generate
5 × 104 states from a uniform random distribution using the
Haar measure. This is displayed in Fig. 2. The states are
represented by circles. The states which were successfully
characterized to be nonbroadcastable by Eq. (13) are denoted
with blue color. On the other hand, the red colored circles
denote the states that didn’t pass the test in Eq. (13) and
so we cannot comment on their usefulness in broadcasting
of entanglement. However, they do belong to the class of
general mixed states in 2 ⊗ 3 dimensions and are valid density
operators. It is important to mention here that the illustration
in Fig. 2 is not exhaustive and so doesn’t characterize all states
in 2 ⊗ 3 dimensions which are not useful for broadcasting. It
has only been provided to give a visual perspective of Eq. (13).

To demonstrate the broadcasting of entanglement, we next
consider two different classes of mixed entangled states,
namely maximally entangled mixed states (Sec. III A) and
two-parameter class of states (Sec. III B).

A. Example: maximally entangled mixed states

In this subsection, we consider maximally entangled mixed
states as our first example to demonstrate broadcasting of
entanglement. MEMS are states with the maximum amount
of entanglement for a given degree of mixedness. Its density
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FIG. 2. Blue colored circles denote the states that could be suc-
cessfully characterized to be not useful for broadcasting of entangle-
ment in 2 ⊗ 3 dimensions out of 5 × 104 states generated uniformly
and randomly using the Haar measure. Red colored circles mark the
ones out of the 5 × 104 states which didn’t pass the separability test
in Eq. (13) and so couldn’t be characterized either way.

matrix depends on the choice of measures used to quantify
entanglement and mixedness. Here, we use linear entropy
as a measure for mixedness and square of concurrence as a
measure of entanglement. For this choice, the MEMS density
matrices are divided into two subclasses (ρMEMSI and ρMEMSII)
which are defined as follows [68]:

ρMEMS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
r|φ+〉〈φ+|,

+ 1
5

(
1 + r

2 )
(
E2 + E5),

+ 1
5 (1 − 2r)(E1 + E3 + E6)

)
r ∈ [0, 1

2

]
r|φ+〉〈φ+| + 1

2 (1 − r)(E2 + E5) r ∈ [ 1
2 , 1

]
.

.

(14)

Here, E1 = |00〉〈00|, E2 = |01〉〈01|, E3 = |02〉〈02|, E4 =
|10〉〈10|, E5=|11〉〈11|, E6=|12〉〈12|, and |φ+〉= 1√

2
(|00〉+

|12〉). We denote MEMS density matrix by ρMEMSI and
ρMEMSII when r ranges from 0 to 1

2 and 1
2 to 1, respectively.

1. MEMSI

We apply local optimal cloning transformations [as given
in Eq. (7)] for the subclass ρMEMSI. The expression for the
reduced density operator of its nonlocal output states then
become

ρ̃MEMSI
14 = { �X14

MEMSI
, �Y14

MEMSI
, T MEMSI

14

}
,

(15)
ρ̃MEMSI

23 = { �X23
MEMSI

, �Y23
MEMSI

, T MEMSI
23

}
,

where 0 � r � 1
2 , �X14

MEMSI = �X23
MEMSI =

{0, 0, −2(−1+2r)
15 }, �Y14

MEMSI = �Y23
MEMSI = {0, 0, −2−r

16 , 0, 0,

0, 0, −2+9r
16

√
3

}, and the nonzero entries in the correlation matrix

(T MEMSI
14 = T MEMSI

23 ) are t1,4 = 5r
12 , t2,5 = −5r

12 , t3,3 = 2+r
24 , and

t3,8 = 2+11r
24

√
3

. Here, ti, j denotes the element in the ith row and

the jth column of the correlation matrix.

We now apply PH criterion to find out the condition for
nonoptimal broadcasting under which the nonlocal output
states will be inseparable. We observe that the nonlocal output
states are inseparable when the value of r is greater than 0.44.

For optimal broadcasting, we need to check the separability
of local output states along with the inseparability of nonlocal
output states. The local output states for the input state ρMEMSI

are given by

ρ̃MEMSI
13 = { �X13

MEMSI
, �Y13

MEMSI
, T MEMSI

13

}
,

(16)
ρ̃MEMSI

24 = { �X24
MEMSI

, �Y24
MEMSI

, T MEMSI
24

}
,

where �X13
MEMSI = �Y13

MEMSI = {0, 0, 2−4r
15 }, T MEMSI

13 =
diag( 1

3 , 1
3 , 1

3 ), �X24
MEMSI = �Y24

MEMSI = {0, 0, −2−r
16 , 0, 0, 0, 0,

−2+9r
16

√
3

} and the nonzero entries in the correlation matrix

of Bob’s side (T MEMSI
24 ) are t1,1 = 6+3r

40 , t2,2 = 6+3r
40 , t3,3 =

6+3r
40 , t4,4 = 3−r

20 , t5,5 = 3−r
20 , t6,6 = 8−r

40 , t7,7 = 8−r
40 , t8,8 =

22−9r
120 , t3,8 = −2−r

40
√

3
, and t8,3 = −2−r

40
√

3
.

Now, for optimal broadcasting, we can apply PH criterion
to check the separability of local output states and insep-
arability of nonlocal output states. Since PH criterion only
provides a necessary condition for separability in 3 ⊗ 3 (Bob’s
side), there can be states that remain positive under partial
transposition even if they are entangled. In this case, we
therefore can give the suboptimal broadcasting range under
which the nonlocal output states are inseparable and the
local output state on Alice’s side is separable. We observe
that the local output states on Alice’s side (2 ⊗ 2) can be
always separable irrespective of the value of r. Therefore, the
suboptimal broadcasting range is same to the one obtained for
nonoptimal broadcasting.

2. MEMSII

We repeat the same procedure for MEMSII where r lies
between 1

2 and 1. Its nonlocal output states are then given by

ρ̃MEMSII
14 = { �X14

MEMSII
, �Y14

MEMSII
, T MEMSII

14

}
,

(17)
ρ̃MEMSII

23 = { �X23
MEMSII

, �Y23
MEMSII

, T MEMSII
23

}
,

where �X14
MEMSII = �X23

MEMSII = {0, 0, 0}, �Y14
MEMSII =

�Y23
MEMSII = {0, 0, 15(−2+3r)

32 , 0, 0, 0, 0, −5
√

3(−2+3r)
32 } and

the nonzero elements in the correlation matrix (T MEMSII
14 =

T MEMSII
23 ) for nonlocal output states are t1,4 = 5r

8 , t2,5 =
−5r

8 , t3,3 = 5r
16 , and t3,8 = 5

√
3r

16 . Here, ti, j denotes the element
in the ith row and the jth column of the correlation matrix.

We again apply PH criterion to find the condition of nonop-
timal broadcasting under which the nonlocal output states will
be inseparable. We find out that nonlocal output states are
always inseparable irrespective of any value of r between 1

2
and 1. For optimal broadcasting, we check the separability of
local output states along with the inseparability of nonlocal
output states. The local output states for ρMEMSII are given by

ρ̃MEMSII
13 = { �X13

MEMSII
, �Y13

MEMSII
, T MEMSII

13

}
,

(18)
ρ̃MEMSII

24 = { �X24
MEMSII

, �Y24
MEMSII

, T MEMSII
24

}
,
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where �X13
MEMSII = �Y13

MEMSII = {0, 0, 0}, T MEMSII
13 =

diag( 1
3 , 1

3 , 1
3 ), �X24

MEMSII = �Y24
MEMSII = {0, 0, 5(−2+3r)

16 , 0, 0,

0, 0, 5(2−3r)
16

√
3

}, and the nonzero entries in the correlation matrix

of Bob’s side (T MEMSII
24 ) are t1,1 = 2−r

8 , t2,2 = 2−r
8 , t3,3 =

2−r
8 , t4,4 = r

4 , t5,5 = r
4 , t6,6 = 2−r

8 , t7,7 = 2−r
8 , t8,8 =

(2+3r)
24 , t3,8 = −2+3r

8
√

3
, and t8,3 = −2+3r

8
√

3
.

We can apply PH criterion to check the separability of
local output states. As stated earlier, there can be states in
higher dimension like 3 ⊗ 3 that remains positive under par-
tial transposition even if they are entangled since PH criterion
only provides a necessary condition for 3 ⊗ 3 (Bob’s side)
dimensions. In this case, we therefore can give the suboptimal
broadcasting range. We find out that the local output states on
Alice’s side (2 ⊗ 2) can be separable when r <0.95. Hence,
we conclude that nonoptimal broadcasting is always possible
while for suboptimal broadcasting, r should be less than 0.95.

Absolutely separable states. In what follows below, we
show that our protocol generates absolutely separable states in
Alice’s side (2 ⊗ 2) for some input state parameters. As noted
earlier, absolutely separable states preserve their separability
under any global unitary operation.

For MEMSI, eigenvalues of Alice’s local output state are
λ1 = 6−2r

15 , λ2 = 1
3 , λ3 = 4+2r

15 , and λ4 = 0, such that the con-
dition for absolute separability holds when r is exactly equal
to 1

2 .
For MEMSII, eigenvalues of Alice’s local output state are

λ1 = 1
3 , λ2 = 1

3 , λ3 = 1
3 , and λ4 = 0, such that the condition

for absolute separability holds for every r in range from 1
2 to

1. Therefore, we can say that absolute separability occurs in
the maximally entangled mixed state when r ranges from 1

2 to
1.

PPT entangled states. As noted earlier in Sec. II D, the
realignment criterion is used to detect entanglement in PPT
states. By using this criterion, no PPTES on Bob’s side (3 ⊗ 3)
were found for any input state parameter in MEMSI. On the
other hand, PPTES states on Bob’s side (3 ⊗ 3) were found
with MEMSII input states, when r ranges from 14+4

√
6

25 to 1. A
typical PPTES in this range is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r
4 0 0 0 0 0 0 0 0

0 2−r
16 0 2−r

16 0 0 0 0 0

0 0 r
8 0 0 0 r

8 0 0

0 2−r
16 0 2−r

16 0 0 0 0 0

0 0 0 0 1−r
2 0 0 0 0

0 0 0 0 0 2−r
16 0 2−r

16 0

0 0 r
8 0 0 0 r

8 0 0

0 0 0 0 0 2−r
16 0 2−r

16 0

0 0 0 0 0 0 0 0 r
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the next subsection, we demonstrate the broadcasting of
entanglement using our second example, a two-parameter
class of states.

B. Example: two-parameter class of states

We consider the following class of states with two real
parameters α and γ in the 2 ⊗ 3 quantum system [69]:

ρα,γ = α(|02〉〈02| + |12〉〈12|) + β(|φ+〉〈φ+| + |φ−〉〈φ−|
+ |ψ+〉〈ψ+|) + γ |φ−〉〈ψ−|, (19)

where |φ±〉 = 1√
2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉)

are the four bell states and the parameter β is dependent on
α and γ by unit trace condition, 2α + 3β + γ = 1. From the
unit trace condition, α can vary from 0 to 1

2 and γ can vary
from 0 to 1.

This input state is shared by two parties, Alice and Bob.
They both apply local cloning transformations as given by
Eq. (7). By tracing out the ancillas and appropriate qubit
and qutrit on Alice’s and Bob’s side, respectively, we get the
nonlocal output states which are then given by

ρ̃14 = { �X14, �Y14, T14},
ρ̃23 = { �X23, �Y23, T23}, (20)

where �X14 = �X23 = {0, 0, 0}, �Y14 = �Y23 = {0, 0, 0, 0, 0, 0, 0,
15−90α

16
√

3
}, and the nonzero entries in the correlation ma-

trix (T14 = T23) of nonlocal output states are t1,1 =
5−10α−20γ

24 , t2,2 = 5−10α−20γ

24 , and t3,3 = 5−10α−20γ

24 . Here, ti, j

denotes the element in the ith row and the jth column of the
correlation matrix.

Now, we apply the PH criterion to check the inseparability
of these nonlocal output states for nonoptimal broadcasting of
entanglement. The nonoptimal broadcasting is possible when
the following condition is satisfied:

31 − 50α − 40γ

96
< 0. (21)

For optimal broadcasting, we also need to check the sepa-
rability of local output states along with the inseparability of
nonlocal output states. The local output states are given by

ρ̃13 = { �X13, �Y13, T13},
ρ̃24 = { �X24, �Y24, T24}, (22)

where �X13 = �Y13 = {0, 0, 0}, T13 = diag( 1
3 , 1

3 , 1
3 ), �X24 =

�Y24 = {0, 0, 0, 0, 0, 0, 0, 5−30α

8
√

3
}, and the cor-

relation matrix on Bob’s side (T24) is
diag( 1−2α

4 , 1−2α
4 , 1−2α

4 , 1+2α
8 , 1+2α

8 , 1+2α
8 , 1+2α

8 , 1+6α
12 ).

Similar to the case of MEMS, we can only give the sub-
optimal range as PH criterion is only a necessary condition
for 3 ⊗ 3 dimension. The suboptimal broadcasting is only
possible when the following inequality is satisfied along with
Eq. (21):

3 + 2α − √
11 − 76α + 204α2

16
� 0. (23)

In Fig. 3, we depict the suboptimal (in dark brown) and
nonoptimal (in light yellow) broadcastable regions when the
input state is parametrized by α and γ . We observe that the
broadcastable region for the suboptimal case is smaller as
compared to the nonoptimal one due to the extra separability
constraint added on Alice’s side in suboptimal broadcasting.
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FIG. 3. Plot depicting the suboptimal (in dark brown) as well as
nonoptimal (in light yellow) broadcastable region for the input TPCS
in terms of two input state parameters: α and γ .

Absolutely separable states. Like maximally entangled
mixed states, our protocol generates absolutely separable
states on Alice’s side (2 ⊗ 2) with input TPCS, too. The
eigenvalues of the local output state on Alice’s side are λ1 =
1
3 , λ2 = 1

3 , λ3 = 1
3 , and λ4 = 0, so the absolute separability

condition holds over the entire range of input state parameters.
PPT entangled states. Similar to MEMSII, our protocol

generates PPTES on Bob’s side (3 ⊗ 3) also with input TPCS.
PPTES are found at the output when state parameter α ranges
from 0 to 11−4

√
6

50 and 11+4
√

6
50 to 1

2 . A typical PPTES in this
range is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−2α
4 0 0 0 0 0 0 0 0

0 1−2α
8 0 1−2α

8 0 0 0 0 0

0 0 1+2α
16 0 0 0 1+2α

16 0 0

0 1−2α
8 0 1−2α

8 0 0 0 0 0

0 0 0 0 1−2α
4 0 0 0 0

0 0 0 0 0 1+2α
16 0 1+2α

16 0

0 0 1+2α
16 0 0 0 1+2α

16 0 0

0 0 0 0 0 1+2α
16 0 1+2α

16 0
0 0 0 0 0 0 0 0 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

IV. BROADCASTING OF DISCORD AND COHERENCE IN
2 ⊗ d DIMENSIONS

As discussed before, entanglement is not the only resource.
There are correlations that go beyond entanglement: quantum
discord. Other than quantum correlations that go beyond en-
tanglement (quantum discord), quantum coherence (l1 norm)
is also extensively used as a resource. Hence, a resource
theory framework is created for describing them [36]. In this
section, we consider broadcasting of these resources in the

qubit-qudit system, where one of the parties says Alice is
having a two-level system whereas the other party in general
is having a d-level system. The goal is again to create a
greater number of resource states through broadcasting using
the optimal universal symmetric Heisenberg cloning machine.
In this process, we find out that it is impossible to broadcast
these resources optimally in a qubit-qudit system. However,
nonoptimal broadcasting can still be done and we exemplify
such cases of broadcasting in this section.

A. Optimal broadcasting of discord and coherence

In this subsection, we show that optimal broadcasting of
quantum discord and quantum coherence is not possible in
the (2 ⊗ d)-dimensional system.

Theorem 1. Given a general bipartite mixed quantum state
in 2 ⊗ d dimension ρ12 [Eq. (1)] and Heisenberg local cloning
transformations [Eq. (7)], it is impossible to broadcast the
quantum discord [DG as defined in Eq. (10)] within ρ12

optimally into two lesser quantum correlated states: {ρ̃14, ρ̃23}.
Proof: Let us assume that the two parties Alice and Bob

share a general qubit-qudit quantum mixed state ρ12. We then
apply local Heisenberg optimal cloning transformations (7) to
qubits “1” and “3” and qudit “2” and “4” on Alice’s side and
Bob’s side, respectively; “5” and “6” are the machine states
on Alice’s side and Bob’s side, respectively. By tracing out
the machine states and Bob’s side qudits, we get the local
output state on Alice’s part as ρ̃13 = { 2

3 �x, 2
3 �x, T 13}, where

T 13 = diag( 1
3 , 1

3 , 1
3 ) and �x = {xi}i∈{1,2,3}. We observe that the

local output state on Alice’s side does not depend on the
dimension d of Bob’s side (see Appendix). The geometric
discord DG calculated using Eq. (10) of the local output
state comes out to be constant, i.e., DG(ρ̃13) = 1

18 which
always remains nonzero. For optimal broadcasting, we need
the DG(ρ̃13) and DG(ρ̃24) both to be zero. Hence optimal
broadcasting of quantum discord is not possible in the case
of the qubit-qudit system as DG(ρ̃13) 
= 0.

Theorem 2. Given a general qubit-qudit mixed quantum
state ρ12 and Heisenberg optimal cloning transformations, it
is impossible to broadcast the quantum coherence optimally
within ρ12 into two coherent states: {ρ̃14, ρ̃23}.

Proof. We consider the input state shared between Alice
and Bob as the most general qubit-qudit state ρ12. We apply
Heisenberg local cloning transformation Ua ⊗ Ub to clone the
qubit 1 → 3 and qudit 2 → 4 on Alice’s side and Bob’s side,
respectively. By tracing out the machine states and Bob’s side
qudits, we get the local output state on Alice’s part as ρ̃13 =
{ 2

3 �x, 2
3 �x, T 13}, where T 13 = diag( 1

3 , 1
3 , 1

3 ) and �x = {xi}i∈{1,2,3}.
The coherence given by the l1 norm [Eq. (11)] of the local
output state on Alice’s side comes out to be C(ρ̃13) = 1

3 +
( 4

3 )
√

x2
1 + x2

2 > 0. For optimal broadcasting, we need C(ρ̃13)
and C(ρ̃24) both to be zero. Hence, it is evident that it is
impossible to broadcast coherence optimally.

B. Nonoptimal broadcasting of discord and coherence for
MEMS and TPCS states

In the previous subsection, we have seen that optimal
broadcasting of quantum discord (DG) and coherence (l1
norm) is not possible for 2 ⊗ d systems via optimal universal
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TABLE II. This table gives the range for nonoptimal broadcast-
ing of geometric discord (DG) for the MEMS class of states.

States DG(ρ̃14) DG(ρ̃13) Range

MEMSI 25r2

192
1
18 r > 0

MEMSII 25r2

192
1
18 r > 0

Heisenberg local cloning operations. However, this never
rules out the possibility of nonoptimal broadcasting of these
resources by using the same cloner. In this subsection we
take the same qubit-qutrit examples: (a) maximally entangled
mixed states and (b) two-parameter class of states. We show
that nonoptimal broadcasting is indeed possible to a certain
range of input state parameters. In particular, we find out
the range based on the input state parameters for which such
broadcasting will be possible.

1. MEMS

We apply local cloning transformation [Eq. (7)] to MEMSI
and MEMSII separately. We trace out the machine states and
the respective qubits and qutrits to get the nonlocal output
states(ρ̃14, ρ̃23). Then, we calculate the geometric discord
[Eq. (10)] of nonlocal output states. For nonoptimal broad-
casting, DG(ρ̃14) and DG(ρ̃23) is nonzero for some input state
parameter. In Table II, we give the range for nonoptimal
broadcasting of geometric discord for the subclasses: MEMSI
and MEMSII.

For nonoptimal broadcasting of coherence, we calculate
the l1 norm [Eq. (11)] of nonlocal output states. Again for
nonoptimal broadcasting, C(ρ̃14) and C(ρ̃23) are nonzero for
some input state parameters. In Table III, we give the range
for non-optimal broadcasting of coherence for the subclasses:
MEMSI and MEMSII.

2. TPCS

We repeat the same procedure as above for the two-
parameter class of states to find the range for nonoptimal
broadcasting of geometric discord [Eq. (10)] in terms of input
state parameters (α and γ ). The expression for geometric
discord comes out to be

DG(ρ̃14) = 25(−1 + 2α + 4γ )2

288
. (24)

We can clearly see that nonoptimal broadcasting is possible
for the entire range of α and γ except for the points when
α = 1−4γ

2 .
Though it is impossible to broadcast quantum coherence

optimally but we can broadcast it nonoptimally. We find the
range for nonoptimal broadcasting of coherence [Eq. (11)] in

TABLE III. This table gives the range for nonoptimal broadcast-
ing of coherence (l1 norm) for the MEMS class of states.

States C(ρ̃14) C(ρ̃13) Range

MEMSI 5r
12

1
3 r > 0

MEMSII 5r
12

1
3 r > 0

FIG. 4. The 3D plot shows the variation of geometric discord
(DG) of the nonlocal output state ρ̃14 as a function of input state
parameters α and γ for the two-parameter class of states.

terms of input state parameters (α and γ ). The expression for
coherence (l1 norm) comes out to be

C(ρ̃14) =
∣∣∣∣5 − 10α − 20γ

36

∣∣∣∣. (25)

We can clearly observe that nonoptimal broadcasting is pos-
sible for the entire range of α and γ except for the points
when α = 1−4γ

2 . The broadcasting range for both discord and
coherence with respect to input state parameters α and γ is
shown in Fig. 4 and Fig. 5, respectively.

V. CONCLUSION

The present work deals with the broadcasting of quan-
tum resources beyond qubit-qubit systems. In particular, we
investigate the problem of broadcasting of entanglement for
a general qubit-qutrit (2 ⊗ 3) state and are able to identify
the set of states for which the broadcasting will never be
possible. We take examples like (a) maximally entangled
mixed states and (b) two-parameter class of states from
2 ⊗ 3 systems to show the range of both suboptimal and
nonoptimal broadcasting. We show that it is impossible
to optimally broadcast quantum discord and quantum co-
herence optimally for general 2 ⊗ d-dimensional systems.
Furthermore, to show that the nonoptimal broadcasting of
these resources is still a possibility, we consider the same
examples from 2 ⊗ 3 systems and thereafter find out the
range of the input state parameters for which it will be
possible.

FIG. 5. The 3D plot shows the variation of coherence (l1 norm)
of nonlocal output state ρ̃14 as a function of input state parameters α

and γ for the two-parameter class of states.

042319-10



BROADCASTING OF QUANTUM CORRELATIONS IN … PHYSICAL REVIEW A 100, 042319 (2019)

Our protocol in 2 ⊗ 3 dimensions also results in states on
the qubit side which are absolutely separable in two-qubit sys-
tems. Generation of entangled states on the qutrit side having
a positive partial transpose purely from physical considera-
tion is another significant derivative of the work presented
here. However, our work focuses on broadcasting of quantum
resources in the qubit-qutrit and qubit-qudit scenarios. This
work calls attention to an extension of arbitrary dimensions in
bipartite and multipartite systems.
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APPENDIX

Consider the two parties Alice and Bob share a general
mixed state in 2 ⊗ d dimension (ρ12) as defined in Eq. (1).
Both parties apply a local optimal symmetric Heisenberg
cloner on their respective sides. The blank state on Alice’s
and Bob’s side is represented with suffixes “3” and “4”
respectively. The initial state of the cloners on Alice’s side
and Bob’s side is denoted by “5” and “6” respectively. The
state of the composite system can be represented by ρ123456.
Ua and Ub are the cloning operators on Alice’s side and Bob’s
side, respectively. We then trace out “2”, “4”, “6” subsystems
from Bob’s side, after the application of the cloning machine,
to get

ρ135 = Tr246[(Ua ⊗ Ub)ρ123456(U ′
a ⊗ U ′

b)]

= Tr246

⎡
⎣(Ua ⊗ Ub)

1

2d

⎛
⎝I2 ⊗ Id +

3∑
i=1

xiσi ⊗ Id +
d2−1∑
i=1

yiI2 ⊗ Oi +
3∑

i=1

d2−1∑
j=1

ti jσi ⊗ Oj

⎞
⎠⊗ ρ35 ⊗ ρ46(U ′

a ⊗ U ′
b)

⎤
⎦

= Tr246

⎡
⎣(Ua ⊗ Ub)

1

2d

⎛
⎝I2 ⊗ Id ⊗ ρ35 ⊗ ρ46 +

3∑
i=1

xiσi ⊗ Id ⊗ ρ35 ⊗ ρ46 +
d2−1∑
i=1

yiI2 ⊗ Oi ⊗ ρ35 ⊗ ρ46

+
3∑

i=1

d2−1∑
j=1

ti jσi ⊗ Oj ⊗ ρ35 ⊗ ρ46

⎞
⎠(U ′

a ⊗ U ′
b)

⎤
⎦

= Tr246

[
1

2d

(
Ua(I2 ⊗ ρ35)U ′

a ⊗ Ub(Id ⊗ ρ46)U ′
b +

3∑
i=1

xiUa(σi ⊗ ρ35)U ′
a ⊗ Ub(Id ⊗ ρ46)U ′

b

+
d2−1∑
i=1

yiUa(I2 ⊗ ρ35)U ′
a ⊗ Ub(Oi ⊗ ρ46)U ′

b +
3∑

i=1

d2−1∑
j=1

ti jUa(σi ⊗ ρ35)U ′
a ⊗ Ub(Oj ⊗ ρ46)U ′

b

⎞
⎠
⎤
⎦

= 1

2d
[Tr246[Ua(I2 ⊗ ρ35)U ′

a ⊗ Ub(Id ⊗ ρ46)U ′
b]] + 1

2d

[
Tr246

[
3∑

i=1

xiUa(σi ⊗ ρ35)U ′
a ⊗ Ub(Id ⊗ ρ46)U ′

b

]]

+ 1

2d

⎡
⎣Tr246

⎡
⎣d2−1∑

i=1

yiUa(I2 ⊗ ρ35)U ′
a ⊗ Ub(Oi ⊗ ρ46)U ′

b

⎤
⎦
⎤
⎦+ 1

2d

⎡
⎣Tr246

⎡
⎣ 3∑

i=1

d2−1∑
j=1

ti jUa(σi⊗ρ35)U ′
a⊗Ub(Oj⊗ρ46)U ′

b

⎤
⎦
⎤
⎦.

(A1)

The reduced density matrix on Alice’s side is given by

ρ135 = 1
2 [Ua(I2 ⊗ ρ35)U ′

a +∑3
i=1 xiUa(σi ⊗ ρ35)U ′

a] as uni-

tary transformation doesn’t affect the inner product of the
system. Also, σi’s and Oj’s are traceless matrices and are

independent of the dimension of Bob’s side. Therefore, on ap-
plication of the cloning transformations given by Eq. (7) on a
general bipartite mixed state in 2 ⊗ d dimension [Eq. (1)], the
marginal state of Alice remains independent of the dimension
“d” of Bob’s side.
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