
624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

Harmonic-Summing Module of SKA on
FPGA—Optimizing the Irregular Memory Accesses

Haomiao Wang , Student Member, IEEE, Prabu Thiagaraj, and Oliver Sinnen

Abstract— The Square Kilometer Array, which will be the
world’s largest radio telescope, will enhance and boost a large
number of science projects, including the search for pulsars. The
frequency-domain acceleration search is an efficient approach
to search for binary pulsars. A significant part of it is the
harmonic-summing module, which is the research subject of
this paper. Most of the operations in the harmonic-summing
module are relatively cheap operations for field-programmable
gate arrays (FPGAs). The main challenge is the large number of
point accesses to off-chip memory, which are not consecutive
but irregular. Having the harmonic summing on the FPGA
will avoid off-board communication with other pulsar search
modules, which could destroy other acceleration benefits. Two
types of harmonic-summing approaches are investigated in this
paper: 1) storing intermediate data in off-chip memory and
2) processing the input signals directly without storing. For
the second type, two approaches of caching data are proposed
and evaluated: 1) preloading points that are frequently touched
and 2) preloading all necessary points that are used to generate a
chunk of output points. Open Computing Language (OpenCL) is
adopted to implement the proposed approaches. In an extensive
experimental evaluation, the same OpenCL kernel codes are
evaluated on FPGA boards and GPU cards. Regarding the
proposed preloading methods, preloading all necessary points
method while reordering the input signals is faster than all the
other methods. While in raw performance, a single-FPGA board
cannot compete with a GPU. Regarding energy dissipation, GPU
costs up to 2.6× times more energy than that of FPGAs in
executing the same NDRange kernels.

Index Terms— Field-programmable gate arrays (FPGAs), har-
monic summing, irregular memory access optimization, Open
Computing Language (OpenCL).

I. INTRODUCTION

THE Square Kilometer Array (SKA) is built to extend our
understanding of the Universe and ourselves and it will

be the world’s largest radio telescope array when finished [6].
Many key science goals are targeted by the SKA [2] project,
and one of them is strong-field tests of gravity using pulsars,
which are highly magnetized rotating neutron stars. Since most
pulsar signals are weaker than white noise and their details

Manuscript received April 23, 2018; revised September 7, 2018; accepted
October 11, 2018. Date of publication December 28, 2018; date of current
version February 22, 2019. This research was financially supported by
the SKA funding of the New Zealand government through the Ministry
of Business, Innovation and Employment (MBIE). (Corresponding author:
Haomiao Wang.)

The authors are with the Department of Electrical and Computer Engi-
neering, The University of Auckland, Auckland 1010, New Zealand (e-mail:
hwan938@aucklnaduni.ac.nz; o.sinnen@auckland.ac.nz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2882238

are unknown, many techniques are employed to search for
different types of pulsars over a wide range of searching scales
(e.g., sky coverage, frequency, bandwidth, and integration
time) [15]. The enormous signal rate of the SKA makes an
efficient solution only using general processors to complete
the searching tasks in the given period extremely difficult.

Taking the high-performance computing ability, power
consumption, and flexibility into consideration, the field-
programmable gate array (FPGA) seems to be an ideal device
to accelerate the central signal processor (CSP) of the SKA
project. The SKA stage 1 (SKA1) project plans to adopt
high-end FPGAs to accelerate part of the function modules
in the CSP regarding pulsar search such as frequency-domain
acceleration search. However, the general hardware description
language (HDL, e.g., Verilog HDL and VHSIC hardware
Description Language)-based development process makes it
hard to achieve fast prototyping design and design space
exploration. In addition, developers of an internationally dis-
tributed team, including nonhardware experts, would need to
understand the hardware structure of FPGA devices.

To address these problems, we employed a high-level
approach by using a high-level language compared to HDL.
In this paper, we take a pulsar search module called harmonic
summing as a case study. The harmonic-summing module is a
part of the Fourier-domain acceleration search (FDAS) mod-
ule that contains a compute-intensive module. The compute-
intensive module performs very well on FPGAs [14], so to
avoid unnecessary data transfer, it is important to have the
harmonic-summing module on the FPGA. The main feature
of the harmonic-summing module is that access to the input
signals is irregular and this affects the hardware accelerator in
achieving high-performance computing. We investigate several
methods and architectures to optimize the irregular memory
accesses of the harmonic-summing module and using Open
Computing Language (OpenCL) for the prototype design. The
main contributions are as follows.

1) Reducing Intermediate Data Accesses: The
straightforward and proposed approaches for the
harmonic-summing module are investigated and
designed. The proposed approach reduces the total
number of off-chip memory accesses by changing the
processing order and storing the intermediate data in
on-chip memory.

2) Preloading Data: Based on the proposed approach, two
preloading data methods are investigated by: 1) load-
ing points with high touch frequency and 2) loading
necessary points that are needed to calculate a block

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9396-4754


WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 625

of points. Both these methods preload data to on-chip
memory before processing and further reduce the total
amount of off-chip memory accesses.

3) Reordering Input: Based on the preloading necessary
points method, we investigate reordering the input points
to improve the memory access speed. After reordering
the input, the data needed for each work group are from
consecutive addresses and they can be streamed to the
FPGA from off-chip memory.

4) Across Device Evaluation: The proposed methods are
implemented on FPGA using OpenCL. We adjust and
port the implementations to different devices and eval-
uate on different series of FPGAs, general-purpose
graphics processing units (GPGPUs), and CPUs for
comparison.

The rest of this paper is organized as follows. Section II gives
related work on optimizing irregular memory accesses and
high-level tools for developing for FPGAs. Section III provides
the details of the harmonic-summing module and the design
goals. In Section V, two approaches of OpenCL-based designs
of the harmonic-summing module are proposed and compared.
Section VI presents the evaluation and results are discussed.
Finally, the conclusions are given in Section VII.

II. RELATED WORK

A. Irregular Memory Access Optimization

In hardware-based high-performance computing, the effi-
ciency of data transfer between the accelerator and the memory
system is an important factor. A large amount of research
has been done to improve the memory access efficiency for
accelerators such as GPGPUs [10] and FPGAs.

For some applications, the accesses to memory are irregular
that limits the performance of the accelerator, and this problem
has been well-studied [8]. For most applications with irregular
memory access, there are mainly two types of optimization
techniques: 1) reducing the number of accesses and 2) schedul-
ing as many accesses in parallel [21]. These two methods can
be applied to various platforms such as FPGAs [22]. For some
graph computation problems in [20], an on-chip distributed
off-chip shard memory architecture with high-performance
shuffle network was investigated and the intermediate buffers
were reduced to save off-chip memory bandwidth. In [23],
prefetching is researched to reduce the number of memory
accesses. In [9], an irregular stream buffer that targets the
irregular sequences of temporally correlated memory ref-
erences is proposed. Data and computation reordering are
employed in [11] to improve memory hierarchy performance.

The memory access pattern problem in SKA
harmonic-summing module is similar to the bit-reversal
permutation in fast Fourier transform optimization [3].
Regarding the optimization of 2-D harmonic-summing
calculations done in this paper, we are not aware of any prior
work which investigating it on a large scale, especially in the
context of acceleration devices such as GPUs and FPGAs.

B. FPGA as an Accelerator

High-end FPGAs have been widely adopted as acceler-
ators in many commercial applications and research areas.

Because of the outstanding energy-efficient performance over
GPGPU devices, Microsoft-applied high-end FPGAs in their
data centres [14] and FPGA-based accelerators appear in other
cloud data centres as well [18]. Several science projects of
different areas such as SKA [19] and CERN [17] exist that
employ a large number of FPGA devices for acceleration,
connected through the PCI Express (PCIe) bus or Ethernet
cable.

Besides these, FPGAs are widely employed in radio astron-
omy projects as accelerators. In [5], hundreds of FPGAs are
used to implement the correlator of the SKA Molonglo Proto-
type project. In [16], FPGA platforms are employed to accel-
erate digital channelized receivers. The Berkeley CASPER
group, MeerKAT, and NRAO released an FPGA-based accel-
eration device for implementing the FX correlator for radio
telescope array [12].

C. High-Level Synthesis

One barrier of employing FPGAs as accelerators is the usual
use of the HDL-based development process that makes the
time to market longer than GPGPUs and multicore proces-
sors. To address this, many high-level synthesis (HLS) tools
have been released. Two primary FPGA vendors, Intel and
Xilinx, provide developers with their high-level tools. Intel
released several high-level development tools such as HLS
compiler, which supports C++-based development and FPGA
software development kit (SDK) for FPGA, which supports
OpenCL [4]-based development. Xilinx provides two main
tools: 1) HLS of C/C++ and SystemC and 2) SDAccel that
supports OpenCL. Besides these official tools, there are several
open-source HLS tools such as LegUp [1].

1) OpenCL for Intel FPGA: OpenCL is an open parallel
programming language. The main advantage of OpenCL is
that it is compatible with different types of acceleration devices
such as GPGPUs, CPUs, and FPGAs. Intel released a dedi-
cated FPGA development tool using OpenCL, which is called
Intel FPGA Altera SDK for OpenCL (AOCL). An FPGA-
based OpenCL application is divided into two parts: the host
programs and the kernels for devices. The host program is
written in C/C++. Before launching an OpenCL kernel in the
host program, the arguments of it are set, and all necessary
data are sent to the off-chip memory of FPGA devices through
PCIe bus. OpenCL mainly classifies memory into two types,
local memory and global memory, with the understanding that
access to local memory is faster than global but sharing is
limited. For OpenCL on an FPGA, local memory corresponds
to on-chip memory such as block random-access memory
and global memory corresponds to off-chip memory such as
DDR3 on the FPGA board. In this paper, the Intel FPGAs are
adopted to implement the harmonic-summing module, so the
optimization syntax and techniques that are mentioned in this
paper are targeting Intel FPGAs and AOCL.

2) Single Work-Item and NDRange Kernels: NDRange is
an important attribute of an OpenCL kernel that represents
its index space. Based on OpenCL 1.0 [7], it contains three
integer values, where each value specifies the extent of the
index space in a dimension. The FPGA-based OpenCL kernels



626 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

can be classified into two types based on their NDRange sizes:
single work-item kernel and NDRange kernel. For the single
work-item kernel, its NDRange size is (1, 1, 1), which means
the index space for all three dimensions is one, resulting in
a single work group with one work item. The kernel code
of a single work-item kernel looks more like C/C++ code
than that of NDRange kernels. However, some OpenCL-based
optimization attributes are included within the kernel code.
Generally, there is at least one loop in a single work-item
kernel and the number of iterations equals the global work size
of the NDRange kernel. The ideal case of the single work-item
kernel is to launch one iteration of the outermost loop per clock
cycle, which is called loop pipelining. Regarding NDRange
kernels, its NDRange size is larger than (1, 1, 1) and the overall
work size has to be divided into small groups. In each small
work group, a small group of data is processed. The size of
an NDRange kernel is normally related to the details of a
task. In our research, both two kernel types are studied, and
the combination of single work-item and NDRange kernels is
investigated.

III. HARMONIC-SUMMING MODULE

The harmonic-summing module is a part of the frequency-
domain acceleration search module [15] of the pulsar search
engine (PSS), whose details are depicted in Fig. 1.
In the Fourier transform (FT)-based convolution module,
the overlap-save algorithm [13] is employed to process the
input signals in the frequency domain, and the outputs are
divided into chunks, several thousand values long. The final
output from the FT-based convolution module, which is also
the input of the harmonic-summing module, is called filter-
output-plane (FOP). The size of the FOP equals Ntemp Nchan,
with Ntemp being the number of templates in the FT-based
convolution and Nchan being the number of channels Nchan.
In essence, each template is a finite-impulse-response (FIR)
filter, and the FIR filter lengths of different templates are
different. The total Ntemp templates can be divided into three
groups, group one (index 1 to (Ntemp − 1/2)), group two
(index −1 to (1 − Ntemp/2)), and the (unfiltered) input signals
(index 0, one-tap FIR filter). The number of channels is the
same as the length of the input array of the FT convolu-
tion module. In our previous work [19], the FT convolution
module has been implemented in an FPGA using OpenCL.
Based on current requirements, an FOP contains 85 × 221

single-precision floating-point points, that is, Ntemp = 85 and
Nchan = 221.

The harmonic-summing module [Fig. 1 (right)] consists of
two parts: 1) harmonic plane (HP) calculation and 2) candidate
detection. The task of the HP calculation part is to generate
Nhp HPs using the FOP. First, the FOP is stretched by
an integer k to obtain the kth stretch plane S Pk , which is
computed separately for template group one and template
group two by generating Nhp stretch planes with the following
equation:

SPk(i, j) = SP1

(⌊
i

k

⌋
,

⌊
j

k

⌋)
, k = 2, 3, . . . , Nhp (1)

where SP1 is the FOP and the ranges of i and j are [−(Ntemp−
1)/2, (Ntemp −1)/2] and [0, Nchan −1], respectively. After all

TABLE I

SPECIFICATION OF THE HARMONIC-SUMMING MODULE

Algorithm 1 General Harmonic-Summing Algorithm
(SINGLEHP)

Nhp−1 stretch planes are generated, the FOP and these Nhp−1
stretch planes are progressively added to form Nhp − 1 HPs

HPk(i, j)=HPk−1(i, j) + SPk(i, j), k = 2, 3, . . . , Nhp. (2)

It can be seen that the size of each HPk is the same as that of
the FOP.

For the candidate detection, a threshold-detection logic is
applied and the potential candidates are recorded. For each
HP, a threshold array (TA) that contains Ntemp thresholds is
employed and one threshold corresponds to one row (Nchan
points) of the HP. In each HP, at most Ncand candidates are
stored, and the maximum size of the candidate list for each
dedispersion measure (DM) trial is Nhp Ncand. The output from
the candidate detection part is the candidate list and it will
be sent to the Fourier-domain candidates optimization module
for further processing (which is part of the postprocessing
in Fig. 1).

The details of the harmonic-summing algorithm are given
in Algorithm 1, where the order of the three for loops can be
interchanged. The basic parameters of the harmonic-summing
module are shown in Table I.

IV. PROPOSED METHODS

The main problem for the harmonic-summing module is
the irregular memory accesses of the HP calculation part and
this limits the data transfer efficiency. We consider two types
of memory access optimization methods while designing the
HP calculation part: 1) increasing the used off-chip memory
bandwidth and 2) reducing the number of off-chip memory
accesses. Based on the number of processed HPs at a time, two
approaches are investigated: the SINGLEHP method (process-
ing a single HP at a time) and the MULTIPLEHP method
(processing multiple HPs at a time).



WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 627

Fig. 1. Processing flow of the PSS of SKA1-MID CSP system and the details of harmonic-summing module.

A. Design Goals

Note that in Fig. 1, there are over 2000 beams that need to
be processed in parallel for the SKA1-MID CSP, and they need
to keep running 24/7/365 for several years. In designing the
harmonic-summing module, we mainly consider the latency
and energy dissipation for calculating the HPs and detecting
the candidates using high-end FPGAs. There are two major
factors that affect the execution latency and energy dissipation,
which are: 1) parallelization capacity of an FPGA and 2) data
transfer rate between the FPGA and off-chip memory. Most
operations in the harmonic-summing module are floating-
point operations; however, they are inexpensive functions such
as floating-point additions and comparisons with a constant.
For high-end FPGAs, there are hundreds of DSP blocks (to
implement floating-point operations) and hundreds of thou-
sands of logic elements that can handle these operations
effectively.

In the HP calculation, the accesses to off-chip memory are
not consecutive but irregular due to the index calculations
in (1). Ideally, the data transfer bandwidth of any design equals
the device’s theoretical maximum bandwidth; however, this
cannot be achieved easily in the harmonic-summing module.
Taking a small size FOP (64×212) as an example, the touching
frequencies of the FOP elements in calculating seven HPs are
depicted in Fig. 2. Eight points from different positions are
needed to calculate the point (1000, 60) of HP8. In Fig. 2,
the size of the deep red area is only 1.7% of the whole FOP;
however, each value is touched 204×. The size of the high
touching frequency area (zoomed-in area) is 16 × 210 and
the sum of the touching times of this area is 73.4% of the
overall touching times. It can be seen that the distribution of
the touching frequency and memory access while calculating
do exhibit a very complex pattern. In this paper, we investigate
a general design of the harmonic-summing module with low
latency by optimizing memory accesses.

The input to the harmonic-summing module, which is the
FOP, is up to 710 MB under current requirements and it
exceeds the on-chip memory size of high-end FPGAs and
other types of processors. Although the FOP can be trans-
ferred to FPGAs through the PCIe bus or Ethernet cable in
practice, it is assumed in this paper that the FOP is stored
in off-chip memory before processing the harmonic-summing
module.

Fig. 2. Touching frequency of each point in the FOP and an example of
calculating point (1000, 60) of HP8.

Regarding the candidate detection of the harmonic-summing
module, when there are more than Ncand candidates detected
in one HP, the strategy of sorting candidates has not yet been
settled in the PSS subproject. Due to the lack of a settle
requirement, we investigate the methods of storing the last
Ncand candidates. The FPGA device needs to go through all
the candidates from each HP. When there are less than or
equal to Ncand candidates in one HP, all the candidates will be
recorded. Note that based on the method and process order of
HP calculation, the recorded last Ncand candidates might vary
between different approaches.

B. SINGLEHP

For the algorithm in Algorithm 1, the processor needs to
calculate all HPs individually. The SINGLEHP method is
a straightforward implementation of the harmonic-summing
module.

To calculate the points of the kth HP HPk (k ≥ 2), points
of the FOP and the k − 1th HP HPk−1 are required. During
processing, each generated point of HPk is compared with a
threshold. Since the FOP size, Ntemp Nchan, exceeds the on-chip
memory of FPGA devices, the FOP and other generated HPs
have to be stored in the off-chip memory of the FPGA device.

The accesses of loading points from HPk−1 and storing
points to HPk are both in order and of consecutive addresses.
However, the accesses of loading points from the FOP cannot



628 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

Algorithm 2 Multiple Harmonic-Summing Planes-Based
Method (MULTIPLEHP)

be calculated as a simple offset so the data cannot be streamed
between off-chip memory and the device while processing.
For example, eight points in Fig. 2 are loaded sequentially
from point1, which has address offset 128 + 4, 096 × (8 − 1),
to point8, which has 1000 + 4, 096 × (60 − 1).

To optimize the memory accesses of the SINGLEHP
method, the overall pipeline can be parallelized to increase
the used off-chip memory bandwidth, and we use that in our
implementation.

C. MULTIPLEHP

In the harmonic-summing module, only the candidates are
recorded for further processing and it is unnecessary to store
the data of all HPs in off-chip memory. To reduce the number
of off-chip memory accesses, we investigate the method to
get rid of storing HPs except for the FOP. If the points of the
same index in multiple or all Nhp HPs can be generated in
parallel, these points can be discarded directly after candidate
detection. Without storing the generated points back to off-chip
memory, the number of overall off-chip memory accesses can
be halved. For the MULTIPLEHP method, eight points in Fig. 2
are loaded in parallel.

By reordering the three for loops in Algorithm 1, we
obtain Algorithm 2, where the innermost for loop can be
parallelized and the points are discarded after detection.

To optimize the MULTIPLEHP method by reducing the off-
chip memory accesses, part of the FOP can be loaded before
calculating a chunk of points of all HPs. Two alternatives
are proposed and based on the loaded data, they can be
distinguished as: 1) high touching frequency (by loading as
many points as possible in the high touching frequency area
of the FOP) and 2) necessary points (by loading points that are
needed to calculate a chunk of points in all HPs such as one or
several columns of all HPs). For the second method, an FOP
reordering method is proposed below to increase data transfer
efficiency. Each of these three MULTIPLEHP-based methods
adopted at least one type of memory accesses optimization
method and the details of them are as follows.

1) Preloading Points With High Touching Frequency: To
create and threshold test eight consecutive HPs, each point

Fig. 3. Relationship between the size of preloaded points and the reduced
number of GMA.

with the highest touching frequency needs to be loaded over
200×. If most points with high touching frequency can be
preloaded, a large number of load operations can be saved.
To further reduce the amount of off-chip memory accesses,
part or all of the high touching frequency points can be
preloaded in on-chip memory. We use MULTIPLEHP-H to rep-
resent the preloading points with the high touching frequency
method.

The main factor of the MULTIPLEHP-H method is the
number of preloaded high touching points NMultipleHP−H−preld.
If the points in the FOP are sorted by touching times,
the relationship between the percentage of the FOP size and
the percentage of overall touching times is depicted in Fig. 3.
It can be seen that 2.2% points in the FOP have about 50%
of overall touching times and 25% points have 90% of overall
touching times.

2) Loading Necessary Points: For the Naïve MULTIPLEHP
method, calculating one point with the same index of Nhp
HPs, at most Nhp points need to be loaded from the FOP.
However, calculating a chunk of points in all Nhp HPs needs
less than Nhp times the number of points. For one column
with Ntemp points, it needs Ntemp points for HP1, however,
2�(Ntemp − 1)/2� + 1 points for HP2, 2�(Ntemp − 1)/3� + 1
points for HP3, and so on. To save loading operations, the HP
calculation task can be decomposed into a number of work
groups. The task of each work group is to generate a number of
columns NMultipleHP−N−col of all Nhp HPs, where each column
has Ntemp points. In a pipeline, the loading part of a work
group can overlap with the computing part of the previous
work group. We use MULTIPLEHP-N to represent the loading
necessary points method.

For the MULTIPLEHP-N method, NMultipleHP−N−col is an
important factor that affects the reduced off-chip memory
accesses. Assuming the task for each work group is to generate
one column (NMultipleHP−N−col = 1) of Nhp HPs (Nhp Ntemp
points in total) and the maximum needed data is reduced
to 2

∑Nhp
i=1�(Ntemp − 1/2i)� + Nhp. When NMultipleHP−N−col

is larger than one, more off-chip memory accesses can be
reduced. However, the amount of data needed for the same
HP varies based on the column index. To guarantee that the
amount of data loaded for each work group is a constant
(which is needed for efficient pipelining), the maximum num-
ber of points for each HP is chosen.



WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 629

Fig. 4. Relationship between columns per work group and the number of
points per column for the MULTIPLEHP-N method.

When the NMultipleHP−N−col is specified, the needed number
of columns for each HP can be listed and then the number of
needed points for NMultipleHP−N−col columns can be calculated.
The average needed points per column for a work group is
plotted in Fig. 4. It can be seen that the average number
drops fast when the value of NMultipleHP−N−col is smaller than
16 (green dotted line) and it decreases slightly toward 64
(red dotted line) as NMultipleHP−N−col increases. Besides these,
the larger NMultipleHP−N−col, the larger space it needs in the
on-chip memory. If NMultipleHP−N−col is too large, the on-chip
memory size might limit NMultipleHP−N−col. Consequently, it is
unnecessary to assign tens or hundreds of columns to a work
group.

3) Reordering the FOP: Compared with the Naïve
MULTIPLEHP method, the MULTIPLEHP-N method can fur-
ther reduce the total amount of off-chip memory accesses.
However, the points needed for each work group are from at
least Nhp blocks in FOP and they are from nonconsecutive
addresses. Thus, the points for each work group cannot be
streamed between off-chip memory and the FPGA device.

To optimize the used off-chip memory bandwidth of the
MULTIPLEHP-N method, we propose the MULTIPLEHP-R
method that reorders the FOP to form the reordered FOP
(RFOP). After reordering, the needed points to calculate
NMultipleHP−R−col columns of all HPs are from consecutive
addresses that can be streamed to the FPGA while processing.
However, the size of the RFOP is larger than the standard
FOP size. Theoretically, the number of rows in the RFOP is
increased from Ntemp to the average needed points per column
in Fig. 4, and the larger the NMultipleHP−R−col, the smaller the
relative size of RFOP. The latency of extra data transfer and
FOP reordering have to be considered in the evaluation of the
MULTIPLEHP-R method.

V. ARCHITECTURE AND OPTIMIZATION

In this section, we investigate the architecture of the pro-
posed methods and employ OpenCL as the high-level lan-
guage, whose kernels can be executed on both FPGAs and
GPUs. The optimization techniques and syntax are dedicated
to FPGAs.

A. SINGLEHP Kernel

The basic structure of the SINGLEHP kernel while process-
ing the kth HP HPk is depicted in Fig. 5, where Nparal is

Fig. 5. Architecture of the SINGLEHP kernel.

the parallelization factor that is restricted by global memory
(off-chip memory in this research) bandwidth (GMB) and the
logic resources of the FPGA. One optimization goal for the
SINGLEHP kernel is to find the maximum parallelization fac-
tor Nparal−max that leads to a required GMB which equals the
maximum physical off-chip memory bandwidth of a specific
device.

The FOP, HPk−1, HPk , candidate list and T A are all stored
in global memory before launching the kernel. When the
kernel is launched, Nparal points from HPk−1 and �(Nhp/k)�
points from FOP are loaded per clock cycle. These points are
summed, according to (1) and (2), to calculate Nparal points
of HPk . The generated Nparal points are compared with the
corresponding thresholds and detected candidates are saved in
a shift register or local memory (on-chip memory in this paper)
of length Ncand, until all FOP points have been processed.
Then, these Nparal points overwrite the values at the same
address as HPk−1.

In OpenCL, both single work-item and NDRange kernel
types can be applied to implement the SINGLEHP kernel.

For the NDRange kernel, kernel vectorization, which
increases the amount of work that a compute unit can perform
in parallel, and compute unit replication, which increases the
number of compute units, are techniques can be employed to
parallelize the kernel.

The SINGLEHP kernel can be implemented as a generic
kernel that needs to be launched Nhp times (multiple launches)
or a specific kernel that only needs to be launched once
(single launch) to generate the candidate list of Hhp HPs.
The overhead of launching a kernel such as setting kernel
arguments will affect the overall latency, especially when
the kernel execution latency is short. Therefore, the kernel
launch time is an important factor for the SINGLEHP kernel.
Multiple launches provide more flexibility than the single
launch SINGLEHP kernel, as it can be used for any HP
configuration. Both single- and multiple-launch kernels are
evaluated in Section VI.

B. MULTIPLEHP Methods-Based Kernels

Although parallelizing the SINGLEHP kernel can shorten
kernel execution latency by increasing GMB, the total amount
of global memory accesses (GMAs) is not reduced. The main
advantage of the MULTIPLEHP method is the reduction of
the required GMA by processing multiple HPs at the same



630 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

Fig. 6. Architecture of the Naïve MULTIPLEHP kernel (Single work-item).

time. Three optimization techniques are investigated for the
MULTIPLEHP-based methods in the following.

1) Naïve MULTIPLEHP: The Naïve MULTIPLEHP kernel
calculates Nparal points of all Nhp HPs with the same index,
where Nparal is the parallelization factor. The architecture of
the Naïve MULTIPLEHP kernel is shown in Fig. 6, where the
operations in the red dotted rectangle have to be parallelized
Nparal times to process Nparal points of all HPs. In OpenCL,
this is implemented as a single work-item type, and the
#unroll pragma Nparal is added before the main for loop
in the kernel code.

The FOP is stored in global memory and Nhp points
((i, j), (�i/2�, � j/2�), . . . , (�i/Nhp�, � j/Nhp�)) are loaded
in parallel to generate point (i, j) of all Nhp HPs. Then, these
Nhp points are compared with the corresponding thresholds
and stored as constant memory. Nhp independent arrays of
size Ncand, one corresponding to each HP, are employed to
store the candidates. Both local memory and shift register
can be adopted to implement Nhp arrays and the performance
difference is evaluated in Section VI. After all Nhp HPs have
been processed, the Nhp candidate arrays are sent back to
global memory. Because the loading accesses to the global
memory are irregular, a high memory stall percentage will
impede the kernel from achieving a high performance.

2) MULTIPLEHP-H: The MULTIPLEHP-H kernel builds
on the Naïve MULTIPLEHP kernel, which is a single work-
item kernel. MULTIPLEHP-H is, however, split into two parts:
preloading and computing. The NMultipleHP−H−preld preloaded
points that can be seen as constant cache memory are loaded
into an FIFO at runtime. In processing one FOP, there is no
overlap between the prefetching and computing parts. The
available local memory of the FPGA and the number of
high touching frequency points affects the performance of
the MULTIPLEHP-H kernel. If the FOP size is comparable
to the available local memory, most of the points with high
touching frequency can be loaded and then most of the GMAs
can be reduced. However, if the number of high touching
frequency points is significantly larger than the local memory
size, it is impossible for the device to hold most of these
important points. Besides this, the large proportion of the
used on-chip memory might lead to a decrease in kernel
frequency. In this case, it is necessary to search for the

suitable NMultipleHP−H−preld for the target FPGA by testing a
range of preloading data sizes. The relationship between the
NMultipleHP−H−preld and the kernel performance is investigated
in Section VI.

3) MULTIPLEHP-N: The MULTIPLEHP-N method is
a memory accesses saving method, as discussed in
Section IV-C2. It decomposes the overall task into a number
of work groups, and the task for each work group is to
process NMultipleHP−N−col columns of all HPs. The NDRange
kernel type is employed and the preloading part of a work
group overlaps with the computing part of the previous work
group. For the NDRange kernel, different work groups do not
share local memory and it is inefficient to save candidates
in global memory during processing. The hybrid kernel type
that contains both single work-item type and NDRange type
is employed to implement the preloading necessary points
kernel (MULTIPLEHP-N).

The relationship between the work-group size of the
NDRange kernel and the execution latency is studied next.
The task of each work group is to generate NMultipleHP−N−col
columns of all HPs, which contain NMultipleHP−N−colNchan
points. For each work group, Nhp NMultipleHP−N−colNchan
points are stored in local memory using the OpenCL barrier
technique. Some points in these Nhp NMultipleHP−N−colNchan
points are from the same index in the FOP and they only
need to be loaded once.

The NDRange HP calculation kernel is connected with the
single work-item candidate detection kernel through OpenCL
channels, which is a FIFO buffer in essence. The OpenCL
channel is an effective approach to transfer data between dif-
ferent kernels without touching global memory. The candidate
detection part is the same as that of Naïve MULTIPLEHP
kernel and MULTIPLEHP-H kernel.

4) MULTIPLEHP-R: The MULTIPLEHP-R kernel is based
on the MULTIPLEHP-N kernel, and the main difference is
the order of the data for each work group. After reordering,
the points needed for a work group are from consecutive
addresses.

The total amount of needed data for a work group (Ntotal/wg)
is the product of average needed data per column times
the number of columns per work group (NMultipleHP−R−col)
(see also Fig. 4). To achieve stream mode in GMA, the number
of loaded points per clock cycle (Nlpoints/cc) has to be an
integer constant, which makes the product of Nlpoints/cc and
work-group size (Sworkgroup) usually larger than Ntotal/wg and
never less (Ntotal/wg ≤ Nlpoints/ccSworkgroup). In case of differ-
ence, the input array for each work group has to be padded
with dummy values at the end. The relationship between
Nlpoints/cc and NMultipleHP−R−col is shown in Table II, where
Npoints/wi is the executed points of all HPs per work item. The
value in the bracket (×∗) represents the ratio of total loaded
points over the FOP size:

Nlpoints/ccSworkgroupNworkgroup

Nchan Ntemp

where Nworkgroup is the total number of work groups. We use
MULTIPLEHP-R-(NMultipleHP−R−col, Npoints/wi) to represent
kernel MULTIPLEHP-R with the specified settings. The larger



WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 631

TABLE II

NUMBER OF LOADED POINTS PER CLOCK CYCLE Nlpoints/cc OF
DIFFERENT Npoints/wi AND NMultipleHP−R−col COMBINATIONS FOR

GENERAL AND OPTIMIZED MULTIPLEHP-R (NUMBER IN (×∗)
SHOWS TOTAL LOADED POINTS IN RELATION TO FOP SIZE)

NMultipleHP−R−col and Npoints/wi, the less data needs to be
loaded from global memory. Because of physical limitations,
if the needed bandwidth of loading Nlpoints/cc points exceeds
the maximum device off-chip memory bandwidth, the perfor-
mance will not increase, and the kernel was not implemented.

It is clear that Nlpoints/cc, NMultipleHP−R−col, and Npoints/wi
are the three main parameters for kernel MULTIPLEHP-R
and they have to be balanced to achieve good performance.
Using the AOCL compiler, it becomes apparent that using
the number that is powers of 2 for Nlpoints/cc results in more
efficient implementations than other numbers. Hence, to make
the value of Nlpoints/cc equal to a power of 2, more data might
need to be loaded for each work group. Taking the kernel
MULTIPLEHP-R-(8, 8) for example, the value of Nlpoints/cc
is 13 and it has to be increased to the nearest power of 2,
which is 16. Since the amount of loaded data per work
group is Nlpoints/ccSworkgroup, the increase in Nlpoints/cc leads
to an increase in loading operations. The optimized Nlpoints/cc,
where Nlpoints/cc is the lowest power of 2 greater or equal to
the corresponding Nlpoints/cc of values without optimization
in Table II. When NMultipleHP−R−col ≥ 4, the total loaded data
are twice the FOP size (value in the bracket).

For the hybrid kernels (combining NDRange and single
work-item kernels) MULTIPLEHP-H, MULTIPLEHP-N, and
MULTIPLEHP-R, adding vectorization or replication attributes
can only parallelize the NDRange part but not the single
work-item part, and it has to be parallelized manually in the
kernel code.

VI. EXPERIMENTAL EVALUATION

To experimentally evaluate the harmonic-summing module,
the straightforward SINGLEHP method and the proposed
MULTIPLEHP-based methods are evaluated in this section.
The FPGA-based harmonic-summing kernels are assessed
according to their resource usage, execution latency, and
energy dissipation. In addition, we compare those results to
latency and energy dissipation of the kernels implemented on
GPU and multicore CPUs.

A. Experimental Setup

Four different devices are employed to evaluate the perfor-
mance of the proposed designs on CPU, GPU, and FPGAs.

Two types of Intel FPGAs (Stratix V, referred to as S5, and
Arria 10, referred to as A10) are compared with one midrange
AMD R7 GPU, referred to as R7, and a general Intel i7 CPU,
referred to as I7. The specifications of these platforms are
given in Table III. The FPGA and GPU cards are connected
to the host processor through the PCIe bus.

All FPGA-targeting OpenCL kernels are compiled using
AOC version 16.0.0.222 and GPU-targeting kernels are com-
piled using AMD APP SDK version 3.0. For the CPU
platform, the C code, which is based on the same kernel
code, is compiled using GNU Compiler Collection, using
OpenMP for parallelisation. Both OpenCL and OpenMP can
be employed to parallelize operations in for loops for CPU.
However, OpenCL is up to 2× times slower than that of C
program on the employed CPU. To make it fair for CPU,
we employed C code for CPU. Comparison between OpenCL
and OpenMP on CPU is not investigated in this paper.

Since the top half (from row 1 to (Ntemp − 1/2)) and the
bottom half (from row (1 − Ntemp/2) to −1) are indepen-
dent for the harmonic-summing module, we investigate the
performance, in terms of the execution latency and energy
dissipation, of half of the FOP as specified in Table I, which
size is 42×221. Remember from Section III that the upper and
lower halves of the FOP can be processed independently and
the required processing is identical. The size of the candidate
list is 200.

B. Resource Usage

Because the harmonic-summing module is not a
compute-intensive application, the DSP block utilization
of all implementations is less than 5%. We discuss the logic
utilization, RAM blocks utilization, and kernel frequency in
this section.

1) SINGLEHP: A series of SINGLEHP kernels with differ-
ent parallelization factors Nparal is evaluated. These kernels are
employed to generate eight HPs of half FOP. All these kernels
are NDRange kernels and the work-group sizes are set to 256,
which is the default size set by Intel offline compiler when
there is a barrier in the kernel code. While the relationship
between the work-group size and kernel performance was not
investigated in detail in this paper, some preliminary results
showed that there was no clear relationship between them,
neither in relation to resource consumption. The usage of logic
cells and RAM blocks of these kernels is given in Fig. 7,
where “S” and “M” represent single launch and multiple
launches, and “V ” and “R” represent kernel vectorization
and replication. The candidate detection part is included, and
the local memory is employed to store the candidate during
processing. When Nparal = 1, it means that the kernel is
not parallelized and that vectorization and replication are not
employed.

It can be seen that the usage of both resources increases as
Nparal increases. These trends are similar to those observed
for execution on S5. The kernel frequency drops as the
resource usage increases across all kernels. Taking the kernel
SINGLEHP-(M, V ) on A10 as an example, its frequency



632 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

TABLE III

SPECIFICATIONS OF CPU, GPU, AND FPGA PLATFORMS

Fig. 7. Logic utilization and RAM block usage of SINGLEHP kernels
on A10.

Fig. 8. Resource usage of MULTIPLEHP-H on S5 and A10.

decreases from 266.9 MHz at Nparal = 1 to 236.8 MHz at
Nparal = 16.

2) MULTIPLEHP: In terms of the MULTIPLEHP designs,
Naïve MULTIPLEHP, MULTIPLEHP-H, MULTIPLEHP-N, and
MULTIPLEHP-R (Section V) are evaluated.

a) Naïve MULTIPLEHP and MULTIPLEHP-H: MULTI-
PLEHP-H is based on the Naïve MULTIPLEHP-H, and the
main difference is that it preloads a block of data before
calculating. The resource usages of these kernels are plotted
over the preloaded data size in Fig. 8. The value points
for NMultipleHP−H−preld = 0 correspond to Naïve MULTI-
PLEHP. The logic utilization is not affected by the increase
in NMultipleHP−H−preld, however, the RAM blocks utilization
increases. The largest NMultipleHP−H−preld that can be com-
piled successfully on S5 and A10 are both 5 × 215. The
kernel frequency ranges from 207 to 219 MHz for S5-
based implementations and 204 to 236 MHz for A10-based
implementations.

b) MULTIPLEHP-N and MULTIPLEHP-R: In con-
trast to MULTIPLEHP-H, kernel MULTIPLEHP-N and
MULTIPLEHP-R do not depend heavily on local memory size.

TABLE IV

RESOURCE USAGE AND KERNEL FREQUENCY OF MULTIPLEHP-N
WITH CANDIDATE DETECTION ON A10

MULTIPLEHP-R is based on MULTIPLEHP-N, however, it
does not need to load points from different locations.

For MULTIPLEHP-N, different column numbers
(NMultipleHP−N−col) are evaluated, and the results are listed
in Table IV. As can be seen with increasing NMultipleHP−N−col,
both logic cell and RAM block utilization increase. For most
of the kernels, the kernel frequency is decreased as
NMultipleHP−N−col increases. MULTIPLEHP-N-(8) has a higher
kernel frequency than MULTIPLEHP-N-(6). The main reason
is that it is more efficient for a compiler when the number of
operations is a power of 2 such as 8.

Regarding MULTIPLEHP-R, to arrange the data for each
work group into a consecutive address area, the half FOP
is reordered into a half RFOP (Section IV-C), in the host
program using memcpy(). The reordering latency on the
employed host is 87.8 ms, which is achieved using a single
thread and does not include the data transfer time. For the
FDAS module, the output from the FT convolution in Fig. 1
needs to be revised based on the applied algorithm. If the
MULTIPLEHP-R method is employed, the FOP reorder will
be combined with other transformation functions and the
reordering latency is not investigated in this paper.

The performance of two variants of MULTIPLEHP-R ker-
nels (generating 16 and 64 columns of all eight HPs per work
group) is evaluated, which is shown in Table V. Four different
points per work-item values Npoints/wi (1, 2, 4, and 8) are tested
in this paper. Since the values of Nlp/cc for Npoints/wi = 1
and Npoints/wi = 2 are already powers of 2, so we focus on
the other two conditions (Npoints/wi = 4 and Npoints/wi = 8)
and the resource usage of the general and the optimized
implementations with these values are given in Table V. For
the optimized implementations, the values of Nlpoints/cc are
powers of 2 and this costs fewer logic cells than the general
implementations. Since more points are loaded per clock cycle,
the optimized implementations consume more RAM blocks.



WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 633

TABLE V

RESOURCE USAGE AND EXECUTION LATENCY OF MULTIPLEHP-R (NDRANGE PART ONLY) WITH (Nlp/cc IS POWER OF 2)
AND WITHOUT OPTIMIZING GMB ON A10 (WITHOUT CANDIDATE DETECTION)

Besides these, the kernel frequency of the optimized imple-
mentations is higher than that of general implementations.

Since NMultipleHP−R−col, Np/wi, and Nlp/cc are three main
parameters that affect the performance of MULTIPLEHP-R,
we investigate the trend of changing these parameters, but here
without candidate detection. Hence, the values in Table V are
only for the NDRange part. We do this because after combin-
ing with the candidate detection, some of the MULTIPLEHP-R
kernels such as MULTIPLEHP-R-(64, 8) cannot be compiled
because of the limited resources, and we wanted to explore
the influence of the parameters in a good range. We employ
the MULTIPLEHP-R-(16, 4) kernel with candidate detection,
which can be compiled on both S5 and A10, to compare with
other methods. In the future, as FPGA technology upgrades,
the number of on-chip logic cells and RAM blocks increases.
The values of NMultipleHP−R−col and Npoints/wi can be raised,
and the execution latency is likely to be faster than that
achieved in Table V.

The depth of each channel that connects the
harmonic-summing and threshold detection for MULTIPLEHP-
N and MULTIPLEHP-R is 1. The influence of channel depth
is not investigated in this research.

C. Latency Evaluation

1) Harmonic Plane Calculation on FPGA: We evaluate the
overall execution latency of the harmonic-summing module,
including the HP calculation and the candidate detection. The
points of the eight HP are compared with the result of a
MATLAB implementation to verify the correctness of the HP
calculation in different designs.

a) SINGLEHP: The used GMBs and execution latencies
of the SINGLEHP kernel with various Nparal in Section VI-B
are shown in Fig. 9, where the green dotted line in Fig. 9
(left) is the theoretical maximum bandwidth that is supported
by the board support package (BSP). Regarding the theo-
retical maximum bandwidth for a specific kernel, the kernel
clock frequency restricts the bandwidth when it is lower than
(2133/4) MHz, where 4 is based on quad rank, and it is
not included in Fig. 10. As Nparal increases, the GMBs of
all SINGLEHP kernels increase, however, not all execution
latencies are decreased.

For the two multiple launches (“M”) kernels,
SINGLEHP-(M, V ) and SINGLEHP-(M, R), the launching
overhead is hundreds of times smaller than the kernel
execution latency and hence negligible. For the single-launch

Fig. 9. GMBs and execution latency of SINGLEHP on A10.

kernel SINGLEHP-(S, V ), the global memory occupancy
decreased dramatically when Nparal is larger than 4. This is
caused by a large number of irregular accesses to memory
in parallel. For SINGLEHP-(S, R), the performance stops
increasing when Nparal is larger than 8. When Nparal = 8,
kernel SINGLEHP-(S, R) performs better than other kernels
and the SINGLEHP-(M, R) kernel performs best when
Nparal = 16, which is about 7.5× faster than SINGLEHP-(M ,)
with Nparal = 1.

b) Naïve MULTIPLEHP: The execution latency of kernel
Naïve MULTIPLEHP on S5 is over 1 s (1210 ms); however,
the same kernel achieves a better performance, which is less
than 400 ms on A10. The main reason is the kernel frequency
achieved on A10 is over two times higher than that on S5. This
might be caused by BSPs provided by different vendors. Since
A10 has over 2× times the logic resource and DSP blocks,
it might be easier for the compiler to optimize the placement
and routing.

c) MULTIPLEHP-H: The relationship between the num-
ber of preloaded data points NMultipleHP−H−preld and the exe-
cution latency of MULTIPLEHP-H is investigated on both S5
and A10. The half FOP is transposed and then processed row
by row (each row has (Ntemp − 1/2) points). The execution
latencies of these kernels are depicted in Fig. 10. Preloading
data reduces the number of accesses to off-chip memory;
however, it does not reduce the number of clock cycles when
processing a large amount of data. The increase in preload data
size leads to different logic utilization, RAM block usage, and
kernel frequency. The jaggy line in Fig. 10 is caused by the
kernel frequency, and there is no clear relationship between
kernel frequency and NMultipleHP−H−preld.

Even the largest NMultipleHP−H−preld (5 × 215) used in the
experiments, which is limited by the available RAM block



634 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

Fig. 10. Execution latencies of the MULTIPLEHP-H kernels with different
sizes of preloaded points.

on the FPGA, contains only 4.7% of the total number of all
memory accesses. The best performance achieved on S5 and
A10 is both by executing kernel MULTIPLEHP-H-(5 × 213).
Some improvements could be made by overlapping the loading
of the high touching frequency points with the computing part
but not substantially. Overall, MULTIPLEHP-H is not gaining
performance if the local memory size is not large enough to
hold most of the points with high touching frequency.

d) MULTIPLEHP-N: For kernel MULTIPLEHP-N,
the necessary data for each work group are from
nonconsecutive addresses and this affects the loading
section in achieving streaming mode, which is crucial to fully
use the available theoretical maximum bandwidth. Although
executing more columns per work group can reduce GMA,
the value of NMultipleHP−N−col does not affect performance.
The execution latency of MULTIPLEHP-N is affected by the
kernel frequency, which is given in Table IV. We employ
the kernel with the fastest execution latency to compare with
other methods, which is MULTIPLEHP-N-(1).

e) MULTIPLEHP-R: The kernel execution latency and
global memory occupancy during execution on A10 are given
in Table V as well. When the value of Nlpoints/cc is a power
of 2, the execution latency decreases as Npoints/wi increases.
Although the occupancy of loading operations drops, the val-
ues for the optimized kernels decrease slower than that of
the general kernels. The fastest variant of MULTIPLEHP-R
in Table V is MULTIPLEHP-R-(64, 8). By adding the candi-
date detection, the execution latency increases, however, faster
than other MULTIPLEHP kernels. For kernel MULTIPLEHP-
R-(16, 4), the execution latencies on a single S5 and A10 are
143 and 120 ms, respectively.

f) Overall Comparison: Based on the discussion earlier,
the execution latency of each well-optimized method with
candidate detection is shown in Fig. 11, and both types of
FPGA devices are evaluated, where the red dashed line is the
current time limitation for the SKA harmonic summing. We
also evaluate a setting where three A10 FPGAs are used in
parallel. The execution latency of MULTIPLEHP-R in Fig. 11
does not include the reordering overhead.

Note that SINGLEHP-(M, R) and Nparal = 16 on S5 cost a
large number of RAM blocks and cannot be compiled. Hence,
SINGLEHP-(S, R) with Nparal = 8 is used. The execution
latency of MULTIPLEHP-N-(1) is faster than that of Naïve
MULTIPLEHP and MULTIPLEHP-H-(8, 192); however, it is
about 3× slower than MULTIPLEHP-R-(16, 4). Except for

Fig. 11. Execution latency of proposed harmonic-summing methods with
candidate detection on A10, where SHP represents SINGLEHP and MHP
represents MULTIPLEHP.

TABLE VI

SPEEDUP OF MULTICORE CPU, GPU, AND FPGA PLATFORMS OVER

SINGLE-CORE CPU IN PROCESSING SINGLEHP KERNEL
INCLUDING CANDIDATES DETECTION

Naïve MULTIPLEHP on S5, all MULTIPLEHP kernels perform
better than SINGLEHP-(S, R) with Nparal = 8.

Although the performance is improved by adopting MULTI-
PLEHP kernels, none of these kernels on a single A10 meets
the requirement. By installing three A10 FPGA cards, they
can work in parallel by processing three different half FOPs.
The average execution latencies of half FOP using three A10
cards are shown in Fig. 11 as well. It can be seen that kernel
MULTIPLEHP-R on three A10 cards is over 2× times faster
than the required time limitation, so three A10 cards can
process the whole FOP while meeting the requirements.

2) Comparison With CPU and GPU: We are now compar-
ing the performance of the proposed kernels on GPU (using
adjusted OpenCL code) and CPU (using equivalent OpenMP
implementations). Since single work-item kernels on GPUs
cannot exploit their performance potential, for fairness we only
compare the performance of NDRange kernels on FPGA and
GPU devices. Regarding the optimization syntax for FPGAs,
they are not employed in the NDRange kernels but the single
work-item kernels. To make it further fair to compare with
GPUs, there is no code that is best only for FPGA devices in
the NDRange code such as shift registers.

SINGLEHP-(M,) is evaluated on the R7 GPU, and the
host argument settings are the same as for the FPGA-based
implementation. The straightforward C code with OpenMP
directives, using three levels of for loops, which is the
same as Algorithm 1, is evaluated on the I7 CPU using all
four cores. The execution latency of SINGLEHP using one
core of I7 CPU (I7 − 1C) is taken as the baseline, and the
speedups over it on other devices are given in Table VI, where
I7 − 4C represents using four cores of the I7 CPU. It can
be seen that R7 performs best among these devices and it
is about 3.6× faster than the A10 FPGA. The R7 has two
major advantages over S5 and A10: 1) operating frequency
and 2) maximum off-chip memory bandwidth. Although the



WANG et al.: HARMONIC-SUMMING MODULE OF SKA ON FPGA 635

maximum frequency of A10 is higher than R7, the maximum
frequencies of the implemented kernels are less than 300 MHz
in this paper.

Regarding the MULTIPLEHP kernels on GPU, a simi-
lar OpenCL code as used for the FPGA kernels of Naïve
MULTIPLEHP and MULTIPLEHP-H are tested. The execution
latencies of these kernels are both over 30 s, which is about
a hundred times slower than that of a single A10 FPGA.
Because these two variants are single work-item kernels,
the GPU cannot parallelize operations on multiple stream
processors. For the fastest MULTIPLEHP kernel on A10,
which is MULTIPLEHP-R-(64, 8) (NDRange kernel part),
the execution latency of it (without candidates detection) on
R7 is 19.7 ms, and it is 3.7× faster than achieved on A10.
After combining with the candidate detection, which is a single
work-item kernel, the performance drops as Ncand increases.
When Ncand = 1, the execution latency is 46.8 ms. However,
when Ncand is increased to 200, the latency increases to 10 s.

Based on the above, an R7 is over 3.7× faster than an A10
in executing the same NDRange kernels. Regarding the single
work-item kernels, GPU implementations cannot compete with
FPGAs, being tens to hundreds of times slower than FPGAs.

D. Energy Dissipation and Power Consumption

The execution latency is a significant performance criterion
for the harmonic-summing module. However, in the context
of the PSS in SKA1-MID, there will be over 2000 beams that
need to be computed in parallel, which is constantly done for
many years. As a result, the power consumption is another
essential criterion that we investigate in this section.

We calculate the difference between the system power
consumption Pidle, including the acceleration device, in idle
status and the power consumption Prunning when the system
is executing the kernel. To make sure the value of Prunning is
stable, each kernel is launched hundreds of times using a loop,
which takes several minutes.

The power consumption is measured using a plug-in power
meter. For the FPGA measurements, the calculated power
consumption is the value of using three A10 cards in one host.
The power consumption and energy dissipation of executing
different kernels are given in Table VII. The energy cost is the
dissipation of processing the input half FOP, and the energy
saving ratio is compared with the I7−1C . Since the execution
latencies of MULTIPLEHP kernels with the single work-item
kernel (in Section VI-C2) on GPU are over 10 times larger
than those on FPGA, the MULTIPLEHP kernels with a single
work-item part are not compared with GPU.

Although the execution latency on R7 is faster than that of
A10, the energy dissipation of R7 is over 1.8× higher than
that of three A10s. An interesting observation from Table VII
is that the power consumption of kernel SINGLEHP-(M, R)
and MULTIPLEHP-R on A10 is significantly higher than other
MULTIPLEHP kernels on A10. The main reason is that the
used GMB of SINGLEHP-(M, R) and MULTIPLEHP-R is
optimized and much higher than other kernels. Streaming
data between off-chip memory and FPGA make the power

TABLE VII

POWER CONSUMPTION AND ENERGY DISSIPATION OF FPGA, GPU, AND
CPU PLATFORMS (WITHOUT CANDIDATE DETECTION)

consumption of a kernel up to three times higher than that of
other MULTIPLEHP kernels.

In summary, it can be found that a single R7 needs over
2× more power than three A10 cards. Regarding the energy
dissipation, the cost of R7 is up to 2.6× higher than three A10
cards in executing the same kernels while providing similar
performance.

VII. CONCLUSION

In this paper, we investigated FPGA designs of one module
of the SKA PSS called harmonic summing. OpenCL was cho-
sen to implement the proposed designs, and FPGAs and GPU
were employed for evaluation. Two approaches of harmonic
summing were studied: 1) store intermediate data in off-chip
memory and 2) process the input signals directly without
storing intermediate data. For the second approach, since a
naïve implementation does not provide good performance, two
approaches of preloading data were proposed and evaluated:
1) preloading points that are touched most and 2) preloading
all necessary points that are used to generate a chunk of output
points. For the necessary points approaches, the reorder of
input signals is investigated as well.

The extensive experimental evaluation demonstrated that
kernels with intermediate data storage perform worse than
kernels without storing intermediate data in both execution
latency and power consumption. A single FPGA can achieve
9.5× speedup over single-core CPU using the general SIN-
GLEHP method. By using multiple FPGAs, the NDRange
MULTIPLEHP kernels perform significantly better than a sin-
gle GPU in power consumption while only being slightly
slower regarding execution latency. To process the same
amount of data using the same OpenCL kernel, GPU costs up
to 2.6× more energy than multiple FPGAs. This paper shows
that FPGA devices are a good solution for the SKA project
for the processing parts of the pulsar search pipeline, and
techniques discussed here can be transferred to other memory-
intensive applications with irregular accesses.

ACKNOWLEDGMENT

The authors would like to thank Time-Domain Team, a col-
laboration between Manchester and Oxford Universities, and
MPIfR Bonn and the work benefited from their collaboration.
They would also like to thank P. Dobias and E. Casseau from
IRISA, University of Rennes 1.



636 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

REFERENCES

[1] A. Canis et al., “Legup: High-level synthesis for FPGA-based proces-
sor/accelerator systems,” in Proc. 19th ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2011, pp. 33–36.

[2] C. Carilli and S. Rawlings. (2004). “Science with the square kilometer
array: Motivation, key science projects, standards and assumptions.”
[Online]. Available: https://arxiv.org/abs/astro-ph/0409274

[3] L. Chen, Z. Hu, J. Lin, and G. R. Gao, “Optimizing the fast Fourier
transform on a multi-core architecture,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., Mar. 2007, pp. 1–8.

[4] T. S. Czajkowski et al., “From opencl to high-performance hardware on
FPGAS,” in Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL),
Aug. 2012, pp. 531–534.

[5] L. De Souza, J. D. Bunton, D. Campbell-Wilson, R. J. Cappallo, and
B. Kincaid, “A radio astronomy correlator optimized for the Xilinx
Virtex-4 SX FPGA,” in Proc. Int. Conf. Field Program. Logic Appl.,
Aug. 2007, pp. 62–67.

[6] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio,
“The square kilometre array,” Proc. IEEE, vol. 97, no. 8, pp. 1482–1496,
Aug. 2009.

[7] The Opencl Specification, Version 1.0. 29, Khronos OpenCL Working
Group, Beaverton, OR, USA, Dec. 2008.

[8] A. Hiba, Z. Nagy, and M. Ruszinko, “Memory access optimization
for computations on unstructured meshes,” in Proc. 13th Int. Workshop
Cellular Nanosc. Netw. Appl., 2012, pp. 1–5.

[9] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2013, pp. 247–259.

[10] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 105–118,
Jan. 2011.

[11] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory
hierarchy performance for irregular applications using data and compu-
tation reorderings, “Int. J. Parallel Program., vol. 29, no. 3, pp. 217–247,
2001.

[12] A. Parsons et al. (2009). “Digital instrumentation for the radio astronomy
community.” [Online]. Available: https://arxiv.org/abs/0904.1181

[13] K. Pavel and S. David, “Algorithms for efficient computation of
convolution,” in Proc. Design Archit. Digit. Signal Process., 2013,
pp. 191–195.

[14] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. ACM/IEEE 41st Int. Symp. Comput.
Archit. (ISCA), Jun. 2014, pp. 13–24.

[15] S. M. Ransom, S. S. Eikenberry, and J. Middleditch, “Fourier tech-
niques for very long astrophysical time-series analysis,” Astronomical J.,
vol. 124, no. 3, p. 1788, 2002.

[16] M. A. Sanchez, M. Garrido, M. López-Vallejo, J. Grajal, and
C. López-Barrio, “Digital channelised receivers on FPGAs platforms,”
in Proc. IEEE Int. Radar Conf., May 2005, pp. 816–821.

[17] S. Sridharan, P. Durante, C. Faerber, and N. Neufeld, “Accelerating
particle identification for high-speed data-filtering using OpenCL on
FPGAs and other architectures,” in Proc. 26th Int. Conf. Field Program.
Logic Appl. (FPL), Sep. 2016, pp. 1–7.

[18] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling flexible network FPGA clusters in a heterogeneous
cloud data center,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2017, pp. 237–246.

[19] H. Wang, M. Zhang, P. Thiagaraj, and O. Sinnen, “FPGA-based accelera-
tion of FDAS module using OpenCL,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2016, pp. 53–60.

[20] X. Wang, L. Huang, Y. Zhu, Y. Zhou, H. Peng, and H. Xiong,
“Addressing memory wall problem of graph computation in reconfig-
urable system,” in Proc. IEEE 17th Int. Conf. High Perform. Comput.
Commun. (HPCC), Aug. 2015, pp. 302–307.

[21] M. Weinhardt and W. Luk, “Memory access optimization and RAM
inference for pipeline vectorization,” in Proc. Int. Workshop Field
Program. Logic Appl. (FPL), 1999, pp. 61–70.

[22] M. Weinhaudt and W. Luk, “Memory access optimisation for recon-
figurable systems,” IEE Proc.-Comput. Digit. Techn., vol. 148, no. 3,
pp. 105–112, May 2001.

[23] H.-J. Yang, K. Fleming, M. Adler, and J. Emer, “Optimizing under
abstraction: Using prefetching to improve FPGA performance,” in Proc.
23rd Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2013, pp. 1–8.

Haomiao Wang (S’16) received the B.Sc. degree
from the Harbin University of Science and
Technology, Harbin, China, in 2012 and the M.Sc.
degree from the Harbin Institute of Technology,
Harbin, in 2014. He is currently working toward
the Ph.D. degree in computer system engineering
at The University of Auckland, Auckland, New
Zealand, under the supervision of Dr. O. Sinnen.

His current research interests include
high-performance computing, optimization,
and high-level synthesis.

Prabu Thiagaraj received the B.Sc. degree in
computer engineering from Bharathiar University,
Chennai, India, and the M.S. and Ph.D. degrees
in radio astronomy instrumentation from the Indian
Institute of Science, Bengaluru, India.

From 2014 to 2017, he was at JBCA, University of
Manchester, Manchester, U.K., where he developed
field programmable gate array-based acceleration
prototypes along with the SKA Time-Domain Team
for pulsar search with the square kilometer array.
He is currently at the Raman Research Institute,

Bengaluru. His current interests include digital signal processing with field
programmable gate array.

Oliver Sinnen received the B.Sc. degree in electri-
cal and computer engineering from RWTH Aachen
University, Aachen, Germany, and the Ph.D. degree
from the Instituto Superior Técnico, University of
Lisbon, Lisbon, Portugal, in 2003.

Since 2004, he has been a Senior Lecturer at the
Department of Electrical and Computer Engineer-
ing, The University of Auckland, Auckland, New
Zealand, where he leads the Parallel and Reconfig-
urable Computing Laboratory.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


