
Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

A non-enzymatic electrochemical sensor based on ZrO2: Cu(I) nanosphere
modified carbon paste electrode for electro-catalytic oxidative detection of
glucose in raw Citrus aurantium var. sinensis

L. Parashurama,b, S. Sreenivasaa,⁎, S. Akshathaa, V. Udayakumarc, S. Sandeep kumard

a Department of Studies and Research in Organic Chemistry, Tumkur University, Tumkur 572101, India
bDepartment of Chemistry, New Horizon College of Engineering Affiliated to VTU, Bangalore 560087, India
c Department of Chemistry, Siddaganga Institute of Technology Affiliated to VTU, Tumkur 572102, India
d Raman Research Institute, C V Raman Avenue, Bangalore 560080, India

A R T I C L E I N F O

Keywords:
Co-precipitation
Non-enzymatic glucose sensing
Mesoporous
Carbon paste
Electrocatalysis

A B S T R A C T

In this work, a sensitive and stable ZrO2-Cu(I) nanosphere mesoporous material modified non-enzymatic glucose
sensor has been developed through simple, low cost chemistry.

ZrO2-Cu(I) material was obtained by controlled co-precipitation method under ultra dilution conditions.
Cyclic voltammetric tests were performed in order to evaluate the electrocatalytic activity ZrO2-Cu(I) modified
electrode. The modified electrode showed high sensitivity, wide linear range and very low detection limit of
0.25 mM, this indicates that the modified sensor is competent with that reported earlier. Spherical morphology
of the active material, alkaline environment and presence of +1 copper have significantly enhanced the electro-
catalytic oxidation of glucose on carbon paste platform. Also, the fabricated electrode showed excellent anti-
interference nature. Electro-catalytic oxidation of glucose was demonstrated in real raw unpurified orange juice,
this shows the selective electrocatalytic activity of the ZrO2-Cu(I) nanosphere material towards glucose even in
the presence of interferrants.

1. Introduction

Diabetes is characterized as a condition that hinders body’s ability
to monitor blood glucose levels. As per the WHO data in the year 2014,
people suffering from diabetes are more than 422 million. Systematic
monitoring and diagnosis of diabetes is of utmost importance.
Undiagnosed diabetes may lead to high risk of vascular diseases
(Sarwar et al., 2010). A systematic analysis of vision problems asso-
ciated with diabetes status of an individual has been reported (Bourne
et al., 2013). Also, Rajiv saran et al. reported the consequences of un-
diagnosed diabetes on kidney function (Saran et al., 2015).

There are many instrumental methods reported for monitoring
glucose. A high performance liquid chromatographic technique, for the
determination of glucose associated with red blood cells has been re-
ported by Davis, McDonald, and Jarett (1978). E. King and R. Garner
reported a colorimetric determination of glucose, the estimation of
glucose was affected by various parameters (King & Garner, 2007). T.
Daines and K. Morse devised a spectrophotometric method for the de-
termination of glucose using o-toluidine as a complexing reagent

(Daines & Morse, 1976). J. Baca et al. reported the determination of
fasting glucose levels using liquid chromatography with electrospray
ionization technique (Baca et al., 2007). Despite all these advances,
these methods are not effective as they involve tedious pre-sampling
process and experimental conditions. But, with due respect to all these
research, it is the need of the situation to develop a fast and reliable
electrochemical detection method. Electrochemical sensors are quite
effective in addressing these problems. Hence, in our current research
we developed a simple and highly reliable electrochemical sensor for
the detection and quantification of glucose.

Electrochemical sensors are most reliable and effective tools for the
electrocatalytic oxidation and detection of glucose. Various biosensors
were developed for the detection of glucose using glucose oxidase
(GOx) and also, they high selectivity and sensitivity (Kang, Park, & Ha,
2019). Nevertheless, these enzyme based sensors are sensitive to pH,
temperature and humidity, glucose oxidase is sensitive and suffers de-
naturation due to these factors and shows poor catalytic performance.
Also, these enzymes are expensive and show poor stability due to their
intrinsic nature. Due to these aspects, significant interest has been
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focused on the development of non-enzymatic sensors for the electro-
catalytic oxidation of glucose.

In this path, noble metals such as silver (Rahmani, Hajian, Afkhami,
& Bagheri, 2018), palladium (Huang, Wang, Lu, Du, & Ye, 2017), gold
(Pajooheshpour et al., 2018), modified glossy carbon electrode (Wu,
Guo, Huang, & Wang, 2018) and platinum (Weremfo, Fong, Khan,
Hibbert, & Zhao, 2017) are extensively explored electrodes for en-
zymeless sensing. But, it is need of the current situation to design low
cost, high sensitive and non-noble metal sensors. In this direction, metal
sulphides (Sridhar & Park, 2018; Zhang et al., 2016), carbon nano tubes
(Bagheri, Afkhami, Khoshsafar, Hajian, & Shahriyari, 2017), carbon
dots (Shiri, Pajouheshpoor, Khoshsafar, Amidi, & Bagheri, 2017) and
metal oxides (Karimiana et al., 2018) have been widely used for the
development of sensors.

Metal oxides which exist in the nature as minerals, the sensors based
on them, possess better thermal stability, cyclic stability and shelf life
compared to any enzyme and polymer based sensors (Afzal & Dickert,
2018; Liu, Liu, & Chen, 2013). In addition, these metal oxides show
different polymorphs. Hence, there is wide scope for their investigation
in the sensor field. Moreover, selectively designed nanostructures show
unique chemical and physical properties. Hence, they might be good
materials as electrocatalysts.

2. Experimental

2.1. Materials and methods

Zirconyl oxy chloride octa hydrate, copper chloride dihydrate,
ammonia, KCl, NaOH, HCl, graphite, silicone oil and glucose were
purchased from Merck chemicals, used without further purification.
Orange fruit was obtained from the local market of Tumkur town; the
raw juice was extracted for the analysis. The desired pH in the ex-
perimental runs was adjusted by adding HCl or NaOH as concerned.
The X-ray patterns were recorded for all the samples with Panalytical
x’pert X-ray diffractometer (PXRD), the FTIR spectra were recorded
using Bruker-alpha Fourier transform infrared spectrometer. SEM mi-
crographs were recorded with Zeiss field emission scanning electron
microscope and TEM using JEOL JEM TEM instrument.

Cyclic voltammograms of the prepared sensor was studied in the
potential range of −0.80 V to 0.80 V. Conventional three electrode
setup of working electrode, platinum auxiliary and another platinum
electrode as pseudo reference were used. Amperometric i-t response
was recorded at a constant potential of 0.46 V under constant stirring
conditions.

2.2. Choice of materials

Oxides of copper are good semiconductor materials (Fortunato,
Barquinha, & Martins, 2012). Among them, Cu(I) is a p-type semi-
conductor, attracted much attention due to its excellent photovoltaic
properties, transport properties and soforth (G. Han et al., 2018; J. Han
et al., 2018; Rosas-Laverde et al., 2018). However, pure Cu(I) suffers
thermal and structural instability (Kwon, Soon, Han, & Lee, 2014),
which significantly limits its application in the development of sensors
(Sun et al., 2018).

Zirconia has been identified as an ideal host for copper due to its
high thermal stability, chemical resistance. Also, zirconia is an excellent
material used in the field of catalysis (Korsunska, Polishchuk, Kladko,
Portier, & Khomenkova, 2017), optical devices (Marcaud et al., 2018),
fuel cells (Shim, Chao, Huango, & Prinz, 2007) and electrochemical
sensors (Wang et al., 2015). Zirconia is used for many applications due
to wide band gap (Emeline et al., 1998), optical transparency (Peuchert,
Okano, Menke, Reichel, & Ikesue, 2009), high mechanical strength
(Dehestani & Adolfsson, 2013) and high refractive index (Lee et al.,
2008). Zirconia nanomaterials not only provide the stability but also
improve conduction due to the presence of oxygen vacancy defects.

These defects significantly influence the formation and stabilization of
+1 oxidation of copper (Parashuram, Sreenivasa, Akshatha, Kumar, &
Kumar, 2017).

In this work, the prepared ZrO2-Cu(I) nanosphere material exhibited
excellent electrocatalytic activity, good reproducibility and selectivity
even in presence of other common interferrants with good linear range
and detection limit.

2.3. Preparation of ZrO2-Cu(I) nanomaterial and fabrication of sensor

ZrO2:Cu(I) material was prepared by simple co-precipitation
method. In brief, 60mmol of ZrOCl2·8H2O and 3mmol CuCl2·2H2O
were kept under magnetic stirring. Then, liquor ammonia (25% Merck)
was added at a stirring rate of 1000 rpm till the pH of the solution
becomes 7.5. Thus obtained bluish white precipitate was isolated by
centrifugation, washed several times with water, dried and further
calcinated at 500 °C for 4 h.

Graphite, silicone oil and ZrO2-Cu(I) were taken in 7:3:1 wt pro-
portion and mixed to get a homogeneous blend. The paste obtained was
packed into the 0.5ml plastic syringe. A copper wire was then pierced
into the paste for external electrical contact and this electrode was kept
in dark for 24 h before performing the electrochemical experiments.
The tip of the syringe was carefully polished to mirror finish sequen-
tially with 1.0, 0.3, and 0.05 μm Al2O3 slurry on a polishing cloth, then
the electrode was washed with water to remove adsorbed carbon. The
modified electrode was labeled as Gr/Zr-Cu. A similar procedure was
used to prepare the unmodified bare graphite electrode.

3. Results and discussion

3.1. Characterization of ZrO2-Cu(I) nanomaterial

ZrO2-Cu(I) nanomaterial was characterized by XRD Fig. S1. ZrO2-Cu
(I) showed intense diffraction peaks positioned at 2θ values 30.32,
35.25, 50.63, 60.30 and 63.15 with cubic phase indexed to (1 1 1),
(2 0 0), (2 2 0), (3 1 1) and (2 2 2) facets and it belongs to Fm-3m space
group, the XRD data of ZrO2-Cu(I) was in good agreement with the
standard having PDF number 27-997. In the XRD spectrum there are no
significant peaks of copper, which indicates the high order dispersion of
copper in the zirconia lattice (Duwez & Odell, 1947).

FTIR spectrum of ZrO2-Cu(I) was shown in Fig. S2. The intense and
strong band at around 500 cm−1 is ascribed to deformation bending
modes of Zr-O-Zr (Phillippi & Mazdiyasni, 1971), weak band at
1628 cm−1 is attributed to OH bending mode and the wide band cen-
tered 3420 cm−1 is ascribed to the stretching of OeH group (Platero &
Mentruit, 1994). Bands at 1012 cm−1 and 505 cm−1 are attributed to
the different modes of vibration of CueO bonds.

Morphology of the ZrO2-Cu(I) nanomaterial was observed by TEM
Fig. 1b–d. It is clearly seen that, copper is embedded in the zirconia
nanostructures indicating core-shell model. This particular construction
would result in stable, reproducible and high performance electro-
chemical sensor. The SEM data also revealed the same features with
particles of porous and spherical morphology Fig. 1a.

3.2. Cyclic voltammetric analysis of glucose at Gr/Zr-Cu electrode

Electrocatalytic behavior of Gr/Zr-Cu electrode was investigated by
cyclic voltammetry at pH=10. No obvious peak was observed for bare
graphite electrode, when they are exposed to buffer solution of pH=10
without analyte, in the scan range of −0.8 V to 0.8 V as shown in (Fig.
S3). As observed from the CVs of modified electrode at pH=10, the
peak at −0.105 V indicates the formation of Cu(II), owing to the
transformation of Cu(I) to Cu(II). The peak at −0.62 V is attributed to
the transition of Cu(II) to Cu(I) (Fig. S3) (Yan et al., 2018).
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3.3. Effect of pH

The pH of electrolytic solution under study, will influence the
electrocatalytic oxidation of glucose at Gr/Zr-Cu electrode. Variation of
both peak current and peak potential with respect to pH was examined
by recording the cyclic voltammograms Fig. S4a. From the figure it is
clearly evident that, there is no significant improvement in the peak
current between the pH 2 to 6, further increase in pH improved the
oxidation of glucose and a maximum current was recorded at a pH of 12
with peak current value of 1.87 µA.

Fig. S4b shows the variation of potential with pH, oxidation po-
tential significantly moved towards lower value with increase in the pH,
a minimum oxidation potential was observed at a pH of 10, further at
pH 12 the oxidation potential increased. Hence, pH 10 was selected to
be optimum for the electrochemical experiments at Gr/Zr-Cu electrode.

Under lower pH values, absence of –OH ions resulted in poor oxi-
dation current response. Moreover, in acidic conditions formation of Cu
(OH)2 and CuOOH were feeble. Better oxidation current response was
observed at neutral and above neutral pH values, which is evident from
the dramatic increase of peak current and decrease of peak potential
with pH.

Fig. 1. a) FESEM image of ZrO2:Cu(I), b) and c) TEM image with agglomerated particles. d) TEM image clearly showing the spherical morphology e) EDX spectrum of
ZrO2:Cu(I).

Fig. 2. a) CV of bare graphite with 1mM glucose in 0.1 N NaOH b) CV of Gr/Zr-
Cu electrode in 0.1 N NaOH c) CV of Gr/Zr-Cu electrode with 1mM glucose in
0.1 N NaOH.
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These results are obtained by the synergistic effect arising due to
electrocatalytic activity of Gr/Zr-Cu electrocatalyst and –OH ions
during the electrocatalytic oxidation of glucose.

Hence, from the pH experiments a clear mechanism for the oxida-
tion of glucose can be established (Mechanism 1). Presence of –OH ions
during the electrochemical oxidation of glucose was vital. That is,
oxidation of cuprous from of copper is facilitated due to the presence of
–OH ions only.

According to the mechanism, in alkaline condition cuprous oxide
has been oxidized to cupric hydroxide, which on further oxidation gave
copper oxyhydroxide. Thus form oxyhydroxide oxidizes glucose to
gluconic acid in presence of –OH ions. Finally, reduction of cupric hy-
droxide gave back cuprous oxide.

+ + → +
− −Cu O 2OH H O 2Cu(OH) 2e2 2 2

+ → + +
− −Cu(OH) OH CuOOH H O e2 2

+ + →
−CuOOH Gulcose OH Gluconic acid

+ → + +
− −2Cu(OH) 2e Cu O H O 2OH2 2 2

Mechanism 1: Oxidation of glucose at Gr/Zr-Cu electrode in

presence of –OH ions.

3.4. Electrocatalytic activity of Gr/Zr-Cu electrode towards glucose

To explore the electrocatalytic activity of Gr/Zr-Cu electrode, cyclic
voltammetric technique was used. Fig. 2 shows cyclic voltammogams
(CVs) of bare carbon paste and Gr/Zr-Cu electrodes, in absence and
presence of 1mM glucose. No sign for oxidation of glucose was ob-
served at bare carbon paste electrode. However, there is a dramatic
increase in the anodic peak current at Gr/Zr-Cu electrode at a potential
of 0.46 V, due to the addition of 1mM glucose, this indicates high
electrocatalytic oxidation of glucose at Gr/Zr-Cu electrode. The elec-
trocatalytic activity was further examined at different concentrations
(1–10mM) of glucose Fig. 3a, the graph shows that, the oxidation peak
current increases linearly with increase in concentration. This indicates
quantitative and reliable detection of glucose at Gr/Zr-Cu electrode.
The linearity is given by the regression equation Ipa= 0.126
(µA(mM)−1)+ 1.152C (mM) Fig. 3b.

Fig. 3. a) Cyclic voltammograms of 1–10mM glucose with scan rate of 100mVs−1 at Gr/Zr-Cu electrode, (b) calibration graph of current v/s concentration of
glucose.

Fig. 4. Amperometric i-t response of Gr/Zr-Cu electrode with 1mM glucose incremental injection.
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3.5. Effect of amount of catalyst ZrO2-Cu(I) on the electrocatalytic
performance

The influence of varying the amount active material ZrO2-Cu(I) on
the electrocatalytic activity of Gr/Zr-Cu electrode was studied. Fig. S5
shows the CVs of 10 wt%, 30 wt% and 50 wt% ZrO2-Cu(I) modified
graphite electrodes. Obviously, high current response was obtained for
30 wt% active material loaded electrode. When the amount of active
material increased from 10 to 30wt%, the electrocatalytic activity
significantly improved, which may be due to increase in number of
catalytic active sites. Further, when 50wt% of active material is used,
the catalytic activity decreased, this tendency may be attributed to the
decrease in the conduction because of insulating nature of zirconia.
Thus, 30 wt% of active material was optimum and used in further work.

3.6. Effect of scan rate

Influence of scan rate on the current response at Gr/Zr-Cu electrode
was studied to understand the electrochemical process occurring at the
modified electrode. Fig. S6a shows the CVs of 10mM glucose with
different scan rates (50–250mVs−1). Oxidation peak current increased
linearly with increase of scan rate and followed the linear regression
equation Ipa= 0.07438 ν (µAV−1s)+ (−8.7825 A) with R2 0.9978 Fig.
S6b, which indicate the oxidation of glucose at Gr/Zr-Cu electrode is
typically surface controlled electrochemical process.

3.7. Anti interferrant studies and amperometric analysis of Gr/Zr-Cu
electrode

Designing interference free non-enzymatic electrochemical sensor is
still a great challenge in glucose sensing. Because, the species like DA,
AA & UA are also oxidized in presence of the electrocatalyst producing
unwanted interfering electrochemical signals. Hence, selection of sui-
table conditions makes it essential to avoid the interference.

The amperometric response of Gr/Zr-Cu electrode upon successive
introduction of glucose to 0.1mM NaOH under dynamic condition was
investigated, which is shown in Fig. 4. The amperometric current re-
sponse increased with successive injection of glucose, with a rapid re-
sponse time of< 5 s, which indicate high electrocatalytic efficiency of
Gr/Zr-Cu electrode for the oxidation of glucose. The amperometric re-
sponse was linear with concentration (1–10mM) and the detection
limit was found to be 0.25mM (n=8) and the limit of quantification
was 0.85mM (n=8), as per the 3sd/m, where sd= standard deviation
in the intercept of calibration plot and m is the slope.

The electrocatalytic performance of present sensor with other re-
levant sensors was presented in Table 1. The sensor showed lower de-
tection limit and a good linear range. The lower detection limit may be
attributed to the easy inter conversion of Cu(I) & Cu(II) states and ex-
cellent electrocatalytic activity of Gr/Zr-Cu electrode. In brief, ZrO2-Cu
(I) is a good electrocatalytic material for glucose sensing, even though
some noble metal and composites showed good electrocatalytic per-
formance.

The selective determination of glucose in presence of other common
interferrants is another significant parameter. Hence, electrocatalytic
current response of Gr/Zr-Cu electrode towards glucose was evaluated
in presence of 0.1mM of interferrants like uric acid (UA), ascorbic acid
(AA) and dopamine (DA). No interferrants signals were observed, this is
due to high selectivity of Gr/Zr-Cu electrode towards oxidation of
glucose, these results indicates that, Gr/Zr-Cu electrode is a interferrant
free electrocatalytic sensor Fig. S7.

3.8. Application of the present sensor for the determination of glucose in
real raw orange juice

To ascertain the practical application of Gr/Zr-Cu electrode, the
current responses towards glucose in freshly obtained orange juice wereTa
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studied, CV response with increasing volume of orange juice was pre-
sented in Fig. 5 and a linear current response was observed for the
successive introduction of orange juice. From the diagram it is clearly
evident that, introducing 20 µL of unpurified raw orange juice triggered
the oxidation peak current of glucose at a potential of 0.55 V, this slight
shift in the potential compared to that with pure glucose may be due to
the complex composition of the orange juice. It was also observed that,
the Gr/Zr-Cu electrode effectively detected glucose in the wide volume
range of orange juice 20 µL–200 µL, with linear regression coefficient
R2=0.9897. These results also clearly eradicated the influence of other
interferrants. Since, the Gr/Zr-Cu electrode selectively sensed glucose
in presence of other sugars such as fructose, sucrose and glucose in-
cluding other flavonoids in the raw orange juice. This demonstrates
that, the Gr/Zr-Cu is a robust electrode for the electrocatalytic detection
of glucose.

Glucose recovering ability of the sensor was tested and compared
with the data obtained from commercial strip glucometer. Analytical
recoverability for the addition of 2, 4 and 6mM of pure glucose to
orange juice are showed in Table S1, good recoverability of
99.03–100.39% (±1%) towards glucose was obtained at Gr/Zr-Cu
electrode.

3.9. Stability tests

To test the stability, Gr/Zr-Cu electrode was kept in dark condition
for a period of 180 days. The electrode showed high retention of sen-
sitivity towards the detection of glucose after a period of 180 days also
as shown in Fig. S8a. It is also observed that, 180 days preserved Gr/Zr-
Cu electrode showed a linear response with increasing concentration of
glucose from 1mM to 10mM Fig. S8b. It is observed that, the electrode
retained 42.32% (±1%, n= 5) reproducibility with respect to oxida-
tion peak current response even after 180 days.

4. Conclusions

In the present work, we developed a ZrO2-Cu(I) modified carbon
paste non-enzymatic glucose sensor. The sensor may not used for the
low concentration of glucose levels. However, the prepared sensor was
effective in accelerating the electrocatalytic oxidation of glucose due to
high catalytic active sites and easy interconvertible oxidation state of
copper. Under optimized conditions the Gr/Zr-Cu sensor showed a good
linear range, lower detection limit and good shelf life. The sensor also
showed excellent anti interferrant detection of glucose, indicating high
selectivity of present sensor towards glucose detection, its practical
applicability of this sensor to detect glucose in real orange juice. All
these features shows Gr/Zr-Cu electrode is attractive and promising for
the enzymeless electrochemical determination of glucose.
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