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Recent experimental studies, both in vivo and in vitro, have revealed that membrane components that bind
to the cortical actomyosin meshwork are driven by active fluctuations, whereas membrane components that
do not bind to cortical actin are not. Here we study the statistics of density fluctuations and dynamics of
particles advected in an active quasi-two-dimensional medium comprising self-propelled filaments with no
net orientational order, using a combination of agent-based Brownian dynamics simulations and analytical
calculations. The particles interact with each other and with the self-propelled active filaments via steric
interactions. We find that the particles show a tendency to cluster and their density fluctuations reflect their
binding to and driving by the active filaments. The late-time dynamics of tagged particles is diffusive, with
an active diffusion coefficient that is independent of (or at most weakly dependent on) temperature at low
temperatures. Our results are in qualitative agreement with the experiments mentioned above. In addition, we
make predictions that can be tested in future experiments.
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I. INTRODUCTION AND MOTIVATION

The spatial organization, clustering, and dynamics of many
cell surface molecules is influenced by interaction with the
actomyosin cortex [1–6], a thin layer of actin cytoskeleton
and myosin motors, measured to be around 250 nm in HeLa
cells [7], that is juxtaposed with the membrane bilayer. Al-
though the ultrastructure of the cortical actin cytoskeleton is
as yet poorly defined, there is growing evidence that it is
composed simultaneously of dynamic filaments [3] and an
extensively branched static meshwork [8]. The coupling of
the membrane to these two types of actin configurations is ex-
pected to affect the dynamics and organization of membrane
components, presumably in different ways.

A common feature of these cell surface proteins is that
they can bind, directly or indirectly, to cortical actin. As a
consequence, a variety of myosin motors that act on actin
filaments at the cortex, can drive the local clustering and
dynamics of these cell surface proteins. Mutations of these
proteins that abrogate this actin binding capacity leave them
unaffected by the dynamics of the actomyosin cortex [3,4].
Similarly, silencing myosin motor activity, renders the dy-
namics of these cell surface proteins normal and akin to their
mutated counterpart [3,4]. A description of the cell surface as
an Active Composite of a multicomponent, asymmetric bilayer
juxtaposed with a thin cortical actomyosin layer (Fig. 1),
appears to consistently explain the anomalous dynamical fea-
tures of these proteins [1,3,4]. In these earlier studies [3,9],
we had used a coarse-grained description, based on active
hydrodynamics [10]. Recently, it has been shown that much
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of this behavior is recapitulated in a minimal in vitro recon-
stitution of a supported bilayer in contact with a thin layer of
short actin filaments and Myosin-II minifilaments, driven by
the hydrolysis of ATP [11]. The success of this minimal setup
motivates us to revisit our continuum hydrodynamic descrip-
tion from a more microscopic standpoint. Our present study is
an agent-based Brownian dynamics simulation of a mixture of
polar active filaments and passive particles which interact with
each other [12,13]. Since the parameter space for exploration
is large, we restrict our study here to the case where the
density of filaments and particles is low (negligible filament
overlap), and where there is no net orientational order.

For the present purposes, we schematically represent the
Active Composite Cell Surface, as in Fig. 1. To enable a
systematic study, we conceptually separate out the different
architectures of actin at the cortex: (1) where the cortical
layer consists of only short dynamic filaments described as
an active fluid (the subject of the present paper) and (2) where
the cortical layer consists of only long filaments forming a
static mesh of characteristic mesh size ξ ≈ 52 nm in FRSK
cells [8,14] (which we take up in a later publication). In future,
we will combine these configurations into a single model of
the cortical actomyosin.

Our choice of Brownian dynamics simulations is motivated
by experiments on tagged particle diffusion both on the cell
surface and in the in vitro reconstitution. Molecules that
bind to dynamic actin (passive molecules) are affected by
the active fluctuations of actomyosin; their diffusion shows
anomalous behavior strongly indicative of active driving. On
the other hand, molecules that do not interact with actin (inert
molecules), such as short chain lipids and proteins whose
actin-binding domain has been mutated so as to abrogate
their interaction with actin, do not show any influence of
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FIG. 1. Schematic of the Active Composite Cell Surface with a
multicomponent asymmetric bilayer membrane juxtaposed with the
cortical layer of actin and myosin. The actin layer consists of short
dynamic actin and long static actin filaments, the latter forming a
crosslinked mesh [8,14]. For clarity, myosin motors are not shown,
the short filaments are active and represent myosin bound actin
filaments. The passive molecules (shown in red) are transmembrane
proteins that have a cytoplasmic actin-binding domain.

active fluctuations [3,4,11]. There appears to be no sign that
the transport of these inert molecules is affected by potential
hydrodynamic flows induced by active stresses coming from
actomyosin [15,16].

While our primary motivation are the experimental studies
of the tagged particle dynamics on the cell surface [3,4,11],
our work is also relevant to transport in other living and
nonliving systems, as long as the effects of hydrodynamics are
negligible, for instance, to the movement of multiple motor-
driven cargo vesicles or synthetic beads on the cytoskeletal
network [17].

II. BROWNIAN DYNAMICS AND CHARACTERIZATION

A. Simulation details

We study the dynamics of a mixture of polar active fila-
ments and passive particles using an agent-based Brownian
dynamics simulation. The passive particles are modeled as
monodisperse soft spheres of diameter σ . A pair of passive
particles separated by a distance r interact via a truncated
Lennard-Jones (LJ) pair potential of the form

Vpp(r ) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

+ V0 + V2r
2 for r � rc

= 0 for r > rc, (1)

where rc = 2.5σ and values of V0 and V2 are chosen so that
the potential and force are continuous at the truncation point.
We set σ = 1 and ε = 1 to be the units of length and energy,
respectively.

The polar filaments are modeled as semiflexible bead-
spring polymers, with both stretch and bend distor-
tions [18,19]. We implement excluded volume interaction
between the beads of same filament, as well as between two
different filaments through a truncated Lennard-Jones pair
potential of the form

Vbb(r ) = 4ε′
[(

σ ′

r

)12

−
(

σ ′

r

)6]
+ V ′

0 + V ′
2r

2 for r � r ′
c

= 0 for r > r ′
c, (2)

where r is the distance between the centers of the correspond-
ing beads, and r ′

c = 21/6σ ′ and V ′
0, V

′
2 are constants, chosen

so that the potential and force are continuous at r ′
c. We take

σ ′ = 2 and ε′ = 1. Each filament is composed of 10 beads
and therefore has an equilibrium length l0 = 20, in units of σ .

Note that with our choice of cutoffs, the particle-particle in-
teraction Vpp has both attractive and repulsive parts, whereas
the bead-bead interaction Vbb is strictly repulsive.

To make the filament semiflexible, we impose additional
spring forces on the beads. A harmonic stretching potential
with extensile stiffness Kc = 400, in units of ε/σ 2, ensures
that the length of the filament does not deviate significantly
from its equilibrium value, l0 = 20. The bending energy of a
triplet of connected beads is also harmonic in the angle, with a
bending stiffness Kb = 600, in units of ε. This high Kb makes
the filaments very stiff, with a typical persistence length much
larger than l0.

A propulsion force f = f0n̂ is imposed on each of the
beads, along the average direction (n̂) of all the bonds present
in a filament. Note that we do not impose any filament
alignment rule nor do we prescribe any activity decorrela-
tion time. Instead, these originate from thermal fluctuations
on the constituent monomers comprising each filament and
collisions driven by thermal and active forces, an emergent
many-particle feature. As a consequence, both the local align-
ment and orientational decorrelation time are functions of
temperature, density, and activity.

On the other hand, the passive particles are subject to
thermal noise and can bind and unbind to the beads of the
filament. The interactions between the beads of the filament
and the passive particles are modeled by a harmonic potential
of spring constant Ks = 50 in units of ε/σ 2. The harmonic
potential is truncated at a cutoff distance r0 = 1 and set to zero
beyond it. When a passive particle comes within a distance r0

from the center of a filament bead, it binds to the correspond-
ing bead and gets advected along with the filament, under
the application of propulsion force f0n̂. The unbinding of
the passive particle from the filament is facilitated by thermal
noise. We will later characterize the binding and unbinding
rates as a function of Ks and temperature. Note that we do not
include any steric interaction between the passive particles on
the membrane and the filaments in the cortex. A schematic
showing the dynamic processes is displayed in Fig. 2(a).

Unless mentioned otherwise, all results presented here are
for Np = 800 passive particles and Nr = 50 self-propelled
filaments in a two-dimensional (2D) area of linear dimension
L = 396.4 with periodic boundary conditions. For most of
the study, we take the area fractions of the filaments (c) and
particles (ρ) to be c = 0.01 and ρ = 0.004, respectively.

The Brownian dynamics equations involve an update of
both the passive particle and the filament bead coordinates,
for which we have used a simple Euler integration scheme
with integration time step �t ∼ 10−4. The dynamics of the
position of the ith passive particle is given by

ṙp

i =
{−γ −1

p ∇iVp + √
2kBT /γpξ i , (unbound)

−γ −1
p ∇iVp + √

2kBT /γpξ i + fi/γp, (bound)
,

(3)
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FIG. 2. (a) Schematic of the agent-based model, where the polar
filaments (indicated by ±) built from beads (blue) propel in a 2D
background of passive particles (red). The passive particles can bind
to the filaments with rate kb and are advected with it. Upon unbinding
with rate ku, the passive particles undergo simple thermal diffusion.
(b) Simulation snapshot showing self-propelled filaments (blue) and
bound (green) and unbound (red) passive particles within a 2D box
with periodic boundary conditions.

where γp is the friction coefficient of the passive particle,
and Vp is the net potential felt by the ith passive particle
and includes contributions from Eq. (1) and the bead-particle
spring interactions. The diffusion of the unbound particle is
driven by a thermal noise ξ i with zero mean and unit variance
acting on ith particle (kB is the Boltzmann constant). On the
other hand, the bound particles are subject to both the thermal
noise and active driving.

The dynamics of the filament-bead displacements in our
simulation is

ṙb
j = −γ −1

b ∇jVb +
√

2kBT /γb ξ j + fj /γb, (4)

where γb is the friction coefficient of the bead, and Vb is the
net potential felt by the j th bead and includes contributions
from Eq. (2), harmonic stretching, and bending interactions.
Since our study is entirely in the isotropic phase of the
filaments, we have ignored complications that would arise by
considering anisotropies in both friction and thermal noise, as
required by detailed balance.

We take γp = 1, which together with σ = 1 and ε = 1, sets
the units of space, time, and energy. All other quantities can

TABLE I. Conversion between simulation units (S.U.) and real
units (R.U.).

Parameter [Dimension] S.U. R.U.

σ [l] 1 10 nm

ε [ml2t−2] 1 4.14 × 10−21 J

γp [mt−1] 1 0.123 pNμm−1s

T [k] 1 300 K

t [t] 1 3 × 10−3 s

ku, kb [t−1] 1 333 s−1

f0 [mlt−2] 1 0.41 pN

Va [lt−1] 1 3.3 μm s−1

Kc [mt−2] 1 41.4 pNμm−1

Kb [ml2t−2]] 1 4.14 × 10−21 J

Ks [mt−2] 1 41.4 pNμm−1

D [l2t−1] 1 3.3 × 10−2 μm2/s

be written in terms of these units, so as to make Eqs. (3) and
(4) dimensionless. In all that follows below, except in Sec. V,
we have taken γb = γp. A typical snapshot of the agent-based
simulation is shown in Fig. 2(b).

To be able to make contact with the in vitro reconstitution
experiments [11], we translate our simulation units (S.U.) to
real units (R.U.). Setting σ = 10 nm, γb = 0.123 pN μm−1 s
[20] and ε = 4.14 × 10−21 J, we can convert our simulation
units to real units, as displayed in Table I. Note, however, that
if we were to compare our simulation results with some other
experimental system (e.g., an appropriately designed active
colloidal suspension), then we would have to use a different
conversion factor. To allow for this, we have varied the
dimensionless temperature over the range T = 0.25–10 and
the dimensionless propulsion force over the range f0 = 0–4.0.
We have typically run the Brownian dynamics simulation for
a total time t ∼ 104, ensuring that the system has reached
steady state. Our initial conditions are chosen from a thermal
distribution at temperature T , and all results presented here
are averaged over 16 such independent initial realizations.

B. Statistics of filament orientation

We characterise the ith filament by its center of mass posi-
tion ri and a unit vector ni = (cos θi, sin θi ) along its long axis
to describe its polar orientation (recall that the filaments are
very stiff). We first ensure that the configuration of filaments is
in the spatially homogeneous, orientationally isotropic state;
this is demonstrated in the plots of the probability distribution
of the polar P (θ ) and nematic orientations P (θ̃ ) (Fig. 3).

We then calculate the orientational correlation lengths, so
as to ensure that this is much smaller than our system size
and comparable to the size of the filaments. To do this, we
calculate the spatial correlations of both the polar and nematic
orientation,

CP (r ) =
〈

1

N2

N∑
i=1

N∑
j=1

cos(θi − θj )

〉
(5)

CN (r ) =
〈

1

N2

N∑
i=1

N∑
j=1

[2 cos2(θi − θj ) − 1]

〉
, (6)
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FIG. 3. Normalized distribution of (a) polar orientation P (θ ) and
(b) nematic orientation P (θ̃ ), of the filaments at different temperature
T with activity f0 = 4.0, showing that the system is in the isotropic
phase for a representative set of parameters. Data displayed with
standard deviations over 16 independent realizations.

where r = |ri − rj | is the distance between the center-of-
mass of the ith and j th filaments. By fitting this to an
exponential (Figs. 4 and 5), we extract the polar and nematic
orientation correlation lengths, ζP and ζN , whose dependence
on the area fraction of filaments c (we will henceforth refer to
this as filament density) is shown in the inset.

Throughout the paper (unless mentioned otherwise) we
work at a filament density of c = 0.01 and temperatures T �
0.5; in this regime, the orientational correlation lengths are
of the order of the filament length, l0, and hence comfortably
within the isotropic phase.

C. Statistics of binding-unbinding of passive particles onto
filaments

The dynamical Eqs. (3) and (4) are written entirely in terms
forces, either active or derived from a potential, and thermal
noise. The particles experience a binding and unbinding onto
the filaments which depend on this interplay between thermal
noise and the attractive potentials. Thus, for instance, the
unbound passive particles diffuse in the 2D medium and ever
so often come within the vicinity (r � r0 = 1) of a moving
filament bead, whereupon they bind to the filament bead. In
the low-density limit, we expect the binding rate kb to be

FIG. 4. Spatial correlation of the polar orientation, CP (r ), of
the filaments at different filament densities c at T = 0.5 and active
propulsion f0 = 4. Inset shows the corresponding correlation length
ζP as a function of filament density c.

FIG. 5. Spatial correlation of the nematic orientation, CN (r ), of
the filaments at different filament density c at T = 0.5 and f0 = 4.
Inset shows the corresponding correlation length ζN as a function of
filament density c.

diffusion limited and so kb ∝ T and independent of Ks where
Ks is the strength of trapping harmonic interaction.

To study the unbinding of a particle bound from a filament
bead, we compute the rate of escape of a particle trapped in a
truncated attractive harmonic potential [21], parametrized by
Ks and r0. This is given by

ku = K2
s r2

0

γpkBT
exp

(
− Ksr

2
0

2kBT

)
(7)

and should be a good description of the dynamics of unbind-
ing of the passive particles in the limit of low particle density.

We compare these theoretical estimates with the results
of simulations on a mixture of particles and filaments at
equilibrium (no active propulsion), from which we extract
the values of ku and kb in two different ways. In the first
method, we represent the stochastic binding and unbinding by
a telegraphic process [22], characterized by a mean duty ratio,

〈φ〉 = kb

kb + ku

, (8)

the fraction of time spent by the tagged particle in the bound
state over the observation time, and a two-point correlator,

〈φ(t )φ(t ′)〉 = 〈φ〉2 + 〈φ〉(1 − 〈φ〉)e−2 |t−t ′ |
tsw , (9)

where

tsw = 2

kb + ku

(10)

is called the mean switching time and describes the mean
time taken to switch from a bound to an unbound state. We
calculate kb and ku, by fitting our simulation results to 〈φ〉
and 〈φ(t )φ(t ′)〉. In the second method, we calculate ku (kb)
directly, from the inverse mean time that the particle stays
bound (unbound) on the filament.

Up to a scaling by a constant, the two numerical methods
show identical variation as a function of temperature T and
particle-filament binding potential Ks . These in turn agree
with our analytical estimates, with no fit parameter (Fig. 6).

052608-4



INTERACTING PASSIVE ADVECTIVE SCALARS IN AN … PHYSICAL REVIEW E 98, 052608 (2018)

FIG. 6. Dependence of binding (unbinding) rates kb (ku) on (a)
the strength of the particle-filament binding potential, Ks , and (b)
temperature, T , calculated using the two different numerical methods
(filled symbols) discussed in the text. These can be fit, with no
undetermined parameter, to the analytic forms (solid lines) discussed
in the text [Eq. (7)].

It is important that we do not prescribe the binding-
unbinding rates; rather we derive them from the assigned
potentials. The binding-unbinding rates thus depend nontriv-
ially on temperature; they would also depend on the density
of passive particles and filaments in the high-density limit.
This will be crucial to our estimation of the tagged particle
diffusion coefficient and its comparison with experimental
data (Sec. IV B).

III. DENSITY FLUCTUATIONS OF PASSIVE ADVECTIVE
SCALARS IN AN ACTIVE MEDIUM

We now study the statistics of density fluctuations and
dynamics of the actively driven passive particles. We find that
the active driving tends to cluster the passive particles; this
shows up in the two-point spatial density correlation function
and the statistics of the density fluctuations.

A. Radial distribution function

We study the behavior of the radial distribution function of
the passive particles g(r ),

g(r ) = 1

Npρ

〈∑
i

∑
i �=j

δ(r − |ri − rj|)
〉
, (11)

where Np is the total number of passive particles and ρ the
passive particle density. When kb = 0 and f0 = 0, i.e., when
the particles do not bind to the filament (inert particles) and
there is no propulsion force, g(r ) has the form of a dilute
fluid (Fig. 7). When we allow for particle binding, but in the
absence of propulsion force, the g(r ) displays oscillations,
which arise from particles binding to periodic locations on the
filaments (Fig. 7); note that r = 20 coincides with the filament
length. In this equilibrium situation, the particles not bound to
the filaments do not show any clustering. We now consider
the case when the filaments are driven by a propulsion force
f0. We see that the propulsion drives the clustering of the
filaments, which in turn leads to an increase in correlation be-
tween bound particles, even at distances beyond the filament
length (Fig. 7).

B. Probability distribution of local number density

This activity induced clustering of the passive particles
should be reflected in the probability distribution of the excess

FIG. 7. Radial distribution function g(r ) for (1) equilibrium
system of inert particles (kb = 0: red •), (2) equilibrium system of
passive particles which can bind to the filaments (kb > 0, f0 = 0:
green

�
), and (3) driven system of passive particles which can

bind to the self-propelled filaments (kb > 0, f0 = 4: blue
�

). In
the presence of activity the peak heights increase and g(r ) falls off
more gradually, indicating a high degree of clustering of the bound
particles, even at distances larger than the filament length. Data
displayed with standard deviations over 16 independent realizations.

number density. To compute this we divide the system into
blocks of size � = 39.64 and count the number of passive
particles n in each block, to obtain the steady state distribution
P (n).

The statistics of density fluctuations of inert particles,
in the dilute limit (Fig. 8), are described by a probability

FIG. 8. Probability distribution of number density P (n) for (1)
equilibrium system of inert particles (kb = 0: red •), (2) equilibrium
system of passive particles which can bind to the filaments (kb >

0, f0 = 0: green
�

), and (3) driven system of passive particles which
can bind to the self-propelled filaments (kb > 0, f0 = 4: blue

�
).

For inert particles, P (n) fits the virial expression Eq. (12) (dark line)
with a second virial coefficient, B2 = −0.99. P (n) picks up an expo-
nential tail for particles that bind and unbind onto the filaments and
moves towards the typical value as the active propulsion force gets
larger. Data displayed with standard deviations over 16 independent
realizations.
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distribution that resembles a gas at temperature T and the
average number of particle in the blocks n̄, namely,

P (n) = 1√
2πσ 2

exp

[
− (n − n̄)2

2σ 2

]
, (12)

where n̄ = �ρ. We have taken the variance of the above
distribution to have a virial form, σ 2 = n̄ − 2B2

�
n̄2 + · · · ; a fit

to the numerical data gives B2 = −0.99 (dark line in Fig. 8).
On the other hand, the probability distribution for passive

particles picks up an exponential tail arising from the binding-
unbinding statistics of the particles. This exponential tail gets
more pronounced when the filaments are made active and
moves towards the typical value as the active propulsion
force gets larger (Fig. 8). This reflects the fact that for high
driving, the typical particle is clustered. Both these results are
consistent with the observed clustering of actin-binding pro-
teins driven by actomyosin flows in the in vitro reconstitution
system reported in Ref. [11].

C. Number fluctuations: Crossover from anomalous
to Brownian

Note that the active system of filaments is in the isotropic
phase, and we should not expect to see the giant number fluc-
tuations normally associated with active systems with global-
orientational order [23–25]. However, when we compute the
root mean square fluctuations �n and mean n̄ of the number
of passive particles over regions of ever increasing area, and
plot them with respect to each other, we find that initially
�n ∝ n̄α with α = 0.784. Subsequently, as n̄ increases, the
variance scaling shows a crossover to α = 0.5. This crossover
occurs over a scale corresponding to the orientational cor-
relation length, which can in principle be large, especially
close to the isotropic-nematic transition or high f0. This is
especially apparent in the high-particle-density regime; see
Fig. 9 for particle density ρ = 0.05 and filament density c =
0.02. This slow crossover explains the observed anomalous
number fluctuations in the in vitro actomyosin reconstitution
system [11]. In order to recover the crossover to the expected
normal fluctuations at large n, one needs to probe over length
scales larger than this crossover length [26].

IV. TRANSPORT OF PASSIVE ADVECTIVE SCALARS
IN AN ACTIVE MEDIUM

We now study the transport of passive particles moving
in the active medium. Because the filaments are orientation-
ally disordered, the long time dynamics of the particles is
always diffusive. However, the diffusion characteristics can
change depending on the statistics of (un)binding to the active
filaments.

A. Typical trajectories

The space-time trajectories of the passive particles show
three qualitatively different behaviors. At very low tempera-
tures compared to U = Ksr

2
0 /4, a passive particle once bound

to a filament rarely unbinds, and hence gets advected with the
self-propelled filament [Fig. 10(a)]. The direction of advec-
tion changes because of thermal fluctuations and collisions
between filaments. Increasing the temperature increases the

FIG. 9. (a) Root-mean-square fluctuations of the number of pas-
sive particles �n versus the mean n̄ for inert (red •) and passive
particles at two different temperatures, T = 0.5 (

�
) and T = 2.0

(�). Solid lines indicate the local slope α in this log-log plot of
�n ∝ n̄α . The values of α indicated in the legend show that while
inert particles exhibit normal fluctuations (α = 0.5), passive particles
show large fluctuations at small n̄ (with α depending on T and f0)
that crosses over to normal fluctuations beyond a scale corresponding
to the orientational correlation length (indicated by the arrow). Data
displayed with standard deviations over 16 independent realizations.
(b) To study the crossover behavior, we plot �n versus n̄ for two
different system sizes at T = 0.5. The crossover from α = 0.784 to
α = 0.5 occurs at the orientational correlation length (arrow to the
left), which being much smaller than system size, does not show any
difference in the two system sizes. However, the eventual flattening
and drop of the curve at large n̄ is a system size effect, as seen by the
arrows to the right. The Np = 2500 data have been shifted along the
y axis for better visualization.

probability of unbinding from the filament, whereupon the
particle undergoes unrestricted thermal diffusion before bind-
ing again [Fig. 10(b)]. At even higher temperatures, kBT /U ≈
1 the particles do not bind to the filaments, and the motion is
simple thermal diffusion [Fig. 10(c)].

B. Statistics of displacements and diffusion coefficient

Propensity distribution. The distribution of displacements
�x (along the x̂ direction) evaluated over a time window tw
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FIG. 10. Typical trajectories of passive particles for a fixed
propulsion force f0 = 4.0 at different temperatures: (a) T = 0.5
(low: kBT /U = 0.04), (b) T = 4.0 (intermediate: kBT /U = 0.32),
and (c) T = 10.0 (high: kBT /U = 0.8).

is called the propensity distribution. This will depend on the
statistics of binding and unbinding, which in turn depends on
the temperature T and f0, densities of filaments and particles,
and of course on the time window tw, which we fix at tw =
10. This can be obtained both from our Brownian dynamics
simulation and, in the dilute limit, analytically.

In the dilute limit, one can obtain the form of this proba-
bility distribution from the stationary process describing the
particle vector displacements in a small time interval tw,

r(tw ) = r(0) +
∫ tw

0
V(t ′) dt ′, (13)

where V is the velocity of the tagged particle at time t ,
given by

V(t ) = φ(t )
f0

γ
n̂(t ) + [1 − φ(t )] ξ (t ), (14)

where n̂ is the polar vector representing the orientation of
the filament to which the particle is bound at time t, ξ is the
thermal noise, and φ(t ) is the telegraphic noise whose statis-
tics is described in Sec. II C. The distribution of the particle
displacements �xtw ≡ [(r(tw ) − r(0)] · x̂ can be obtained by
evaluating

P (�x) = 〈δ(�x − �xtw )〉, (15)

where �xtw is obtained from Eq. (13) and the angular bracket
denotes an average over the joint distribution of ξ and φ.
This can be evaluated by standard techniques of Fourier
transformation and cumulant expansion [22],

ln P̃ (k) =
∞∑

m=1

(ik)m

m!

〈(
�xtw

)m〉
c
, (16)

where P̃ (k) is the Fourier transform of P (�x). The mth cu-
mulants 〈(�xtw )m〉c can be evaluated from Eqs. (13) and (14),
knowing that φ and ξ are independent stochastic processes.
The distribution P (�x) is then obtained by taking the inverse
Fourier transform of P̃ (k).

However, in practice, the inverse Fourier transform of
P̃ (k), for the stationary process Eq. (13), has to be evaluated
numerically. Rather than do this, we provide an alternate
argument which gives more insight.

At low enough T , the passive particles are completely
bound to the self-propelled filaments, and so as long as
tw < τ , the orientational correlation time of the filaments,
the particles get displaced by �r = f0tw

γp
n̂, where γp is the

FIG. 11. Probability distribution P (�x ) of the displacements of
passive particles, evaluated for fixed time interval

�
t = 10, at a

propulsion force f0 = 4.0 and temperatures (a) T = 0.5 and (b)
T = 2.0. The central peak comes from the fraction undergoing
thermal diffusion, while the side peaks come from the bound fraction
undergoing active motion. The black filled line shows parameter-free
fits to the approximate analytical form [Eq. (17)], where we have
estimated the value of 〈φ〉 = 0.9995 at T = 0.5 (mainly bound) and
〈φ〉 = 0.632 at T = 2.0. Data displayed with standard deviations
over 16 independent realizations.

friction coefficient and n̂ is the unit vector representing the
average orientation of a filament during time interval tw.
Since the filament orientation is uniformly distributed, the
contribution to the step-size distribution from this process is
P (�x) = γp

πf0tw

1√
1−(

γp

f0
�x
tw

)2
. On the other hand, at very high

T , the particles are completely unbound and undergo thermal
diffusion, for which the step-size distribution is P (�x) =

1√
2πσ 2

exp [− (�x)2

2σ 2 ], where σ 2 = 2kBT
γp

tw. We propose that at
an intermediate T , the propensity distribution can be written
as a linear combination, weighted by the duty ratio 〈φ〉:

P (�x) = γp

πf0tw

〈φ〉√
1 −

(
γp

f0

�x
tw

)2

+ 1 − 〈φ〉√
2πσ 2

exp

[
− (�x)2

2σ 2

]
. (17)

Considering that there are no undetermined parameters, the
agreement of this approximate analytical form with the results
of the Brownian simulation is quite reasonable; see Fig. 11.

Mean square displacement. From the statistics of the dis-
placement we can compute the mean square displacement
(MSD) as 〈�r2(t )〉 = 〈 1

Np

∑
i |ri (t0 + t ) − ri (t0)|2〉, where ri

is the position of the ith particle. This shows a change from
a short time diffusive regime crossing over to a long time
diffusive regime via an intermediate superdiffusive regime
[Fig. 12(a)]. We estimate the second crossover time tc(T , f0)
from the superdiffusive to late-time diffusion D, by fitting
the simulation data to 〈�r2(t )〉 = 4Dt [1 − exp(−t/tc )] [27],
using which we can collapse the MSD data for different
values of active propulsion f0 [Fig. 12(b)]. From this we see
that tc decreases with f0 [Fig. 12(b) inset]. This is because
the filament orientation decorrelates on account of collisions,
whose frequency increases with f0. In experimental systems
where hydrodynamics plays a crucial role [27], this depen-
dence of tc on f0 may be different. In situations where the
crossover tc is large, the apparent superdiffusion behavior
would last for many decades in time. We can then fit the MSD
to 〈�r2(t )〉 ∼ tβ to obtain the superdiffusion exponent β > 1;
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FIG. 12. (a) MSD of passive particles as a function of time at
T = 0.5 for different values of self-propulsion force (f0) of the
filaments. (b) Collapse of MSD using crossover time (tc) and long
time diffusion constant for the same case. Inset shows crossover time
(tc ) as a function of self-propulsion force (f0) of the active filaments
for the same case.

we find that β = 1.95 at T = 0.5 and β = 1.77 at T = 2.0,
for a propulsion force f0 = 4.0.

Temperature and activity dependence of MSD. We now
compute the late-time diffusion coefficient of the tagged par-
ticles, D = limt→∞〈�r2(t )〉/4t , for different T and f0. For
a fixed f0, one might expect that at low temperatures D is
weakly dependent on (or even independent of) temperature
because a particle once bound to the filament remains so and
undergoes active diffusion as it is transported by the filament
(Fig. 13). As we increase the temperature, D decreases, since
a particle spends less time, on an average, bound to the
filament (recall we have set γb = γp). At high temperatures,
the particles are predominantly unbound, and hence D re-
sembles that of an inert particle, which increases linearly
with temperature. This is indeed what we see from a direct
numerical simulation of the Brownian dynamics trajectories
of a tagged particle (Fig. 13).

From the stationary process, Eq. (13), the MSD of the
tagged passive particle,

〈δr2(t )〉 =
∫ t

0

∫ t

0
〈V(t ′) · V(t ′′)〉 dt ′ dt ′′, (18)

FIG. 13. (a) Diffusion coefficient (D) of tagged passive particles
has been plotted as a function of T for different values of f0 of the
filaments. At the low-temperature regime D is weakly dependent
on T (signature of active diffusion). At the intermediate regime
D decreases then again increases at the high-temperature regime
where thermal diffusion dominates. (b) Total diffusion coefficient D

(with points) and active diffusion coefficient Da(with line) with f0

for different T . In the low-temperature and high-activity regime the
difference between D and Da is insignificant; as we increase T and
decrease f0 the difference becomes prominent.

FIG. 14. (a) Temporal correlation of the direction of persistent
movement of the filaments, measured by the velocity orientation
correlation function Cθ (t ), at different temperatures, with the fil-
ament density c = 0.01 and propulsion force f0 = 4. Inset shows
the corresponding orientation correlation time τ as a function of
T . (b) Temperature dependence of binding (kb) and unbinding (ku)
rates calculated from the statistics of the telegraphic noise φ(t ). (c)
Both simulation and analytic calculation of diffusion coefficient (D)
of tagged passive particles are plotted as a function of temperature
(T ) for two different activities (f0 = 2, 4) for filament density c =
0.01. Data displayed with standard deviations over 16 independent
realizations. Note that the standard deviation in the analytic graph is
because we have used the values of τ, ku, and kb from simulations.

immediately gives the diffusion coefficient,

D = 1

2

∫ ∞

0
〈V(t ) · V(0)〉 dt. (19)

Using Eq. (14), we see that the diffusion coefficient of the
bound particle is given by the correlations of Va , which is
given by [Fig. 14(a)],

〈Va (t ) · Va (0)〉 = f 2
0

γ 2
p

〈cos[θ (t ) − θ (0)]〉

= f 2
0

γ 2
p

e− |t |/τ . (20)

The diffusion coefficient can now be simply evaluated,

D = f 2
0 τkb(τkb + 1)

2γ 2
p (ku + kb )[(ku + kb )τ + 1]

+ kBT ku

γp(ku + kb )
. (21)

To plot D versus T and f0, we need to know the values
of kb, ku (equivalently 〈φ〉, tsw) and τ , which depend on
the temperature and density, and which we obtain from our
simulations. We then compare this semianalytical form to the
direct numerical computation of the diffusion coefficient from
the Brownian dynamics trajectories (Fig. 14). The agreement
between the two is excellent. Our computations recapitulate
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FIG. 15. (a) Temporal correlation of the direction of persistent
movement of the filaments, measured by the velocity orientation
correlation function Cθ (t ), with different filament density (c), at
temperature T = 0.5 and propulsion force f0 = 4. Inset shows the
corresponding orientation correlation time τ as a function of c. (b)
Dependence of binding (kb) and unbinding (ku) rates on filament
density c, calculated from the statistics of the telegraphic noise φ(t ).
(c) Both simulation and analytic calculation of diffusion coefficient
(D) of tagged passive particles has been plotted as a function of
filament density (c) at T = 0.5 and for f0 = 4. Data displayed with
standard deviations over 16 independent realizations. Note that the
standard deviation in the analytic graph is because we have used the
values of τ, ku, and kb from simulations.

in vivo observations of the temperature insensitivity of dif-
fusion coefficient of a variety of passive molecules driven
by actomyosin flows at the cell surface, using fluorescence
correlation spectroscopy [4].

It might be objected that in our analysis we have treated
the active propulsion as an independently tunable parameter,
thus precluding the possibility that the activity itself may be
temperature dependent. However, as we saw in Ref. [2], and as
noted elsewhere [28,29], the actomyosin contractile processes
taken as a whole appear to be independent of temperature in
the physiological range, 24–37 ◦C.

Figure 15 shows the dependence of D on filament concen-
tration c, both from direct simulations and from the analytical
form using the values of kb, ku (equivalently 〈φ〉, tsw) and τ ,
from simulations. This shows optimal transport at a specific
filament concentration; the orientational decorrelation time
is smaller at higher filament concentration, due to higher
collision frequency.

V. VISCOSITY STRATIFICATION AND ITS EFFECT
ON MEMBRANE DIFFUSION

So far, our study of transport of passive molecules in
an active medium has been restricted to two dimensions.
However, as we discussed in Sec. I, the cell surface is a
composite of a bilayer membrane and a thin actomyosin
cortex. Thus while the proteins move on the cell membrane,

FIG. 16. (a) Fraction of bound particles 〈nb〉 decreases with � =
γp/γb over a range of temperatures. (b) Diffusion coefficient versus
temperature at different values of viscosity mismatch parameter �.
In both figures, the propulsion force has been fixed at f0 = 4.0.

the actively driven actin moves in the actomyosin cortex. The
viscosities of these two layers are significantly different, with
the bilayer membrane having a viscosity which is an order of
magnitude larger than the cortex (≈0.86 Pa s [20]). Indeed the
local viscosity of a multicomponent membrane can be quite
heterogeneous; for instance, the particle mobility within the
so-called “membrane rafts” or liquid-ordered regions on the
cell membrane can be very different from those within liquid-
disordered regions. Moreover the local cortical viscosity de-
pends on local actin, myosin, and cross-linker concentrations.
How does this viscosity mismatch affect the actively driven
transport of passive molecules?

To address this important issue within our simulation,
we vary the ratio of the friction coefficients � = γp/γb in
Eqs. (3) and (4). We find that the mean fraction of passive
particles bound to filaments 〈nb〉 decreases with increasing
� over a range of T and f0 = 4.0 [Fig. 16(a)]. This is an
interesting observation, since one might have naively thought
that 〈nb〉 is solely governed by binding-unbinding, a purely
equilibrium process and hence independent of relative viscosi-
ties. However, we see that the drag induced by the imposed
viscosity stratification (a nonequilibrium feature) can “peel
off” particles from the filaments. It is not clear to us why
we see a shoulder at intermediate values of � for low enough
temperatures [Fig. 16(a)].

This is reflected in changes that we observe in the measured
diffusion coefficient D, as it decreases with increasing � at
different T [Fig. 16(b)]. As can be seen, the active-diffusion
regime at low temperatures becomes significantly more tem-
perature dependent as the viscosity mismatch � increases.

The results of this section are not purely academic; on the
contrary, taken together they pose an interesting possibility
that by tuning local viscosity mismatch, for instance by locally
recruiting the so-called “membrane rafts” or liquid-ordered
regions on the cell membrane or by locally regulating the
concentrations of actin, myosin, or cross-linkers, the living
cell surface could control the clustering and transport of
specific membrane proteins.

VI. DISCUSSION

We had earlier shown that a coarse-grained active hydro-
dynamics description of the active composite cell surface,
successfully explains the statistics of clustering of membrane
proteins capable of binding to the cortical actomyosin in living
cells [1,3]. Such a description make predictions regarding the
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statistics of density fluctuations and transport of such actin-
binding membrane proteins, which were verified in experi-
ments [3,4]. Following this we were able to recapitulate much
of this behavior in a minimal in vitro system comprising a thin
layer of short actin filaments and Myosin-II minifilaments on
a supported bilayer [11]. The success of this approach has mo-
tivated us to do an agent-based Brownian dynamics simulation
using these minimal ingredients: that of a collection of passive
molecules which bind and unbind to actin filaments and move
in this active medium in two dimensions.

The results obtained here, based on simulations and an-
alytical calculations, are in qualitative agreement with the
experiments both in vivo and in vitro. For instance, the
exponential tails appearing in the probability distribution of
the number (Fig. 8) and the scaling of the variance of the
number (Fig. 9) is precisely the behavior seen in our earlier in
vitro experiments. In addition, we show how activity-induced
clustering of passive particles (Fig. 7) arises naturally from
such a minimal description.

We have also studied transport of passive particles moving
in this active medium and find that there is a crossover
from an intermediate time superdiffusive to late-time diffusive
behavior as a consequence of active driving [Fig. 12(a)]. The
transport behavior shows a striking dependence on temper-
ature and active forcing; at low temperatures the diffusion
coefficient is insensitive to temperature and crosses over to

a linear temperature dependence at higher temperatures, in
qualitative agreement with experiments [4].

Finally, recognizing that the viscosity of the cortical layer
is different from that of the membrane, we show that a friction
coefficient mismatch has a strong effect on the mean number
of bound particles and the diffusion coefficient. This is a
consequence of the drag induced by the imposed viscosity
stratification, which results in a “peeling off” of the particles
from the filaments. This opens up the possibility of local tun-
ing of viscosity mismatch, for instance, by locally recruiting
the so-called “membrane rafts” or liquid-ordered regions on
the cell membrane or by locally regulating the concentrations
of actin, myosin, or cross-linkers. This could result in yet
another mechanism by which the cell surface might locally
control the clustering and transport of specific membrane
proteins. We hope that some of these predictions can be tested
in future experiments.
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