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Abstract

We apply the Tremaine–Weinberg theory of dynamical friction to compute the orbital decay of a globular cluster
(GC) on an initially circular orbit inside a cored spherical galaxy with isotropic stellar velocities. The retarding torque
on the GC, r 0p <( ) , is a function of its orbital radius rp. The torque is exerted by stars whose orbits are resonant
with the GC’s orbit and given as a sum over the infinitely many possible resonances by the Lynden-Bell–Kalnajs
(LBK) formula. We calculate the LBK torque rp( ) and determine r tp ( ) for a GC of mass M M2 10p

5= ´  and an
isochrone galaxy of core mass M M4 10c

8= ´  and core radius b 1000 pc= . (i) When r 300 pcp  , many strong
resonances are active, and as expected, C » , the classical Chandrasekhar torque. (ii) For r 300 pcp < ,  comes
mostly from stars nearly corotating with the GC, trailing or leading it slightly; trailing resonances exert stronger
torques. (iii) As rp decreases, the number and strength of resonances drop, so ∣ ∣ also decreases, with

10 2
C < -∣ ∣ ∣ ∣ at r r M M b 220 pcp p c

1 5
*=  ( ) , a characteristic “filtering” radius. (iv) Many resonances

cease to exist inside r ;* this includes all leading and low-order trailing ones. (v) The higher-order trailing resonances
inside r* are very weak, with 10 4

C < -∣ ∣ ∣ ∣ at r 150 pcp = . (vi) Inspiral times for r tp ( ) to decay from 300 pc to r*
far exceed 10 Gyr.

Key words: galaxies: dwarf – galaxies: kinematics and dynamics

1. Introduction

A globular cluster (GC) orbiting a galaxy experiences
dynamical friction, the drag exerted by the gravity of the wake
it generates in the galaxy. Chandrasekhar (1943) derived a
formula for the drag on a perturber moving through an infinite
and homogeneous sea of stars with isotropic velocity distribu-
tion. When applied as a local approximation to a GC of mass
Mp moving with velocity vp inside a spherical galaxy, the
Chandrasekhar dynamical friction formula for the drag force is

v v
M

d

dt
G M r v v

v
4 ln ; . 1p

p 2
p
2

p p
p

p
3

p r= - L <( ) ( )

Here, rp is the GC’s orbital radius, r v v;p pr <( ) is the mass
density at rp of stars and dark matter with speeds less than the
GC’s speed, and lnL is the Coulomb logarithm (Binney &
Tremaine 2008). This drag causes the loss of the GC’s orbital
angular momentum, making it sink toward the galactic center.
The effect is so strong in dwarf galaxies that a GC on an
initially circular orbit is expected to sink to the galactic center
within a few Gyr (Tremaine 1976; Hernandez & Gilmore 1998;
Oh et al. 2000; Vesperini 2000, 2001; Goerdt et al. 2006). But
many dwarf galaxies host GCs that are old (e.g., Durrell
et al. 1996; Miller et al. 1998; Lotz et al. 2004). A particularly
good example is the Fornax dwarf spheroidal galaxy with five
old metal-poor GCs (Buonanno et al. 1998, 1999; Mackey &
Gilmore 2003; Strader et al. 2003; Greco et al. 2007), already
noted in Tremaine (1976). Why are these GCs observed so far
away from their galactic centers?

Work over the past two decades on this “dynamical friction
problem” suggests that the orbits of GCs (or other compact
masses) can indeed stall in the core regions of a dwarf galaxy.
Hernandez & Gilmore (1998) used the Chandrasekhar formula
for a King model halo to argue that dynamical friction weakens
in the core region of a galaxy. Numerical simulations exploring

core-stalling as a function of the cored/cuspy nature of the
galaxy’s inner density profile have shown that a nearly constant
density core would result in core-stalling (Goerdt et al. 2006;
Read et al. 2006; Cole et al. 2012). Analogous core-stalling of a
supermassive black hole was studied by Gualandris & Merritt
(2008). Numerical simulations by Inoue (2009, 2011) are
particularly revealing, with Inoue (2011, hereafter In11)
providing the deepest insights through the analysis of a single
numerical experiment. A semi-analytical model based on the
Chandrasekhar formula for cored galaxies has been offered by
Petts et al. (2016). The physical explanations advanced differ
from each other, but all agree that dynamical friction is highly
suppressed and can even be zero in galaxies with a nearly
constant density core. Both Read et al. (2006) and In11
emphasized the role of “corotating” particles in the suppression
of dynamical friction, but the term seems to refer to
qualitatively different orbits. The goal of this paper is to seek
a physical interpretation of the GC stalling phenomenon in
terms of the standard theory of dynamical friction in spherical
stellar systems due to Tremaine & Weinberg (1984, hereafter
TW84), explored further in Weinberg (1986, 1989).
Physical setting of TW84. The stars and dark matter in the

galaxy can be considered to be “collisionless” over Hubble
timescales, so they respond similarly to gravitational fields
(Binney & Tremaine 2008). The galaxy is described by a mass
distribution function (DF) in six-dimensional position–velocity
phase space. Each mass element (henceforth referred to as a
“star”) orbits in the combined gravitational fields of all the
other stars and the GC. In the spherically symmetric potential
of the unperturbed galaxy, a stellar orbit is a “rosette” confined
to a plane, with radial and angular frequencies that are
functions only of E (the orbital energy per unit mass) and L (the
magnitude of the angular momentum per unit mass). The GC is
initially on a circular orbit in the x–y plane. Its gravitational
attraction perturbs and rearranges the distribution of mass in the
galaxy, with an associated change in the z-component of the
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angular momentum of the galaxy. The torque on the GC is
equal and opposite to the rate at which angular momentum is
absorbed by the galaxy.

The rate of absorption of angular momentum by the galaxy
can be positive or negative. When the perturbation is very weak
(strictly infinitesimal), angular momentum is absorbed by those
“rosette” orbits whose radial and angular frequencies are in
resonance with the GC’s orbital frequency. Resonances are
characterized by a triplet of integers, one each for the three
frequencies. Each resonance is a five-dimensional surface in
phase space. As the three integers run over all possible values,
the set of resonant surfaces covers the phase space densely.
Angular momentum exchanges with the GC can be thought of
as occurring on resonant surfaces. The sum of the torques
exerted by all the resonances is equal to the net torque, referred
to as the “Lynden-Bell–Kalnajs (LBK) torque” by TW84, who
generalized an earlier derivation by Lynden-Bell & Kalnajs
(1972) for two-dimensional disks. This is valid in the linear
limit of perturbation theory.1 The simplest model of a stable,
spherical galaxy is an isotropic DF, F(E) with dF dE 0<( ) ,
corresponding to the DF from which the initial conditions of
In11 were drawn. TW84 noted the important point that in this
case, the torque due to each resonance is always retarding.
Therefore, linear theory predicts that the GC will inspiral
toward the galactic center. The questions of interest are as
follows. As the GC inspirals, what are the resonances available
to it? How large are the resonant torques? What is the rate of
orbital decay due to the net LBK torque?

Going forward with TW84. When the GC’s orbit lies outside
the core of the galaxy, there is a dense set of resonances
available to it. TW84 noted that, in the limit the resonances
form a continuum, the LBK torque should reduce to the
Chandrasekhar torque (with a suitable choice of the Coulomb
logarithm). The corresponding orbital decay can be seen in the
In11 simulation of a GC of mass M2 105´ , set on a circular
orbit with an initial radius of 750 pc, inside a spherical galaxy
of mass M2 109´  and core radius1000 pc. During the initial
4Gyr, the GC’s orbital radius decreased from 750 to 300 pc, in
rough agreement with the action of the Chandrasekhar formula.
Thereafter, its behavior departed drastically from the formula’s
prediction: the rate of decrease slows down dramatically, and
the radius stalls around a mean value of about 225 pc until the
end of the simulation at 10Gyr. We are interested in
understanding this stalling phenomenon.

Let us imagine—contrary to In11—that the GC has some-
how managed to reach close to the galaxy’s center. In a limiting
sense, the GC has entered a constant density environment
where the galaxy’s potential r2µ (an isotropic harmonic
oscillator), so every stellar orbit is a centered ellipse with the
same orbital frequency, independent of shape, size, or
orientation. Then, either all stars are resonant (and the response
is singular) or no star is resonant and the LBK torque would
vanish. TW84 remarked that in realistic systems, the density is
not quite constant, so there will always be some resonances and
the response will be finite. Hence, a constant density core is a
pathological case. But it does illustrate the point that, were the
GC to reach the very central regions of the galaxy, there would
likely be no resonant stars and hence no friction. This line of
thought suggests the following physical picture of core-stalling
in a realistic galaxy core with a varying central density profile.

As the GC inspirals from a radius of 300 pc, there are
progressively fewer strong resonances available for it to
exchange angular momentum with the galaxy. Since only a
small fraction of the core stars would then be involved in the
resonant exchange, the LBK torque exerted on the GC could be
so suppressed that the rate of orbital decay to the center may
take much longer than a Hubble time.
Plan of the paper. Section 2 gives a brief account of the part

of TW84 that is used in this paper. We set notation describing
galaxies and linear perturbations, introduce action-angle
variables specially adapted for studying core dynamics later,
and give a short derivation of TW84ʼs LBK torque formula, in
the spirit of Kalnajs (1971). In Section 3, the unperturbed
galaxy is represented by an isochrone model and described by
action-angle variables in the rotating frame of the GC.
Isochrone parameters are chosen by comparison with those
used by In11. We compute the orbital decay of the GC
according to the Chandrasekhar torque for the isochrone—this
serves as a useful benchmark for later comparison with decay
due to the LBK torque. The GC is modeled as a Plummer
sphere whose tidal potential needs to be expressed in terms of
the isochrone action-angle variables using the formulae for the
three-dimensional orbit in space. Expressions for the resonant
torques and LBK torque are recorded.
Section 4 takes a close look at the structure of resonances in the

isochrone core. Core orbits are worked out, and a natural small
parameter is identified. The orbital and precessional frequencies
are compared with the GC’s orbital frequency, yielding a
characteristic radius, r*. Torques are written in dimensionless
action-angle variables. Core resonances are classified as corotating
and non-corotating, with the latter consisting of higher-order,
weaker resonances. Corotating resonances come in two types,
trailing and leading, both of which are explored in Section 5 as
functions of rp, the orbital radius of the GC. The associated torque
integrals, derived in the previous section, are now computed
numerically. The progressive culling of low-order resonances as rp
decreases is followed in detail, and the role of r* as a “filtering”
radius for resonances is clarified. Resonant torques are then
summed over to obtain the net trailing and leading torques; the
LBK torque is the sum of these two torques.
In Section 6, we discuss leading and trailing torque profiles,

compute the orbital decay of the GC according to the LBK
torque, and compare this with the orbital decay due to the
Chandrasekhar torque studied earlier. We conclude in Section 7.

2. Tremaine–Weinberg Theory

2.1. Collisionless Dynamics of the Galaxy

We begin with a brief account of the dynamical framework
that is used in the construction of our model; see Binney &
Tremaine (2008) for a comprehensive account. Let x be the
position vector of a star and v its velocity vector with respect to
an inertial frame. The galaxy is described by a DF, x vf t, ,( ),
which is equal to the mass density at time t in the six-dimensional
x v,{ } phase space. Here, f is nonnegative and normalized as

x v x vd d f t M, , , 2ò =( ) ( )

whereM is the total mass of the galaxy. The time evolution of the
DF is governed by the collisionless Boltzmann equation (CBE),

v
x x v

df

dt

f

t

f f
0,

tot
º

¶
¶

+
¶
¶

-
¶F
¶

¶
¶

=· ·1 TW84 also studied the nonlinear dynamics of resonances and discussed
orbit capture into resonant islands. This is beyond the scope of this paper.
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where x t,totF ( ) is the total gravitational potential, equal to the
sum of the potentials due to the self-gravity of the galaxy and
any external perturbing sources,

x x xt t t, , , , 3tot extF = F + F( ) ( ) ( ) ( )

where

x x v
x v
x x

t G d d
f t

,
, ,

4òF = - ¢ ¢
¢ ¢
- ¢

( ) ( )
∣ ∣

( )

is the self-consistent Newtonian potential. The external
potential, x t,extF ( ), depends on what dynamical process is
being studied. It could be due to galactic bars, spiral density
waves, or infalling objects such as satellite galaxies, GCs, or
massive black holes.

The CBE can be rewritten compactly as

f

t
f H, 0, 5

¶
¶

+ =[ ] ( )

where H is the Hamiltonian (equal to the orbital energy per unit
mass),

x v xH t
v

t, ,
2

, , 6
2

tot= + F( ) ( ) ( )

and

x v v x
f H

f H f H
, 7=

¶
¶

¶
¶

-
¶
¶

¶
¶

[ ] · · ( )

is the Poisson bracket between the phase-space functions, f and
H. This form of the CBE is particularly useful because the
Poisson bracket remains invariant when we later transform
from the x v,{ } to other canonically conjugate variables.

An isolated, unperturbed galaxy is often described by a time-
independent DF, x vf ,0 ( ). Let x0F ( ) be the galaxy’s self-
consistent potential, related to f0 through Equation (4). Then,
the unperturbed Hamiltonian is

x v xH
v

,
2

. 80

2

0= + F( ) ( ) ( )

Because f0 solves the CBE, we must have f H, 00 0 =[ ] , so f0 is
a function of the isolating integrals of motion of H0 (the Jeans
theorem). For any given function of the integrals, one needs to
solve the self-consistent problem of Equation (4) to determine
f0 as a function of x v,( ).

Let x vf t, ,1 ( ) be a small perturbation to f0, either due to
fluctuations in the initial conditions or forced through weak
external gravitational fields. In either case, there is a
corresponding perturbation to the self-gravitational potential,

x t,1F ( ), which is related to f1 through Equation (4). Including
a weak external potential, x t,1

extF ( ), the perturbation to the
Hamiltonian is x x xH t t t, , ,1 1 1

ext= F + F( ) ( ) ( ). The total DF,
f f f0 1= + , must obey the CBE with the total Hamiltonian,
H H H0 1= + . In the limit of an infinitesimally small
perturbation, f1 obeys the linearized CBE (LCBE),

f

t
f H f H, , 0, 91
1 0 0 1

¶
¶

+ + =[ ] [ ] ( )

where the second-order term, f H,1 1[ ], has been neglected. It is
necessary for the unperturbed galaxy to be linearly stable in the
absence of external perturbations. In other words, the LCBE
with H1 1= F should not admit solutions, f1, that are
exponentially growing in time; then, f0 is said to be a linearly
stable DF.
While considering the response of such a stable DF to

01
extF ¹ , TW84 neglected “gravitational polarization” effects

and set 01F = . Then, H1 1
ext= F , and the LCBE governing the

“passive response” of the galaxy to the perturber is

f

t
f H f, , 0. 101
1 0 0 1

ext¶
¶

+ + F =[ ] [ ] ( )

There is no real justification for the neglect of 1F besides the
fact that, by so doing one has to deal only with a partial
differential equation, instead of an integral equation. We follow
TW84 and use Equation (10) to compute the linear response of
the galaxy.2

2.2. Unperturbed Galaxy

We use spherical polar coordinates to describe the unper-
turbed spherical galaxy. Let r r, ,q f= ( ) be the position vector
with respect to the galactic center. The unperturbed potential,

r0F ( ), is a function of only r. The canonically conjugate
momenta are p p p p, ,r= q f( ), where p rr = ˙ is the radial

velocity, p r2q=q
˙ , and r pp r z Lsin z

2 2 qf= = ´ =f
˙ ˆ · ( ) is

the z-component of the angular momentum per unit mass. The
magnitude of the angular momentum per unit mass is
L p p sin2 2 2 q= +q f . The unperturbed Hamiltonian,

r pH p
p

r

p

r
r,

1

2 sin
, 11r0

2
2

2

2

2 2 0
q

= + + + Fq f
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

which is equal to the energy per unit mass (E), governs the
dynamics of a star. An orbit is confined to an invariant plane
passing through the origin, which is inclined to the x–y plane
by angle i. Here E L L, , z( ) are constant along the orbit, with

i L Lcos z= . The radial and angular frequencies of the orbit in
its plane, E L,rW ( ) and E L,Wy ( ), respectively, are generally
incommensurate. Hence, a generic orbit describes a “rosette” as
it goes through many periapse and apoapse passages, filling an
annular disk. Since E L L, , z( ) are also isolating integrals of
motions, the Jeans theorem implies that any spherical
unperturbed DF must be a function of these three integrals. A
nonrotating galaxy with complete spherical symmetry in phase
space must have a DF, f F E L,0 = ( ), that is independent of Lz;
such a DF has zero streaming velocities with, in general,
anisotropic velocity dispersion. The subclass, f F E0 = ( ), has
isotropic velocity dispersion and is linearly stable to all
perturbations when dF dE 0;<( ) these are the models
relevant to the In11 simulation.

2 Kalnajs (1972) argued that gravitational polarization effects in a uniformly
rotating sheet can suppress dynamical friction and showed that the frictional
force on a perturber on a circular orbit is zero. Indeed, polarization effects can
be important. But the demonstration of the strict vanishing of frictional force is
limited by the fact that the dynamical response of a uniformly rotating sheet is
as pathological as the strictly constant density galactic core, discussed earlier in
the Introduction.
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We can transform from r p,{ } to new canonical variables,
w I,{ }, where w w w w, ,1 2 3= ( ) are three coordinates called
“angles” and I I I I, ,1 2 3= ( ) are their conjugate momenta called
“actions” (see Binney & Tremaine 2008, Section 3.5.2). There
are many equivalent choices of action-angle variables. The
standard “primitive” variables, also used by TW84, are

I J w t tradial action, , 12ar r p1 1= = = W -( ) ( )

I L w t t, , 12bp2 2 c= = + W -y ( ) ( )

I L w h, . 12cz3 3= = ( )

Here, h is the longitude of the ascending node, and χ is the
angle from the ascending node to a periapse that is visited at
time tp. An alternative set of actions and angles is

I J L w t t2 ,
2

, 13ar
r

p1 1= + =
W

-( ) ( )

I L w t t,
2

, 13br
p2 2 c= = + W -

W
-y⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

I L w h, . 13cz3 3= = ( )

This proves particularly useful for the exploration of the
dynamics of core stars, for which 2rW Wy , making w2 a
slowly varying angle compared to w1. This is the choice made
from Section 3 onward. But in this section, w I,{ } will stand for
either set of variables, defined by Equations (12) or (13), both
giving completely equivalent descriptions of dynamics over all
of phase space.

The Hamiltonian is independent of Lz and can be written as
H I I,0 1 2( ). Hamilton’s equations of motion, w Id dt H0= ¶ ¶
and I wd dt H0= -¶ ¶ , imply that the actions I are constants
of motion and the angles advance at constant rates, with w h3 =
being fixed. The unperturbed DF, f F I I,0 0 1 2= ( ), describes a
spherically symmetric, nonrotating system with anisotropic
velocity dispersion. The subclass with isotropic velocity
dispersion will be written as f F H0 0 0= ( ).

2.3. Dynamics in the Rotating Frame of the Perturber

The galaxy is acted upon by an external rotating
potential perturbation of the form r t, ,1

ext q f xF -( ( )), where
d t dt tpx = W( ) ( ) is the time-dependent angular frequency of
rotation about the ẑ -axis. This could arise from a galactic bar or
GC on a circular orbit in the x–y plane. TW84 studied the effect
of bar-like perturbations whose symmetry is such that it does
not change the location of the center of mass of the galaxy. We
are interested in the latter case, where the GC and the galaxy
orbit each other in circles about a common and fixed center of
mass. This motion of the center of the galaxy must be
accounted for by choosing 1

extF as the “tidal,” rather than the
“bare,” potential of the perturber; this is done in Section 3.
However, in either case, the potential perturbation is of the
above form. In a frame that rotates with angular velocity
z tpWˆ ( ), the perturbation would appear stationary, so this is the
preferred frame for the formulation of stellar dynamics.

Henceforth, we use r r, ,q f= ( ) for the position vector in
the rotating frame, with origin at the center of the galaxy, and
p p p p L, ,r z= =q f( ) to denote its conjugate momentum. In
the rotating frame, the line of nodes of every unperturbed orbit
(regardless of its size, shape, or orientation) regresses at the
common angular rate, tpW ( ). This can be taken into account by
subtracting t Ip 3W ( ) from H0 to obtain the Jacobi Hamiltonian

for unperturbed dynamics:

H I I I t H I I t I, , , , . 14J0 1 2 3 0 1 2 p 3= - W( ) ( ) ( ) ( )

The unperturbed frequencies in the rotating frame are

dw

dt
I I

H

I

H

I
, , 15a1

1 1 2
J0

1

0

1
º W =

¶
¶

=
¶
¶

( ) ( )

dw

dt
I I

H

I

H

I
, , 15b2

2 1 2
J0

2

0

2
º W =

¶
¶

=
¶
¶

( ) ( )

and

dw

dt

H

I
t . 15c3

3
J0

3
pº W =

¶
¶

= -W ( ) ( )

The time dependence of tpW ( ) is due to the back-reacting
torque the galaxy exerts on the perturber and is slow compared
to orbital times.3 Henceforth, we drop the explicit time
dependence in pW and treat H I I I, ,J0 1 2 3( ) as an adiabatically
varying Hamiltonian.
The perturbation is applied gradually in time in order to

eliminate transients in the response of the galaxy: the standard
manner of ensuring this is to set rtexp1

ext
pgF = F( ) ( ), where

0g > can be taken to zero at the end of the calculation.
Writing r pf t Fexp ,1 1g= ( ) ( ) and substituting for f1 and 1

extF in
the passive response LCBE(Equation (10)), we obtain

F F H F, , 0, 161 1 J0 0 pg + + F =[ ] [ ] ( )

where we have replaced H0 by the adiabatically varying Jacobi
Hamiltonian of Equation (14). The Poisson brackets in terms of
the w I,{ } variables are

F H
F

w

F

w

F

w
, , 17a1 J0 1

1

1
2

1

2
p

1

3
= W

¶
¶

+ W
¶
¶

- W
¶
¶

[ ] ( )

F
F

I w

F

I w
, . 17b0 p

0

1

p

1

0

2

p

2
F = -

¶
¶

¶F

¶
-

¶
¶

¶F

¶
[ ] ( )

We expand F1 and pF as Fourier series in the angles

I l wF F iexp , 18a
l l l

l l l1
, ,1 2 3

1 2 3å= ~ ( ) { ( · )} ( )

I l wiexp , 18b
l l l

l l lp
, ,1 2 3

1 2 3åF = F ( ) { ( · )} ( )

where the sum is over all integer triplets l l l, ,1 2 3( ), and
l w l w l w l w1 1 2 2 3 3= + +· . Since F1 and pF are real quan-

tities, we must have F Fl l l l l l, ,1 2 3 1 2 3

*=
~ ~
- - - and l l l l l l, ,1 2 3 1 2 3

*F = F- - -  .
Substituting Equations 17(a)–18(b) in Equation (16) and
solving for Fl l l1 2 3

~
, we obtain

I

I

F l
F

I
l

F

I

i

i l l l
19

l l l

l l l

1
0

1
2

0

2

1 1 2 2 3 p

1 2 3

1 2 3

g

=
¶
¶

+
¶
¶

´
F

+ W + W - W

~



⎛
⎝⎜

⎞
⎠⎟( )

( )
[ ( )]

( )

as the linear response of the galaxy to the imposed perturbation
when polarization effects are ignored.

3 Here, tpW ( ) must be determined self-consistently for the coupled galaxy–
perturber system.
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2.4. The LBK Formula

TW84 derived the LBK torque formula by computing the
change in the z-component of the angular momentum of
individual orbits and then summing over the contributions of
all orbits. Their method is an extension of Lynden-Bell &
Kalnajs (1972) to spherical systems and requires calculating the
angular momentum changes to second order in the perturba-
tion. However, the original derivation for flat disks by Kalnajs
(1971) only requires the first-order change in the DF and does
not need computation of individual orbits to second order.
Below, we present a short and simple derivation of the LBK
formula for spherical systems in the spirit of Kalnajs (1971).
The z-component of the torque exerted by the galaxy on
the perturber is equal and opposite to the torque exerted by the
perturber on the galaxy. Hence, the LBK torque on the
perturber is

r p r pd d f f d d f . 201
ext

0 1
1
ext

1 ò òf f
=

¶F
¶

+ =
¶F
¶

{ } ( )

It is second order in the perturbation because f0 is independent
of f and d 01

extf f¶F ¶ =∮ ( ) . The decisive step is to note

that p L, ,z1
ext

1
ext

1
extf¶F ¶ = - F = - Ff( ) [ ] [ ] and use the

invariance of the Poisson bracket to rewrite Equation (20) in
terms of action-angle variables:

w I w I

I I I

d d I f t d d
w

F

t il d F

, exp 2

8 exp 2 . 21
l l l

l l l l l l

3 1
ext

1
p

3
1

3

, ,
3

1 2 3

1 2 3 1 2 3
*



å

ò ò

ò

g

p g

=- F =
¶F

¶

= F ~

[ ] ( )

( ) ( ) ( ) ( )

Using Equation (19) to express Fl l l1 2 3

*~ in terms of l l l1 2 3
*F ,

I

I
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In the limit 0g  +, we have

i l l l

i l l l l l l ,

1 1 2 2 3 p
1

1 1 2 2 3 p
1

1 1 2 2 3 p

g

p d
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-

-
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where d ( ) is the Dirac δ-function that picks out resonances.
The first term on the right side is purely imaginary and cannot
contribute to the torque, which is a real quantity; and indeed it
does not, as can be seen by noting that the l l l, ,1 2 3( ) term is
canceled by the l l l, ,1 2 3- - -( ) term because Il l l

2
1 2 3F =∣ ( )∣

Il l l, ,
2

1 2 3F- - -∣ ( )∣ . On the other hand, both terms add for the
δ-function contribution. Therefore, we arrive at the LBK
formula for the torque:4

, where 23a
l l l

l l l
, 11 2 3

1 2 3 å å=
=-¥
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¥
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I
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( )∣ ( )∣ ( )

The total torque acting on the perturber is the sum of the
torques exerted by all the resonant surfaces. Each resonant
surface is a five-dimensional subspace of six-dimensional
phase space defined by the resonance condition,

l I I l I I l, , 0, 241 1 1 2 2 2 1 2 3 pW + W - W =( ) ( ) ( )

for any specified integer triplet, l l l, , 01 2 3 >( ). The resonance
condition is independent of the third action, I Lz3 = , because
the unperturbed galaxy is spherical.
The unperturbed galaxy relevant to the In11 simulation is

represented by a stable, spherical DF with isotropic velocity
dispersions of the form F E0 ( ) with dF dE 00 < . TW84 made
the important point that the LBK torque is always retarding. To
see this, we note that

l
F

I
l

F

I
l l

dF

dE
l

dF

dE
1
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0

2
1 1 2 2

0
3 p

0¶
¶

+
¶
¶

= W + W  W
⎛
⎝⎜

⎞
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because of the δ-function. Then the LBK torque is

, where 25a
l l l

l l l
, 11 2 3
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=-¥

¥
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¥
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l d
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l l l
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. 25b
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p
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1 1 2 2 3 p
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1 2 3

1 2 3
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d

= W

´ W + W - W F( )∣ ( )∣ ( )

Therefore, the torque due to each resonance, l l l1 2 3 , has a sign
that is opposite to ;pW the perturber always experiences a
retarding torque.

3. Model of Dynamical Friction on a GC

The unperturbed galaxy is chosen to have an isochrone DF
because it is a realistic representation of a stable spherical
galaxy with isotropic velocity dispersion, with remarkably
simple analytical representations of physical quantities
(Hénon 1959a, 1959b, 1960; Binney & Tremaine 2008). The
perturber is a GC on a circular orbit in the x–y plane, modeled
as a Plummer sphere of small core radius. The rate of decay of
the GC’s orbital radius is determined by the back-reacting
torque exerted by the galaxy.

3.1. Isochrone Galaxy Model

The gravitational potential of the isochrone model is

r
GM

b b r
, 260

2 2
F = -

+ +
( ) ( )

whereM is the total mass of the galaxy, and b is the core radius.
The mass density profile that gives rise to this potential,

r
G

r

M
b r b b r r b b r

b b r b r

1

4

3 3

4

27

0
2

0

2 2 2 2 2 2 2

2 2 3 2 2 3 2

r
p

p

= F

=
+ + + - + +

+ + +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )

( )( ) ( )
( ) ( )

( )

4 This is identical to Equation (66) of TW84, when 2l l l l l l1 2 3 1 2 3F  Y , to
correspond to the differing conventions used in the definition of the Fourier
coefficients of the perturbing potential.
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is a decreasing function of r: the central density is 00r =( )
M b3 16 3p and r bM r20

4r p( ) as r  ¥. The stellar mass
enclosed within a radius r is

M r dr r r

M
r

b b r b r

4

. 28

r
0 0

2
0

3

2 2 2 2 2

òp r= ¢ ¢ ¢

=
+ + +

⎡
⎣
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⎤
⎦
⎥⎥

( ) ( )

( )
( )

A GC of mass Mp is on a circular orbit in the x–y plane of the
galaxy. When the GC is at a radius rp from the galactic center,
its angular frequency of rotation is

r
G M r M

r
. 29p p

0 p p

p
3

W =
+

( )
[ ( ) ]

( )

As in Section 2.3, we use r r, ,q f= ( ) for the position vector
in the rotating frame with the origin at the center of the galaxy
and p p p p, ,r= q f( ) to denote its conjugate momentum. The
orbital energy per unit mass is

H p
p

r

p

r
r

1

2 sin
. 30r0

2
2

2

2

2 2 0
q

= + + + Fq f
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )

The Jacobi Hamiltonian governing unperturbed dynamics in
the rotating frame is

H H r p . 31J0 0 p p= - W f( ) ( )

We now switch to the action-angle variables of Equation (13).
Dropping all indices, we have

I L L I J LActions , , , where 2 ; 32az r= = +( ) ( )
w g h

w t t

g t t

h
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2
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2
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The radial and angular frequencies are
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where I GMb4 constantb = = . The orbital energy per unit
mass, H E0 = , is

E I L
GM

I I L
,

2
. 34

b

2

2 2 2
= -

+ +
( ) ( )

[ ]
( )

Hence, the Jacobi Hamiltonian governing dynamics in the
rotating frame is a simple function of the three actions,

H I L L r E I L r L, , ; , , 35z zJ0 p p p= - W( ) ( ) ( ) ( )

where we have included the dependence on r tp ( ), the radius of
the GC’s circular orbit. This is an adiabatically varying
function of time (“orbital decay”) that is calculated self-
consistently in Section 6. The three actions, I L L, , z( ), are

constants along an orbit. The unperturbed frequencies are

I L
H

I

GM

I I L
,

4
, 36aw

b
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r, . 36ch
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The DF with isotropic velocity dispersion is

F E
M

GMb2 2 2 1
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where Eb GM = - is a dimensionless measure of the
binding energy, with 0 1 2 < . Here F E0 ( ) is a decreasing
function of E and hence has the desirable property of being
linearly stable to perturbations.

3.1.1. Choice of Parameters

We now choose isochrone parameters, central density 00r ( )
and core radius b, such that they are broadly consistent
with In11, whose simulation used a Burkert (1995) density
profile for the galaxy,

r
r

r r r r
, 38B

c c
3

c c
2 2

r
r

=
+ +

( )
( )( )

( )

with core radius r 1000 pcc = and central density cr =
M0.1 pc 3-
 . Here cr was determined by requiring that the

mass inside 300 pc was about M107
, consistent with

observations of dwarf galaxies (Strigari et al. 2008). Setting
the isochrone core radius b r 1000 pcc= = , we solve for 00r ( )
by setting M M300 pc 100

7= ( ) in Equation (28). This gives
M0 0.096 pc0

3r = -
( ) , which is very close to cr . So our

isochrone model has the same core radius and central density as
the Burkert profile in In11. We note that the total mass of the
isochrone is M M1.6 109= ´ , whereas the total mass in the
Burkert profile is infinite because r rB

3r µ -( ) for r rc . But
this large r behavior has no bearing on the core dynamics of
interest to us. Indeed, it proves more useful—see Section 7—to
define the “core” mass,

M b r M
4

3
0

4

3
4 10 , 39c 0

3
c c

3 8p
r

p
r= ´  ( ) ( )

which is the same for both galaxy profiles.

3.2. Expectation from the Chandrasekhar Formula

Before computing the orbital decay, r tp ( ), of a GC using the
LBK torque, we need a benchmark in terms of what one may
expect in an isochrone galaxy, according to the Chandrasekhar
formula. Similar to In11, we assume that the GC has a mass
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M M2 10p
5= ´  and core radius a 10 pc= . Equation (1)

implies that the rate of loss of the GC’s orbital angular
momentum is

M
d

dt
r r , 40p p p

2
C pW =( ) ( ) ( )

where

r G M r v r
r

4 ln ;
1

41C p
2

p
2

p p p
p
2

p

 p r= - L < W
W

( ) ( ) ( )

is the Chandrasekhar torque. We need to determine the two
quantities, lnL and r v r;p p pr < W( ). This is a “local” approx-
imation, so some sense needs to be made of the Coulomb
logarithm. The standard choice is discussed in Binney &
Tremaine (2008), and modifications have been suggested.
We consider two extreme choices that should act as upper
and lower bounds on what can be expected. These are

b aln ln 4.6L = =( ) and r aln ln pL = ( ), which varies from
4.3 to 3.4 as rp varies from 750 to 300 pc. The quantity

r v r;p p pr < W( ) is the mass density at rp of stars with speeds
less than rp pW . The direct way to calculate this is by integrating
the isochrone DF of Equation (37) over the velocities. But it is
also traditional (Binney & Tremaine 2008; In11) to simplify
further by pushing the “local” nature of approximation in this
manner: the DF is assumed to be the product of the galaxy’s
density profile (e.g., the isochrone r0r ( ) of Equation (27)) and
a Maxwellian distribution of velocities with dispersion rs ( )
determined by the Jeans equations of hydrostatic equilibrium.

With two choices each for r v r;p p pr < W( ) and lnL, we get
four different functional forms for the Chandrasekhar torque;
see Figure 1(a). Substituting these in Equation (40) and
integrating with the initial condition, r 750 pcp = at t=0, we
obtain the orbital decay of r tp ( ) for the four cases; see
Figure 1(b). For r300 pc 750 pcp< < , the torques differ from
each other by factors less than 1.5. The time for rp to decay
from 750 to 300 pc varies from 5.6 to 7.3 Gyr. After10 Gyr, all
models of the Chandrasekhar torque predict that the GC would
be within 200 pc of the center.

3.3. LBK Torque

The LBK torque of Equations 25(a) and (b) is

r r , where 42a
n ℓ m

nℓmp
, 1

p å å=
=-¥
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( ) ( ) ( )

r m dI dL
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16
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ò

p

d

= W

´ W + W - W F

¥

-


( )

( ) ∣ ( )∣ ( )

We need to compute I L L, ,nℓm zF ( ) for a GC modeled as a
rigid Plummer sphere of mass Mp and core radius a 10 pc= , as
in In11. Its position vector with respect to the center of
the galaxy, rp, is quasi-stationary in the rotating frame. The
perturbing potential experienced by a star at r is equal to the
tidal potential due to the GC:5

r r

r rGM

a

GM

a r
. 43

p p
p

2
p

2

p

2
p
2 3 2

F =
-

+ -
+
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( · )
( )

( )

The function w g h I L L, , ; , , zpF ( ) can be obtained by writing
r in terms of the action-angle variables of Equation (32). The
orbital plane is determined by its constant inclination,
i L Larccos z= ( ), and the longitude of the ascending node,
h. The radius (r) and angle in the orbital plane (ψ) can both be
expressed in terms of w g h I L L, , ; , , z{ } by first defining three
quantities (see Binney & Tremaine 2008, Section 3.5.2):

c I L
GM

E
b,

2
, 44a= - -( ) ( )

e I L
L

GMc

b

c
, 1 1 , 44b2

2
= - +⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

Figure 1. Torque profiles and orbital decay in the isochrone model according to the Chandrasekhar formula. Blue curves are for r v r;p p pr < W( ) determined by
integrating the isochrone DF of Equation (37) over velocities. Red curves are for r v r;p p pr < W( ) determined by using the isochrone density profile of Equation (27)
and a “local” Maxwellian distribution of velocities. Solid and dashed lines correspond to the two different choices of lnL, as explained in the text.

5 In the terminology of planetary dynamics, pF is the “disturbing function,”
which is the sum of the “direct” and “indirect” terms (Murray &
Dermott 1999).
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and
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sin . 44ch h= -
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⎛
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⎞
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Here c I L,( ) is a length scale, e I L,( ) is an “eccentricity,” and η
is an “eccentric anomaly.” Then,

r b c e b1 cos 45a2 2 2h= + - -[ ( )] ( )

and

g
e
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e b c

e b c
w

arctan
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⎫
⎬
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( )
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give r, y( ) in terms of I L g, , ,h( ), and Equation 44(c) can be
used to express η in terms of w I L, ,( ) as required. The Fourier
coefficients of pF of Equation (43) can then be computed as

I L L
dw dg dh

w g h I L L

i nw ℓg mh

, ,
2 2 2

, , ; , ,

exp . 46

nℓm z zp
p p p

F = F

´ - + +

 ∮( ) ( )

{ ( )} ( )

4. Resonances in the Isochrone Core

4.1. Unperturbed Orbits

The n ℓ m, ,( ) resonance,

n I L ℓ I L m r, , 0, 47w g p pW + W - W =( ) ( ) ( ) ( )

is a curve in the I L,( ) plane. Resonant stars with orbital sizes
comparable to the core radius have gW comparable to wW . This
implies that solutions of Equations (47) are possible for numerous
triplets, n ℓ m, , 0>( ). So there are many resonances of
comparable strengths in operation. TW84 argued that, in the limit
that the resonances form a continuum, the LBK torque should
reduce to the Chandrasekhar torque. Here b bln ln max minL = ( ),
where bmax and bmin are the maximum and minimum impact
parameters of the encounter between the GC and stars. We set
b rmax p= , the orbital radius of the GC (see Binney &
Tremaine 2008), and b a 10 pcmin = = , to match the In11 value
of the GC’s core radius. Then, r aln ln pL = ( ) varies from 4.3 at
r 750 pcp = to 3.4 at r 300 pcp = , which is approximately
consistent with the constant best-fit value of 3.72 used by In11.

When r 300 pcp = , the Chandrasekhar formula is still
approximately valid with b 300 pcmax = , as we confirm in
Section 6. For r 300 pcp < , the rate of orbital decay slows
down dramatically in In11. There is a significant departure
from the predictions of the Chandrasekhar torque until it breaks
down completely when the cluster stalls at a mean orbital
radius of about 225 pc, being affected by stars with orbital radii

400 pc» (i.e., stars with b 200 pcmax » ). Hence, in order to
describe dynamical friction for r 300 pcp  , we can focus
attention on stars whose orbital radii 600 pc . These stars
oscillate well within the core radius of the galaxy,
b 1000 pc= , so I Ib (we always have L I0   ). Then,

Equations 44(a)–(c) reduce to

c
I

I
b e
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I
w2 , 1 , 2. 48

b

2
2

2
h-  
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Also, Equations 45(a) and (b) now simplify,
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where

GM

b
G

1

2

4

3
0 50b 3 0

p
rW = = ( ) ( )

depends only on the central density. The mean-squared orbital
radius is r I brms

2 = W . We consider the response of stars with
r r 632 pcrms max  . This provides a dynamically useful
definition of “core stars” as those whose action variable
I I rbmax max

2 = W . We define

I

I

r

b

1

4

1

10
. 51

b

max max
2

e = = =⎜ ⎟⎛
⎝

⎞
⎠ ( )

Because I L I, max< , both I/Ib and L/Ib are smaller than ε in
the core. So ε is a natural small parameter of the problem. To
first order in ε, the unperturbed frequencies of Equations 36(a)
and (c) reduce to

I
I

I
L

L

I
1 3 , . 52w b

b
g b

b
W W W W 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) – ( ) ( )

The maximum error in this is O 1%2e =( ) .
A core star moves on an ellipse with orbital frequency IwW ( ),

while the apsides of the ellipse precess forward with frequency
LgW ( ). The frequencies are not constants but depend on I L,( ).6

The orbital plane maintains a constant inclination i =
L Larccos z( ) with its line of nodes precessing with frequency

rp p-W ( ) (because the orbit is viewed in the rotating frame).
As I varies from 0 to Imax , wW decreases from bW to

1 3 be W( – ) , so bW is the central orbital frequency with a
corresponding time period T 2 1.48 10 yrb b

8p= W ´ . As L
varies from 0 to its maximum possible value of Imax , gW
increases from 0 to beW . Let T 2w wp= W , T 2g gp= W be the
orbital and apse precession time periods, respectively. Then we
have T T T1 3 b w b

1  e -( – ) , so that T few 10 yrw
8~ ´ and

T T 1.48 10 yrg b
1 9 e = ´- . The nodal regression period,

T 2h pp= W , depends on rp. In order to follow the In11
simulation, it will suffice to look at r150 pc 300 pcp< < , in
which range we have bpW W , as can be verified using
Equation (29). Hence, T T 1.48 10 yrh b

8´  .
Below, we study resonances involving the three time

periods, Tw, Tg, and Th. Of these, Tw and Th are of comparable
magnitudes, but Tg is more than 10 times longer than these.
Hence, we may expect the dominant resonances to involve
close cancellation between Tw and Th, corresponding to
resonant stars that nearly corotate with the GC, as discussed
in Section 4.4.

6 In an exactly constant density core, we would have constantw bW = W =
and 0gW = . But this exactly harmonic limit is pathological, as discussed in
Sections 1 and 7.
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4.2. Resonance Filtering Radius r*
The core resonance conditions are obtained by substituting

Equation (52) in Equation (47):

n
I

I
ℓ

L

I
m r1 3 0. 53b

b
b

b
p pW - + W - W =

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

For any given n ℓ m r, , 0; p>( ), this gives a straight line in the
I L,( )-plane. However, we are interested in the response of core
stars whose I Imax . Therefore, core resonances are restricted
to those n ℓ m r, , 0; p>( ) such that the resonant line passes
through the triangle, L I I I0 b b   e( ) ( ) , in the
I L,( )-plane. Since bpW W , we write r1bp peW = W + D[ ( )].
The normalized fractional frequency difference,

r
r

, 54
b

b
p

p p

e
D =

W - W

W
( )

( )
( )

determines which resonances are allowed at any given rp. It can
be computed using Equation (29) and is displayed in Figure 2.
Here rpD( ) is a smooth, order-unity, decreasing function of rp,
varying from about 0.6+ at r 150 pcp = to −0.33 at
r 300 pcp = and passing through zero at r r 220 pcp *=  .

The radius r* has a simple interpretation in terms of the galaxy’s
core density profile. We recall that r* is defined as the radius at
which r bp pW = W( ) , where rp pW ( ) is the GC’s circular orbital
frequency and bW is the orbital frequency of stars at the very center
of the galaxy. Rearranging Equations (29) and (50), we obtain7

r M r M
4

3
0 . 553

p* *
p
r - =( ) ( ) ( )

The left side of Equation (55) is the difference in the mass
enclosed within r* (“mass deficit”) between a hypothetical
constant density core and that given by the mass profile of the
galaxy. Therefore, r* is the radius at which the galactic
mass deficit is equal to the mass of the GC.

The mass deficit vanishes for a constant density core,
r 0 constantr r= =( ) ( ) , so Equation (55) cannot be satisfied

for nonzero Mp, emphasizing the importance of allowing for core
density variation. It is precisely the deviation from a constant
density core that enables resonances and associated torques.
Formulae for r* for the isochrone and Burkert density

profiles are given in Equations 81(a) and (b) of Section 7. In
Section 5, we study in detail the role of r* as a “filtering” radius
for many low-order resonances, which is applied in Section 6 to
the orbital decay of the GC.

4.3. Torques in Dimensionless Variables

We now express the resonant torques of Equation 42(b)
using the dimensionless variables X Y Z, ,( ),

X
I

I
Y

L

I
Z

L

I
, , , 56z

max max max
= = = ( )

instead of I L L, , z( ). The domain of these is restricted to the
three-dimensional wedge, Y X0 1   , with Y Z Y - .
Equation (37) for the isochrone DF can be written as

dF

dE

b

GI
A X Y19.05 , , 57

b

0
3

= - ( ) ( )

where A X Y,( ) is a dimensionless positive function with
A 0, 0 1=( ) . From Figure 3, it can be seen that A X Y,( ) is
weakly dependent on Y. We also rescale and define the
dimensionless Fourier coefficients,

X Y Z
a r

GM
I L L, , , , . 58nℓm nℓm z

2
p
2 1 2

p
F =

+
F( )

( )
( ) ( )

The torques depend on

P X Y dZ X Y Z, , , , 59nℓm
Y

Y

nℓm
2ò= F

-
( ) ∣ ( )∣ ( )

Figure 2. Normalized fractional frequency difference as a function of the GC’s
orbital radius. Figure 3. Shown is A X Y,( ) in the unit triangle.

7 The subscript “0” has been dropped for the central density and mass profile
of the galaxy to indicate that Equation (55) is valid for any decreasing density
profile, rr ( ), with a finite central density, 0r ( ), and not just the isochrone.
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which is a measure of the distribution within the unit triangle of
the “power” in the nℓm( ) Fourier component. Using Equations
(53), (57), and (59) in Equation 42(b), the resonant torque is

r
GM b r

a r
r305

1
, 60nℓm nℓmp

4 2 p
2

p

2
p
2 p p e
e

= -
+ D

+
( )

[ ( )]
( ) ( )

where

r m dX dY A X Y P X Y

n m nX ℓY m

, ,

3 61

nℓm
X

nℓmp
2

0

1

0
1

 ò ò
d e

=

´ - - + - D-

( ) ( ) ( )

( ( ) ) ( )

is a dimensionless positive factor that measures the strength of
a resonance.

4.4. Types of Resonances

The resonance condition of Equation (53) can be rewritten in
dimensionless form as

n m
nX ℓY m r3 0, 62p

e
-

+ - + - D =
( ) { ( )} ( )

where we note that it is independent of Z. We recall that
m 1, 2, 3, etc.= , and only one of n ℓ,( ) can be zero. Given rp,
for a triplet n ℓ m, , 0>( ) to be a core resonance, the straight line
of Equation (62) must pass through the unit triangle, Y0  
X 1 . The magnitudes of the three terms inside the curly
brackets of the resonance condition, Equation (62), are of order
n3 , ℓ, and m, respectively. For the resonance condition to be
satisfied, these three terms together must cancel n m1e - =- ( )

n m10 -( ).
Of particular importance are resonances with small integers,

n ℓ m, , 0>( ). This is because the resonance strength, nℓm , of
Equation (61) depends on Pnℓm, which diminishes rapidly for
larger n ℓ m, , 0>( ). Hence, it is natural to distinguish between
the two main types of core resonances accordingly as n=m
or n m¹ .

1.Corotating resonances: n m 0= > . Then, Equation (62)
reduces to

mX ℓY m r3 0. 63p- + - D =( ) ( )

As this equation can be satisfied by many low integers ℓ and
m 0> , we expect corotating resonances to exert significant
torques. A physical picture of the orbit of a corotating resonant
star can be obtained by setting n=m in Equation (47), which
is the primitive form of the resonance condition:

m I L ℓ I L, , .w gpW - W = - W[ ( ) ] ( )

Because m, , ,w g pW W W( ) are all positive quantities with
,w gpW W W , we must have w pW W , with the small

difference between them resonating with gW , the small apse
precession rate. So, a resonant star nearly corotates with the
GC, trailing or leading it slightly, depending on the sign of ℓ.
Thus, we have the two families of corotating resonances:

trailing resonances ℓ 0> , so w pW < W and the star trails the
GC in its orbit; and
leading resonances ℓ 0 , so w pW W and the star leads the
GC in its orbit.

2.Non-corotating resonances: n m¹ . In this case, wW can
differ from pW considerably. The resonance condition of

Equation (62) retains its general form. The first term is now
nonzero, with magnitude n m , 2 , 3 , etc.1 1 1 1e e e e- = =- - - -∣ ∣
10, 20, 30, etc. Each of the three terms in the curly brackets can
be as large only if either n 4, 7, 10, etc.∣ ∣ or ℓ m, ∣ ∣
10, 20, 30, etc. Therefore, these are all higher-order resonances
whose torques will be much weaker than corotating torques.

5. Corotating Torques in the Core

Here we study trailing and leading corotating resonances and
compute the associated torques as functions of the GC’s orbital
radius for r150 pc 300 pcp  . We follow the progressive
disappearances of resonances as rp decreases and see the role of
r 220 pc*  as a characteristic “filtering radius.”

The numerically intensive part of calculating the rmℓm p ( ) is
in the evaluation of the Fourier coefficients, I L L, ,nℓm zF ( ),
defined in Equation (46): for each I L L, , z( ), we need to do a
triple integral over the angles w g h, ,( ). Computation is
expedited by noting that, by suitable transformation to new
angle variables, one of the integrals can be evaluated
analytically in terms of elliptic integrals, as given in the
Appendix. The remaining two angle integrals are then
computed numerically. Once we have rmℓm p ( ), it can be
substituted in Equation (60) to get the resonant torque,

rmℓm p ( ). Then, the net trailing and leading torque profiles are

r r , 64a
m ℓ

mℓmtrail p
0 0

p å å=
> >

( ) ( ) ( )

r r , 64b
m ℓ

mℓmlead p
0 0

p 


å å=
>

( ) ( ) ( )

where the sums are over those m ℓ,( ) for which, at a given rp,
the resonant line lies within the unit triangle in (X, Y)-space.
We discuss these in Sections 5.1 and 5.2 for trailing and
leading resonances, respectively. Each has two subcases
according to whether the GC is outside or inside r*.

5.1. Trailing Corotating Torques

Since ℓ 0> , Equation (63) implies that resonant lines have
positive slopes in the X Y,( )-plane.

5.1.1. GC Outside r*
When r r 300 pcp*  < , we have 0.33 0- < D .

Equation (63) gives

X X Y m ℓ r
ℓ

m
Y; , ,

3 3
65r p

def
= =

D
+( ) ∣ ∣ ( )

as the resonant line, which intersects two of the three edges of
the unit triangle. The line passes through the Y=0 edge at
X 31 = D∣ ∣ . The second point lies on the edge Y=X for
ℓ m3< - D( ∣ ∣) and on the edge X=1 for ℓ m3 - D( ∣ ∣) .
The torques behave differently, as discussed below.
Low-ℓ resonances, ℓ m3< - D( ∣ ∣) . When r 300 pcp = , we

have 0.33D =∣ ∣ , so ℓ m2.67< are the only integer values of ℓ
that are allowed. We list some of the low-integer m ℓ,( ) values
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that are allowed:

1, 1 1, 2
2, 1 2, 2 2, 5
3, 1 3, 2 3, 8
4, 1 4, 2 4, 10
5, 1 5, 2 5, 13

. 66

¼
¼
¼
¼

¼ ¼ ¼ ¼

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

As rp decreases, D∣ ∣ also decreases, so the range of allowed ℓ

increases. But this has only a modest effect for small m. The
resonance strength factor of Equation (61) is

r
m

dY A X Y P X Y
3

, , , 67mℓm

Y

mℓmp
0

r r
a

 ò=( ) ( ) ( ) ( )

where Y m m ℓ3 .a = D -∣ ∣ ( ) Since the upper limit of integra-
tion, Y 0a µ D ∣ ∣ as r rp * , all r 0mℓm * =( ) .

High-ℓ resonances, ℓ m3 - D( ∣ ∣) . When r 300 pcp = , we
have 0.33D =∣ ∣ , so ℓ m2.67 are the only integer values of ℓ
that are allowed. The list of allowed (m, l) values is
complementary to the listin Equation (66):

1, 3 1, 4
2, 6 2, 7
3, 9 3, 10
4, 11 4, 12
5, 14 5, 15

. 68

¼
¼
¼
¼
¼

¼ ¼ ¼

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

As rp decreases, D∣ ∣ also decreases, and the range of allowed ℓ

decreases. Again, this has only a modest effect for small m. The

range in ℓ is narrowest when r rp *= for which 0 ;D =∣ ∣ then
ℓ m3 , and the list of allowed m ℓ,( ) shrinks to

1, 3 1, 4
2, 6 2, 7
3, 9 3, 10
4, 12 4, 13
5, 15 5, 16

. 69

¼
¼
¼
¼
¼

¼ ¼ ¼

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

The allowed m 1, 2, 3= resonances remain unaltered, but
4, 11 , 5, 14 , etc.( ) ( ) have dropped out. The resonance strength
factor of Equation (61) is

r
m

dY A X Y P X Y
3

, , , 70mℓm

Y

mℓmp
0

r r
b

 ò=( ) ( ) ( ) ( )

where Y m ℓ3b = - D( ∣ ∣) . At r rp *= , we have ℓ m3 ,
X ℓ m Y3r = ( ) , and Y m ℓ3b = . It is important to note that

r 0mℓm * ¹( ) , which is different from Equation (67) of the low-
ℓ case.
The rmℓm p ( ) of Equations (67) and (70) were computed

numerically, as discussed at the beginning of Section 5, for all
100 resonances with m ℓ1 , 10  . Substituting these in
Equation (60), we obtained the corresponding rmℓm p ( ). The six
panels of Figure 4 track trailing resonances with rmℓm p >∣ ( )∣

GM b10 5
p
2- ( ) for r r 300 pcp*   . Then, rtrail p ( ) was calcu-

lated by summing over the rmℓm p ( ), as given in Equation 64(a).
A striking feature evident in the figures is the progressive loss of
resonances and torque strengths as rp decreases.

Figure 4. Trailing corotating resonances and torques for the GC outside r* for six different r rp *> . All m ℓ, 1 are allowed, but only resonances whose
GM b10mℓm

5
p
2 1 > - -∣ ∣ ( ) are displayed. The color scale refers to GM blog mℓm10 p

2 1 -[∣ ∣ ( )]. The dashed lines separate low ℓ m3< - D( ∣ ∣) from high ℓ m3 - D( ∣ ∣)
resonances.
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1. At r 300 pcp = , there are 43 resonances, with
GM b GM b10 10mℓm

5
p
2 0.36

p
2 <- -( ) ∣ ∣ ( ). Of these,

34 are low-ℓ resonances and nine are high-ℓ resonances.
The strongest torque comes from the 2, 2( ) resonance.
The net torque due to all the resonances is trail 

GM b1.17 p
2- ( ).

2. At r 236.8 pcp = , there are 24 resonances, with
GM b GM b10 10mℓm

5
p
2 1.4

p
2 <- -( ) ∣ ∣ ( ). Of these, 15

are low-ℓ resonances and nine are the same high-ℓ
resonances. The strongest torque comes from the 1, 3( )
resonance. The net torque due to all the resonances
is GM b6 10trail

2
p
2 - ´ - ( ).

3. At r 221 pcp = , there are no low-ℓ resonances of any
strength to speak of. Nine high-ℓ resonances survive, with

GM b GM b10 10mℓm
5

p
2 2.5

p
2 <- -( ) ∣ ∣ ( ). The stron-

gest torque still comes from the 1, 3( ) resonance. The
net torque due to all the resonances is 7trail - ´

GM b10 3
p
2- ( ).

The torque profile, rtrail p ( ), is given in Figure 7(b) and
discussed in Section 6.

5.1.2. GC Inside r*
When r r150 pc p *< < , we have 0 0.6< D . Equation (63)

gives

Y Y X m ℓ r
m

ℓ

m

ℓ
X; , ,

3
71r p

def
= = D +( ) ( )

as the resonant line. This lies in the unit triangle only when
ℓ m3> + D( ) . It intersects the X=Y edge at X1 =
m ℓ m3D -( ) and the X=1 edge at Y m ℓ32 = + D( ) .

For r rp * , we have Δ small but positive. The list of
allowed m ℓ,( ) values is

1, 4 1, 5
2, 7 2, 8
3, 10 3, 11
4, 13 4, 14
5, 16 5, 17

. 72

¼
¼

¼
¼
¼

¼ ¼ ¼

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

This must be compared with the listin Equation (69) of high-ℓ
resonances that survive at r rp *= . We notice the absence of the
l m3= resonances, so 1, 3 , 2, 6 , etc.( ) ( ) have dropped out just
inside r*. As rp decreases, Δ increases more steeply, leading to
increased loss of the lower of these high-ℓ resonances. We
calculated

r
m

ℓ
dX A X Y P X Y, , 73mℓm

X
mℓmp

2 1

r r
1

 ò=( ) ( ) ( ) ( )

for all 225 resonances with m ℓ1 , 15  . Substituting these
in Equation (60), we obtained the corresponding rmℓm p ( ). The
six panels of Figure 5 track the trailing (high-ℓ) resonances with

r GM b10mℓm p
5

p
2 > -∣ ( )∣ ( ) for r r150 pc p * < . Then,

rtrail p ( ) was calculated by summing over rmℓm p ( ), as given
in Equation 64(a). This set of figures should be seen as a
continuation of the bottom right panel of Figure 4. High-ℓ
resonances exist inside r*, and there is increased loss of both
resonances and torque strengths as rp decreases.

1. At r 220 pcp = , which is just inside r*, there are just five res-
onances with GM b GM b10 10mℓm

5
p
2 2.5

p
2 <- -( ) ∣ ∣ ( ).

The strongest torque comes from the 1, 5( ) resonance. The

Figure 5. Trailing corotating resonances and torques for the GC inside r* for six different r rp *< . All m 1 and ℓ m3> + D( ) are allowed, but only resonances
whose GM b10mℓm

5
p
2 1 > - -∣ ∣ ( ) are displayed.
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net torque due to all resonances is 5 10trail
3 - ´ -

GM bp
2( ).

2. At r 185 pcp = , there are only three resonances with
GM b GM b10 10mℓm

5
p
2 3.5

p
2 <- -( ) ∣ ∣ ( ). The stron-

gest torque now comes from the 1, 7( ) resonance. The
net torque due to all resonances is 5trail - ´

GM b10 4
p
2- ( ).

3. At r 157 pcp = , there is just one resonance left, 1, 9( ),
with GM b10mℓm

5
p
2 > -∣ ∣ ( ). The net torque due to this,

together with contributions from weaker resonances,
is GM b5 10trail

5
p
2 - ´ - ( ).

The torque profile, rtrail p ( ), is given in Figure 7(a) and
discussed in Section 6.

5.2. Leading Corotating Torques

When ℓ 0 , the resonance condition of Equation (63) is

mX ℓ Y m r3 0. 74p+ + D =∣ ∣ ( ) ( )

Resonant lines have negative slopes in the X Y,( )-plane.

5.2.1. GC Outside r*
When r r 300 pcp*  < , we have 0.33 0- < D , and

Equation (74) gives

X X Y m ℓ r
ℓ

m
Y; , ,

3 3
75r p

def
= =

D
-( ) ∣ ∣ ∣ ∣ ( )

as the resonant line, which connects the points X Y X,1 1 1=( ) and
X , 02( ), where

X
ℓ

m
X

3
1

3
,

3
. 761

1

2=
D

+ =
D-

⎜ ⎟⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ∣ ∣ ( )

We note that X2 is independent of m ℓ,( ), whereas the ratio
X X ℓ m1 3 12 1 = + >( ∣ ∣ ) is independent of rp. The resonance
strength factor is

r
m

dY A X Y P X Y
3

, , . 77mℓm

X

mℓmp
0

r r
1

 ò=( ) ( ) ( ) ( )

As r rp * , the upper limit of integration, X 01 µ D ∣ ∣ , and
all the mℓm vanish.
We calculated rmℓm p ( ) for all 110 resonances with m1  

10 and ℓ10 0 - . Substituting these in Equation (60),
we obtained the corresponding rmℓm p ( ). The six panels of
Figure 6 track the leading resonances with r 10mℓm p

5 > -∣ ( )∣
GM bp

2( ), for r r 300 pcp*  < . Then, rlead p ( ) was calculated
by summing over rmℓm p ( ), as given in Equation 64(b). As in
the case of the trailing torques discussed in Section 5.1.2, there
is a progressive loss of resonances and torque strengths as rp

decreases. But the leading resonances are fewer in number and
weaker. Here 2, 0( ) and 2, 2-( ) are the dominant resonances
throughout the range of rp.

1. At r 300 pcp = , there are 18 resonances, with
GM b GM b10 10mℓm

5
p
2 2

p
2 <- -( ) ∣ ∣ ( ). The net torque

due to all resonances is GM b2 10lead
2

p
2 - ´ - ( ).

Figure 6. Leading corotating resonances and torques for the GC outside r* for six different r rp *> . All m 1 and ℓ 0 are allowed, but only resonances whose
GM b10mℓm

5
p
2 1 > - -∣ ∣ ( ) are displayed.
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2. At r 245 pcp = , there are only six resonances, with
GM b GM b10 10mℓm

5
p
2 3.2

p
2 <- -( ) ∣ ∣ ( ). The net tor-

que due to all resonances is GM b10lead
3

p
2 - - ( ).

3. At r 229 pcp = , there is just one resonance left, 2, 0( ),
with GM b10mℓm

5
p
2 > -∣ ∣ ( ). The net torque due to this,

together with contributions from weaker resonances,
is GM b3 10lead

5
p
2 - ´ - ( ).

The torque profile, rlead p ( ), is given in Figure 7(c) and
discussed in Section 6.

5.2.2. GC Inside r*
When r rp *< , we have 0D > , and there are no solutions of

Equation (74) that lie in the unit triangle. Hence, leading
resonances do not exist for r rp *< , and the associated strength
factors must vanish:

r ℓ r r0, when 0 and . 78mℓm p p *  =( ) ( )

Hence, all r 0mℓm p =( ) , and the net leading torque rlead p =( )
0 when the GC is inside r*.

8

6. Suppressed Dynamical Friction

6.1. Torque Profiles and Suppression Factors

The trailing and leading net torque profiles, rtrail p ( ) and
rlead p ( ), were calculated for r150 pc 300 pcp  by sum-

ming over mℓm , as discussed in Section 5. These are plotted in
Figure 7, whose salient features can be understood with
reference to Figures 4–6. In this section, all torque values are
referred to in units of GM bp

2 1- .

1. Reading panels (a) and (b) of Figure 7 from right to left,
we see that trail∣ ∣ decreases from about 1.17 at
r 300 pcp = to about 0.22 at r 252 pcp = . The curve is
smooth because there are several low- and high-ℓ
resonances in operation throughout, counting 43 at
r 300 pcp = and 35 at r 252 pcp = with 10mℓm

5 > -∣ ∣ .
The strongest of these is the 2, 2( ), but there are a handful
of others of near-comparable strengths. Here trail∣ ∣
continues to decrease with rp, with 6 10trail

2 ´ -∣ ∣ at
r 237 pcp = . The number of significant resonances has
thinned out; there are only 24 with 10mℓm

5 > -∣ ∣ , of

which the 1, 3( ) is the strongest. We are on the verge of a
transition, where the low-ℓ resonances are rapidly losing
strength and cease to exist for r r 220 pcp *  . Here

trail∣ ∣, which now comes from only high- ℓ resonances, is
small. How small this is cannot be discerned from the left
end of panel (b) but is seen to be about 5 10 3´ - from the
right end of panel (a). The trail∣ ∣ declines more rapidly
inside r*. But, in contrast to the nearly featureless
behavior outside r*, trail∣ ∣ shows steep falls interspersed
with plateaus. The reason for this is the transition to a
state in which the main contribution to trail∣ ∣ comes from
just one or two resonances whose dominance is
transitory. The dominant resonances inside r* are the
1, 5( ) just inside r*, the 1, 7( ) at r 185 pcp = , and the
1, 9( ) at r 164 pcp = . The progressive shift to higher ℓ as

rp decreases is mainly responsible for the declining torque
strength, with 1.6 10trail

5 ´ -∣ ∣ at r 150 pcp = .
2. Panel (c) of Figure 7 shows that lead∣ ∣ decreases smoothly

as rp decreases. When compared with panel (b), we see
that r rlead p trail p ∣ ( )∣ ∣ ( )∣, because leading resonances
are weaker and fewer in number. Similar to low-ℓ trailing
resonances, the leading resonances exist only when the
GC is outside r*, with 2, 0( ) and 2, 2-( ) being the
dominant ones. At r 300 pcp = , there are 18 resonances
with 10mℓm

5 > -∣ ∣ , contributing to 2 10lead
2 ´ -∣ ∣ .

At r 245 pcp = , there are only six resonances with
10mℓm

5 > -∣ ∣ , giving 10lead
3 -∣ ∣ . Thereafter, the

torque is highly suppressed, with 3 10lead
5 ´ -∣ ∣ at

r 229 pcp = and 0lead =∣ ∣ at r rp *= .

The torque profiles in Figure 7 should be compared with
those of the Chandrasekhar torque, rC p ( ), of Figure 1(a). At
r 300 pcp = , the four different versions of the Chandrasekhar
formula give values of C ranging between −1.14 and 1.7- . At
r 300 pcp = , the net LBK torque is trail lead  = + 

1.17 0.02 1.19- - = - , and hence C » . This is reassuring
and serves as a consistency check: when several resonances of
comparable strengths are active, which is the case at
r 300 pcp = , we expect C » , as indeed we found. In order
to demonstrate how really suppressed (inside 300 pc) both

rtrail p ( ) and rlead p ( ) are vis-à-vis rC p ( ), we compare them
with the solid blue curve of Figure 1(a), whose torque has the
least magnitude among the four curves. In this case, C∣ ∣
decreases gradually from about 1.14 at r 300 pcp = to 0.6 at
r rp *= and 0.29 at r 150 pcp = .

Figure 7. Profiles of net trailing and leading corotating torques.

8 A characteristic feature revealed in Figures 4–6 is that rmℓm p ( ), with m ℓ,( )
both even or both odd, have larger magnitudes than those corresponding to the
even–odd or odd–even cases.
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The trailing and leading torque suppression factors,

S r
r

r
S r

r

r
, , 79trail p

trail p

C p
lead p

lead p

C p








= =( )

( )
( )

( )
( )

( )
( )

are plotted in Figure 8, where it should be noted that the
ordinates are displayed in a logarithmic scale. Both Strail and
Slead decrease as rp decreases, with S Strail lead . As Figure 8(a)
shows, S 1trail  at r 300 pcp = and decreases rapidly as rp

decreases. There is a steep drop as rp approaches r*, when the
low-ℓ trailing resonances begin losing strength, that ceases to
exist at r rp *= , where S 10trail

2< - is mostly due to the 1, 3( )
and 1, 5( ) resonances. Inside r*, Strail continues to decline
rapidly, showing the steep falls and plateaus of Figure 7(a). As
noted earlier, these features are due to the transitory dominance
of a succession of high-ℓ resonances, the 1, 5 , 1, 7 ,( ) ( )
1, 9 etc.( ) , as rp decreases, until S 10trail

4< - at r 150 pcp = .
Figure 8(b) shows Slead falling steadily from 2 10 2´ - at
r 300 pcp = to about 6 10 5´ - at r 230 pcp = , followed by a
steeper decline until it vanishes at r rp *= .

6.2. Stalling of the GC’s Orbit

Let us suppose that the GC was set on a circular orbit of
radius r 750 pcp = at some initial time. We expect that the net
LBK torque, C » for r 300 pcp  , so r tp ( ) initially decays
according to the Chandrasekhar formula, as discussed in
Section 3.2. Figure 1(b) shows r tp ( ) for four different versions
of C . The time for rp to decay from 750 to 300 pc varies from
5.6 to 7.3 Gyr. Thereafter, rp( ) departs from rC p ( ), as
discussed in detail in Section 6.1. So, we must calculate further
orbital decay by using the LBK torque. The equation governing
r tp ( ) is

M
d

dt
r r r r . 80p p p

2
p trail p lead p  W = = +( ) ( ) ( ) ( ) ( )

Equation (80) was integrated numerically, with the initial
condition r 300 pcp = at t=0, using the torque profiles of
Figure 7. The resulting r t R tp LBK=( ) ( ) is shown as the blue
curve in Figure 9. It is evident that orbital decay is highly
suppressed. We compare this with the gray curve, r t R tp C=( ) ( ),

for orbital decay with the most highly suppressed of the
Chandrasekhar torques, used in Equation (79). For small
t 0.5 Gyr< , the two curves overlap. This is because C 
near r 300 pcp = . Thereafter, they depart as follows:

1. After 3 Gyr, R 245 pcLBK  , while RC drops below r*
and reaches close to 190 pc.

2. After 6 Gyr, R 235 pcLBK  and R 125 pcC  . Decay
slows down.

3. After 14 Gyr, RLBK hovers just above r*, while RC has
plunged to 30 pc.

The blue curve, R tLBK ( ), appears like an asymptote to r rp *= ,
but this is not really the case. Eventually, r tp ( ) will drop below
r*, because rtrail p ( ) is nonzero for r rp *< . But the timescales
are much longer than is astronomically interesting.

7. Conclusions

Dynamical friction on a GC of mass M M2 10p
5= ´ —set

on an initially circular orbit inside an isochrone model of a
dwarf galaxy—is highly suppressed when the GC’s orbit enters
an inner core region. For a galaxy with core radius b =
1000 pc and core mass M M4 10c

8= ´  (see Section 3.1.1
for choice of parameter values), this corresponds to the GC’s
orbital radius r 300 pcp  . We found that, when r 300 pcp = ,
the retarding LBK torque on the GC, C » , the Chandra-
sekhar torque. Inside 300 pc, the LBK torque is highly
suppressed because of a progressive transition to states in
which there are fewer and weaker resonances in operation, so

C ∣ ∣ ∣ ∣. The orbital decay slows down drastically and, over
astronomically interesting timescales, the GC appears to stall at
a radius r r 220 pcp *  .
In the In11 simulation, the GC’s orbital decay slows down

when r 300 pcp < , and it appears to stall around a mean value
of about 225 pc until the end of the simulation about 6 Gyr
hence. In11 also studied the energy gained/lost by the stellar
orbits and identified the sort of orbits that interact the strongest
with the GC. Figure 10 of In11 displays some sample orbits,
where it can be seen that these are nearly corotating with the
GC and lagging it slightly. We found similar behavior in our
calculations of torques and orbital decay in Sections 5 and 6.
From Figure 9, we see that the GC’s orbital decay indeed slows

Figure 8. Suppression factors for trailing and leading torques.
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down inside 300 pc, with r 245 pcp  after 3 Gyr, and does not
reach r* even after 14 Gyr. Moreover, the strongest torques are
exerted by trailing corotating resonances.

The close agreement between the stalling radius in In11 and the
range 245 220 pc– we obtained is somewhat fortuitous, because
the isochrone and Burkert density profiles behave differently near
the center. The isochrone has an analytic core density profile,

r r b0 1 5 30 0
2 2r r -( ) ( )[ ] for r b , falling quadratically

with r. The Burkert has a nonanalytic core density profile,
r r r1B c cr r -( ) [ ] for r rc , which falls linearly with r;

the three-dimensional density gradient is singular at the origin.
The corresponding mass profiles are M r r4 3 00 0

3p r( ) ( ) ( )
r b1 2 2-[ ] and M r r r r4 3 1 3 4B c

3
cp r -( ) ( ) [ ]. Solving

Equation (55),

r
M

M
b 220 pc, isochrone, 81a

p

c

1 5

*  
⎛
⎝⎜

⎞
⎠⎟ ( )
/

r
M

M
r

4

3
160 pc, Burkert, 81b

p

c

1 4

c*  
⎛
⎝⎜

⎞
⎠⎟ ( )

where Mc is the core mass of Equation (39).
The Burkert profile has a smaller r* because its mass deficit,

defined in Equation (55), increases more strongly with r. For
the isochrone, the “stalling” radius 240 pc is not too far away
from its r 220 pc*  . But why does the GC in the In11
simulation appear to stall at 225 pc~ , which is about halfway
between 300 pc and the Burkert’s r 160 pc*  ? The first step
toward addressing this question would be to repeat the
calculations of this paper for the Burkert profile and see how
resonances drop off and torques weaken as rp drops below
300 pc. Some differences can surely be expected, because

rBr ( ) is nonanalytic at the center and falls steeper than r0r ( ).
But this would probably not encompass the entire story.

Figure 13 of In11 plots energy transfer—which is propor-
tional to the angular momentum transfer—between the stars
and the GC. Most of the stars absorb angular momentum from
the GC, whereas a very small fraction of the stars (a few
thousand out of 10 million) lose angular momentum to the GC.
The former behave like the stars we studied in this paper; they
absorb angular momentum from the GC and contribute to the
net retarding LBK torque in proportion to the resonant torque

strengths. But the latter population—referred to as “horn
particles” in In11—cannot be so described because, in the
linear theory, angular momentum is always absorbed by the
stars for any galaxy with DF F(E) with dF dE 0<( ) . In Figure
13 of In11, the two populations of stars are seen to exert almost
equal and opposite torques on the GC, so that the total torque is
effectively zero. How do we understand this in terms of our
exploration of resonances in the inner core of the isochrone?
Our calculations are a direct application of the LBK torque

formula of TW84, which is derived from the linear theory of
the collisionless Boltzmann equation (CBE). In order to
describe the “horn particles,” it is necessary to go beyond
linear theory and take into account the nonlinear theory of
adiabatic capture into resonance, which is discussed in TW84.
Nonlinear corrections to the CBE create “islands” in the
neighborhood of resonant surfaces in phase space. An isolated
island consists of (“captured”) orbits librating about a parent
resonant orbit and bounded by separatrices on which the
libration period is infinite.9 The “horn particles” in In11 must
be a population of stars captured in one or more resonant
islands in phase space. Only a small fraction of the stars are
“horn particles” because resonant islands occupy small phase
volumes, of order the square root of the perturbation. As the
GC’s orbit decays, the locations of resonant surfaces in I L,( )
space will drift slowly with time, as will the sizes and shapes of
the resonant islands.
For well-separated resonant islands, the nonlinear perturba-

tion to the galaxy’s DF can be calculated using the theory of
Sridhar & Touma (1996). Such a calculation must demonstrate
that the captured stars lose angular momentum to the GC,
thereby pushing it away so that it stalls somewhat farther away
from r*, nearer to 300 pc, as seen in In11. We recall from
TW84 that, when many resonances of comparable strengths are
active, the net effect is incoherent, so the LBK torque is
reasonably approximated by the Chandrasekhar torque. In
contrast, when only a few trailing corotating resonances
dominate—as in the inner core region—the net effect could
be cooperative, as suggested in In11. We have seen that the
LBK torque itself is highly suppressed, so the oppositely
directed torque due to the small number of resonantly captured
stars may well suffice to cancel it. Then the galaxy and GC will
no longer exert torque on each other, and we would have an
approximate self-consistent solution of the CBE describing the
galaxy and GC locked in a state of frictionless corotation.

Appendix
Fourier Coefficients of the Tidal Potential of the GC

The Fourier coefficients nℓmF of the tidal potential pF of the
GC are given as in Equation (46),

I L L
dw dg dh

w g h I L L

i nw ℓg mh

, ,
2 2 2

, , ; , ,

exp , 82

nℓm z zp
p p p

F = F

´ - + +

 ∮( ) ( )

{ ( )} ( )

in terms of a three-dimensional Fourier integral over the angles
w g h, ,( ). For corotating resonances n=m, so w and h occur
only in the combination w+h. Transforming to new
integration variables, w g k, ,¢( ), where w w h¢ = + and

Figure 9. Orbital decay r tp ( ). The blue curve is for the LBK torque, and the
gray curve is for the Chandrasekhar torque discussed in the text.

9 Beyond the separatrices are (“free”) circulating orbits that are reasonably
well described by the linear CBE underlying the calculation of the LBK torque.
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k h= - , we get

I L L
dw dg

i mw ℓg

, ,
2 2

exp , 83

mℓm z kp
p p

F =
¢

áF ñ

´ - ¢ +

 ∮( )

{ ( )} ( )

where

dk

2
84kp p

p
áF ñ = F∮ ( )

is the k-averaged tidal potential. Below, we show that this can
be evaluated analytically for core orbits. Then, mℓmF is given as
a two-dimensional Fourier transform over the w¢ and g of a
known function. The Fourier integrals were evaluated numeri-
cally using Mathematica with a relative tolerance of 1%.
Integrals of small magnitudes converge slowly when the
relative error is specified, so we used absolute tolerances of
10−6 and 10−8 for r rp *> and r rp *< , respectively.

Calculation of kpáF ñ . Let (x, y, z) be Cartesian coordinates in
the rotating frame in which the GC is quasi-stationary. Without
loss of generality, we assume that the GC lies on the x-axis.
Then, the tidal potential of Equation (43) is

GM
a r r r x

r x

a r

1

2
.

85

pp
2

p
2 2

p

p

2
p
2 3 2

F = -
+ + -

-
+

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )

( )

For core orbits, Equation (49) gives

r
I

e w1 cos 2 , 86a
b

2

W
- [ ( )] ( )

x
I

e C C C S S C

e S S C C S C

1

1 , 86b

b
w g h g h i

w g h g h i

W
- -

- + +

 [ ( )

( )] ( )

where C cosineº and S sineº . Using these in Equation (85),
pF can be expressed in terms of action-angle variables. The

next task is to express quantities in terms of w g k, ,¢( ) and
average pF over k. It is more convenient, and mathematically
equivalent, to average over the angle k w2b = + ¢, instead of
over k. Rewriting

r
I

e C C e S S1 , 87a
b

w w
2

W
- +b b¢ ¢ ( ) ( )

x
I e

C C S S C

e
S S C C C

C C e e C

S S e C e

1

2

1

2
1

2
1 1

1

2
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b
g w g w i

g w g w i

g i
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b

b

¢ ¢

¢ ¢


⎡
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⎤
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( )

( )

( ) ( )

we have

a r r r x A B C D S2 , 882
p
2 2

p+ + - + +b b ( )

where A, B, and D are β-independent functions, given by

A a r
I

r
I

e S S C C C

e C C S S C

1

1 , 89a
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2
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Then, the integral

dk

a r r r x

d
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Using Equation(2.580(1)) of Gradshteyn & Ryzhik (2007), we
have

A B D

B D

A B D
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2 2
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is the complete elliptic integral of the first kind. We also need
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Therefore, the k-averaged tidal potential is
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