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Abstract
We consider a 1D gas of N charged particles confined by an external harmonic 
potential and interacting via the 1D Coulomb potential. For this system we 
show that in equilibrium the charges settle, on an average, uniformly and 
symmetrically on a finite region centred around the origin. We study the 
statistics of the position of the rightmost particle xmax and show that the 
limiting distribution describing its typical fluctuations is different from the 
Tracy–Widom distribution found in the 1D log-gas. We also compute the large 
deviation functions which characterise the atypical fluctuations of xmax far 
away from its mean value. In addition, we study the gap between the two 
rightmost particles as well as the index N+ , i.e. the number of particles on 
the positive semi-axis. We compute the limiting distributions associated to 
the typical fluctuations of these observables as well as the corresponding 
large deviation functions. We provide numerical supports to our analytical 
predictions. Part of these results were announced in a recent letter, Dhar et al 
(2017 Phys. Rev. Lett. 119 060601).

Keywords: coulomb gas, extreme statistics, random matrix theory

(Some figures may appear in colour only in the online journal)

1.  Introduction

In the last two decades, extreme value statistics in correlated random variables has received a 
resurgence of interest [1, 2] with the discovery of the Tracy–Widom (TW) distribution in the 
context of random matrix theory (RMT) [3, 4]. Since then the TW distribution has appeared 
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ubiquitously in physics [5, 6], mathematics [7, 8] and information theory [9]. In physics it has 
appeared in stochastic growth models belonging to the Kardar–Parisi–Zhang (KPZ) universality 
class [10–16], nonintersecting Brownian motions [17], noninteracting fermions in a 1D trapping 
potential [18–20], disordered mesoscopic systems [21] and even in the Yang–Mills gauge theory 
in two dimensions [17]. It has also been measured experimentally in several systems including 
liquid crystals [22], coupled fiber lasers [23], or disordered superconductors [24].

Originally, the TW distribution was discovered as the limiting distribution of the largest 
eigenvalue xmax of an N × N  Gaussian random matrix for which the joint probability density 
function (PDF) P({xi}) of the N real eigenvalues {x1, x2, ..., xN} is known explicitly [25, 26]:

P({xi}) = BN e−
1

2σ2
∑N

i=1 x2
i
∏
i<j

|xi − xj|β� (1)

where BN is the normalisation constant and β = 1, 2, 4 is the Dyson index corresponding 
respectively to the Gaussian orthogonal, unitary and symplectic ensembles (GOE, GUE, and 
GSE respectively) [25, 27]. This distribution of N eigenvalues can, equivalently, be interpreted 
as the equilibrium Gibbs distribution, P({xi}) = BN e−βE({xi}), of a gas of charged particles 
with positions xi’s on a line with the energy E({xi}) given by

E =
1

2σ2β

N∑
i=1

x2
i −

1
2

∑
i �=j

log(|xi − xj|).� (2)

The first term in the energy can be interpreted as the potential energy due to a confining har-
monic potential, while the second term represents a logarithmic repulsion between any pair of 
charges. These two opposite energies compete with each other. The first term scales for large 
N as ∼ N x2

typ/(σ
2β) where xtyp is the typical scale of the position of charges. The second term 

scales as N2 since there are N(N − 1) pair of charges. Balancing the two energies lead to the 
fact that xtyp ∼

√
N  for large N. This suggests a rescaling of the positions of the charges as 

xi → σ
√
βN xi . In these rescaled variables, the energy is then given by

E =
1
2


N

N∑
i=1

x2
i −

∑
i�=i

log |xi − xj|


 ,� (3)

up to an unimportant constant. This system is often known as the log-gas [26]. In the large 
N limit, the average density ρN(x) of these charges or the eigenvalues converges to an 
N-independent limiting density given by the Wigner semi-circular form

ρN(x)|N→∞ = ρ∞(x) =

√
2 − x2

π
,� (4)

which has a finite support x ∈ [−
√

2,
√

2]. It turns out that the behaviour of the eigenvalues 
close to the soft edges ±

√
2  have universal features—most easily demonstrated by the larg-

est eigenvalue xmax = max1�i�N xi. In the log-gas picture, xmax corresponds to the position 
of the rightmost charge. Its average value is 〈xmax〉 ∼

√
2 for large N and it corresponds to 

the right edge of the semi-circle. However, xmax typically fluctuates from sample to sample 
on a scale of width N−2/3 around the mean. The probability distribution of these typical fluc-
tuations is described by the celebrated TW distribution. Indeed, the cumulative distribution 
Q(w, N) = Prob(xmax � w, N), takes the scaling form for w −

√
2 = O(N−2/3)

Q(w, N) ≈ Fβ

(√
2N2/3(w −

√
2)
)

,� (5)
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where Fβ(x) is the TW distribution, computed by Tracy and Widom for β = 1, 2 and 4 in 
terms of the solution of a Painlevé II equation [3]. For example, for β = 2 (the GUE case)

F2(x) = exp

(
−
∫ ∞

x
(y − x)q2(y) dy

)
, where,

d2q(y)
dy2 = 2q(y)3 + y q(y), with, q(y → ∞) → Ai(y),

�

(6)

and Ai(y) is the Airy function. For general β, the PDF F ′
β(x) of the TW-scaling function has 

non-Gaussian tails

F ′
β(x) ∼




exp

[
− β

24 |x|
3
]

as x → −∞

exp
[
− 2β

3 x3/2
]

as x → ∞.
� (7)

While the typical fluctuations of xmax around its mean are described by the TW distribution, 
the atypical large fluctuations of xmax, far from its mean to the left and right, are not described 
by TW but rather by the left and right large deviation tails

∂w Q(w, N) ≈





exp
[
−βN2Φ− (w)

]
, w <

√
2 & |w −

√
2| ∼ O(1)

√
2N

2
3 F ′

β

(√
2N

2
3 (w −

√
2)
)

, |w −
√

2| ∼ O(N− 2
3 )

exp [−βNΦ+ (w)] , w >
√

2& |w −
√

2| ∼ O(1),
�

(8)

where the right large deviation function (LDF) Φ+(w) was obtained explicitly for β = 1 in 
[28] and for arbitrary β in [31]. On the other hand, Φ−(w) was computed explicitly for all β in  
[29, 30]. It was argued that the left and the right large deviation tails can be interpreted as the 
free energies of two different thermodynamic phases of the Coulomb gas, separated by a third 
order phase transition [33] in the large N limit. Similar third order phase transitions have also 
been found in a variety of other systems [32–37], including in higher dimensions d � 1 [38–41].

The TW distribution was initially derived for an harmonic potential. However, it was found 
later that the typical distribution of xmax is universally given by the TW distribution, irrespec-
tive of the shape of the confining potential. This holds provided the average charge/eigenvalue 
density has a finite support and moreover, vanishes as a square root at the upper edge of the 
support (for a recent review see [48]). One then naturally asks the question: what happens to 
the universality of the TW distribution, if instead of the confining potential, one changes the 
form of the repulsive pairwise interaction? A natural setting to address this question corre-
sponds to a model in 1d of N charged particles in presence of a confining harmonic potential 
and just replacing the logarithmic pairwise repulsion by the true Coulomb repulsion in 1d, i.e. 
a linear |xi − xj| interaction term in equation (3) instead of log |xi − xj|.

It turns out that the resulting model is not purely academic. Indeed, this is a model that has 
been well studied in the physics literature in the context of 1d charged plasma [49]—known 
as the one-dimensional one component plasma (1d OCP) or the ‘jellium’ model. In the jel-
lium model, there are two species of opposite charges with a vanishing total charge. Each 
pair of charges interact with each other via the Coulomb potential which happens to be linear 
in 1d. If one treats one of the species, say the ones with negative charges, in a mean-field 
fashion with a uniform background density, this generates an effective confining harmonic 
potential for the positive charges. In addition, the positive charges repel each other via the 
linear Coulomb interaction. This gives rise precisely to an energy as in equation (3) with the 
logarithm replaced by a linear term. This model is a paradigm for 1d charged plasma [49] as 
several observables can be calculated analytically [50–54]. For this model most of the earlier 
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studies considered bulk properties in the thermodynamic limit. In a recent letter [42], we 
addressed the extreme value question in the 1d OCP or the ‘jellium’ model where we showed 
analytically that the limiting distribution of the typical fluctuations of xmax is indeed different 
from the TW distribution. Moreover, by computing the left and the right LDFs explicitly, we 
have shown that the third-order phase transition between a pushed gas (left large deviation) 
and a pulled gas (right large deviation) is still present in this system as in the case of the log-
gas. One of the purposes of the current paper is to provide a detailed derivation of these results 
presented in the letter [42].

In fact, the question of universality with respect to the pairwise repulsion term is not restricted 
just to the rightmost particle position xmax, but can also be addressed for other observables. For 
instance, one can ask how sensitive is the statistics of the gap g between the positions of the 
rightmost and the next rightmost particles for large N, as one changes the form of the pairwise 
interaction? Indeed, for the GUE, the PDF of the gap takes the scaling form, for large N

PG(g, N) ≈
√

2N2/3 h2(g
√

2N2/3),� (9)

where the scaling function h2(x) was computed explicitly in [43, 44]. In this paper, we com-
pute exactly the gap distribution in the ‘jellium’ model and show that it is different from the 
GUE-log-gas in equation (9).

Another interesting observable that has been studied extensively in the context of random 
matrices is the index N+  that denotes the number of positive eigenvalues, or equivalently the 
number of charges on the positive semi-axis. Obviously N+ is a random variable with values 
0 � N+ � N . It was shown that N+ typically fluctuates around its mean value N/2 on a scale 
of width 

√
logN  and the typical fluctuations are given by a Gaussian form [45, 46, 47]

PI(N+, N) ≈ exp

[
− βπ2

2 lnN
(N+ − N/2)2

]
.� (10)

The atypical large deviations of (N+   −  N/2)  =  O(N) were computed for large N and it was 
found that [46, 47]

PI(N+, N) ∼ e−βN2Ψ
(

N+
N

)
� (11)

where the rate function Ψ(c) has a logarithmic singularity at c  =  1/2. In this paper, we study 
this index distribution analytically for the ‘jellium’ model and find that it is rather different 
from the log-gas case.

Thus the purpose of this paper is essentially twofold:

	 •	�to present the detailed calculations of the distribution of xmax in the ‘jellium’ model
	 •	�to present new exact results for the distribution of two other observables in the ‘jellium’ 

model: (i) the gap g between the positions of the two rightmost particles and (ii) the index 
N+ denoting the number of particles on the positive semi-axis.

Interestingly, as we will show, the function that characterises the limiting distribution of xmax 
happens to also characterise the limiting distribution of the gap and that of the index. One of 
the main results of this paper is to show that changing the pairwise interaction indeed changes 
significantly the behaviour of these observables, thereby changing their universality class.

2.  Model definition and the summary of the results

We consider N charges on a line, with positions {xi}, confined by an external harmonic poten-
tial and interacting pairwise via the true 1d repulsive Coulomb potential. We assume that the 
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system is in thermal equilibrium such that the probability to observe the system in a configura-
tion {xi} is given by the Boltzmann distribution

P(x1, x2, ..., xN) =
exp [−β E(x1, x2, ..., xN)]

ZN
,� (12)

where β is the inverse temperature, ZN is the normalization constant and the energy of the 
configuration is given by

E({xi}) =
N
2

N∑
i=1

x2
i − α

∑
i �=j

|xi − xj|,� (13)

where α � 0 denotes the strength of the Coulomb repulsion. As in the log-gas case in equa-
tion (3), the prefactor N in the first term ensures that the xi’s are of order O(1).

Let us first consider two limiting temperature regimes: (i) very high temperature when 
β � N and (ii) very low temperature with β � N. In the former case, the interaction between 
the charges become totally irrelevant and the particles behave as N independent random vari-
ables with Gaussian distributions. In contrast, in case (ii) the interaction term dominates and 
the positions of the particles get ‘frozen’ at equidistant points in the interval [−2α,+2α], 
with very small fluctuations around them. While one can study this model at all temperatures 
exactly (see for example the results for xmax at very high and very low temperature in appen-
dix), it turns out that the most interesting situation occurs when β = O(N) when both the 
interaction term as well as the confining potential compete with each other. Henceforth, in this 
paper, we will focus on the case where β = N  so that

βE({xi}) =
N2

2

N∑
i=1

x2
i − αN

∑
i�=j

|xi − xj|.� (14)

This is the so-called ‘jellium’ model, whose bulk properties in the thermodynamic limit 
(N → ∞) have been studied extensively before [50–54]. In this paper, our focus is on the edge 
behaviour, in particular the distribution of the position of the rightmost particle xmax, as well 
as the gap g between the positions of the two rightmost charges. In addition, we also compute 
the distribution of the index N+ in the large N limit. Let us summarise our main results:

	 (a)	�Distribution of xmax: it is well known that, in the large N limit, the average density of 
charges (normalised to unity) is uniform ρN(x)|N→∞ = ρ∞(x) = 1

4α, for −2α � x � 2α. 
Thus the average 〈xmax〉 → 2α. For large but finite N, xmax fluctuates around this mean 
value with typical fluctuations scaling as O(1/N). Indeed we compute the full cumulative 
distribution

Q(w, N) = Prob. [xmax � w, N],� (15)

		 and show that it exhibits three different regimes (see figure 1)

Q(w, N) ≈





e−N3 Φ−(w)+O(N2), 0 < 2α− w ∼ O(1)
Fα(N(w − 2α) + 2α), |w − 2α| ∼ O(1/N)

1 − e−N2 Φ+(w)+O(N), 0 < w − 2α ∼ O(1).
� (16)

		 The second line denotes the regime for typical fluctuations |w − 2α| ∼ O(1/N) where the 
scaling function Fα(x) satisfies a nonlocal eigenvalue equation

A Dhar et alJ. Phys. A: Math. Theor. 51 (2018) 295001
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dFα(x)
dx

= A(α) e−x2/2 Fα(x + 4α),� (17)

		 with A(α) as the unique eigenvalue that can be determined (see later). The tails of the 
distribution Fα(x) are given by

F′
α(x) ≈

{
exp

[
−|x|3/24α+ O(x2)

]
as x → −∞

exp
[
−x2/2 + O(x)

]
as x → ∞.� (18)

		 This is the analogue of the TW distribution found in the log-gas case (see equation (8)). 
Clearly, this limiting distribution is different from the TW distribution.

		 The first and third lines in equation (16) describe the atypical large fluctuations of xmax, 
respectively to the left and the right of the central typical regime. We compute explicitly 
the rate functions Φ−(x) and Φ+(x):

Φ−(w) =

{
(2α−w)3

24α −2α � w � 2α
w2

2 + 2
3α

2, w � −2α.
� (19)

Φ+(w) =
(w − 2α)2

2
, w > 2α.� (20)

		 The three regimes in equation (16) are shown schematically in figure 1. It is easy to check 
that the central part described by Fα(x) in equation (16) matches smoothly with the two 
large deviation regimes flanking this central part.

	(b)	�Distribution of the gap: we compute the distribution PG(g, N) of the gap g between the 
positions of the two rightmost particles. We show that, for large N, it has the scaling form

PG(g, N) ≈ N hα(gN),� (21)

		 where the scaling function hα(z) is given by

hα(z) = Θ(z)A(α)
∫ ∞

−∞
dy (y + z − 4α) e−(y+z−4α)2/2 Fα(y).� (22)

Figure 1.  Schematic plot of the flat average density profile and the PDF of xmax in 
the thermodynamic limit. The PDF is peaked around the right edge 2α of the average 
density profile. The position xmax fluctuates typically around the mean 2α over the 
scale O(1/N) for β ∼ O(N) and these fluctuations are described by F′

α(x) (see (47)), 
while the large deviations of O(1) to the left and right of the mean are described by the 
left (red) and right (blue) large deviation tails. Reprinted figure with permission from 
[42], © 2017 American Physical Society.
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		 In equation (22), Fα(x) is again the unique solution of equation (17) with eigenvalue A(α) 
and Θ(z) is the Heaviside step function.

	 (c)	�Distribution of the index: we have also computed analytically, for large N, the distribution 
PI(N+, N) of the index N+ , i.e. the number of charges N+ =

∑N
i=1 θ(xi) on the positive 

semi-axis. From the symmetry of the energy E({xi}) about the origin in (13), it is evident 
that 〈N+〉 = N/2 and furthermore the full distribution PI(N+, N) is symmetric around 
N+   =  N/2. Indeed, for large N, we show that it approaches a scaling form

PI(N+, N) ≈ 4α fα (4α (N+ − N/2)) ,� (23)

		 where the scaling function fα(z) is given by

fα(z) =
Fα(z + 2α)Fα(−z + 2α)∫∞

−∞ dz Fα(z + 2α)Fα(−z + 2α)� (24)

		 where Fα(x) is again the unique solution of (17). Note that the typical fluctuations of 
N+ around its mean are here of order O(1) (see equation (23)), while they are of order 
O(

√
lnN) in the log-gas (see equation (10)). Moreover, we show that the scaling function 

fα(z) has non-Gaussian tails

fα(z) ∼ exp

[
− 1

24α
|z|3

]
as |z| → ∞ .� (25)

		 This limiting distribution is thus non-Gaussian, unlike in the log-gas case where it is 
known to be Gaussian (see equation (10)). The function fα(z) describes only the typical 
fluctuations of N+ of order O(1) around its mean. The atypical fluctuations of order O(N) 
on both sides of the mean are described by symmetric large deviation tails:

PI(N+ = cN, N) ≈ exp
(
−N3 Ψ(c)

)
, Ψ(c) =

8α2

3
|c − 1/2|3, 0 � c � 1.

�

(26)

		 The rate function Ψ(c) is simple here and is rather different from the corresponding one 
in the log-gas case [46, 47].

3.  Some basics on the 1d jellium model

With the choice β = N , the partition function of the model is given by

ZN =

∫ ∞

−∞
e−βE({xi})dx1 · · · dxN , with βE({xi}) =

N2

2

N∑
i=1

x2
i − αN

∑
i�=j

|xi − xj|.

�

(27)

In the large N limit (equivalently the zero temperature limit), the partition function is domi-
nated by the ground state (minimum energy configuration). To find this minimum energy 
configuration it is convenient to first rewrite the partition function ZN in (27) using the fact that 
E({xi}) is symmetric under permutations of the xi’s. Hence

ZN = N!

∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN e−βE({xi})

N∏
j=2

Θ(xj − xj−1).� (28)

For such an ordered configuration x1 < x2 < · · · < xN, we can eliminate the absolute values 
and rewrite the energy function as

A Dhar et alJ. Phys. A: Math. Theor. 51 (2018) 295001
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βE({xi}) =
N2

2

N∑
i=1

x2
i − 2αN

∑
i>j

(xi − xj),

=
N2

2

N∑
i=1

x2
i − 2αN

N∑
i=1

(2i − N − 1)xi,

=
N2

2

N∑
i=1

(
x2

i −
4α
N

(2i − N − 1)xi

)
,

=
N2

2

N∑
i=1

(
xi −

2α
N

(2i − N − 1)
)2

+ CN(α),

�

(29)

where CN(α) = 2α2 ∑N
i=1 (2i − N − 1) 2 is just a constant. The minimum energy configura-

tion corresponds to

xi = x∗i =
2α
N

(2i − N − 1), for i = 1, 2, ..., N.� (30)

This implies that, in the minimum energy configuration the charges are placed at regular 
intervals of length 4αN . The rightmost particle is at x∗N = 2α(1 − 1/N) and the leftmost particle 
is at the symmetrically opposite place x∗1 = −2α(1 − 1/N). Hence it is clear that the charge 
density is supported over a finite support and in the large N limit it is given by

ρ∞(x) =
{ 1

4α , for −2α � x � 2α
0 otherwise

.� (31)

Note that ρ∞(x) is different from the Wigner semi-circle (4) obtained in the log-gas.
For this jellium model, different thermodynamic properties have been studied extensively 

[49–54]. In particular, Baxter [52] analysed the partition function ZN,L of the jellium model 
confined in a finite box [−L, L], i.e. the following multiple integral

ZN,L = N!

∫ L

−L
· · ·

∫ L

−L
dx1 · · · dxN e−βE({xi})

N∏
j=2

Θ(xj − xj−1).� (32)

In computing this integral (32), Baxter introduced [52], as an intermediate step, an auxil-
iary function Fα(x) that satisfies a non-local eigenvalue equation defined in equation  (17). 
However, the observables in this model that we are interested in have not been studied, to the 
best of our knowledge. Remarkably, we find that the same auxiliary Fα(x) function that Baxter 
introduced for the analysis of the partition function of the system in a finite box, also plays a 
key role in determining the distributions of our observables on the infinite line.

4.  Distribution of xmax

In this section, we focus on the position xmax of the rightmost particle on the infinite line. 
From the analysis of the average density in equations (30) and (31), it is clear that, in the limit 
N → ∞, the mean position of the rightmost particle is

〈xmax〉 = x∗N ≈ 2α.� (33)

To derive the distribution of xmax, it is convenient to consider the cumulative distribution

Q(w, N) = Prob.[xmax � w] = Prob.(x1 � w, · · · , xN � w).

A Dhar et alJ. Phys. A: Math. Theor. 51 (2018) 295001
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Using the Boltzmann distribution P(x1, x2, ..., xN) in equation (12), one can express Q(w, N) 
as the ratio of two partition functions

Q(w, N) =
ZN(w)
ZN(∞)

, where,� (34)

ZN(w) =
∫ w

−∞
dx1 · · ·

∫ w

−∞
dxN e−βE({xi}),� (35)

where β E({xi}) is given in (13) and ZN(∞) ≡ ZN given in equation (27). Again, it is conve-
nient to work with ordered configurations of the xi’s, −∞ < x1 � x2 � ... � xN � w as before 
and one gets (using equation (29))

ZN(w) ∝
∫ w

−∞
dxN

∫ xN

−∞
dxN−1...

∫ x2

−∞
dx1 e−

N2
2

∑N
i=1(xi− 2α

N (2i−N−1))
2

� (36)

where we have replaced the product of theta functions by constraining the limits of the int
egrals. It is natural now to make a change of variables

εi = [Nxi − 2α(2i − N − 1)] , i = 1, 2, · · · , N.� (37)

The ordering condition xi−1 < xi translates to the following constraint on the εi’s

εi−1 < εi + 4α, for i = 2, 3, ..., N.� (38)

The last constraint xN  <  w in equation (36) translates to

εN < N (w − 2α) + 2α.� (39)

Consequently, ZN(w) reads

ZN(w) ∝ Dα (N(w − 2α) + 2α, N) ,� (40)

where the function Dα(x, N) on the right hand side (rhs) is given by the N-fold integral

Dα(x, N) =

∫ x

−∞
dεN

∫ εN+4α

−∞
dεN−1· · ·

∫ ε2+4α

−∞
dε1 e−

1
2

∑N
i=1 ε

2
i .� (41)

We remark that in the original jellium model in equation (27), the interaction between the 
xi’s is long-ranged (as every charge is coupled to every other charge). Remarkably however, 
after the ordering of the positions and the change of variables in equation (37), the interac-
tions between the new variables εi’s in equation (41) become short-ranged, i.e. εi interacts 
only with its two nearest neighbours εi−1 and εi+1. Note that this however is true only for 
α > 0 strictly (for α = 0 the gas is non-interacting). Therefore, the function Dα(x, N) in 
equation (41) can be interpreted as a restricted partition function of this constrained short-
ranged interacting gas.

To make further progress, we substitute ZN(w) from equations  (40) and (41) into equa-
tion (34) and obtain

Q(w, N) =
Dα(x, N)

Dα(∞, N)
≡ Fα(x, N).� (42)

Taking derivative with respect to x in (42), and using (41), we obtain

dFα(x, N)

dx
=

Dα(∞, N − 1)
Dα(∞, N)

e−
x2
2 Fα(x + 4α, N − 1).� (43)
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These equations (42) and (43) are actually exact for all x and N. To make progress, we will 
consider the N → ∞ limit. In this limit, the typical fluctuations of xmax around its mean value 
2α turn out to be of order O(1/N), while atypical large fluctuations can be of order O(1). 
Below, we analyse the probability distribution of typical and atypical fluctuations separately.

4.1. Typical fluctuations of xmax

To analyse the typical fluctuations, we need to keep the argument x = (w − 2α)N + 2α 
of Dα(x, N) fixed in equation  (40), while we take the N → ∞ limit. In addition, we need 

to estimate the ratio Dα(∞,N−1)
Dα(∞,N)  in equation  (43) in the large N limit. As discussed earlier, 

since Dα(∞, N) is the partition function of a short-ranged gas, we expect that its free energy 
− lnDα(∞, N) is extensive in N. Hence it follows that, for α > 0, Dα(∞, N) ∼ [A(α)]−N  
for large N, where lnA(α) is the free energy per particle of the short-ranged interacting gas. 
Hence, for α > 0, the ratio

Dα(∞, N − 1)
Dα(∞, N)

→ A(α), as N → ∞.� (44)

On the other hand, α = 0 is different. In this case, evaluating the integral in equation (41) 
exactly leads to D0(∞, N) = (2π)N/2/N!. Hence the ratio

D0(∞, N − 1)
D0(∞, N)

=
N√
2π

.� (45)

In the discussion below, we will restrict ourselves to the α > 0 case. Substituting the result in 
equation (44) on the rhs of equation (43) and anticipating further that the function Fα(x, N) 
converges to a limiting form Fα(x) for large N, i.e.

Fα(x, N → ∞) = Fα(x),� (46)

we find that Fα(x) satisfies a nonlocal equation

dFα(x)
dx

= A(α) e−x2/2 Fα(x + 4α).� (47)

The prefactor A(α) on the rhs is still unknown. The function Fα(x) is a cumulative probability 
distribution and hence satisfies the positivity condition 0 � Fα(x) � 1 for −∞ < x < ∞, 
along with the boundary conditions Fα(−∞) = 0 and Fα(∞) = 1. It turns out that the solu-
tion of equation (47) satisfies these conditions only for a specific value A(α)—in this sense 
equation (47) can be interpreted as a non-local eigenvalue equation.

As we have remarked earlier, the same non-local eigenvalue equation (47) also appeared in 
Baxter’s analysis of ZN,L in equation (32). Indeed, we remark that we can give a probabilistic 
interpretation to the integral ZN,L in equation (32). Up to a prefactor, this is just the probability 
that all the particles in an infinite system are contained in [−L,+L], which in turn, is the prob-
ability that the maximum of |xi|’s is less than L, i.e.

ZN,L ∝ Prob. [max{|x1|, |x2|, · · · , |xN |} < L] .� (48)

While computing A(α) analytically for all α > 0 seems hard, it is possible to determine 
its small and large α behaviours. We first consider the large α limit. In this case, using the 
boundary condition that Fα(x → ∞) = 1 on the rhs of equation (47), one obtains, as α → ∞

dFα(x)
dx

≈ A(α)e−x2/2.� (49)
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Integrating over x one finds Fα(x) ≈ A(α)
∫ x

0 e−y2/2 dy. Using once again that Fα(x → ∞) = 1 
gives A(α) ≈ 1/

√
2π as α → ∞. In contrast, the α → 0 limit is less trivial. However, this was 

already determined by Baxter [52]. Translating his asymptotic results to our case (his nota-
tions are quite different from ours) we finally get

A(α) ≈
{

1/(4 eα), as α → 0
1/
√

2π, as α → ∞.
� (50)

Note that the fact that A(α) diverges as α → 0 is not surprising since the ratio in equation (45) 
for α = 0 diverges in the N → ∞ limit. For other values of α, A(α) can be computed numer
ically using a shooting method, as discussed later.
Asymptotic behaviours of Fα(x). The tails of Fα(x) to leading order can be determined for 
arbitrary α > 0 as it does not require the explicit knowledge of A(α). We first consider the 
x → ∞ limit. In this limit we replace Fα(x + 4α) by 1 on the rhs of (47). This gives, to lead-

ing order, the Gaussian tail F′
α(x) ∼ e−x2/2 for large x. To compute the left tail, x → −∞, we 

make the following ansatz

Fα(x) ≈ e−a0 |x|δ , as x → −∞,� (51)

where a0 and δ are to be determined. We substitute this ansatz on both sides of (47) and then 
equate the powers of |x| in the exponential. The rhs yields rhs ≈ A(α) e−x2/2−a0 (|x|−4α)δ. For 
large |x|, (|x| − 4α)δ ∼ |x|δ(1 − 4α δ/|x|) to leading orders. Hence the rhs behaves as

rhs ≈ A(α)e−a0 |x|δ−x2/2+4 α δ |x|δ−1
.

The left hand side (lhs) of (52) behaves as

lhs ≈ e−a0 |x|δ

to leading order. Comparing both sides, we see that the term x2/2 and |x|δ−1 on the rhs must 
cancel each other. This implies that δ = 3 and a0 = 1/(8α δ) = 1/(24α). This provides the 
leading left tail F′

α(x) in (52). Together, the leading order asymptotic tails are given by

F′
α(x) ≈

{
exp

[
−|x|3/24α+ O(x2)

]
as x → −∞

exp
[
−x2/2 + O(x)

]
as x → ∞.� (52)

Note that the leading left tail of F′
α(x) is similar to the left tail of the TW distribution in 

(7) (with β = 1/α), while the right tail in equation  (52) is different from the right tail in 
equation (7).

For general α > 0, it is difficult to determine the eigenvalue A(α) as well as the full scal-
ing function Fα(x) explicitly. However they can be obtained by solving (47) numerically by 
tuning the value of A(α) using the standard shooting method5. This gives Fα(x) and A(α) 
simultaneously. In figure 2 (left panel), we plot A(α) versus α and compare with its predicted 
asymptotics in (50). In figure 2 (right panel), we compare F′

α(x) evaluated numerically using 
this shooting method, with the one obtained from direct Monte-Carlo simulation of the jellium 
model. The agreement is excellent.

4.2.  Atypical large fluctuations of xmax

In the previous section we have studied the typical fluctuations of xmax on a scale of order 
O(1/N) around its mean 2α in the large N limit. We have shown that this centred and 

5 See for instance https://en.wikipedia.org/wiki/Shooting_method
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scaled limiting cumulative distribution is described by Prob.(xmax < w) = Q(w, N) =
≈ Fα(N(w − 2α) + 2α) where the scaling function Fα(x) is given in equation  (47), along 
with the tails given in equation (52). However this limiting distribution does not describe large 
fluctuations of O(1) at far left or right of the mean. In the log-gas case, these large deviation 
functions were computed exactly [33] as described in the introduction, that revealed an inter-
esting third order phase transition between a ‘pushed’ and a ‘pulled’ phase. It is then interest-
ing to ask whether a similar phase transition also exists in the jellium model. This motivated us 
to study the probability of large deviations in the jellium model. Our exact computations show 
that a similar third order phase transition also exists in this case. Below, we discuss the left and 
right large deviation functions separately as they correspond to different physics.

4.2.1.  Left large deviation.  We start with equations (34) and (35), with the energy βE({xi}) 
given in equation (27). We need to compute the leading behaviour of the partition function 
ZN(w) for large N with a wall at w such that 0 < (2α− w) ∼ 1. This can be performed as fol-
lows: One first introduces a macroscopic empirical charge density in (−∞, w]

ρw(x) =
1
N

N∑
i=1

δ(x − xi).� (53)

Note that ρw(x) is normalised to unity. In terms of ρw(x), the energy function βE({xi}) in 
equation (27) can be expressed as

β E[{xi}] ≡ E [ρw(x)]� (54)

where

E [ρw(x)] = N3
(

1
2

∫ w

−∞
dx x2ρw(x)− α

∫ w

−∞
dx

∫ w

−∞
dy ρw(x)ρw(y) |x − y|

)
.

�

(55)

The N-fold integration in the partition function ZN(w) in (35) is carried out in two steps. In the 
first step, we fix the macroscopic density ρw(x) and then sum over all the microscopic configu-
rations of xi’s consistent with this density ρw(x). In the second step, we sum over all possible 

Figure 2.  (Left): plot of A(α) and numerical verification of its α → 0 and α → ∞ 
asymptotic. (Right): comparison of the theoretical F′

α(x) obtained by solving 
numerically (47) by a shooting method and F′

α(x) obtained from direct Monte-Carlo 
simulation of the ‘jellium’ model (with N  =  50) for two different values of the coupling 
parameter α = 1 and α = 0.5. Inset shows the distribution in a linear–linear scale. 
Reprinted figure with permission from [42], © 2017 American Physical Society.
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macroscopic densities ρw(x) that are positive and normalised to unity 
∫ w
−∞ ρw(x) dx = 1. The 

first step gives rise to an entropy term that scales, for large N, as O(N) (see for instance [30]). 
But since the energy E [ρw(x)] in equation (55) scales as N3, we can neglect the entropy term 
at leading order for large N. This gives

ZN(w) ≈
∫

Dρw exp (−βE [ρw(x)]) δ
(∫ w

−∞
dx ρw(x)− 1

)
� (56)

where Dρw denotes the measure of a functional integral over all possible densities satisfying 
the normalisation constraint 

∫ w
−∞ dx ρw(x) = 1. To proceed further we replace the delta func-

tion by its integral representation and get

ZN(w) = N3
∫

dµ
2πi

∫
Dρw exp

(
−N3 S[ρw(x)]

)
, with� (57)

S[ρw(x)] =
[

1
2

∫ w

−∞
dx x2ρw(x)− α

∫ w

−∞
dx

∫ w

−∞
dy ρw(x)ρw(y) |x − y|

+ µ

(∫ w

−∞
dx ρw(x)− 1

)]
.

�

(58)

The integral in (57) can be performed, for large N, by a saddle point approximation that gives

ZN(w) ≈ exp
(
−N3S[ρ∗w(x)]

)
,� (59)

where ρ∗w(x) is the saddle point density that minimises the action S[ρw(x)] in (58). The equa-

tion for ρ∗w(x) is obtained from 
(

δS[ρw]
δρw(x)

)
ρw=ρ∗

w

= 0 as

1
2

x2 − 2α
∫ w

−∞
dy ρ∗w(y) |x − y|+ µ = 0.� (60)

This equation holds for −∞ � x � w. But, the support of ρ∗w(x) can not extend over the full 
range (−∞, w] due to the following reasons: when x → −∞, the first term in (60) grows as 
x2, while the second term grows as |x|—hence they can not compensate each other. However 
the equation (60) holds true. The only possible way this can happen is that ρ∗w(x) has a finite 
support, say over [−B, w] where B can be determined from the normalisation constraint

∫ w

−B
ρ∗w(x)dx = 1.� (61)

Outside this region ρ∗w(x) is zero. For x ∈ [−B, w], differentiating twice the saddle point equa-

tion (60) and using the identity d2

dx2 |x − y| = 2δ(x − y), it is easy to show that ρ∗w(x) = 1/(4α). 
If w > 2α, the saddle point density is given by

ρ∗w(x) =
1

4α
for − 2α � x � 2α, w > 2α.� (62)

Thus for w > 2α the charge density does not change from its flat equilibrium density—this 
is because the charges do not feel the presence of the wall. However, when w < 2α, the wall 
tries to push the charges to the left of 2α (see the left panel of figure 3). We have seen from 
above that the bulk density does not change from its equilibrium value ρ∗w(x) = 1/(4α) to the 
left of the wall at w. Normalisation to unity of the charge density then implies that the extra 
charge that the wall displaces must be accumulated at the wall, since the bulk is not affected. 
This leads, for w < 2α, to a new saddle point density of the form

A Dhar et alJ. Phys. A: Math. Theor. 51 (2018) 295001



14

ρ∗w(x) =
1

4α
+ C δ(x − w), for − B � x < w,� (63)

where C represents the density of the charges displaced and absorbed at the wall. We have 
three unknowns: B, C  and μ which are to be determined now. From the normalisation condi-
tion 

∫ w
−B ρ

∗
w(x) dx = 1 we get the relation between the two parameters B and C via

(w + B)
4α

+ C = 1.� (64)

We need two more equations. For that, we substitute the saddle point density ρ∗w(x) from (63) 
in (60) to get

1
2

x2 − 1
2

∫ w

−B
dy |x − y| − 2α C |x − w|+ µ = 0.� (65)

Now performing the integral over y explicitly, we find
(

2α C +
w − B

2

)
x +

(
µ− 2α C w − B2 + w2

4

)
= 0, for − B � x < w.

� (66)
Since (66) is valid for arbitrary x ∈ [−B, w], the coefficients of different powers of x are indi-
vidually zero. As a result we get two additional equations

2αC +
w − B

2
= 0,� (67)

µ = 2α C w +
B2 + w2

4
.� (68)

We therefore have three equations (64), (67) and (68) for three unknowns µ, B and C, solving 
which we get

B = 2α,� (69)

C =
1
2
− w

4α
,� (70)

−2α +2αw −2α +2α

1/(4α) 1/(4α)

w

Density Density

x x

PUSHED PULLED

Figure 3.  Left: the left large deviation function Φ−(w) (see (82)) is obtained by 
computing the free energy cost in pushing the wall to the left of the right edge, i.e. 
w < 2α, of the flat equilibrium density. Right: the right rate function Φ+(w) (see (88)) is 
evaluated by computing the energy cost in pulling a single charge at 0 < w − 2α ∼ O(1) 
from the flat equilibrium distribution of charges. Reprinted figure with permission from 
[42], © 2017 American Physical Society.
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µ = α2 + αw − w2

4
.� (71)

Since B, w  and α are all positive by definition, then normalisation condition in (64) implies 
C � 1. This indicates that the above analysis is valid only for w > −2α. When w → −2α, 
C → 1: this means that all the charges are absorbed at the wall and there is no bulk charge left. 
Thus for w < −2α, we have effectively a single charge located at w subjected to a harmonic 
potential. Therefore, for the saddle point density ρ∗w(x) we have the following expressions, 
valid for all w

ρ∗w(x) =





1
4α , −2α � x � 2α, for w > 2α
1

4α +
( 1

2 − w
4α

)
δ(x − w), −2α � x � w, for −2α � w � 2α

δ(x − w) for w < −2α.
�

(72)

This saddle point density ρ∗w(x) has a nice interpretation. When the wall position w > 2α, it is 
given by the unperturbed density given in the first line of equation (72)—the charges do not 
feel the presence of the wall. When the wall position −2α < w < 2α, the wall displaces the 
charges over the region [w, 2α] and absorbs them on the wall as shown by the delta function 
term in the second line of equation (72) (see also the left panel of figure 3). Finally, when 
w < −2α, all the bulk charges are absorbed on the wall and the density is a simple delta func-
tion, given by the third line of equation (72).

Our next task is to insert this saddle point density in the action S  in (58) and get the 
partition function ZN(w) in (59) to leading order. Let us first consider w > 2α. In this case 
ρ∗w(x) = 1/(4α) for x ∈ [−2α,+2α]. Substituting this density in (58) we get the saddle point 
action

S[ρ∗w(x)] = −2
3
α2, for w > 2α.� (73)

Therefore from (59) the partition function ZN(w) for large N and for w > 2α behaves as

ZN(w) ≈ e
2
3 α

2 N3
, for w > 2α.� (74)

In particular, taking w → ∞ limit, we obtain the denominator in (34) as

ZN(∞) ≈ e
2
3 α

2 N3
.� (75)

Hence, finally, for w > 2α, to leading order for large N, we get

Q(w, N) =
ZN(w)
ZN(∞)

≈ 1, for w > 2α.� (76)

To calculate the corrections to this leading order result, we need to consider the right large 
deviations function, that will be computed in the next section. Let us now consider the region 
where −2α � w � 2α. Substituting the saddle point density ρ∗w(x) from the second line of 
(72) in (58) we get

S[ρ∗w(x)] = −8α3 + 12α2w − 6αw2 + w3

24α
, for − 2α � w � 2α.� (77)

Substituting this result in (59) and using the expression for the denominator in (75) we get

Q(w, N) =
ZN(w)
ZN(∞)

≈ e−N3Φ−(w),� (78)
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16

where the large deviation function Φ−(w) actually has a very simple expression

Φ−(w) =
(2α− w)3

24α
, for − 2α � w � 2α.� (79)

Finally, we consider the region where w � −2α. In this case, substituting the saddle point 
density ρ∗w(x) from the third line of (72) in (58) we get

S[ρ∗w(x)] =
w2

2
, for w < −2α.� (80)

Substituting this result in (59) and using the expression for the denominator in (75) we get

Q(w, N) =
ZN(w)
ZN(∞)

≈ e−N3Φ−(w), for β0 ∼ N

where,Φ−(w) =
w2

2
+

2
3
α2, for w � −2α.

�

(81)

In summary

Φ−(w) =

{
(2α−w)3

24α , −2α � w � 2α
w2

2 + 2
3α

2, w � −2α.
� (82)

In figure 4, we show a plot of Φ−(w) as a function of w.

Third order phase transition at w = 2α: the cumulative distribution Q(w, N) in (34) is the 
ratio of two partition functions. Hence − lnQ(w, N) = − ln ZN(w) + ln ZN(∞) can be inter-
preted as a free energy difference. Indeed, from (76), we see that to leading order for large 
N, − lnQ(w, N) ≈ 0 for w > 2α. In contrast, for w < 2α, using (78) and (81), we see that 
− lnQ(w, N) ≈ N3Φ−(w) where Φ−(w) is given in (82). Hence, we get (see figure 4)

− lim
N→∞

lnQ(w, N)

N3 =

{
0, for w > 2α
Φ−(w), for w < 2α.� (83)

Figure 4.  Plot of the free energy − limN→∞ lnQ(w, N)/N3 as a function of w for α = 1. 
For w > 2α = 2, the limiting value is just zero, − limN→∞ lnQ(w, N)/β0N2 = 0, while 
it is non-zero for w < 2α, − limN→∞ lnQ(w, N)/N3 = Φ−(w) (see (83)). This transition 
at w = 2α = 2 is indicated by the vertical solid blue line, where the third derivative 
of Φ−(w) is discontinuous. This is the third order phase transition from the ‘pulled’ 
(w  >  2) to the ‘pushed’ (w  <  2) phase. The dotted vertical blue line at w = −2α = −2 
(for α = 1) indicates another third order ‘condensation’ transition when the pushed 
gas fully accumulates at the wall position. Reprinted figure with permission from [42],  
© 2017 American Physical Society.
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Thus Φ−(w) is just the free energy cost in pushing the wall w to the left of the right edge 2α 
(see figure 3). From the expression of Φ−(w) in the first line of (82), it follows that Φ−(w) 
vanishes as the third power Φ−(w) ∝ (2α− w)3 as w → 2α from the left. Thus the third 
derivative of the free energy is discontinuous at the critical point 2α, making this a third 
order phase transition. Indeed, the pressure on the wall P = −N3Φ′

−(w) (derivative of the 
free energy with respect to the wall position) is zero for w > 2α (the charges do not touch the 
wall) and is non zero for −2α < w < 2α. The mechanism of this third order transition is thus 
similar to the log-gas case [33]. However, in contrast to the log gas case, there is an additional 
third-order phase transition in the jellium model when w → −2α (see equation (82)). Indeed 
the third derivative of Φ−(w) in equation (82) is also discontinuous at w = −2α. This trans
ition is not of the ‘pushed–pulled’ type like the one at w = 2α, but rather a condensation-type 
transition as all charges accumulate at the wall for w � −2α.

Interestingly, a similar third-order phase transition between the pushed and the pulled phase 
was recently found [40] by analysing large deviation functions associated with the position of 
the farthest charge in a d-dimensional jellium model. The limiting distribution of the position of 
the farthest charge is known in d  =  1 (and was computed by Baxter, see equations (32) and (47)) 
and in d  =  2 where the distribution, properly centred and scaled, approaches a Gumbel distribu-
tion [55]. However, for d  >  3, no explicit result is known for this limiting distribution. In d  =  1 
this corresponds to the distribution of the maximum of |xi|’s of the charges, as discussed above 
(see equations (32) and (48)). It was further shown that this observable exhibits a similar third 
order phase-transition even for short-range interactions, like the Yukawa potential [41], in d � 1.

4.2.2.  Right large deviation.  We now focus on the distribution Q(w, N), for large N, in the 
region 0 < w − 2α ∼ O(1), that characterises the large fluctuations of order O(1) to the right 
of the mean. From the analysis performed in the previous section, we have seen that in this 
regime, to leading order for large N, Q(w, N) ≈ 1 (see (76)). To compute the sub leading 
corrections to this leading order term 1, it is convenient to consider instead the PDF of xmax, 
given by the derivative of (34)

P(w, N) = ∂wQ(w, N) =
N

ZN(∞)
e−

N2
2 w2

∫ w

−∞
dx1 · · ·

∫ w

−∞
dxN−1

× exp


2αN

N−1∑
j=1

|w − xj|+ αN
∑

1�i�=j�N−1

|xi − xj| −
N2

2

N−1∑
i=1

x2
i




�

(84)

where we have simply separated out the xN  =  w from the rest in equations (35) and (13). This 
can be re-written as

P(w, N) =
N ZN−1(∞)

ZN(∞)
e−

N2
2 w2

〈
e2α N

∑N−1
j=1 (w−xj)

〉
N−1

,� (85)

where 〈· · · 〉N−1 denotes the average over the Boltzmann distribution of N  −  1 charges. We 
can then analyse this average for large N, for w > 2α, following [31] for the log-gas in the 
corresponding right large deviation regime. To evaluate this average, we note that essentially 
one single charge out of N is detached at w > 2α, while the rest of N  −  1 charges should be in 
their equilibrium flat configuration, i.e. with a density ρ∗w(x) = 1/(4α) for x ∈ [−2α, 2α] (see 
the right panel of figure 3). Furthermore, for large N, to leading order, we can (i) approximate 
the average of the exponential in equation (85) by the exponential of the average and (ii) use 

that, to leading order for large N, N ZN−1(∞)
ZN(∞) ∼ e−C0 N2

 for some constant C0 (independent of 
w) to write
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P(w, N) ≈ e−
N2
2 w2+2α N〈

∑N−1
j=1 (w−xj)〉−N2 C0 ≈ e−N2

(
w2
2 −2α

∫ 2α
−2α(w−x)ρ∗

w(x)dx−C0

)
.

�

(86)

Using ρ∗w(x) = 1/(4α) for x ∈ [−2α, 2α] and performing the integral in (86), we obtain

P(w, N) ≈ e−∆Epulled ≈ e−N2 Φ+(w),� (87)

where

Φ+(w) =
(w − 2α)2

2
, w > 2α.� (88)

Thus ∆Epulled in (87) corresponds to the energy in pulling out a single charge from the equi-
librium configuration of charges with a flat density.

5.  Distribution of the gap g = xN − xN−1

In this section we study the PDF PG(g, N) of the gap g = xN − xN−1 between the positions of 
the two rightmost charges with ordered positions xN and xN−1 < xN . We show that the typical 
fluctuations of g, of order O(1/N) for large N, are described by the scaling form,

PG(g, N) ≈ N hα(gN), with,

hα(z) = Θ(z)A(α)
∫ ∞

−∞
du e−u2/2 d

du
Fα(u − z + 4α)

�
(89)

where Fα(y) is given by the solution of (47) with its associated eigenvalue A(α). For much 
larger values of g, i.e. g = O(1), PG(g, N) is described by the large deviation form given in 
equation (103).

The distribution of the gap g = xN − xN−1 can be formally written as

PG(g, N) =
N!

ZN

∫
dx1 . . . dxNe−βE[{xi}] δ(xN − xN−1 − g)

N∏
j=2

Θ(xj − xj−1),

�

(90)

where βE[{xi}] is given in equation (27). In the ordered sector, rewriting the energy E[{xi}] as 
in (29) and performing the change of variables xi → εi as in (37), one can write

PG(g, N) = N1−N N!

ZN

∫ ∞

−∞

N∏
k=1

dεk e−
1
2

∑N
k=1 ε

2
k

[
N∏

k=2

Θ(εk − εk−1 + 4α) δ(εN − εN−1 − gN + 4α)

]
.

� (91)
It is useful to regroup the pair of variables εN  and εN−1, keeping the rest N  −  2 variables 
together and rewrite the integral as

PG(g, N) = N1−N N!

ZN

∫ ∞

−∞
dεN

∫ ∞

−∞
dεN−1e−

1
2 (ε

2
N+ε2

N−1)δ(εN − εN−1 − gN + 4α)

× Θ(εN − εN−1 + 4α)

(∫ ∞

−∞

N−2∏
k=1

dεk e−
1
2

∑N−2
k=1 ε2

k

N−1∏
k=2

Θ(εk − εk−1 + 4α)

)

=
N!N1−N

ZN

∫ ∞

−∞
dεN

∫ ∞

−∞
dεN−1e−

1
2 (ε

2
N+ε2

N−1)δ(εN − εN−1 − gN + 4α)

× Θ(εN − εN−1 + 4α) Dα(εN−1 + 4α, N − 2),
�

(92)
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where in the last step we have used the definition of Dα(x, N) in (41). This formula for the 
PDF of the gap PG(g,N) in equation (92) is exact for any N. We now analyze it in the large N 
limit. In this limit, it turns out that the typical fluctuations of the gap are of order O(1/N), as 
suggested by the appearance of the scaling variable g N in equation (92), while, as for xmax, 
the atypical fluctuations are of order O(1). We now analyse separately these two regimes of 
typical and atypical fluctuations of the first gap.

5.1. Typical fluctuations of the gap g

To analyse the typical fluctuations of the gap g, we consider the limit N → ∞, 
g → 0, keeping the scaling variable z = N g fixed. For large N we use equation (42) to write 
Dα(x, N − 2) = Dα(∞, N − 2)Fα(x, N − 2). Using further ZN ≈ N!Dα(∞, N)/NN, we have

PG(g, N) ≈ N
Dα(∞, N − 2)

Dα(∞, N)

∫ ∞

−∞
dεN

∫ ∞

−∞
dεN−1e−

1
2 (ε

2
N+ε2

N−1)δ(εN − εN−1 − gN + 4α)

× Θ(εN − εN−1 + 4α) Fα(εN−1 + 4α, N − 2).
�

(93)

In the large N limit, we then use the fact that D(α, N) ∼ [A(α)]−N  and that 
Fα(x, N → ∞) = Fα(x). Further, keeping N g = z fixed in the scaling limit, we get

PG(g, N) ≈ NA(α)2
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−

1
2 (x2+y2)δ(x − y − gN + 4α) Θ(x − y + 4α) Fα(y + 4α),

� (94)
where Fα(x) satisfies the differential equation  (47). The expression for PG(g,N) in equa-
tion (94) can be written in the scaling form

PG(g, N) ≈ N hα(g N),� (95)

where the scaling function hα(z) is given by

hα(z) = A(α)2
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−

1
2 (x2+y2)δ(x − y − z + 4α) Θ(x − y + 4α) Fα(y + 4α).

� (96)

This scaling function hα(z) in equation (96) can be further simplified as follows. The pres-
ence of the theta function in equation  (96) indicates that this integral is non-zero only 
when x > y − 4α. In contrast, the delta function indicates that this is non-zero only when 
x = y + z − 4α. Hence, for z  <  0, these two conditions can not be satisfied simultaneously. 
This indicates that hα(z < 0) = 0. For z  >  0, once the delta function constraint is satisfied, 
then the theta function constraint is automatically satisfied. Hence, for z  >  0, we can write

hα(z) = Θ(z)A2(α)

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−

1
2 (x2+y2)δ(x − y − z + 4α) Fα(y + 4α).

�

(97)

Performing the integral over x, we get

hα(z) = A2(α)Θ(z)
∫ ∞

−∞
dy e−

y2

2 e−
(y+z−4α)2

2 Fα(y + 4α).� (98)

Using the differential equation (47) one can simplify further

hα(z) = A(α)Θ(z)
∫ ∞

−∞
dy e−

1
2 (y+z−4α)2

F′
α(y).� (99)
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One can also do an integration by parts to rewrite it as

hα(z) = A(α)Θ(z)
∫ ∞

−∞
dy (y + z − 4α)e−

1
2 (y+z−4α)2

Fα(y).� (100)

In figure 5 we compare this theoretical result with numerical simulation and observe a very 
good agreement. One can also estimate the asymptotic tails of the scaling function hα(z). 
From equation (100), as z → 0, the scaling function hα(z) approaches a constant given by

hα(0) = Aα

∫ ∞

−∞
dy (y − 4α)e−

1
2 (y−4α)2

Fα(y),� (101)

which can be evaluated numerically. For z → ∞, one can show, by analysing the integral in 
equation (100) and using the tails of Fα(y) from equation (52), that to leading order for large z,

hα(z) ∼ e−z2/2+o(z2).� (102)

As expected, this is similar to the right tail behaviour of the PDF of xN = xmax (see equa-
tion (52)), since to create a large gap, we must have xN � xN−1. The fact that the large gap 
asymptotic behaviour coincides with the right tail of xmax also holds for the log-gas case [44].

5.2.  Atypical large fluctuations of the gap g

To analyse the large fluctuations of the gap g of order O(1), it is useful to remark that the 
configurations that contribute to the PDF P(g, N) are the same that contribute to a large 
value of xmax to the right of its mean, as depicted in the right panel of figure  3. In such 
configurations, xN = xmax = w while the second particle xN−1 is located close to the right 
edge xN−1 ≈ 2α, leading to a gap g = w − 2α. Therefore, for large N, one obtains that 
Prob.(xN − xN−1 = g) ≈ Prob.(xmax = g + 2α). Therefore, from the right large deviation 
form of the PDF of xmax obtained in equations (87) and (88), one gets, the large deviation 
form of P(g, N) to leading order for large N as

P(g, N) ∼ e−N2Ψ+(g), Ψ+(g) = Φ+(g + 2α) =
g2

2
,� (103)

where we have used the explicit expression of Φ+(w) given in equation (88). Thus, this large 
deviation regime matches exactly with the right tail of the regime of typical fluctuations (see 
equations (95) and (102)).

Figure 5.  Comparison of the gap distribution (100) with numerical data obtained by 
simulating the 1d-jellium model (13) with N = 50 particles with α = 1.
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6.  Index distribution

In this section, we study the statistics of the index N+ =
∑N

i=1 Θ(xi). This random vari-
able lies within the range 0 � N+ � N  and we now compute its distribution PI(N+, N) for 
large N. It is also clear that 〈N+〉 = N/2 and the distribution PI(N+, N) is symmetric around 
this mean. Given the joint PDF P(x1, x2, . . . , xN) in (12) along with (14), PI(N+, N) can be 
expressed as a multiple integral

PI(N+, N) =

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN P(x1, x2, . . . , xN) δ

[
N∑

i=1

Θ(xi)− N+

]
.

�

(104)

Since the integrand in (104) is symmetric under any permutation of the xi’s, we can order the 
xi’s, with x1 < x2 < x3 · · · < xN and rewrite it as

PI(N+, N) =
N!

ZN

∫
dx1 . . . dxNe−β E[{xi}]δ

[
N∑

i=1

Θ(xi)− N+

]
N∏

j=2

Θ(xj − xj−1),

�

(105)

where β E[{xi}] is given in equation (14). In this ordered sector (x1 < x2 < x3 . . . < xN), we 
use the same trick to eliminate the absolute values as done in (29). Hence, up to an overall 
normalisation constant, we can write

PI(N+, N) ∝
∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN e−

N2
2

∑N
i=1[xk− 2α

N (2k−N−1)]2

×
N∏

j=2

Θ(xj − xj−1) δ

[
N∑

i=1

Θ(xi)− N+

]
.

�
(106)

Next we perform the change of variables given in (37) and rewrite the product of theta 
functions in equation (106) as

N∏
k=2

Θ(xk − xk−1) =

N∏
k=2

Θ(εk − εk−1 + 4α) .� (107)

We want to compute the probability that N+ charges are on the positive side, or equivalently 
that N− = N − N+ charges are on the negative side. Consider first the N− charges on the 
negative side. In the ordered sector, we have to ensure that the position of the N−’th charge is 
negative. This automatically ensures (since we are in the ordered sector) that all the N− charges 
with positions x1, x2, …, xN−

 are negative. Thus, using the variables εi’s in equation (37), this 
condition translates to (see figure 6)

xN− < 0 or equivalently εN− < 2α(N + 1 − 2N−) = 4α
(

N+ − N
2

)
+ 2α

�

(108)

where we have used (37) with i  =  N− and N− = N − N+. Similarly, the condition xN−+1 > 0 
automatically ensures (in the ordered sector) that the position of all N+ charges on the right 
are positive, i.e. xN−+1 > 0, xN−+2 > 0, …, xN  >  0. Thus this condition translates to (see 
figure 6)

xN−+1 > 0 or equivalently εN−+1 > 2α(N − 1 − 2N−) = 4α
(

N+ − N
2

)
− 2α .

� (109)
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For later convenience, let us define

z = 4α
(

N+ − N
2

)
.� (110)

Then, in terms of the z variable, the two conditions in (108) and (109) are expressed as

εN− < z + 2α and εN−+1 > z − 2α .� (111)

Thus finally, using these new variables, PI(N+, N) in (106) simplifies to

PI(N+, N) ∝ T(N+, N), where,

T(N+, N) =

∫ ∞

−∞

N∏
k=1

dεk e−
1
2

∑N
k=1 ε

2
k

N∏
k=2

Θ(εk − εk−1 + 4α)

× Θ(z + 2α− εN−)Θ(εN−+1 − z + 2α),

�

(112)

where we have used the condition in (107), as well as the two conditions in (111). Note 
that these equations  are strictly valid for 0  <  N+   <  N. For N+   =  N and N+   =  0, one has 
to consider a slightly different integral, but this does not make any difference in the scaling 
limit. Thus, once again we have reduced our original problem of a long-ranged Coulomb 
gas to a problem of a short-ranged gas where there are only nearest neighbour interactions. 
Additionally, now there is a ‘defect’ on the bond connecting εN− and its right neighbour εN−+1 
that makes this short-ranged gas inhomogeneous (see figure 6).

The integral in (112) can be further simplified into two blocks as follows. For simplicity, let 
us denote the value of ε’s across the ‘defect’ as

εN− = u and εN−+1 = v .� (113)

Then the integral in (112) can be expressed as

T(N+, N) =

∫ ∞

−∞
du

∫ ∞

−∞
dv T1(u) T2(v) e−

1
2 (u2+v2) Θ(v − u + 4α)Θ(z + 2α− u)Θ(v − z + 2α) ,

� (114)
where T1(u) is the integral over the left M  =  N−  −  1 variables (given εN− = u) and T2(v) is 
the integral over the right N+   −  1  =  N  −  M  −  2 variables (given εN−+1 = v). They are given 
explicitly by

T1(u) =
∫ ∞

−∞
dε1

∫ ∞

−∞
dε2· · ·

∫ ∞

−∞
dεM e−

1
2

∑M
k=1 ε

2
k

[
M∏

k=2

Θ(εk − εk−1 + 4α)

]
Θ(u − εM + 4α)

� (115)

Figure 6.  A typical configuration of the positions of the charges having N− particles on 
the negative axis and N+ charges on the positive axis.
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where we recall that M  =  N−  −  1. Similarly, for the right block, we have

T2(v) =
∫ ∞

−∞
dεM+3

∫ ∞

−∞
dεM+4· · ·

∫ ∞

−∞
dεN e−

1
2

∑N
k=M+3 ε

2
k

×

[
N∏

k=M+4

Θ(εk − εk−1 + 4α)

]
Θ(εM+3 − v + 4α).

�

(116)

We can re-write T1(u) in (115) by incorporating the constraints imposed by the theta functions 
directly in the limits of integration as

T1(u) =
∫ u+4α

−∞
dεM e−

1
2 ε

2
M

∫ εM+4α

−∞
dεM−1 e−

1
2 ε

2
M−1 . . .

∫ ε2+4α

−∞
dε1 e−

1
2 ε

2
1 .

�

(117)

Note that this is exactly, the function Dα(x, N) defined in (41). Hence, T1(u) in (117) reads

T1(u) = Dα(u + 4α, M) , where M = N− − 1 = N − N+ − 1.� (118)

In a similar way, we can rewrite the integral T2(v) in (116) as

T2(v) =
∫ ∞

v−4α
dεN−+2 e−

1
2 ε

2
N−+2

∫ ∞

εN−+2−4α
dεN−+3 e−

1
2 ε

2
N−+3 . . .

∫ ∞

εN−1−4α
dεN e−

1
2 ε

2
N .

�

(119)

As in the case of the left block, let us define a function similar to Dα(x, M)

Eα(x, M) =

∫ ∞

x
dy1 e−

1
2 y2

1

∫ ∞

y1−4α
dy2 e−

1
2 y2

2 . . .

∫ ∞

yM−1−4α
dyM e−

1
2 y2

M .� (120)

Then, T2(v) in (119) can be written simply as

T2(v) = Eα(v − 4α, N+ − 1) .� (121)

Finally, from the definitions of Dα(x, M) (41) and Eα(x, M) (120), it is easy to check, by per-
forming the change of variables yk → −yk , the following identity

Dα(x, M) = Eα(−x, M)� (122)

valid for all M � 0. Plugging the results from equations (118) and (121) into (114) gives

T(N+, N) =

∫ z+2α

−∞
du

∫ ∞

z−2α
dv Dα(u + 4α, N − N+ − 1) Eα(v − 4α, N+ − 1)

× e−
1
2 (u2+v2) Θ(v − u + 4α)

�
(123)

where z = 4α
(
N+ − N

2

)
 from (110). The double integral in (123) can be further simplified 

by making the following observation. Let us look at the range of integration of u. The theta 
function Θ(v − u + 4α) demands that u < v + 4α. Hence we can eliminate the theta function 
and write it as

T(N+, N) =

∫ ∞

z−2α
dv

∫ min(v+4α,z+2α)

−∞
du Dα(u + 4α, N − N+ − 1) Eα(v − 4α, N+ − 1) e−

1
2 (u2+v2) .

� (124)
However, the lower limit of the v integration implies v > z − 2α. This means v + 4α > z + 2α. 
Hence, we necessarily have, min(v + 4α, z + 2α) = z + 2α. Thus we get
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T(N+, N) =

∫ ∞

z−2α
dv

∫ z+2α

−∞
du Dα(u + 4α, N − N+ − 1) Eα(v − 4α, N+ − 1) e−

1
2 (u2+v2) .

� (125)
Making further the change of variable v → −v, we can write it as

T(N+, N) =

∫ −z+2α

−∞
dv

∫ z+2α

−∞
du Dα(u + 4α, N − N+ − 1) Eα(−v − 4α, N+ − 1) e−

1
2 (u2+v2) .

� (126)
Finally, using Eα(−x, M) = Dα(x, M) from (122), we get

PI(N+, N) ∝ T(N+, N), with

T(N+, N) =

[∫ z+2α

−∞
Dα(u + 4α, N − N+ − 1) e−

1
2 u2

du

]

×

[∫ −z+2α

−∞
Dα(v + 4α, N+ − 1) e−

1
2 v2

dv

]�

(127)

where we recall z = 4α
(
N+ − N

2

)
. Note that the rhs of (127) is manifestly a symmetric func-

tion of N+ around N+   =  N/2.
This result in (127) is exact for all 1  <  N+   <  N. We now analyse it in the large N limit. For 

large N, it turns out that the typical fluctuations of N+ around its mean N+   =  N/2 are of order 
O(1) (i.e. z = O(1)), while the atypical fluctuations are of order O(N) (i.e. z = O(N)). Below, 
we analyse separately the probability distribution of typical and atypical fluctuations.

6.1. Typical fluctuations of N+ 

It is convenient to define the fraction c  =  N+ /N with 0 � c � 1. In the typical regime, where 
N+ = N/2 + z/(4α) with z = O(1). This amounts to consider the scaling limit c → 1/2, 
N → ∞, while keeping the product z = 4αN(c − 1/2) finite, O(1). To analyse (127) in this 
scaling limit (N → ∞ with z fixed), we follow the method of section 3 and rewrite the func-
tion Dα(x, M) as

Fα(x, M) =
Dα(x, M)

Dα(∞, M)
.� (128)

In section 3 ,we have shown that in the large M limit, Dα(∞, M) ∼ [A(α)]−M where A(α) 
can be interpreted as the free energy associated to the short-ranged gas whose partition func-
tion is given in equation (41). Furthermore, for large M, the function Fα(x, M) converges to a 
M independent limiting function Fα(x) (as stated in (46)) where Fα(x) satisfies the nonlocal 
eigenvalue equation (47). We then replace Dα(x, M) = Dα(∞, M)Fα(x, M) in (127), take the 
scaling limit using (44) and (46) and obtain

PI(N+, N) ∝

[∫ z+2α

−∞
A(α) Fα(u + 4α) e−

1
2 u2

du

][∫ −z+2α

−∞
A(α) Fα(v + 4α) e−

1
2 v2

dv

]
,

�

(129)

where we have absorbed the prefactor A(α)−N  in the proportionality constant. Furthermore, 
by using (47), the integrals over u and v can be performed explicitly (using Fα(x → −∞) = 0, 
see equation (51)). This gives

PI(N+, N) ∝ Fα(z + 2α)Fα(−z + 2α) .� (130)
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The proportionality constant can be fixed using the overall normalisation 
∑N

N+=0 PI(N+, N) = 1.
Summarising, the random variable N+ typically fluctuates on a scale of O(1) around its 

mean value N/2. We find that as N → ∞

N+ → N
2
+

1
4α

z� (131)

where the random variable z has a limiting N-independent distribution fα(z). In other words, 
the distribution PI(N+, N) converges to a limiting scaling form in the large N limit

PI(N+, N) → 4α fα

(
4α

(
N+ − N

2

))
,� (132)

where the scaling function fα(z) is given from (130) as

fα(z) =
Fα(z + 2α)Fα(−z + 2α)∫∞

−∞ dz Fα(z + 2α)Fα(−z + 2α)
.� (133)

The function fα(z) is manifestly symmetric around z  =  0. In figure  7 we compare this 
analytical result with numerical simulations and observe excellent agreement. The asymp-
totic behaviour of fα(z) for large z can be easily derived using the asymptotic decay of 
Fα(z → −∞) ∼ exp[−|z|3/24α] (see equation  (52)) and the fact that Fα(z → ∞) = 1. 
Plugging these asymptotics in (133) gives

fα(z) ∼ exp[− 1
24α

|z|3] as |z| → ∞ .� (134)

Thus the limiting distribution fα(z) in equation (133) is obviously non-Gaussian. This is at 
variance with the log-gas where the typical fluctuations of the index are known to be Gaussian 
(see equation (10)). Furthermore, as we will see below, this tail behaviour from the central 
regime matches smoothly with the large deviation behavior of N+ .

6.2.  Atypical large fluctuations of the index N+ 

In this section we study large deviations regime of PI(N+, N) in (104) where N+   −  N/2  =  O(N) 
in the large N limit. Our starting point is the exact expression for PI(N+, N) in (105) which 
we write as

Figure 7.  Comparison of the limiting index distribution (133) with numerical data obtained 
by simulated the 1d-jellium model (13) with N = 20 and N = 50 particles with α = 1.

A Dhar et alJ. Phys. A: Math. Theor. 51 (2018) 295001



26

PI(N+, N) =
N! I(N+, N)

ZN
,

I(N+, N) =

∫
dx1 . . . dxNe−β E[{xi}]δ

[
N∑

i=1

Θ(xi)− N+

]
,

�

(135)

with β E[{xi}] given in (14). Hence, I(N+ , N) can be interpreted as the partition function of the 
1d jelllium under the external constraint that there are exactly N+ particles on the positive side. 
As the function I(N+   =  cN, N) is symmetric around c  =  1/2, we assume, for convenience, that 
0 � c � 1/2.

To proceed further, we follow the same Coulomb gas method as explained in section 4.2, to 
compute the partition function I(N+   =  cN, N). We first replace the multiple integrals over xi’s 
in equation (135) by a functional integral over possible densities

ρI(x, N) = N−1
∑

i

δ(x − xi),� (136)

where the subscript I refers to ‘index’. The density ρI (i) is normalised and (ii) satisfies the 
constraint that N+   =  cN charges are on the positive axis, i.e.

(i)
∫ ∞

−∞
dx ρI(x, N) = 1, (ii)

∫ ∞

−∞
dxΘ(x)ρI(x, N) = c.� (137)

Therefore, the partition function I(cN, N) reads, to leading order for large N

I(cN, N) ∝
∫

D[ρI ] e−N3Σc[ρI ],� (138)

with

Σc[ρI ] =
1
2

∫ ∞

−∞
dx x2ρI(x)− α

∫ ∞

−∞
dx

∫ ∞

−∞
dy ρI(x)ρI(y) |x − y|

+ A1

(∫ ∞

−∞
dx ρI(x)− 1

)
+ A2

(∫ ∞

−∞
dx Θ(x)ρI(x)− c

)
,

�
(139)

where A1 and A2 are Lagrange multipliers to enforce the constraints satisfied by ρI(x) 
(137).

In the large N limit, the functional integral in equation (138) is dominated by the charge 
density ρ∗I  that minimise Σc[ρI ]. Numerical simulations indicate (see figure 8) that ρ∗I  has two 
distinct supports and is of the form

ρ∗I (x) =
{
ρ1(x) + λ δ(x), for −B � x � 0
ρ2(x) for a � x � b

,� (140)

where the constants λ > 0, B > 0, a > 0 and b  >  0 have to be determined. Inserting this 
form of density in the functional Σc[ρ] in (139) we obtain
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Σc[ρ
∗
I ] =

1
2

∫ 0

−B
dx x2ρ1(x) +

1
2

∫ b

a
dx x2ρ2(x)

− α

(∫ 0

−B
dx

∫ 0

−B
dy ρ1(x)ρ1(y)|x − y|+ 2λ

∫ 0

−B
dx |x| ρ1(x)

+ 2
∫ 0

−B
dx

∫ b

a
dyρ1(x)ρ2(y)|x − y|+ 2λ

∫ b

a
dx |x| ρ2(x)

+

∫ b

a
dx

∫ b

a
dy ρ2(x)ρ2(y)|x − y|

)

+ µ2

(∫ 0

−B
dx ρ1(x) + λ− 1 + c

)
+ µ1

(∫ b

a
dx ρ2(x)− c

)
,

� (141)
where µ1 = A1 + A2 and µ2 = A1. Now minimising Σc[ρI ] with respect to ρ1 and ρ2, we get 
the following equations

1
2

x2 − 2α
∫ 0

−B
dyρ1(y)|x − y| − 2αλ|x| − 2α

∫ b

a
dy ρ2(y)|x − y|+ µ2 = 0,

for − B � x < 0,
�

(142)

1
2

x2 − 2α
∫ 0

−B
dyρ1(y)|x − y| − 2αλ|x| − 2α

∫ b

a
dy ρ2(y)|x − y|+ µ1 = 0,

for a � x � b.
�

(143)

Taking derivative of the above two equations  with respect to x on both sides and using 
d2

dx2 |x − y| = 2δ(x − y), we have

ρ1(x) =
1

4α
, for − B � x < 0,� (144)

ρ2(x) =
1

4α
, for a � x � b.� (145)

We now insert the expression of ρ1(x)and ρ2(x) into (142), to find the following equation

x
[

b − a
2

+ 2αλ− B
2

]
+

[
µ2 −

B2

4
− b2 − a2

4

]
= 0,� (146)

which is valid for all x in the range −B � x < 0. As a result we require that the coefficients of 
x and x0 in the above equation are zero. This implies the following two equations

2αλ+
(b − a)

2
− B

2
= 0,� (147)

µ2 =
B2

4
+

b2 − a2

4
.� (148)
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Similarly, inserting the expressions of ρ1(x) and ρ2(x) in (6.2) we find

2αλ− (b + a)
2

+
B
2
= 0,� (149)

µ1 =
B2

4
+

b2 + a2

4
.� (150)

We have 6 unknowns (a, b, B, λ, µ1, µ2) to determine and till now we have 4 equa-
tions  (147)–(150). We need two additional equations  which are obtained from normalisa-

tions (see the last line of equation (6.2)): 
∫ 0
−B dx ρ1(x) = 1 − c − λ and 

∫ b
a dx ρ2(x) = c. This 

yields

B
4α

= 1 − c − λ,� (151)

b − a
4α

= c.� (152)

Solving this system of six equations (147)–(152) for the six unknowns (a, b, B, λ, µ1, µ2), 
we get

B = 2α,
b = 2α,
a = 2α(1 − 2c),

λ =
(1 − 2c)

2
,

µ1 = α2(2 + (1 − 2c)2),

µ2 = α2(2 − (1 − 2c)2).

�

(153)

Figure 8.  Density profile associated to c  =  0.4 obtained from numerical simulations of 
the 1d jellium model (13) with N  =  100. The red horizontal line corresponds to the bulk 
density ρ∞(x) = 1/(4α) in the unconstrained gas.
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With these constants the equilibrium density in (140) is fully specified for 0 � c � 1/2 as (see 
equations (140), (144) and (145))

ρ∗I (x) =

{
1

4α + (1−2c)
2 δ(x), for −2α � x � 0

1
4α for 2α(1 − 2c) � x � 2α.

� (154)

Finally inserting this expression of ρ∗I (x) in (141), we get

Σc[ρ
∗
I ] =

8α2

3
(1/2 − c)3 − 2α2

3
, for 0 � c � 1/2.� (155)

A similar computation for 1/2 � c � 1 yields

Σc[ρ
∗
I ] =

8α2

3
(c − 1/2)3 − 2α2

3
, for 1/2 � c � 1.� (156)

Combining both expressions we have

Σc[ρ
∗
I ] =

8α2

3
|c − 1/2|3 − 2α2

3
, for 0 � c � 1.� (157)

Hence from equations (138) and (157), we have I(cN, N) � e−N3[(8α2/3) |c−1/2|3− 2α2
3 ] to lead-

ing order for large N. Since ZN ≈ I(N/2, N) and N! ∼ eN log N+O(N), one finally obtains the 
large deviation form of the index distribution announced in equation (158)

PI(N+ = cN, N) � exp

(
−N3 8α2

3
|c − 1/2|3

)
.� (158)

It is straightforward to check that this large deviation tail matches smoothly with the tails of 
the central region given in (134).

7.  Conclusions

In this paper we have studied analytically the distribution of the position of the rightmost par-
ticle xmax of a 1d Coulomb gas confined in an external harmonic potential (the 1d jellium 
model) in the limit of large number of particles N. We have shown (see the appendix) that at 
very high temperature (when the inverse temperature β = O(1)) the distribution of xmax, prop-
erly centred and scaled, is given by the Gumbel distribution. In the opposite limit of very low 
temperature (when β = O(N1+γ) with γ > 0), the distribution of xmax is given a given by a 
Gaussian centred at 2α with a width  ∼N−1−γ/2 for large N. We have also shown that the most 
interesting case is when β = O(N). In this case, we have shown that the cumulative distribution 
of xmax, for large N, converges to a non-trivial limiting form Fα(x) that is different from the 
Tracy–Widom distribution of the log-gas. We have shown that this function Fα(x) is the solu-
tion of a non-local eigenvalue equation (17). We have also computed the rate functions associ-
ated with atypically large fluctuations around the mean (see equations (16), (19) and (20)) and 
found a third order phase transition between a pushed and a pulled phase, as in the log-gas.

In addition, we have studied the distribution of two other observables: (i) the gap 
g = xN − xN−1 between the two rightmost charges and (ii) the index N+ which is the number 
of particles on the positive semi-axis. We have analytically computed the distribution of both 
quantities and found that their typical distributions can be expressed in terms of the same 
function Fα(x) (see equations (95) and (100) for g and equations (132) and (133) for N+ ). For 
both observables, the obtained limiting distributions are quite different from their counterpart 
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in the log-gas. In both cases, we have computed the large deviations, to leading order for large 
N (see equations (103) and (158) for the gap and the index respectively).

Our work raises several interesting questions. For instance, how universal is the limiting 
distribution of xmax if one changes the confining potential or the pairwise repulsive interac-
tion? It would be challenging to study xmax with a repulsive interaction of the form |xi − xj|−k 
(where k → 0 corresponds to log-gas, while k  =  −1 corresponds to the ‘jellium’ model). 
Unlike the log-gas, the 1d jellium does not have a determinantal structure and computing its 
n-point correlations would be interesting.
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Appendix.  Distribution of xmax at finite inverse temperature β

As mentioned in the text, the model can be studied at finite β, and the distributions of different 
observables can be computed for all β. In this appendix, we briefly describe the results for the 
distribution of xmax in the two limiting cases, namely very low and very high β.

We start with the very high temperature regime where β = O(1). In this case, one can 
show that the interaction term plays a sub-dominant role and the particles essentially behave 
in an independent way, each of them sitting in a confining harmonic potential at thermal 
equilibrium at inverse temperature β. As a result the problem of finding the distribution of 
the position of the rightmost particle reduces effectively to computing the distribution of the 
maximum of N independent and identically distributed Gaussian random variables, each with 
zero mean. The limiting distribution for large N, properly centred and scaled, is thus given by 
the Gumbel distribution. More precisely, we find that for large N the typical fluctuations of 
xmax can be written as

xmax ≈ 2α−
√

2 lnN
N

+
1√

2N lnN
G� (A.1)

where G is a Gumbel random variable, i.e. Prob.(G � x) = e−e−x
.

In the opposite very low temperature limit, where β = O(N1+γ) with γ > 0, the charges 
fluctuate independently around their equilibrium positions x∗i = 2α/N(2i − N − 1) and the 
fluctuations are independent Gaussian around their respective means. Hence, in this case, 
computing the distribution of xmax again reduces to finding the maximum of a set of N inde-
pendent random Gaussian variables, with the important difference that these random variables 
are no longer identical but they are Gaussians with mean at x∗i  that depends explicitly on i. 
Consequently, the maximum is given precisely by xN itself and hence xmax also has a Gaussian 
distribution. More precisely, we find that

xmax ≈ 2α+
1

N1+ γ
2
N (0, 1),� (A.2)

where N (0, 1) is a zero mean, unit variance Gaussian random variable.
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