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Abstract

Spectral distortions in the cosmic microwave background over the 40–200MHz band are imprinted by neutral
hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range
z=6–34 at the rest-frame wavelength of 21 cm, has not been detected yet; and a poor understanding of high-redshift
astrophysics results in a large uncertainty in the expected spectrum. The SARAS2 radiometer was purposely
designed to detect the sky-averaged 21 cm signal. The instrument, deployed at the Timbaktu Collective (Southern
India) in 2017 April–June, collected 63hr of science data, which were examined for the presence of the cosmological
21 cm signal. In our previous work, the first-light data from the SARAS2 radiometer were analyzed with Bayesian
likelihood-ratio tests using 264 plausible astrophysical scenarios. In this paper we reexamine the data using an
improved analysis based on the frequentist approach and forward-modeling. We show that SARAS 2 data reject 20
models, out of which 15 are rejected at a significance >5σ. All the rejected models share the scenario of inefficient
heating of the primordial gas by the first population of X-ray sources, along with rapid reionization.

Key words: cosmic background radiation – cosmology: observations – dark ages, reionization, first stars –
methods: observational

1. Introduction

The Universe at the epochs of Cosmic Dawn (CD) and
Reionization (EoR) is poorly constrained by observations, which
results in a large scatter in theoretical predictions for galaxy and
star formation. One of the most powerful potential probes of
these eras is the rest-frame 21 cm signal of neutral hydrogen (HI)
produced by the intergalactic medium (IGM) prior to the end of
the EoR at z∼6. The intensity of this signal is tied to the star
formation history and to the ionization and thermal histories of
the IGM (Barkana 2016). Hence, its measurement will bracket
astrophysical properties of the first UV and X-ray sources,
including the ionizing efficiency of first stars and quasars, the
luminosity and spectra of the first population of black holes, and
the properties of dark matter particles (Furlanetto 2006; Pritchard
& Loeb 2010; Mirocha et al. 2013, 2015; Evoli et al. 2014;
Fialkov et al. 2014; Sitwell et al. 2014; Cohen et al. 2017;
Mirocha et al. 2017). At present, these properties are poorly
understood, allowing for a large variety of plausible 21 cm
spectra (Cohen et al. 2017).

The main feature of the sky-averaged (a.k.a. global) 21 cm
spectrum observed against the cosmic microwave background
(CMB) is the deep absorption trough that traces the adiabatic
cooling of the IGM and its subsequent heating by the first
X-ray sources (X-ray binaries and black holes). The thermal
history is imprinted in the 21 cm signal owing to the
Wouthuysen-Field effect (Wouthuysen 1952; Field 1958): the
21 cm transition is coupled to the temperature of the gas by
the stellar Lyα photons. The strength of the coupling depends
on the intensity of the Lyα background and is correlated
with the process of star formation itself. When the population
of X-ray sources builds up, producing a sufficient amount of
photons with energy in the ∼0.1–3 keV range, the temperature

of the IGM rises, leading to a reduction in the 21 cm intensity
and shaping the absorption trough. Considering ∼200 different
plausible astrophysical scenarios, Cohen et al. (2017) showed
that, owing to the uncertainty in the high-redshift astrophysics,
the depth of the absorption trough can vary between −25 and
−240 mK and its central frequency can be anywhere between
40<ν<120MHz (corresponding to z∼11–34). Localiza-
tion of this feature will directly constrain the intensity of the
Lyα background and the cosmic heating rate.
At lower redshifts z∼6–11 (higher frequencies ∼120–

200MHz) reionization by stars and quasars is ongoing, and the
intensity of the 21 cm signal decreases, owing to the lesser
fraction of HI in the IGM. As more free parameters are added
to the modeling (e.g., ionizing efficiency of sources and mean
free path of the ionizing photons), the expected signal is even
less constrained. In particular, its shape depends on the balance
between the heating and ionization rates: if heating occurs
faster than ionization, the signal will be seen in emission during
the EoR, otherwise it will be seen in absorption at any epoch.
If it is present, the emission feature can be as strong as 32 mK,
peaking between 80 and 160MHz. Detecting the EoR signal
will allow constraint of the X-ray heating efficiency together
with the ionization efficiency of sources (Cohen et al. 2017); it
will also measure the CMB optical depth τ at much higher
precision than what can be done with the CMB (Fialkov &
Loeb 2016; Liu et al. 2016).
Ongoing experiments that target detection of the global

21 cm signal from CD and EoR are plagued by orders of
magnitude stronger Galactic and extragalactic foregrounds
(Shaver et al. 1999; Sathyanarayana Rao et al. 2017b). These
foregrounds couple to the radiometer system through its
frequency-dependent transfer function and can potentially
confuse a detection of the relatively faint cosmological 21 cm
signal. Additional challenges include modeling the internal
additives from within the receiver system, which are often
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difficult to calibrate, and excision of terrestrial radio frequency
interference (RFI). All these demand stringent requirements on
the antenna and receiver design, clever calibration strategies,
and innovative data analysis methods (Singh et al. 2018).

Despite the challenges, pioneering experiments have attained
sensitivity levels at which plausible scenarios of reionization
are being ruled out. The first constraint on EoR from global 21
cm experiments came from the Experiment to Detect the
Global EoR Signature (EDGES) high-band antenna covering
the 90–190MHz frequency range, which ruled out rapid
reionization with Δz<0.06 at the 95% confidence level
(Bowman & Rogers 2010). Bernardi et al. (2016) used an
outrigger Large Aperture Experiment to Detect the Dark Ages
(LEDA) antenna to measure the spectrum at lower frequencies,
50–100MHz. This measurement constrained the amplitude of
the absorption trough to be less than 890 mK for a Gaussian-
shaped absorption with a width greater than 6.5 MHz at the
95% confidence level. Constraints on the redshift interval, Δz,
over which reionization occurred, have significantly improved
with the recent high-band data from EDGES (Monsalve
et al. 2017). The constraint depends on the assumptions for
the thermal state of the IGM during the EoR: for heated IGM
models, the duration shorter than Δz≈1 with EoR occurring
at z≈8.5 is rejected with 95% confidence; whereas for cold
IGM scenarios, Δz2 is rejected over most of the plausible
redshift range for the EoR. All the analyses mentioned above
were carried out with the adoption of simple functions to mimic
the cosmological signal: a tanh form was used to imitate the
variation in ionization fraction with frequency, and the
absorption trough was modeled as a Gaussian.

Realistic global 21 cm signals (part of which were published
in Cohen et al. 2017) were used for the first time in the analysis
of the first-light data of Shaped Antenna measurement of the
background RAdio Spectrum2 (SARAS 2) radiometer (Singh
et al. 2017). The spectra are outputs of a self-consistent 4-D
(3 spatial dimensions + time) large-scale simulation of the
high-redshift universe (e.g., Visbal et al. 2012; Fialkov &
Barkana 2014). In this simulation X-ray and UV photons
emitted by a realistic non-uniform and time-dependent
population of sources are propagated accounting for time delay
and cosmological redshift. These photons heat and ionize the

initially cold and neutral IGM, which produces the 21 cm
signal. Using Bayesian likelihood-ratio tests the SARAS2 data
were shown to disfavor 9 out of 264 different astrophysical
scenarios with 1σ confidence over the rejected set. All these
models share late IGM heating along with rapid reionization
(Singh et al. 2017a).
In this paper we employ improved statistical techniques to

analyze the same data of SARAS2 and use the same set of
astrophysical models as in Singh et al. (2017a). We adopt the
frequentist approach of Monsalve et al. (2017), including
forward-modeling, and revisit the likelihoods for each one of
the cosmological signals. The paper is organized as follows.
Section 2 summarizes the SARAS2 system and the observa-
tions. Section 3 outlines the data analysis method. In Section 4
we discuss astrophysical constraints. We discuss limitations of
the analysis methods in Section 5. We conclude in Section 6.

2. SARAS2: A Description of the
Radiometer and Observations

SARAS2 is a precision radiometer, custom designed to
detect the global 21 cm signal from CD and EoR, covering the
band 40–200MHz, which corresponds to the redshift range
z∼6–34. SARAS2 has been designed to have (i) a telescope
beam that is frequency-independent so that structure in the
foreground sky brightness does not result in any spectral shapes
in the response (Singh et al. 2017b, Section 3.2.1), and (ii) a
receiver transfer function and internal systematics—both
multiplicative and additive—that are spectrally smooth to
allow a separation of foregrounds and systematics from the
predicted global cosmological 21 cm signals (Singh et al.
2017b, Section 7).
The system was deployed at a relatively radio quiet-site at

the Timbaktu Collective in Southern India during 2017 April–
June. The data were processed to reject RFI, calibrate the
receiver gain and bandpass, and the data along with the
GMOSS model (Sathyanarayana Rao et al. 2017a) for the radio
sky were used to derive the total efficiency of the radiometer. A
total of 63hr of useful night time data were obtained over the
frequency band of 110–200MHz. Data residuals, after
modeling for foregrounds and internal systematics, yielded
spectra with resolution of 122kHz and root-mean-square (rms)
noise of 11mK, consistent with expectations from the
radiometer system temperature, observing time, etc.
We show in Figure 1 the data residuals for 63-hr averaging

for polynomial fits with different number of terms. With
increasing orders, the residuals approach thermal noise levels,
going down to thermal noise for an 8-term polynomial fit. We
do not see any evidence of systematics. We also show the
residuals across the nights in Figure 2 for the 8-term
polynomial fit, which are also consistent with noise.

3. Signal Extraction: A Frequentist Approach

In our first paper (Singh et al. 2017a) we used Bayesian
likelihood-ratio tests to verify whether or not each one of the
theoretical signals is consistent with the first-light data. Here,
we use the same data and the same set of models, but a different
statistical approach.

3.1. Foreground Modeling

The observed data consists of the cosmological and
foreground signals, propagated through the SARAS 2 system,

Figure 1. Data residuals obtained after subtracting different orders of
polynomials; the numbers in the legends indicate the number of terms in the
polynomial fit. The panel on the left shows the residuals without any averaging
in frequency, while the panel on the right shows the residuals smoothed at the
1 MHz scale using a Hanning window (Oppenheim 1999).
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plus the internal systematics generated by the instrument. Both
the foreground and the systematics are modeled using
polynomials over an optimal frequency band (as described in
Section 3.3). The total contribution of foregrounds and
systematics is thus n n= å =

-( )F ci
N

i
i

0
1 , where ci are the N

coefficients of the polynomial.

3.2. Signal Propagation

The cosmological 21 cm signal propagated through the
SARAS2 system, S(ν), is related to the input cosmological
signal, S0(ν), by the total efficiency ηt(ν) of the SARAS2
monopole antenna; i.e., S(ν)=ηt(ν)×S0(ν). To model the
cosmological component in our data analysis we use 264
different theoretical 21 cm spectra presented by Cohen et al.
(2017). In Figure 3 (top) we show a representative set of 25
input cosmological spectra in the 40–200 MHz band, from
which the contribution of the CMB has been subtracted. To
demonstrate the effect of the SARAS2 system, in the bottom
panel of Figure 3 we show the same signals after they
have been propagated through the system. The signals are
attenuated when propagated through the system, due to the
total efficiency, with the loss increasing toward lower
frequencies. The total efficiency of the SARAS2 system
was discussed in Singh et al. (2017b; see Section 3.2.3 and
Appendix A). We provide the measured total efficiency in
Figure 3 for reference.

3.3. Sensitivity Test

In this subsection our goal is to determine the optimal
frequency band Δ1,2, covering the frequency range ν1 to ν2,
and the number of polynomial terms, N, of F(ν) that provide
the best constraint on the particular signal template, S0(ν).
Using this information in Sections 3.4 and 3.5 we derive the
confidence with which each theoretical signal is ruled out by
the SARAS2 data.
We first perform a sensitivity test which, for each one of the

264 input templates S0(ν) and given Δ1,2 and N, determines
whether or not the signal can in principle be extracted from the
data considering the rms thermal noise and the total efficiency
of the system ηt(ν). The test delineates the 2D Δ1,2−N
parameter space in which the signal can be either detected or
rejected with at least 1σ confidence.
For a given Δ1,2 and N we first generate 500 independent

realizations of mock thermal noise with Gaussian statistics. The
rms thermal noise in any mock spectrum is matched to that in
the data within the corresponding frequency band. We then add
the propagated signal S(ν), in the frequency range ν1 to ν2, to
each realization of the mock thermal noise, creating 500 mock
data sets. Each one of these data sets is then jointly fit with a
model using linear least-squares (Press et al. 2007):

n n n= + ´( ) ( ) ( ) ( )M F a S , 1

where a is a scale factor for the signal. The procedure returns
best-fit values of the scale factor and coefficients of the
polynomial, ci, for each mock data set separately. For each
realization of the thermal noise, the fitting uncertainties in the
polynomial coefficients, sci

, and in the scale factor, σa, are
computed as part of the modeling process from the covariance
matrix. We next perform joint fitting for all the 500 data sets
and derive the mean, ā, and standard deviation, sā, for the scale
factor across the ensemble of the mock data sets.
For a detection, the extracted scale factor, ā, should be

consistent with unity within the fitting uncertainties sā. In other
words, for each input signal S0(ν) (and assuming the particular
choice of Δ1,2 and N) to be detected with more than 1σ
confidence; we require the following condition be satisfied:

 s s< - +( ¯ ) ( ¯ ) ( )¯ ¯a a0 1 . 2a a

If this condition is not satisfied, we infer that the collected data
(given its thermal rms noise, Δ1,2 and N) is not sufficient to
detect the particular S0(ν) at the 1σ level.
This exercise ignores foregrounds and systematics that may

leave residuals and this affect the detection of the 21 cm signal.
Therefore, it should be considered only as a feasibility test that
helps to determine whether or not the rms noise is sufficiently
low for a detection with significance greater than 1σ. This
sensitivity test affirms that if (i) the 21 cm signal is indeed
present in the measurement data, and (2) there are no residual
foregrounds and systematics limiting the decision, then the
best-fit results should yield =ā 1 with a confidence exceed-
ing 1σ.
Examination of the distribution of ā for different Δ1,2 and N

provides a 2D parameter space (Δ1,2–N) in which the condition
above is satisfied. We use the allowed values of Δ1,2 and N in
the next subsection to test each template against real data. If for
a particular 21 cm signal the Δ1,2–N parameter space is empty,
this template is taken out of the ensemble and is not searched
for. Therefore, the sensitivity test may be viewed as a

Figure 2. Residuals from each night selected for analysis, obtained by fitting an
8-term polynomial. On average, the observing time for a single night is ∼5 hr.
The rms noise for each night is close to 33 mK. The total observing time is
63 hr for 13 nights. The panel on the right shows the residual from each night
after averaging in frequency at the 1 MHz scale using a Hanning window
(Oppenheim 1999). The numbers in the legend represent indices for different
nights.
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preliminary filter that selects potentially good candidate 21 cm
signals that can be detected/rejected using the collected data.

3.4. Fitting the Data

We construct a set of models (Equation (1)) for each one of
the 21 cm signals that pass the sensitivity test and for every
combination of Δ1,2 and N from the allowed part of the
parameter space. We fit every model to the real data using
linear least-squares. The objective function defined as

åc n= -
n

n

n n( ( )) ( )w y M 3i
2 2 2

i i

1

2

is minimized, where ny i
is the real data in the ith frequency

channel and M(νi) is the model (Equation (1)). nw i are the
relative weights for the data in each frequency channel i based
on the system temperature and effective integration times,
which differ across the band depending on the RFI excision
during the processing. The calibrated data, along with the
corresponding relative weights across the band, are shown in
Figure 4.

In the fitting procedure to the SARAS2 data, for each given
theoretical 21 cm signal that passes the sensitivity test, the
optimal Δ1,2 and N are selected to be the combination for
which the fit yields minimum uncertainty in the scale factor.
The best-fit scale factor is denoted as ã, with the standard
deviation sã given by the relevant diagonal term in the
corresponding covariance matrix. In our analysis of all the
plausible theoretical 21 cm signals in the atlas, the median
value of the optimal N is 4, and the associated frequency band
is 110–180MHz. This is consistent with the fact that the
foregrounds and internal systematics of SARAS 2 are indeed
spectrally smooth and hence require only low-order poly-
nomials for the modeling. Typically, larger N remove a greater
part of the 21 cm signal and therefore return a larger

uncertainty s˜;a while smaller N are not sufficient to fit the
foreground, thus leaving behind larger residuals and increasing
the uncertainty sã.
For each valid theoretical 21 cm signal we compute a

standard score, ζ, given by

z
s

=
- ˜ ( )

˜

a1
. 4

a

The value of ζ yields the confidence of the rejection in units of
sã. Based on this score we rule out any 21 cm signal with
ζ>1, which ensures that the signal is inconsistent with the
data at greater than the 1σ confidence level.
For none of the considered theoretical models was ã found to

be consistent with unity, which would indicate a detection.
However, we find that for all the theoretical 21 cm signals that
pass the sensitivity test, the condition for rejection is satisfied
with confidence above 1σ; 25 templates have greater than 5σ
rejection significance. These cases are shown in color in
Figure 5, with each color representing the significance of
rejection according to the color bar. The corresponding
residuals are shown in the bottom panel of Figure 6. Both
the number of rejected cases and the significance of rejection
are an improvement compared to our previous work (Singh
et al. 2017a). We note that very high values of rejection
significance should be interpreted cautiously, since the real data

Figure 3. Top: representative set of 25 input global 21 cm spectra S0(ν) as a
function of frequency in mK units (Cohen et al. 2017). The middle plot shows
the total efficiency of the SARAS2 antenna as computed in Singh et al.
(2017b; see Section 3.2.3 and Appendix A). Bottom: propagated spectra, S(ν).

Figure 4. Top panel: calibrated data, without correcting for the antenna transfer
function. Bottom panel: relative weights for the data in the frequency channels.

Figure 5. The entire set of 264 theoretical models (Cohen et al. 2017). The
rejected signals are shown in color, with each color corresponding to the
rejection significance as indicated by the color bar. The data do not have
sensitivity for the signals shown in gray. Linear least-squares was used to
model the foregrounds+systematics.
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may include significant systematic noise with substantial non-
Gaussianity.

3.5. An Alternative Method of Model
Fitting Using Nonlinear Optimization

The process of performing the sensitivity test and fitting the
data in Sections 3.3 and 3.4, respectively, employ linear least-
squares where the best-fit scale factor, ã, is unconstrained in the
process of modeling. Such an approach may lead to unphysical
values of the scale factor.

In order to perform a constrained joint optimization of
the scale factor with the polynomial terms, we compute
the coefficients and their associated uncertainties using the
Levenberg–Marquardt algorithm (Marquardt 1963) for the
sensitivity test and fitting the data. Except for the method of
optimization, the frameworks for the sensitivity test and data
fitting remain the same, where the model is described by
Equation (1) and the objective function to be minimized is
given by Equation (3).

Nonlinear optimization routines are often biased by the
initial guess on the parameters to be estimated; therefore, in
the case of the sensitivity test described in Section 3.3, since we
are testing for a detection, we provide an initial guess of 0 to
the parameter ã. Conversely, in the case of modeling the real
data, where we are seeking to identify the 21 cm signals that
may be ruled out, we provide an initial guess of unity for ã.
Thus, by providing initial guesses that are the opposite of the
outcomes being examined for, we conservatively minimize
the chances of a false rejection of 21 cm signals in the fitting to
the data. Furthermore, for the given signal, we disallow scale
factors less than 0, which would then correspond to a different,
inverted signal.

The median value of the optimal N and the associated
frequency band with this approach continue to be the same as
that obtained through the linear least-squares approach.

Since this is a constrained nonlinear approach to computing
the scale factor, we take a more conservative approach in
rejecting the signal. We rule out any 21 cm signal for which the
following condition is met:

 s s- + <( ˜ ) ( ˜ ) ( )˜ ˜a a0 1. 5a a

While s+ <( ˜ )˜a 1a ensures that the signal is inconsistent with
the data with greater than 1σ confidence, the condition

 s s- +( ˜ ) ( ˜ )˜ ˜a a0a a ensures that the best-fit scale factor

is consistent with 0 within ±1σ. The value of ζ, as defined in
Equation (4), yields the confidence of the rejection in units
of σ.
Using the method of nonlinear optimization and the same set

of theoretical models of global 21 cm signals, we reject 20
templates with significance of rejection exceeding 1σ. The
rejected templates form the subset of models ruled out using
linear least-squares criteria. We highlight the rejected models in
Figure 7, where the color denotes the significance of rejection
in units of σ. The corresponding data residuals are shown in the
top panel of Figure 6. We next proceed to investigate the
parameter space spanned by the 20 rejected templates.

4. SARAS2 Constraints on 21 cm from CD/EoR

In the parameter study conducted by Cohen et al. (2017), the
entire astrophysical parameter space allowed by current
observational and theoretical constraints was sampled, and
the 21 cm signals were derived for different combinations of
the astrophysical parameters. In this study, key astrophysical
parameters were varied, including the minimal circular velocity
of star-forming halos (starting from the minimal velocity of
4.2 km s−1 characteristic for star formation via molecular
cooling and up to 76.5 km s−1), star formation efficiency
(SFE) between 0.5% and 50%, spectral energy distribution
(SED) of X-ray sources including hard and soft spectra
(Fialkov et al. 2014), X-ray efficiency compared to the low-
redshift counterparts, mean free path (mfp) of ionizing
radiation (cases with 5, 20, and 70Mpc were considered),
and the total optical depth, τ. The data collected by SARAS2
is sufficient to rule out 8% of the considered theoretical
models.
The rejected models all share similar astrophysical proper-

ties: rapid reionization in tandem with either late X-ray heating
due to very inefficient sources (10 cases) or no heating at all
(10 cases). In all these models the gas does not have enough
time to heat up to the temperature of the CMB, and the 21 cm
signal is seen in absorption throughout the EoR (colored lines
in Figure 7).
All the models ruled out by the SARAS2 data share rapid

reionization. We quantify this by the maximum rate of change

Figure 6. Residual obtained after subtracting the fit model from the data, with
the band and number of polynomial terms chosen based on the minimum error
on the scale factor. Different colors represent residuals for different rejected
21 cm templates. The fitting was performed using nonlinear least-squares for
computing the residuals for the top panel, while the residuals in the bottom
panel were obtained using linear least-squares. Figure 7. The entire set of 264 theoretical models (Cohen et al. 2017). The

rejected signals are shown in color, with each color corresponding to the
rejection significance as indicated by the color bar. The data do not have
sensitivity for the signals shown in gray. Nonlinear optimization was used to
model the foregrounds+systematics.
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of the brightness temperature of the 21 cm signal with respect

to redshift, ( )dS

dz max

0 . The rejected signals have high values of

( )dS

dz max

0 , with the median value of the rejected set being

114mK over the z∼10–6 redshift interval. This is in contrast
to the set of non-rejected signals where the median value of

( )dS

dz max

0 is 9mK over the same redshift range. Rapid

reionization scenarios typically require one or more of the
following: a large mfp of the ionizing photons, high star
formation, and ionizing efficiencies of the sources. All but two
rejected cases have an mfp of 70Mpc; however, the values of
SFE and τ are unconstrained. The other 2 cases have mfps of
20Mpc and high values of τ. None of the rejected cases have
an mfp of 5Mpc.

Considering “inefficient heating” models (sources with
X-ray bolometric luminosity per star formation rate of up to
10% of their low-redshift counterparts) all the rejected cases
share late star formation, which only happens in massive halos
with circular velocities above 35 km s−1. In these cases, the
absorption trough is shifted into the SARAS2 band, owing to
the delayed build up of the Lyα background, making either
detection or rejection easier. The majority of these cases have
hard X-ray SEDs, while the value of SFE varies from model to
model.

The rejected astrophysical models with “no heating” have all
possible values of circular velocities (from 4.2 to 76.5 km s−1),
SFE (from 0.5% to 50%) and values of τ. Out of the 264 tested
models, the only cases with “no heating” that were not ruled
out have either very efficient star formation in light halos,
and thus the absorption peak is shifted out of the SARAS2
band, or have short mfp (5Mpc), which implies more gradual
reionization.

A summary of astrophysical parameters for the rejected
signals, along with the optimal band, number of polynomial
terms, and significance of rejection, is listed in Table 1.

5. Caveats

Experiments aiming to detect the global 21 cm from
CD/EoR are difficult long-wavelength radiometer measurements,
and require a substantially wider dynamic range than what is
typically necessary in most engineering applications at these
frequencies. Limitations may arise from unknowns in the internal
systematics, antenna characteristics, ground emission, low-level
distributed RFI, and mode-coupling of sky spatial structure into
spectral measurement data owing to frequency-dependent beams.
If the measurement equation describes the data to mK

levels, including foregrounds and internal systematics, then a
forward-modeling approach is expected to be unbiased. This
would apply even in the case of an excessive modeling of
foreground+systematics with a higher than necessary order
polynomial (which, however, would degrade the confidence
in the derived results). In an extreme case, if the model
adopted for the foreground+systematics is also capable of
fitting out the 21 cm template, the result would be completely
ambiguous, with equal likelihoods for the presence and
absence of the template.
Problems potentially arise when the measurement equation or

the adopted model is inadequate to describe the foreground+
systematics, given the large dynamic range required for 21 cm
signal detection. In this case, residual systematics can bias the
results of the decision tests. The adoption of an inadequate
model may be inadvertent, particularly in the case where 21 cm
signals are extracted via statistical analysis that aims to detect the
signals in measurement data wherein the signal-to-noise ratio in
individual channels are substantially below unity.

Table 1
Parameters of the 21 cm Signals Rejected by the SARAS2 Data

f* Vc (km s−1) fX SED τ Rmfp ( )dS

dz max

0
Band (MHz) Number of Polynomial Terms (N) Significance of Rejection

0.005 35.50 0 Hard 0.082 20 67.40 110–195 4 1.26
0.005 35.50 1 Hard 0.082 70 69.71 110–190 4 1.40
0.050 16.50 0 Hard 0.096 70 94.92 115–180 4 1.89
0.005 35.50 0.1 Soft 0.082 70 88.33 110–185 4 3.23
0.500 35.50 0 Hard 0.082 20 94.45 120–195 4 4.88
0.500 76.50 0.1 Hard 0.066 70 97.17 125–190 4 5.63
0.005 4.20 0 Hard 0.082 70 74.32 135–190 4 8.01
0.500 76.50 0.1 Hard 0.082 70 128.98 110–195 5 8.27
0.050 35.50 0.1 Hard 0.082 70 94.26 115–190 4 8.90
0.005 35.50 0.1 Hard 0.082 70 110.48 125–180 4 9.84
0.500 4.20 0 Hard 0.082 70 164.83 135–180 4 10.06
0.005 35.50 0.1 Hard 0.066 70 104.18 110–190 5 10.83
0.015 76.50 0.1 MQ 0.066 70 146.62 125–195 6 12.41
0.005 35.50 0 Hard 0.082 70 118.34 110–180 5 13.31
0.015 76.50 0.1 Soft 0.066 70 159.21 115–195 6 16.40
0.050 35.50 0 Hard 0.083 70 164.71 115–180 6 18.56
0.500 76.50 0.1 MQ 0.066 70 169.85 115–190 6 31.24
0.500 35.50 0 Hard 0.082 70 172.80 115–175 6 53.42
0.005 35.50 0 Hard 0.066 70 131.70 115–180 5 58.94
0.500 35.50 0 Hard 0.066 70 172.59 115–195 8 89.20

Note.f* denotes the star formation efficiency, Vc represents minimum virial circular velocity for star formation, fX is the efficiency of the X-ray sources, SED refers to
the spectral energy distribution of X-ray sources. The SEDs considered are of hard and soft X-ray sources, along with that of mini-quasars (MQ). τ is CMB optical

depth, Rmfp denotes the mean free path of ionizing photons, and ( )dS

dz max

0 is the maximum rate of change of the brightness temperature of the signal with respect to

redshift. The significance of rejection is computed as given in Equation (4). A detailed description of most of these parameters is given in Cohen et al. (2017).
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Adopting an inadequate model would result in systematic
residuals to the fit to foregrounds+systematics. The least-
squares fit would attempt to maximize the correlation (or anti-
correlation) of these residuals to the 21 cm template under
consideration so that including a scale factor times the 21 cm
template, the overall residuals would be a minimum. Conse-
quently, the unmodeled foreground+systematics might par-
tially or wholly mimic the 21 cm signal—thus yielding a false
positive—or partially or wholly cancel a true 21 cm signal in
the data, thus yielding a false negative. In these circumstances
small fit residuals might suggest excellent fits with low formal
statistical errors in the fitted scale factor a; however, the errors
are obviously underestimates, since the unmodeled systematics
are not considered in the error computation.

It is also necessary to consider cases where the true
cosmological signal in the measurement data is substantially
different from the template used in modeling. If the true
cosmological signal is uncorrelated with the template, then the
fit value of the scale factor a will not be biased. However, if
there is partial correlation (or anti-correlation), then the fit
would bias the a parameter to be positive or negative
depending on the correlation or anti-correlation, respectively.

The work presented herein has adopted polynomial models
for the foreground+systematics. A higher N would obviously
fit this term better; however, it would also increasingly
subsume the cosmological signal and hence reduce the
confidence in either detection or rejection. Future effort should
be directed toward improve the modeling of foregrounds
+systematics and should avoid fitting out of a significant
fraction of 21 cm signals. The design of SARAS2, which aims
to constrain the systematics to be maximally smooth (Singh
et al. 2018), follows that line of approach.

6. Conclusion

In this work we have analyzed the first-light data from
SARAS2 using a frequentist approach and forward-modeling.
The revised analysis has led to the rejection of 20 plausible
21cm signals out of 264 tested models. In 15 cases, the
confidence of the rejection is above 5σ. All the rejected signals
lie in the regime of either late or non-existent heating by the
first population of X-ray sources, which creates a deep
absorption trough in the 21 cm signal observed against the
CMB. In addition, in all the rejected models, reionization
happens fast owing to the assumed long mfp of the ionizing
photons, as well as efficient star formation and ionization. We
leave robust estimation of the rejected parameter space to
future work.

We thank the staff at Gauribidanur Field Station for
assistance with system tests and measurements, and the
Mechanical and Electronics Engineering Groups at Raman
Research Institute for building and assembling SARAS2.

Santosh Harish and Divya Jayasankar implemented real-time
software and monitoring. Logistics and technical support for
observations was provided by Indian Astronomical Observa-
tory, Leh operated by Indian Institute of Astrophysics, and
Timbaktu Collective, India. For R.B. and A.C. this project/
publication was made possible through the support of a grant
from the John Templeton Foundation. The opinions expressed
in this publication are those of the author(s) and do not
necessarily reflect the views of the John Templeton Founda-
tion. This research was also supported (for R.B. and A.C.) by
the ISF-NSFC joint research program (grant No. 2580/17).

ORCID iDs

Saurabh Singh https://orcid.org/0000-0001-7755-902X
Ravi Subrahmanyan https://orcid.org/0000-0001-
9913-900X
Anastasia Fialkov https://orcid.org/0000-0002-1369-633X
A. Raghunathan https://orcid.org/0000-0003-1929-9869

References

Barkana, R. 2016, PhR, 645, 1
Bernardi, G., Zwart, J. T. L., Price, D., et al. 2016, MNRAS, 461, 2847
Bowman, J. D., & Rogers, A. E. E. 2010, Natur, 468, 796
Cohen, A., Fialkov, A., Barkana, R., & Lotem, M. 2017, MNRAS, 472, 1915
Evoli, C., Mesinger, A., & Ferrara, A. 2014, JCAP, 11, 024
Fialkov, A., & Barkana, R. 2014, MNRAS, 445, 213
Fialkov, A., Barkana, R., & Visbal, E. 2014, Natur, 506, 197
Fialkov, A., & Loeb, A. 2016, ApJ, 821, 59
Field, G. B. 1958, PIRE, 46, 240
Furlanetto, S. R. 2006, MNRAS, 371, 867
Liu, A., Pritchard, J. R., Allison, R., et al. 2016, PhRvD, 93, 043013
Marquardt, D. W. 1963, SIAM Journal on Applied Mathematics, 11, 431
Mirocha, J., Harker, G. J. A., & Burns, J. O. 2013, ApJ, 777, 118
Mirocha, J., Harker, G. J. A., & Burns, J. O. 2015, ApJ, 813, 11
Mirocha, J., Mebane, R. H., Furlanetto, S. R., Singal, K., & Trinh, D. 2017,

arXiv:1710.02530
Monsalve, R. A., Rogers, A. E. E., Bowman, J. D., & Mozdzen, T. J. 2017,

ApJ, 847, 64
Oppenheim, A. 1999, Discrete-Time Signal Processing (India: Pearson

Education)
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007,

Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn.
(New York: Cambridge Univ. Press)

Pritchard, J. R., & Loeb, A. 2010, PhRvD, 82, 023006
Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N., & Chluba, J.

2017a, AJ, 153, 26
Sathyanarayana Rao, M., Subrahmanyan, R., Udaya Shankar, N., & Chluba, J.

2017b, ApJ, 840, 33
Shaver, P. A., Windhorst, R. A., Madau, P., & de Bruyn, A. G. 1999, A&A,

345, 380
Singh, S., Subrahmanyan, R., Shankar, N. U., et al. 2017, ApJL, 845, L12
Singh, S., Subrahmanyan, R., Shankar, N. U., et al. 2018, ExA, 45, 269
Sitwell, M., Mesinger, A., Ma, Y.-Z., & Sigurdson, K. 2014, MNRAS,

438, 2664
Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D., & Hirata, C. M. 2012,

Natur, 487, 70
Wouthuysen, S. A. 1952, AJ, 57, 31

7

The Astrophysical Journal, 858:54 (7pp), 2018 May 1 Singh et al.

https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-7755-902X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0001-9913-900X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0002-1369-633X
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://orcid.org/0000-0003-1929-9869
https://doi.org/10.1016/j.physrep.2016.06.006
http://adsabs.harvard.edu/abs/2016PhR...645....1B
https://doi.org/10.1093/mnras/stw1499
http://adsabs.harvard.edu/abs/2016MNRAS.461.2847B
https://doi.org/10.1038/nature09601
http://adsabs.harvard.edu/abs/2010Natur.468..796B
https://doi.org/10.1093/mnras/stx2065
http://adsabs.harvard.edu/abs/2017MNRAS.472.1915C
https://doi.org/10.1088/1475-7516/2014/11/024
http://adsabs.harvard.edu/abs/2014JCAP...11..024E
https://doi.org/10.1093/mnras/stu1744
http://adsabs.harvard.edu/abs/2014MNRAS.445..213F
https://doi.org/10.1038/nature12999
http://adsabs.harvard.edu/abs/2014Natur.506..197F
https://doi.org/10.3847/0004-637X/821/1/59
http://adsabs.harvard.edu/abs/2016ApJ...821...59F
https://doi.org/10.1109/JRPROC.1958.286741
http://adsabs.harvard.edu/abs/1958PIRE...46..240F
https://doi.org/10.1111/j.1365-2966.2006.10725.x
http://adsabs.harvard.edu/abs/2006MNRAS.371..867F
https://doi.org/10.1103/PhysRevD.93.043013
http://adsabs.harvard.edu/abs/2016PhRvD..93d3013L
https://doi.org/10.1137/0111030
https://doi.org/10.1088/0004-637X/777/2/118
http://adsabs.harvard.edu/abs/2013ApJ...777..118M
https://doi.org/10.1088/0004-637X/813/1/11
http://adsabs.harvard.edu/abs/2015ApJ...813...11M
http://arxiv.org/abs/1710.02530
https://doi.org/10.3847/1538-4357/aa88d1
http://adsabs.harvard.edu/abs/2017ApJ...847...64M
https://doi.org/10.1103/PhysRevD.82.023006
http://adsabs.harvard.edu/abs/2010PhRvD..82b3006P
https://doi.org/10.3847/1538-3881/153/1/26
http://adsabs.harvard.edu/abs/2017AJ....153...26S
https://doi.org/10.3847/1538-4357/aa69bd
http://adsabs.harvard.edu/abs/2017ApJ...840...33S
http://adsabs.harvard.edu/abs/1999A&amp;A...345..380S
http://adsabs.harvard.edu/abs/1999A&amp;A...345..380S
https://doi.org/10.3847/2041-8213/aa831b
http://adsabs.harvard.edu/abs/2017ApJ...845L..12S
https://doi.org/10.1007/s10686-018-9584-3
http://adsabs.harvard.edu/abs/2018ExA....45..269S
https://doi.org/10.1093/mnras/stt2392
http://adsabs.harvard.edu/abs/2014MNRAS.438.2664S
http://adsabs.harvard.edu/abs/2014MNRAS.438.2664S
https://doi.org/10.1038/nature11177
http://adsabs.harvard.edu/abs/2012Natur.487...70V
https://doi.org/10.1086/106661
http://adsabs.harvard.edu/abs/1952AJ.....57R..31W

	1. Introduction
	2. SARAS 2: A Description of the Radiometer and Observations
	3. Signal Extraction: A Frequentist Approach
	3.1. Foreground Modeling
	3.2. Signal Propagation
	3.3. Sensitivity Test
	3.4. Fitting the Data
	3.5. An Alternative Method of Model Fitting Using Nonlinear Optimization

	4. SARAS 2 Constraints on 21 cm from CD/EoR
	5. Caveats
	6. Conclusion
	References



