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Synopsis

Research Theme:

Multiple coherent supernova explosions (SNe) in an OB association can produce a

strong shock that moves through the interstellar medium (ISM). These shocks fronts

carve out hot and tenuous regions in the ISM known as superbubbles.
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Figure 1: The density contour plot at three different times (0.5 Myr (left panel), 4 Myr (middle

panel), 9.5 Myr (right panel)) showing different stages of superbubble evolution for n0 = 0.5 cm−3,

z0 = 300 pc, and for NOB = 104. This density contour plot is produced using ZEUS-MP 2D

hydrodynamic simulation with a resolution of 512 × 512 with a logarithmic grid extending from 2

pc to 2.5 kpc. For a detailed description of this figure, see Roy et. al., 2015.

The evolution of a superbubble is marked by different phases, as it moves through

the ISM. Consider an OB association at the center of a disk galaxy. Initially the dis-
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tance of the shock front is much smaller than the disk scale height. The superbubble

shell sweeps up the ISM material, and once the amount of swept up material becomes

comparable to the ejected material during SNe, the superbubble enters a self-similar

phase (analogous to the Sedov-Taylor phase of individual SNe). As the superbubble

shell sweeps up material, its velocity decreases, and thus the corresponding post-shock

temperature drops. At a temperature of ∼ 2 × 105 K (where the cooling function

peaks), the superbubble shell becomes radiative and starts losing energy via radiative

cooling. This radiative phase is shown in the left panel of Figure 1. The superbubble

shell starts fragmenting into clumps and channels due to Rayleigh-Taylor instabilities

(RTI) (which is seeded by the thermal instability; for details see Roy et. al., 2013)

when the superbubble shell crosses a few times the scale height. This is represented

in the middle panel of the same figure. At a much later epoch, RTI has a strong

effect on the shell fragmentation and the top of the bubble is completely blown off

(the right panel).

In the first chapter of the thesis (reported in Sharma et. al., 2014), we show

using ZEUS-MP hydrodynamic simulations that an isolated supernova loses almost

all its mechanical energy within a Myr whereas superbubbles can retain up to ∼
40% of the input energy over the lifetime of the starcluster (∼ few tens of Myr),

consistent with the analytic estimate of the second chapter. We also compare different

recipes (constant luminosity driven model (LD model), kinetic energy driven model

(KE model) to implement SNe feedback in numerical simulations. We determine the

constraints on the injection radius (within which the SNe input energy is injected) so

that the supernova explosion energy realistically couples to the interstellar medium

(ISM). We show that all models produce similar results if the SNe energy is injected

within a very small volume ( typically 1–2 pc for typical disk parameters).

The second chapter concentrates on the conditions for galactic disks to produce

superbubbles which can give rise to galactic winds after breaking out of the disk. The

Kompaneets formalism provides an analytic expression for the adiabatic evolution
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of a superbubble. In our calculation, we include radiative cooling, and implement

the supernova explosion energy in terms of constant luminosity through out the life-

time of the OB stars in an exponentially stratified medium (Roy et. al., 2013).

We use hydrodynamic simulations (ZEUS-MP) to determine the evolution of the

superbubble shell. The main result of our calculation is a clear demarcation between

the energy scales of sources causing two different astrophysical phenomenon: (i) An

energy injection rate of ∼ 10−4 erg cm−2 s−1 (corresponding Mach number ∼ 2–3,

produced by large OB associations) is relevant for disk galaxies with synchrotron

emitting gas in the extra-planar regions. (ii) A larger energy injection scale ∼ 10−3

erg cm−2 s−1, or equivalently a surface density of star formation rate ∼ 0.1 M⊙ yr−1

kpc−2 corresponding to superbubbles with high Mach number (∼ 5–10) produces

galactic-scale superwinds (requires super-starclusters to evolve coherently in space

and time). The stronger energy injection case also satisfies the requirements to create

and maintain a multiphase halo (matches with observations). Roy et. al., 2013

also points out that Rayleigh-Taylor instability (RTI) plays an important role in the

fragmentation of superbubble shell when the shell reaches a distance approximately

2–3 times the scale-height; and before the initiation of RTI, thermal instability helps

to corrugate the shell and seed the RTI. Another important finding of this chapter is

the analytic estimation of the energetics of superbubble shell. The shell retains almost

∼ 30% of the thermal energy after the radiative losses at the end of the lifetime of

OB associations.

The third chapter considers the escape of hydrogen ionizing (Lyc) photons arising

from the central OB-association that depends on the superbubble shell dynamics.

The escape fraction of Lyc photons is expected to decrease at an initial stage (when

the superbubble is buried in the disk) as the dense shell absorbs most of the ioniz-

ing photons, whereas the subsequently formed channels (created by RTI and thermal

instabilities) in the shell creates optically thin pathways at a later time (∼ 2–3 dy-

namical times) which help the ionizing photons to escape. We determine an escape

9



fraction (fesc) of Lyc photons of ∼ 10 ± 5% from typical disk galaxies (within 0 ≤ z

(redshift) ≤ 2) with a weak variation with disk masses (reported in Roy et. al., 2015).

This is consistent with observations of local galaxies as well as constraints from the

epoch of reionization. Our work connects the fesc with the fundamental disk pa-

rameters (mid-plane density (n0), scale-height (z0)) via a relation that fα
escn

2
0z

3
0 (with

α ≈ 2.2) is a constant.

In the fourth chapter, we have considered a simple model of molecule formation

in the superbubble shells produced in starburst nuclei. We determine the threshold

conditions on the disk parameters (gas density and scale height) for the formation of

molecules in superbubble shells breaking out of disk galaxies. This threshold condition

implies a gas surface density of ≥ 2000 M⊙ pc−2, which translates to a SFR of ≥ 5 M⊙

yr−1 within the nuclear region of radius ∼ 100 pc, consistent with the observed SFR

of galaxies hosting molecular outflows. Consideration of molecule formation in these

expanding superbubble shells predicts molecular outflows with velocities ∼ 30–40

km s−1 at distances ∼ 100–200 pc with a molecular mass ∼ 106–107 M⊙, which

tally with the recent ALMA observations of NGC 253. We also consider different

combinations of disk parameters and predict velocities of molecule bearing shells in

the range of ∼ 30–100 km s−1 with length scales of ≥ 100 pc, in rough agreement with

the observations of molecules in NGC 3628 and M82 (Roy et. al., 2016, submitted to

MNRAS).
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1.20 The left panel shows the Hα image of NGC 3125, indicating the opening angle of

the cone by the two red-dashed lines. In the right panel, the red, blue, and green

colours represent the emission lines of SIII, SII, and λ6680 continuum respectively

( Zastrow et al. (2013) [231] ). . . . . . . . . . . . . . . . . . . . . . . . . 66

1.21 The details of the figure are mentioned in the figure itself (credit:Borthakur et al.

(2014) [17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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1.22 The left panel (credit: Bolatto et al. (2013) [13] ) shows the stellar disk of NGC 253

in the JHK composite image with an inset of central ∼ 2 kpc with a scale-bar of 250

pc as shown in the top right. In the inset, the false colours show X-ray (in blue),

and Hα (in yellow) image of the central region with a white dashed circle indicating

the central zone observed by ALMA. The white contours show the ALMA CO(1–0)

observations. The middle panel shows the Chandra soft X-ray data (0.3–2.0 keV,

shown in the colour scale) with the CO(1–0) contours in the central region of NGC

3628, which is zoomed in the right panel (central 2′ × 2′). One can notice that

X-ray image, and the CO-contours have nice spatial correlation ( Tsai et al. (2012)

[210] ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.23 This figure shows the 2 mm spectrum of SDSS J0905+57. A Gaussian profile is

fitted to the observed CO (2–1) flux density, with a width of 200 km/s (FWHM).

A significant amount of CO emission is in the high-velocity range (known as wing)

upto ∼ 1000 km/s. This galaxy is also known to have outflows of ionized gas, as

shown by the strongly blue-shifted, high velocity (∼ 2500 km/s, higher than the

velocity of CO gas) MgII doublet (at wavelengths λ = 2796 and 2803 A◦ in the

absorption features (Credit:Geach et al. (2014) [62]). . . . . . . . . . . . . . . 70

2.1 Number density as a function of radius (scaled to the self-similar scaling) for dif-

ferent parameters of realistic KE runs at 10 Myr. The outer shock is closer in

for models using a larger ejecta radius because energy is overwritten before it can

couple to the ISM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2 The outer shock radius as a function of time for various runs using kinetic explosion

(KE), luminosity driven (LD) and thermal explosion addition (TEa) models. The

KE models give correct results only if the ejecta radius (rej) is sufficiently small;

otherwise energy is overwritten before getting coupled to the ISM. There is no such

problem for energy addition and luminosity driven models. At early times the outer

shock radius scales with the Sedov-Taylor scaling (rOS ∝ t2/5) and later on, after

many SNe go off, it steepens (rOS ∝ t3/5). . . . . . . . . . . . . . . . . . . 92
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2.3 Density profile as a function of normalized radius for luminosity driven (LD), kinetic

explosion (KE), and thermal explosion addition (TEa) models. The standard CC85

wind within the bubble appears for the LD model, and for KE and TEa models

with NOB = 106, but not for KE/TEa models with NOB = 100; the smooth CC85

wind is identified by the density profile varying ∝ r−2 between the ejecta radius

and the termination shock (various regions have been marked for the LD run). The

CC85 wind density using NOB = 106 is slightly smaller for the KE model compared

to the TEa model because density is overwritten (and hence mass is lost) in KE

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.4 Density as a function of radius for different runs at 3 Myr to show that energy

addition totally fizzles out for a high ISM density. While TEa and LD models

do not show the formation of a hot, dilute bubble for ISM density of 20 cm−3,

KE model indeed shows a bubble and a forward shock. Also shown is the density

profile for TEa model with a lower density (5 cm−3) ISM; at later times it shows

a bubble which pushes the shell outwards. The outer shock radius is larger for a

lower density ISM because rOS ∝ ρ−1/5. . . . . . . . . . . . . . . . . . . . 95

2.5 The normalized (with respect to the ISM) density and temperature profiles zoomed-

in on the outer shock as a function of radius for the high resolution (16384 grid

points uniformly spaced from 1 to 200 pc) runs. Top panel: NOB = 105 run;

bottom panel: a single SNR (NOB = 1) run. Left panels correspond to a time

when the outer shocks just become radiative and the right panels are for later

times. Markers represent the grid centers. For a single SNR the temperature in

the dense shell is lower than the temperature floor (ISM temperature) because

of weakening of the shock and the resultant adiabatic losses. Different regions

(unshocked ISM, radiative relaxation layer, dense non-radiative shell, and shocked

SN ejecta) are marked in the top-right panel. . . . . . . . . . . . . . . . . . 98
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2.6 Fractional radiative losses in shell ([shell cooling rate]/[total cooling rate]) and

bubble ([bubble cooling rate]/[total cooling rate]) for KE models (NOB = 105) with

and without conduction ( the run with thermal conduction is discussed in section

2.5.4). Most radiative energy losses happen at the radiative relaxation layer ahead

of the dense shell. At late times, as the outer shock weakens, radiative losses in

the bubble become more dominant. Bubble is comparatively more radiative (in

fact, bubble losses exceed shell losses after 5 Myr) with conduction because of mass

loading of the bubble by evaporation from the dense shell. Results from the high

resolution run and the luminosity driven (LD) model are similar. The minimum in

fractional radiative losses corresponds to the time when the outer shock becomes

radiative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.7 Comparison of kinetic and thermal energies in the shell and thermal energy in

the bubble as a function of time for SBs and an equal number of isolated SNe.

Results from an isolated SN run (NOB = 1) have been combined cumulatively

(see Eq. 2.14), assuming that SNe go off independently in the ISM. Pre-radiative

phase energetics are similar but isolated SNRs are extremely deficient in mechanical

energy (after 1 Myr) as compared to a SB with the same energy input. The arrow

on top right shows the bubble thermal energy at the end for an adiabatic SB run.

Isolated SN results are only shown till 2 Myr because SNRs become weak sound

waves by then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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2.8 Radiative losses as a function of time for SBs and isolated SNe. Left panel shows

the total radiated energy as a function of time for an isolated SN run (solid line)

and for SB runs (dashed lines) with NOB = 10, 1000, 105; larger NOB leads to

larger radiative losses because of a higher density and temperature in the radiative

relaxation layer (see Fig. 2.5). The right panel shows fractional cooling losses (1

- [energy radiated]/[input energy]) as a function of time; the total energy input at

some time equals the number of SNe put in by that time multiplied by 1051 erg (the

spikes for NOB = 10, 103 in the right panel reflect the discreteness of SN energy

input within SBs). All SB runs, including those with conduction and with higher

density, show that only a factor of 0.6− 0.8 is radiated by 20 Myr (and a factor of

0.2− 0.4 is retained as mechanical energy). In contrast, the isolated SN run (solid

line) loses 80% of its energy by 3 Myr, after which it is no longer over-pressured

with respect to the ISM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.9 The normalized density and temperature profiles to show the effects of magnetic

fields and thermal conduction on SB evolution with cooling. The left panel shows

the profiles zoomed in on the outer shock for MHD (initial β = 1) and hydro

runs with 16384 grid points. Magnetic field is enhanced in the shell and the shell

is thicker. The right panel shows the profiles for radiative hydro runs with and

without thermal conduction (1024 grid points); unlike in the left panel, we show

the whole computational domain and the dense shell is barely visible. Thermal

conduction evaporates mass from the dense shell and spreads it into the bubble,

thereby making it denser and less hot compared to the hydro run. The temperature

structure in the internal shocks (within the superwind) is also smoothened out by

thermal conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.1 The ratio of cooling time to time (tcool/t) is plotted against the height of adia-

batic superbubble with continuous energy injection, for different combinations of

NOB, n0, and z0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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3.2 The evolution of the ratio of vz to cs (the sound speed for an ambient gas at

104 K) is plotted against time, for an adiabatic blastwave (thick solid line), adi-

abatic superbubble with continuous energy injection (dashed) and with radiative

loss (dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3 The ratio vz,min/cs of the z−velocity of the top of the bubble to the sound speed of

the ambient gas at 104 K is plotted as a function of L the mechanical luminosity,

and NOB , the number of SNe responsible for the bubble. Different lines correspond

to different values of mid-plane gas . . . . . . . . . . . . . . . . . . . . . . 130

3.4 Mach number of the top of the bubble at the minimum velocity point is plotted as

a function of NOB divided by the cross-sectional area of the bubble at the stalling

height, for analytical results and for Kompaneets simulations. Analytical results

are shown for different values of mid-plane gas number densities (1, 0.1) cm−3 and

scale heights (200, 500) pc, whereas simulation results for Kompaneets runs are

shown for n0 = 0.1, 1 cm−3 and scale height z0 = 200 pc. . . . . . . . . . . . 131

3.5 Velocity of the topmost point of the bubble is plotted against time for NOB =

1000, but for different combinations of scale height (z0 = 100, 500 pc) and mid-

plane gas density (n0 = 0.1, 1 cm−3). The horizontal lines in each case shows

(1/5)(L/ρ0z20)1/3, the expected scaling. . . . . . . . . . . . . . . . . . . . . 138

3.6 The minimum Mach number of the top of the bubble in our realistic runs are shown

as a function of NOB per kpc−2, and L/πr2 (erg cm−2 s−1), for no = 0.1, 1 cm−3

and z0 = 100, 500 pc. Note that, for n0 = 1 cm−3, the shocks stall for a surface

density of OB stars ≤ 500 kpc−2. The cases for which tcool < tff , are shown by

darkened points, these cases are marked by thermal instability. . . . . . . . . 140
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3.7 Temperature contours (colour coded) for a superbubble with NOB = 5000, n0 = 1

cm−3, z0 = 500 pc, at t = 9 Myr, when the top of the bubble has reached a distance

of the scale height (left panel), at 39.3 Myr, when it has reached a distance ∼ 3z0

(middle panel). The rightmost panel shows the case of the same superbubble

without radiative cooling at t = 39.3 Myr, the same evolutionary epoch as the

middle panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.8 Density contours for the same cases as in Fig 3.7. Here, fragmentation of the shell

is clearly seen in the run with cooling. . . . . . . . . . . . . . . . . . . . . 145

3.9 The free-fall and cooling timescales for the shell material are plotted against time,

for two examples with N0B = 5000, z0 = 500 pc, and n0 = 1 cm−3 (left panel),

n0 = 0.1 cm−3 (middle panel). The grey lines show the time elapsed in each cases

for comparison. The right panel shows the case of no radiation cooling for n0 = 1

cm−3. The leftmost and rightmost panels correspond to the runs shown in Figs 3.7

and 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.1 Density contour plot of the superbubble at different times (0.5, 4.0, 9.5 Myr) for

n0 = 0.5 cm−3, z0 = 300 pc and NO = 104. Early, intermediate and late stages

of superbubble evolution are shown. Notice the low density cone through which

photons should escape at late times. . . . . . . . . . . . . . . . . . . . . . 164

4.2 Normalized LyC photon luminosity as a function of time for a starburst calculated

using Starburst 99. The dynamical time scale (of superbubble shells reaching the

scale height) for n0 = 0.5 cm−3, z0 = 300 pc ranges between 0.4–4.2 Myr for

different NO. For these values, we also sketch the superbubble shells vis-a-vis the

disk, beginning from the left with a small spherical shell, then with an elliptical

shell slowly breaking out and finally ending with a shell whose top has been blown

off by instabilities. The short vertical line at 0.4 Myr corresponds to the dynamical

time (td) for NO = 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
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4.3 Time- and angle-averaged escape fraction as a function of the number of O stars

for two scale heights, including a smaller one for which the recombination time is

longer than the dynamical time. . . . . . . . . . . . . . . . . . . . . . . . 170

4.4 Escape fraction as a function of angle (θ) at different times (0.5, 4.0, 9.5 Myr) for

n0 = 0.5 cm−3, z0 = 300 pc, and NO = 104. The corresponding dynamical time

td ∼ 1 Myr. The blue dotted line represents the escape fraction at 0.5 Myr (at

t ≪ td, when the superbubble is deeply buried in the disk), the black solid line at

4 Myr (t ≈ 4td, when the superbubble shell begins to fragment, making the line

zigzag), and the green dashed line at 9.5 Myr, when the shell opens up completely

at small angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.5 Luminosity-function-averaged escape fraction as a function of θ at different times

(0.5, 4.0, 9.5 Myr) for our fiducial disk (n0 = 0.5 cm−3, z0 = 300 pc). The blue

dotted, black solid and green dashed lines represent the cases at 0.5 Myr, 4 Myr,

9.5 Myr respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.6 The time evolution of the ionization cone opening angle (θcone; where escape frac-

tion falls by [1 − 1/e] of its peak value) for our fiducial disk (n0 = 0.5 cm−3 and

z0 = 300 pc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.7 Luminosity-function-averaged θ-averaged escape fraction as a function of time for

two different n0 (1.5, 15 cm−3) and a particular z0 = 100 pc, to show the difference

in their overall behaviour as a function time. The dynamical time (td) for the two

cases is marked with a short vertical line. . . . . . . . . . . . . . . . . . . . 177

4.8 Time variation of the escaping ionizing photon luminosity from a star-cluster for

two cases: n0 = 0.5 cm−3, z0 = 300 pc, NO = 104; and n0 = 50 cm−3, z0 = 30 pc,

NO = 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.9 Time-averaged, luminosity-function-averaged and θ-averaged escape fraction as a

function of z0 for different n0. Notice the sharp fall in the escape fraction with an

increase in z0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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4.10 Contour plot of time-averaged luminosity-function-averaged and θ-averaged escape

fraction as a function of n0 and z0. The regions below the black dashed-dotted line

is for td < treco for NO = 100. The magenta solid thick and thin lines represent the

n0, z0 values for two different ISM temperatures 104K, 8000 K respectively of the

warm neutral medium (WNM). The yellow circular scatterers represent the n0–z0

values corresponding to the density and scale height calculated from Wood & Loeb

(2000) for the halo masses of Mh ∼ 1012M⊙ (the lower circle) and Mh ∼ 1011M⊙

(the upper circle) respectively at present redshift (z = 0). The grey dashed thick,

thinner and thinnest lines represent constant HI-column density of NHI ∼ 1022

cm−2, 1021 cm−2 and 5× 1020 respectively. . . . . . . . . . . . . . . . . . . 182

4.11 Escape fraction for a few cases (different n0, z0, NO) are shown against the cor-

responding covering fraction (see text for details). All the densities are in cm−3

and all the scale heights are in pc. Different points in the plot correspond to the

values of θ-averaged fesc and covering factor at different epochs of the superbubble

evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.12 Escape fraction for the initial disk (without superbubbles) as a function of redshift,

for a few halo masses and NO = 100, 104. The purpose of this figure is to compare

with the results of Wood & Loeb (2000) [229]. . . . . . . . . . . . . . . . . 188

4.13 Schematic diagram of a clumpy ISM at high redshift. The ellipses represent ISM

clumps in which star formation occurs; one of them has a starburst at its cen-

ter which opens up a superbubble. The thin rays with arrows show LyC photon

trajectories through the ISM. . . . . . . . . . . . . . . . . . . . . . . . . 191
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5.1 Phase space of molecular and atomic outflows, with points representing different

observations of molecular (black and magenta points) and atomic outflows (olive

green points), as well as atomic outflows from ULIRGs (red points). The cyan

point represent the warm (2000 K) molecular outflow of M82. The black-dashed,

green-dotted, magenta-dashed-dotted and the brown solid lines show the simulation

results for superbubble evolution with radiative cooling for different combinations

of mid-plane density and scale height (as labelled, with the first number of the pair

being density in cm−3 and the second being the scale height in pc). Orange solid

lines represent the v–r lines for different fixed hydrogen particle densities (of the

ambient medium) ranging from 0.01 cm−3 (top) to 104 cm−3 (bottom), and for a

given mechanical luminosity injection. The density increases from top to bottom

with the increment by a factor of 10 between two consecutive lines. The blue

solid lines are for different epochs in the logarithmic scale. The first ten lines are

separated by 1 Myr starting from 1 Myr to 10 Myr, and the rest of the ten lines

have a separation of 10 Myr between two consecutive lines ranging from 10 Myr to

100 Myr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.2 Schematic diagram for the model of outflow used in this chapter, with a superbubble

shell ploughing through a stratified disk. The observed morphology is shown in grey

tones, and the idealised superbubble shell is shown with dashed lines. A zoomed

version of the shell is shown on the right, highlighting the region where CO forms

(for details, see §4.2). The arrows at the bottom of the zoomed shell denote photons

incident on the shell. Another zoomed version of the shell is shown on the left, that

portrays the density and temperature profile in and around the shell. See §4.1 for

an explanation of this aspect. . . . . . . . . . . . . . . . . . . . . . . . . 205
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5.3 The evolution of mechanical luminosity (Lmech), Lyman continuum photon lumi-

nosity and luminosity in the FUV (SFUV), and Lyman-Werner band for NOB = 105

(SLW), calculated using Starburst99. In this figure, we have plotted Lmech × 1012

to accommodate the mechanical luminosity curve along with the other luminosity

plots. The slowly growing part on mechanical luminosity on initial stages (t < 2

Myr) is due to active stellar wind from massive stars; at t > 3 Myr SNe explosions

become dominant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.4 The schematic diagram of the flowchart of the calculation . . . . . . . . . . . 210

5.5 The evolution of the ionisation front (the dotted and dashed lines) and the super-

bubble shell (solid lines), for NOB = 105 for four sets of n0-z0. The black lines

represent the maximum density case (n0 = 1000 cm−3, z0 = 50 pc), the red, and

the green lines represent n0 = 500 cm−3, z0 = 100 pc, and n0 = 200 cm−3, z0 = 200

pc respectively. The magenta curve refers to the case of n0 = 100 cm−3, z0 = 200

pc. The dashed lines represent the Strömgren radii for the ambient medium with

exponential density stratification, and time varying LyC photon luminosity for the

corresponding sets of n0–z0. The dotted lines represent the D-type ionisation front

for the corresponding n0–z0 cases. . . . . . . . . . . . . . . . . . . . . . . . 211

5.6 The threshold combination of mid-plane density and scale height for the formation

of molecules in an outflowing shell triggered by an OB association with NOB = 105.

The blue-solid line represent the cut-off n0–z0 condition below which molecules

can not form. The green dashed-dotted lines correspond to two values of constant

surface densities in units of M⊙/pc
2, where µ is the mean molecular weight. The

black line plots the Strömgren radii for ambient medium with uniform densities for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
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5.7 The evolution of the shell thickness and Av for three mid-plane density and scale

height combinations for NOB = 105, and for for three different n0, z0 cases (n0 =

1000 cm−3, z0 = 50 pc; n0 = 200 cm−3, z0 = 200 pc, and n0 = 500 cm−3, z0 = 100

pc), for two η10 cases and for NOB = 105. The thick, and thin solid lines correspond

to η10 = 10, 1 respectively. The black, green, and the red lines represent n0 = 1000

cm−3, z0 = 50 pc; n0 = 200 cm−3, z0 = 200 pc, and n0 = 500 cm−3, z0 = 100

pc cases respectively. All the plots hereafter follow the same colour and line-styles

for the corresponding n0, z0, and η10 values. The left-most panel shows the shell

thickness as a function of the vertical position of superbubble shell, and the middle

panel represents the evolution of total Av (which does not depend on the value of

η10, or in other words, the thin lines coincide with the thick ones). The right panel

shows the values of Av(mol) for the region where molecules form in substantial

quantity, and which is the region of our concern. . . . . . . . . . . . . . . . 216

5.8 Evolution of molecular fraction (left), and the bubble shell velocity (right) with the

size of the superbubble shell, for NOB = 105, for different n0, z0, and η10 cases. The

thick, and thin lines correspond to η10 = 10, 1 respectively. All the calculations of

molecule formation and dissociation are performed in the dense superbubble shell

after it crosses the D-type ionisation front. . . . . . . . . . . . . . . . . . . 222

5.9 Evolution of the total hydrogen column density (left) and molecular column density

(right), with the size of the superbubble shell, for NOB = 105, for different n0, z0,

and η10 cases. The details of the line-styles, and line-colours for different parameters

are mentioned in the caption of the figure 5.7. . . . . . . . . . . . . . . . . . 223

5.10 The evolution of molecular mass with the size of the superbubble shell, for NOB =

105, for three different n0–z0 cases, and for the two different values of η10 (1, 10).

Refer to figure 5.7 for the details of the different line-styles, and line-colours. The

molecular mass is the integrated mass over the molecular region of the shell. . . 224
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5.11 Regions in the parameter space of n0 and z0 that can give rise to molecular mass

of different ranges in shells triggered by star formation activity, with NOB = 105,

and with η10 = 1. Corresponding CO luminosities are also indicated. . . . . . . 226

5.12 Molecular column density is plotted against the expansion velocity. The line styles

correspond to the same cases as in Figure 5.7. . . . . . . . . . . . . . . . . . 228

5.13 Molecular fraction and molecular mass for an off-centered superbubble (centered

at z′ = z0) are compared with the case of superbubbles located at the mid-plane,

for n0 = 200 cm−3 and z0 = 200 pc. . . . . . . . . . . . . . . . . . . . . . . 230

A.1 Comparison between the resolutions of 256× 128, 512× 256 and 512× 512 for the

angle and time dependence of the escape fraction for n0 = 0.5 cm−3, z0 = 300 pc,

NO = 1000. The upper panel shows the time dependence and the bottom panel

represents the angle dependence at 4 Myr, when the fragmentation of the shell

becomes important due to RTI. All 〈fesc〉θ values in the top panel are zero after 5

Myr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.2 Comparison between low and high NO (NO = 300, 105 respectively) cases for the

resolutions of 256×128, 512×256 and 512×512 for the time dependence of escape

fraction for n0 = 15 cm−3, z0 = 30 pc. . . . . . . . . . . . . . . . . . . . . 244

A.3 The integrand of the numerator of eqn 4.17 as a function of NO for different n0

and z0. The blue dashed line represents n0 = 0.5 cm−3, z0 = 300 pc; the black

solid line and the red dashed-dotted lines represent n0 = 1.5 cm−3 cases (z0 = 60

and 300 pc respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A.4 The comparison of angular variation of the escape fraction between 2D and 3D

numerical runs. The blue-dashed and black solid lines represent the 2D and 3D

runs respectively. The plot is for the fiducial case (n0 = 0.5 cm−3, z0 = 300 pc,

NO = 104). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
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A.5 The comparison of time variation of the escape fraction between 2D and 3D nu-

merical runs. The blue-dashed and black solid lines represent the 2D and 3D runs

respectively. This plot is also for the fiducial case (n0 = 0.5 cm−3, z0 = 300 pc,

NO = 104). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B.1 The time evolution of superbubble shell position and velocity for n0 = 200 cm−3,

z0 = 200 pc, and for NOB = 105. The left panel shows the shell position, and the

right panel represents the shell velocity. The blue-dashed, the black-solid, and the

light brown dashed-dotted lines are for 512, 1024, 2048 grid points respectively. . 250

B.2 Compression factor (numerical solution of Eq. B.4) as a function of upstream β1

for various values of the upstream Mach number. The influence of the ratio of the

temperatures in regions 1 and iii is small in the relevant β1 regime. . . . . . . . 252

B.3 The time evolution of the heating rate in superbubble shell at the time when its

uppermost position is z+ , for three different n0, z0 cases (n0 = 1000 cm−3, z0 = 50

pc; n0 = 200 cm−3, z0 = 200 pc, and n0 = 500 cm−3, z0 = 100 pc), for two η10

cases and for NOB = 105. The thick, and thin solid lines correspond to η10 = 10, 1

respectively. The black, green, and the red lines represent n0 = 1000 cm−3, z0 = 50
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Galaxies are the building blocks of the Universe. Gas inside galaxies gets converted

into stars, and massive stars give rise to supernova explosions (SNe). Supernova

explosions (SNe) inject mass, energy, and metals into the interstellar medium (ISM).

The amount of metals and energy produced in SNe are proportional to the number

of SNe. Multiple SNe within a small volume can overlap, and strongly affect the

surrounding ISM and reduce the star-formation efficiency. The injected mass and

metals aid the formation of next generation of stars. The injected energy heats up

the ISM, on account of which a fraction of the hot gas may leave the galaxy. Since

massive galaxies have deeper potential wells, metals produced in them are not easily

transported to the IGM. Even in intermediate massive galaxies, these materials may

not completely escape, and might stay in the galactic halo, or fall back onto the

galactic disk as a galactic fountain. This whole process of recycling the galactic

gas in the ISM, and the IGM (in some cases) is known as ‘galactic feedback’. The

process of enhancing star-formation (SF) is known as positive feedback, whereas the

quenching of SF represents negative feedback to the ISM.

In massive galaxies (halo mass Mh > 1012 M⊙), SNe are not powerful enough

to drive gas out of the galactic disks. These galaxies are believed to have a central

black-hole, and the outflows and jets from the active galactic nuclei (AGN) help in

sweeping away the baryons from the system, and therefore suppress the star-formation

by reducing the total gas and metal content of the galaxies. AGN, and supernova

driven outflows are the two important mechanisms in the evolution of galaxies.

Multiple coherent SNe shocks produce a superbubble (SB), which moves through

the ISM. The evolution of the superbubble has different phases. Initially the shock

front is at a much smaller radius compared to the scale height of the disk. The shocks

produced by multiple SNe sweep up ISM material, and once the swept up material

becomes comparable to the ejected supernova/wind material, the evolution enters the

Weaver (analogous to Sedov-Taylor (ST) for blast waves) phase. As the superbubble

shell sweeps up material, its velocity decreases, and thus the corresponding post-shock
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temperature also drops. At a temperature of ∼ 2×105 K (where the cooling function

peaks; see Sutherland & Dopita (1993) [197]), the superbubble shell starts losing its

thermal energy via radiative cooling.

In section 1.1 we discuss various evolutionary aspects of superbubbles (geometric

shapes, density jumps in the supershells), and their effects on the evolution of galaxies.

Section 1.2 describes observations of SB breakout, production of galactic wind; and

different theoretical models of SB evolution. In section 1.3, we introduce the three

different phases (hot-ionized medium (HIM), warm neutral medium (WNM), and cold

neutral medium (CNM)) associated with galactic outflows and the ISM in general.

Section 1.4 discusses a few general aspects of superbubbles, and the motivation of the

thesis. Section 1.5 contains the layout of the thesis.

1.1 Superbubbles and their evolution

Superbubbles are typically found in starburst galaxies, and in the active star-forming

regions of galaxies with intermediate star-formation rate (SFR) (the Milky-Way type

galaxies). As mentioned above, superbubbles evolve through different phases as they

move through the ISM. At a later stage of their evolution, they blow out of the

galactic disk if they are energetic enough to cross the scale-height of the disks. This

breakout of the superbubbles often gives rise to galactic superwinds.

1.1.1 Shapes of the superbubbles

The shapes of superbubbles change as they evolve in different density structures of

the ISM.

Uniform medium:

As the superbubble shock evolves, it is initially in freely expanding phase, and

37



Figure 1.1: The schematic diagram of the different regions inside the wind driven bubble (Credit:

Weaver et al. (1977) [224]).

supersonic with Mach number M (≡ v/cs) ≫ 1, where v, cs correspond to the shock

velocity, and speed of sound respectively. In the subsequent ST phase the swept up

mass is roughly ∼ 1000 times the ejected mass during SNe. However, ST phase is

only valid for the blast wave cases. In a realistic case, the energy from SNe/wind is

injected continuously in the form of constant mechanical luminosity, and the adiabatic

evolution of superbubbles analogous to ST phase is described in detail in Weaver et

al. (1977) [224].

The evolution of the bubble is self-similar with the expression for radius being

given by Weaver et al. (1977) [224],

r = A

(

Lt3

ρ

)1/5

, (1.1)

where L is the constant mechanical luminosity from the stellar winds, and SNe.

Weaver et al. (1977) [224] estimated the energy distributions in the different regions

of the bubbles to be Eb = 5Lt/11, and Ec = 6Lt/11; where “b”, and “c” represent the

shocked stellar wind (commonly known as hot bubble), and the shocked interstellar

gas (dense shell) regions respectively.
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Figure 1.2: The left panel of the figure shows the analytic solution of the shock-front in an

exponentially stratified medium. The right panel shows the HI map of the neutral gas associated

with the W4 superbubble in the OCI 352 star-cluster (credit:Basu et al. (1999) [7]).

Density stratification:

In a more realistic density distributions of the ISM gas, an ambient medium has ei-

ther exponential or sech2 stratifications. In the exponentially (n(z) = n0 exp(−z/z0))

stratified medium, the evolution of the shock-front as given by Kompaneets (1960)

[107] is,

r = 2z0 arccos
1

2
exp(z/2z0)

[

1− y2

4z20
+ exp(−z/z0)

]

, (1.2)

where z0 is the scale height of the ambient gas, and y denotes the scaled time param-

eter with a dimension of length :

y =

∫ t

0

√

(γ2 − 1)Lt′

2ρ0V (t′)
dt′ . (1.3)

The superbubble shock is initially spherical in shape as it should be for the Weaver

bubble but it becomes oval shaped once it moves through the stratified ISM (elongated

in positive z-direction as shown in the left panel of figure 1.2).
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The Kompaneets solution is not only remarkable in the analytic modelling of

superbubble evolution, but also equally important for observational purpose to study

the bubble evolution (Basu et al. (1999) [7]). Using Kompaneets equation, Basu et

al. (1999) [7] estimated the age and the scale-height of the local ISM, in the case

of the W4-bubble in OCI 352 cluster. In the W4-bubble, the void in HI emission

shows the presence of hot, low density bubble gas; Hα emission represents the dense

shocked ambient gas (shell). Pidopryhora et al. (2007) [155] detected a superbubble

(shown in figure 1.3) in both HI (using Green Bank Telescope (GBT)) and Hα (using

Wisconsin H-Alpha Mapper (WHAM)) at a distance of ∼ 7 kpc and at ∼ 3.4 kpc

above the Galactic plane. Using Kompaneets approximation they estimated the age

of the superbubble to be ∼ 30 Myr, and the total energy of the supershells as ∼ 1053

erg.

However for realistic modelling of superbubble evolution, one needs to consider the

symmetric density stratification, and include radiative cooling, and the disk gravity.

The details of the realistic simulation set-ups are described in chapter 3.

1.1.2 HI holes & supershells

Many observations in the Milky-Way (e.g. Basu et al. (1999) [7], Pidopryhora et al.

(2007) [155] as discussed above), and nearby galaxies show that superbubbles create

holes in the HI distribution of host galaxies.

Milky-Way:

Pidopryhora et al. (2007) [155] measured 220, 000 HI-emission spectra around a

gigantic structure of the Ophiuchus superbubble using GBT. HI-plumes cover a region

of 1.2 × 0.6 kpc in the top of the superbubble. Pidopryhora et al. (2007) [155] also

found that the base of the structure has wide “whiskers” of HI covering ∼ a few 100s

of pc, and extended till more than 1 kpc into the halo. They also found a vertical
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Figure 1.3: HI, and Hα emission in Ophiuchus superbubble are shown in purple, and green

respectively. (credit:Pidopryhora et al. (2007) [155]). They fit two Kompaneets models to describe

the structure. Both models produced similar results since the system is quite big to be reasonably

robust to small changes in initial conditions. The striking similarities in the spatial extent of the

HI, and Hα images indicate the presence of a gigantic superbubble.
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density structure implementing the walls of the superbubble, similar to the vertical

dust lanes observed in NGC 891. Other than these huge superbubbles, there are many

shells and similar structures in the Milky-Way. A search for this shells at low galactic

latitudes was undertaken by Heiles (1979) [81], Heiles (1984) [82]. These HI holes

were named as “worms” by Heiles (Heiles (1979) [81], Heiles (1984) [82]). A similar

task at high latitudes was done by Hu (1981) [90]. McClure-Griffiths et al. (2002)

[129] performed a similar survey in the southern-hemisphere. Ehlerová et al. (2005)

[51] discovered ∼ 300 such structures, and several of them were already catalogued

by Heiles (1979) [81], Heiles (1984) [82], Hu (1981) [90].

These supershells can sometimes give rise to the second generation of star-formation.

Oey et al. (2005) [151] observed one such star-formation driven superbubble, named

as W3-superbubble in the star-cluster IC 1795 in the north-west edge of W4 super-

bubble.

Other galaxies:

Kamphuis et al. (1993) [97] observed an almost face-on galaxy NGC 6964 in 21-

cm, and found HI emission at high velocities ∼ 100 km/s, primarily observed in the

direction of the optical-disk. The emitting region is likely located in the halo with an

associated HI mass of ∼ 5 × 108 M⊙, and total kinetic energy ∼ 1055 erg. The high

velocity HI has spatial correlation with holes in the HI-distribution suggesting the

neutral gas to be swept up by stellar wind and SNe shocks. Later, Boomsma et al.

(2008) [16] observed the same galaxy with the deep (192 hour) 21-cm HI observation,

and detected HI high-velocity emissions associated with 121 HI-holes (shown in figure

1.4). Most of these holes are in the central regions of the galaxy where gas density and

star-formation rate are high. They also concluded that fountains created by stellar

outflows are the origin of these high velocity gas and HI holes. Other than NGC 6964,

there are observations of shells and supershells in the nearby galaxies in the Local
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Figure 1.4: The figure shows HI-holes in the HI-map of NGC 6946. The ellipses show the sizes

and orientations of the holes. The white spot at the centre is the HI absorption in the bright radio

continuum nucleus, and not an HI hole (credit: Boomsma et al. (2008) [16]).
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group such as the SMC, the LMC, and M31 (Brinks & Bajaja (1986) [19], Kim et al.

(1999) [104], Walter et al. (1999) [221]).

‘THINGS’ ( “The HI Nearby Galaxy Survey”) survey has compiled a list of HI

shells and supershells in nearby galaxies as these objects are important to understand

the evolution of the ISM. The first paper by Walter et al. (2008) [223] obtained HI

emission in 34 nearby (2 ∼< D ∼< 15 Mpc) galaxies with high spectral (≤ 5.2 km/s),

and spatial (∼ 6”) resolution using VLA. Bagetakos et al. (2010) [5] analysed 20 of

these 34 galaxies, and detected more than 1000 HI holes in total. These holes have

sizes ranging from 100 pc (the resolution limit) to ∼ 2 kpc, and expansion velocities

ranging from ∼ 4–36 km/s, with the age range of 3–150 Myr, and they are located

throughout the disks of the galaxies showing HI holes to be ubiquitous in the regions

of star-formation activity.

Luminosity function of OB associations:

These HI holes and superbubbles have variety of sizes and luminosity. In order to

understand the distribution, the first pioneering work was done by Kennicutt et al.

(1988) [103]. They detected HII regions in 30 nearby spiral galaxies, and observed

Hα emission-line fluxes to study the luminosity function (LF) of HII regions. They

found that LF (φ(L)dL) can well be represented by a power-law : φLdL ∝ L−2±0.5

in most of the galaxies with systematic variation of normalization and the shape

of the LF with Hubble type. Later on, Oey & Clark (1997) [150] obtained analytic

expressions for the differential size distribution (N(R)dR) of superbubbles for uniform

density ambient medium. Using the adiabatic expansion of superbubbles and LF of

HII regions as described by Kennicutt et al. (1988) [103], and for constant SFR, they

found that N(R) ∝ R1−2β (≡ R−3) if φL ∝ L−β (β ∼ 2). This estimation of N(R)dR

matches quite well with observations of HI shells in the SMC (Staveley-Smith et al.

(1997) [187]). They also pointed that there are similar power law of N(R)dR for the
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momentum conserving phase of superbubble evolution.

1.1.3 Density structure of supershells

Besides the shape, it is instructive to study the density structure of superbubbles

in different phases of evolution. All these shells and supershells are produced when

the strong superbubble shock sweeps up ambient gas, and the swept up material is

compressed in a dense, thin layer behind the shock-front. The shock then loses energy

via adiabatic expansion. At a later epoch, the shell is compressed in a thinner and

denser region due to radiative cooling as the post-shock temperature drops to ∼ 105

K.

Adiabatic shocks:

The flow into and out of the shock can be considered as time independent (in the

shock rest frame) as the shell thickness is a few times the mean free path of the

particles. Suppose P0, ρ0, and u0 are the upstream pressure, density, and velocity;

and P1, ρ1, and u1 are the downstream flow variables in the rest-frame of the shock-

front. The mass flux (φ), momentum flux (ζ), and the specific total energy (η) are

conserved across the shock-front :

φ ≡ ρu (1.4)

ζ ≡ P + ρu2 (1.5)

η ≡ u2

2
+

5

2

P

ρ
, (1.6)

where P , ρ, and u are the flow pressure, density, and velocity respectively.

For the strong, adiabatic shock-wave for given φ, ζ , η; the velocity, and density

of the post-shock gas are u1 = u0

4
, and ρ1 = 4ρ0 respectively (known as Rankine-

Hugoniot jump conditions). However, with the thermal conduction between the shell,

and shocked stellar wind regions (denoted as “c”, and “b” respectively as described

before in section (Weaver et al. (1977) [224])), the density jump in the shell is less

compared to the cases without conduction.
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Figure 1.5: Figure shows density and temperature profiles in the wind-driven bubble with thermal

conduction (Credit:Weaver et al. (1977) [224]).

Figure 1.6: Schematic diagram of the radiative shock. (Credit:Shu [177]).

Radiative shocks:

For radiative shocks, the rapidly moving cold gas enters the radiative relaxation

layer after crossing the viscous shock-front at 1 (shown is figure 1.6). The physical

condition at 2 are determined by Rankine-Hugoniot jump conditions. At 2, the

temperature increases rapidly with a maximum density jump of a factor of 4, making

this region go out of thermal equilibrium. Therefore radiative cooling increases in

the downstream gas of 2, thereby compressing the shell density by a large factor,

and reducing the temperature and flow velocity for a given mass flux ρu. In 3, the

shell is cooled enough to return to the equilibrium state again. A schematic diagram

representing the density, temperature, and flow velocity profile at these three regions
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Figure 1.7: Schematic diagram of the density, temperature, and velocity profiles in regions 1, 2,

and 3. (Credit:Shu [177]).

Figure 1.8: The dotted lines with arrows show the hot gas coming out of the galactic disk. The

solid line shows the radial outflow of the hot flow, which cools via thermal instabilities, and falls

back on the disk following the dashed line (credit:Bregman (1980) [18]).

is shown in figure 1.7.

In most of the cases, the gas in region 3 returns to the same temperature of the

upstream gas via cooling in the thermally unstable region 2. For the isothermal case,

the shock jump conditions are given by: u3u1 = a2T , ρ3/ρ1 = (u1/aT )
2; where aT is the

isothermal sound speed (aT =
√

(kT/m), T3 = T1 = T ). This relation is known as

isothermal-shock-jump condition. We note that for radiative shocks, the shell density

jump (ρ3/ρ1) can be as high as ∼ 100–1000 depending on the Mach number of the

forward shock-front unlike adiabatic shocks.

1.1.4 Galactic fountains

The cooled supershells finally fragment in high density clumps and channels via

Rayleigh-Taylor instabilities (RTI) (for details see Roy et al. (2013) [164]), and break

out of the disk to enter the halo. The remnant of the dense supershells sometimes fall
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back onto the galactic disks in the form of a “galactic fountain”. Shapiro et al. (1976)

[173] analysed the data from the hot (∼ 106 K) diffuse gas in the the galactic halo

at ∼ 1 kpc in soft X-ray (0.25 keV), and OVI absorption lines. They proposed that

the hot gas in superbubbles can leak through the chimneys (similar to “fountain-like”

structures) to the halo creating such hot halos, and may cool via convective-radiative

cooling, and fall back onto the galactic disk with high velocities (∼ 100 km/s) repre-

senting the origin of the high velocity clouds (HVC). This interpretation of HVC due

to thermal-convective instability was first suggested by Suchkov & Shchekinov (1974)

[195]. Also, Bregman (1980) [18] argued that the hot superbubble gas in a nearly

hydrostatic corona travels further out conserving the angular momentum. This gas

cools to form clouds, and these clouds move ballistically back towards the disk, and

reach very high velocities similar to HVCs. However, recent studies by Wakker (2001)

[217], Wakker et al. (2007) [218], Wakker et al. (2008) [219] confirm that at least some

HVCs have sub-solar metallicities, and they may be formed by the intergalactic gas

inflow; whereas these clouds originated by stellar activity have solar metallicities, and

therefore they may be the origin of the intermediate velocity clouds (IVC).

1.2 Superbubble breakout and galactic winds

Superbubble breakouts create the large scale galactic winds (as mentioned above)

with wide range of length scales starting from around a kpc to a few tens of kpc.

There are many observations of these SB breakouts in the nearby starburst galaxies,

and as well as in the Milky-Way. There are various theoretical models to understand

the origin and evolution of these breakouts.

1.2.1 Observations of SB breakouts and galactic winds

Bland-Hawthorn & Cohen (2003) [11] observed bipolar structure at the galactic centre

of the Milky-Way extending till ∼ 8 kpc on both sides, perpendicular to the galactic
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Figure 1.9: The figure shows the galactic centre of the Milky-Way at 8.3µm within a field of view

of ±1.5◦ in latitude, and longitude. At the western side both above and below the galactic plane,

bipolar dust shell is visible as an outflow signature (Credit:Bland-Hawthorn & Cohen (2003) [11]).

plane. This bipolar structure has filamentary emission at 8.3µm, and it is confined

in an wide dome-shaped shell with the top as wide as ∼ 170 pc at ∼ 8 kpc. This is

an evidence of a dust-entrained large-scale outflow powered by a central star-forming

region. The energetics to drive such an outflow is ∼ 1055 erg, which requires ∼> 104/ǫ

supernovae, ǫ being the thermalization efficiency of the ejected energy. They also

found that the galactic centre drives such large-scale winds every ∼ 10–15 Myr.

Similar outflows have been observed in many nearby star-burst galaxies, and

among them M82 is the nearest example (∼ 3.5 Mpc) that has been observed in

several wavebands in detail. It is interesting to study M82 among the many other

star-forming galaxies as it shows grand outflows and galactic winds in different wave-

lengths. Figure 1.10 shows a composite image of M82.

A prominent outflowing HI gas has also been observed in NGC 253 (Boomsma

et al. (2005) [15]). The 21-cm line observation reveals that the neutral hydrogen is

extended till ∼ 12 kpc above the disk-plane in one direction. The HI emission is con-

centrated in a half-ring structure, and the HI-plumes seem to outline the boundaries
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Figure 1.10: The composite image of M82 (credit:NASA/JPL-Caltech/STScI). The false colour

codes represent the the image of M82 in different wavebands. The visible light of the stellar disk

appears in yellow-green. The blue, red, and orange colours represent the X-ray image by Chandra,

the Spitzer observation in molecular regime, and the HST image of the Hα emission respectively.

Figure 1.11: The left panel shows the multi-wavelength image of the star-burst galaxy NGC 253.

The blue, and red colours represent the DSS optical disk, and soft X-ray (0.1–0.4 keV) emission

respectively; and the green contours denote the HI-image. The right panel shows the schematic

diagram of the different components of the outflow observed in various wavebands (X-ray, Hα, HI),

and also the HI disk and the halo. The central region contains the driving source (O, B stars) of the

outflows. The dashed line covered region at the extreme right is the undetected region. (Boomsma

et al. (2005) [15]).
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Figure 1.12: The left panel of the figure shows the optical HST image of NGC 3079 (credit:

NASA HST site). The right panel shows the comparison between X-ray (gray scale), Hα+ NII lines

(orange), radio ( 3.8 cm VLA image), and I-band continuum in green. The X-ray emission is from

Cecil et al. (2002) [20] , and the rest of the images are taken from Cecil et al. (2001) [21] .

of the Hα and X-ray halo gas. Boomsma et al. (2005) [15] also pointed out that this

extra-planar HI can be related to the active star-formation at the centre of the disk.

Cecil et al. (2002) [20] showed that the X-ray (Chandra), and Hα (HST) filaments

in the superbubble of NGC 3079 have similar features. They also found that the soft

X-ray gas has thermal energy ETH ∼ 2 × 1056η0.5X ergs and kinetic energy EKE ∼
5× 1054η0.5X ergs, which are similar to the energetics of the optical line-emitting gas if

ηX (the volume filling factor of the X-ray emitting plasma) is large. The optical line

seems to arise from the cool disk, or the cooled dense superbubble shell while the X-

ray emission comes from the upstream bow shocks arising from the interaction of the

hot bubble gas and the cold shell remnants (clumps), or from the conductive cooling

at the clump/wind interfaces. This striking correlation (both spatial correlation, and

energetics) of the optical, and X-ray emitting plasmas not only ensures the common

origin of both of them, but also provides an observational evidence of a large scale

galactic wind.

Heckman et. al. (1990) [79] have studied the optical spectroscopic data of the
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ionized nebulae associated with 14 far-infrared galaxies (FIRG). Three of these 14

galaxies are nearby and also edge-on, which helps them to determine the kinematics

of the outflowing gas. They found double emission lines with the line splitting of

200–600 km/s extended over kpc scales, away from the disk planes indicating a clear

signature of outflows. They also found that the gas inside the nebulae is a few orders of

magnitude overpressured compared to the Milky-Way ISM pressure, and the pressure

drops systematically with the distance from the superbubble centre. The kinematics,

morphology, and the pressure profile of the outflowing gas in their observations agree

well with the numerical models of supernova driven bubbles.

1.2.2 Analytical modelling & Numerical simulations of SBs

Analytical modelling : There have been significant theoretical advance in the study

of superbubbles. In this regard, McCray & Kafatos (1987) [130] found that stellar

winds, and repeated SNe from OB associations, create cavities of sizes 100–300 pc

in the ISM. They estimated that the interior pressure reduces in superbubble when

it enters the snowplough phase, and within a few 10s of Myr it loses all its energy

via radiative cooling, and stalls at a radius of ∼ 300 pc. At the same time the

supershells become gravitationally unstable, and form giant molecular clouds to give

rise to the second generation of SF. In association to the superbubble evolution, they

also pointed it out that for a typical initial mass function (IMF), the energy injection

rate via SNe is nearly constant for about ∼ 50 Myr.

These analytic estimates were taken forward by MacLow et al. (1988) [121] (see

also Kovalenko & Shchekinov (1985) [111]). Using Kompaneets thin-shell approxima-

tion, they numerically modelled the superbubble evolution with various ISM density

stratifications. They defined a dimensionless parameter D ∝ H−2P
−3/2
e n

1/2
0 ; where

H , Pe, n0 are the scale-height, thermal pressure, and the particle density of the am-

bient ISM gas respectively, as an indicator of whether the superbubble breaks out of

the HI disk galaxies or collapses. They also pointed out that a superbubble blows
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Figure 1.13: Left panel: Schematic diagrams of the superbubble formation from the OB-

associations in the spiral arms (as shown in top marked as 4a), and the disk-halo interaction via

superbubble evolution , and circulation of the disk gas via “disk-halo-disk” cycle (as shown in bottom

marked as 4b). Right panel: A sketch of the halo structure in the chimney model (Credit:Norman

& Ikeuchi (1989) [147]).

out symmetrically both above and below the plane of the disk if the star-formation

takes place at the centre of the disk; the blow-out is one sided for the burst-centres

at more than 50–60 pc above the plane for the typical Milky-Way density and scale

height. Another important finding of MacLow et al. (1988) [121] is that when the

superbubble shell crosses the dense clouds, finger-like structures of warm gas intrudes

into the hot interior bubble, on account of “Rayleigh-Taylor” instabilities (RTI).

Norman & Ikeuchi (1989) [147] also supported the fact that spatially and tem-

porally correlated SNe can drive superbubbles and supershells. They studied the

disk-halo interaction by assuming that the gas flowing upward enters the halo via

chimneys in the supershells created by RTI, and the gas carries mass, energy, mo-
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mentum, and magnetic flux during its evolution into the halo. The cycle is completed

by the downward fall of the cooled clouds onto the disk as the hot gas cools via ra-

diative cooling and forms clumps. These clouds bring back the mass, and magnetic

flux to the disk, and also a fraction of the momentum and energy as they strike the

disks. This model is similar to the galactic fountain model as discussed earlier.

Numerical modelling : Using two-dimensional hydrodynamic simulations, Tomisaka

& Ikeuchi (1988) [207] showed that the hot gas inside the bubble creates a hole in the

HI image of the ISM, and vents through the chimneys in the superbubble shell during

the later stage of its evolution, and percolates into the galactic halo. The cooled shell

produced near the disk plane seems to be the origin of the CO spurs in the galactic

halo of M82 (Tomisaka & Ikeuchi (1988) [207]).

MacLow et al. (1989) [122] studied the evolution of superbubble with ZEUS, a

two-dimensional hydrodynamic simulations for the two different (exponential, and

Gaussian) vertical density stratifications. Unlike earlier studies which found a large

mass loading of the outflows, they found that only ∼ 5% of the gas is accelerated

upward. The density contours of the superbubble evolution for two density distribu-

tions at ∼ 9 Myr when the bubble is blown out of the disk is shown in figure 1.15.

The bubble evolution for both density stratifications agree well with Weaver et al.

(1977) [224] at the early epoch, and with Kompaneets thin-shell approximation at a

later epoch. For the two density stratifications, the morphologies of the dense shell

are different only at a later epoch, and thus the dynamics also varies at late times

(at or after the breakout). Depending on the different morphologies for different

stratifications, the conditions for break-out also vary.
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Figure 1.14: The figure shows the schematic diagram of the two evolutionary phases of the su-

perbubble as described by the numerical model in Tomisaka & Ikeuchi (1988) [207] . The left panel

shows the radiative phase before the bubble breaks out of the disk. “MD”: molecular disk fueling the

star-formation, “C” :central hot cavity, “FW” :Free wind region, “WS” : internal wind shock, “SW”

: shocked wind gas, “S”:thin shell, “GH”: gaseous halo, isodensity contours of the gaseous halo are

represented by the black solid contour-lines with the scale-height of “SH”. The right panel shows

the bubble when it reaches a few times the scale-height. “CD”:contact discontinuity, “SC”:shocked

clouds, “BS” : bow shock (Heckman et. al. (1990) [79]). This figure is originally produced by

Tomisaka & Ikeuchi (1988) [207]. Heckman et. al. (1990) [79] used this model to explain their

observations.
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Figure 1.15: The figure shows the evolution of the superbubble at a later epoch (∼ 9 Myr) for the

exponential (left panel), and Gaussian (right panel) density stratifications. The density contours

have logarithmic spacing of 0.5 dex from density of 10−28 (10−29) gm cm−3 to 10−23 gm cm−3 for

exponential (Gaussian) distribution (credit: MacLow et al. (1989) [122] ).
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Figure 1.16: The left panel of the figure shows the X-ray image of M82 (Strickland & Heckman

(2009) [191]). The soft X-ray (0.3–2.8keV), optical R-band (from starlight), and hard X-ray band

(3–7 keV) emissions are shown in red, green, and blue respectively. The right panel shows the X-ray

image of NGC 253 (credit: XMM official site). The low energy X-ray emission is shown in red, and

the high energy emission in blue contours. The spiral disk is shown schematically by the ellipse.

1.3 Density/temperature structure of the super-

bubbles and ISM

Galactic outflows have a complex structure with different density/temperature phases

of gas. There are three prominent density/temperature phases in the ISM : cold neu-

tral medium (CNM) (n ∼> 10 cm−3, T ∼< 100 K), warm neutral medium (WNM)(n ∼
0.1–1 cm−3, T ∼ several 1000 K), and hot ionized medium (HIM) (n ∼< 0.01 cm−3,

T ∼> 105 K).

Hot ionized phase:

The HIM is primarily detected in X-rays. Cox (2005) [35] claims that the HIM

of the ISM can either be a part of the hot halo which is in hydrostatic equilibrium,

or be produced by the thermal superwinds. In the thick disks of quiescent galaxies,

the hot gas can be a part of the hot halo, whereas for the starburst galaxies the
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Figure 1.17: The red filaments in the left panel of the figure shows the filamentary, and clumpy

Hα emission in the superwind of M82; the visible starlight is shown in blue. The right panel shows

the 2.12µm H2 emission upto ∼ 3 kpc on a false colour scale in M82 (Veilleux et al. (2009) [216]).

hot superbubble gas predominantly create the HIM. Diffuse thermal X-ray emission

is observed at ∼ 5 to 10 kpc above the disk-plane in edge-on starburst galaxies

(Strickland et al. (2004) [192], Heckman et. al. (1990) [79]). Figure 1.16 shows the

X-ray emission from M82 and NGC253. The X-ray gas has a smooth distribution

since the hot wind behaves as a free-wind as it enters the low density halo. We note

that slightly cooler outflows (T ∼ 105 K) cannot be detected in X-ray emission, and

they are rather observed in the metal absorption lines (OVI, CIV, NV, etc.) (Jenkins

& Meloy (1974) [94], Shapiro et al. (1976) [173]).

Warm and Cold neutral medium:

The WNM is primarily composed of neutral gas although it contains a some

partially ionized gas; the CNM is completely neutral with mostly atomic hydrogen

and sub-dominant diffuse molecular gas.
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The CNM and WNM (cooled dense clumps, and inter-clump gas in the shells)

are generally inseparable in galactic outflows. However, the detection mechanism for

the two phases are different. The partially ionized portion of the WNM is primarily

probed by Hα emission lines, and the neutral gas is observed by NaD (Heckman et al.

(2000) [75]) and MgII lines. The filamentary Hα emission of M82 is shown in figure

1.17. The molecular H2 knots are observed in 2.12 µm band at a vertical height of

∼ 3 kpc in the outflow of M82 (Veilleux et al. (2009) [216], shown in the right panel

of figure 1.17). Interestingly, such difference also exists in the detection of CNM

and WNM in the ISM. The CNM is primarily observed in 21-cm HI absorption lines

while the Doppler broadened emission lines are dominantly due to dominantly WNM

(Radhakrishnan et al. (1972) [158]). We note that the multiphase, clumpy ISM plays

an important role in determining the escape of ionizing photons as discussed in detail

in section 1.4.3, and chapter 4.

It is interesting to note that the extents of both the WNM/CNM are similar to

the HIM (upto 1–2 kpc) although the morphologies of the two (WNM/CNM, and

HIM) are quite different. The neutral medium is more clumpy (due to the thermal

instabilities in the dense gas) compared to the smooth distribution of the hot gas.

It is however surprising that the cold gas survives at a height of ∼ 3–5 kpc sur-

rounded by the hot wind gas, because the ram pressure of the hot gas drags the

cold gas with it along its way, and therefore it is highly probable for the cold gas to

evaporate. The survival of the cold clumps against the collapse due to its self-gravity

is another stand-alone debatable issue on its own. It is possible that local thermal

instabilities of the hot gas may produce the cold phase. Therefore, the mass exchange

between the cold and hot phase is an important process both in the superbubbles and

ISM (Cox (2005) [35]).

cold molecular phase:
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Figure 1.18: Left panel : The Red, and the blue colours reperesent the optical , and the Hα image

of M82 respectively. The molecular CO map is shown in green. Right panel : The yellow contours

represent the M82 disk, and the Hα image of M82 is shown in gray scale. The orange contours

show the tidal streaming of the gas in M82. The red contours are molecular gas associated with the

outflow in M82. The molecular gas is extended upto 1.2 kpc below the plane of the disk. (credit :

Walter et al. (2002) [222]).

Galactic outflows also contain the dense molecular component. For example,

Walter et al. (2002) [222] detected CO emission in M82 (shown in figure 1.18),

extended upto 1.2 kpc in one side of the disk-plane. The detailed introduction of the

molecular outflows in the central regions of starburst galaxies is discussed in section

1.4.4.

1.4 Overall aspects of SB evolution, and motiva-

tion of the thesis

We have so far discussed the importance of SBs, and various implications of its

evolution on galaxies. For the purpose of the thesis, we intend to study a few aspects of

SB evolution. We would like to introduce the motivations by laying out the problems

we have attempted to study.
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1.4.1 Threshold conditions for SB breakouts

The large scale global galactic winds as discussed above are termed “Superwinds”

by Heckman et al. (2000) [75]. They studied the spectra of NaD absorption line for

the sample of 32 FIRGs. In 18 of these galaxies, the absorption lines are produced

by the interstellar gas, and in 12 of them the NaD lines are blueshifted by 100 km/s

providing a direct observational evidence of outflows. It is generally believed that

galaxies with a high star formation rate (∼> few tens of M⊙ yr−1) often show galactic

winds although Heckman (2002) [77] pointed out that the surface density of the star-

formation rate is more important in this regard rather than the total star-formation

rate (SFR). He found that for exciting the galactic winds, the threshold SFR surface

density is ∼ 0.1 M⊙ yr−1 kpc−2.

There are studies of the existence of multiphase gas in the halos of the starburst

galaxies, and their possible connection to the properties of the star-formation in the

disks. Tüllmann et al. (2006) studied the luminosities in different bands (soft X-

ray(0.3–2.0 keV), Hα, B-band, UV, radio continuum (1.4GHz), FIR) for the sample

of 23 edge-on galaxies, and found a strong correlation (shown in figure 1.19) between

their strength, morphology, and spatial extent. They also inferred that the halo

contains gas of different densities and temperatures (multiphase halo), if the threshold

condition for the surface density of the energy injection rate is ∼ 10−3 erg s−1 cm−2.

Another study by Dahlem et al. (1995) [40] on a sample of 5 edge-on galaxies shows

that the halo gas exhibits radio-continuum emission, and the strength of the emission

correlates with SFR. The existence of the filamentary structures in radio-emission of

the halo requires cosmic-ray electrons to be convected to the halo along ISM magnetic

fields. They also pointed out that the radio-emission is exhibited only if the energy

injection rate due to star-formation exceeds a threshold of ∼ 10−4 erg s−1 cm−2, which

is an order of magnitude lower than the estimate for multiphase halo ( Tüllmann et

al. (2006) [211] ).

The hierarchy of the threshold values of SNe energy input rates for these phenom-
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Figure 1.19: The figure shows the correlation of the luminosities obtained from different bands

with the X-ray luminosity ( Tüllmann et al. (2006) [211] ). The circles, squares, and the triangles

represent the data from Tüllmann et al. (2006) [211], Strickland et al. (2004) [192], and from

the literature as mentioned in Table 1 of Tüllmann et al. (2006) [211] respectively. Filled and open

symbols refer to the undetected and detected gaseous halos of galaxies respectively (credit:Tüllmann

et al. (2006) [211]).
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ena motivated us to investigate the connections between all these energy scales and

galactic outflow properties. We also explore whether or not these energy scales can

be explained by a single physical process.

1.4.2 Numerical implementation of SB feedback

The effective numerical implementation of SNe energy input into the ISM is a long-

standing important issue to resolve. The structure of the universe at large scales

is governed largely by gravity and dark energy, while at the galactic scales, various

baryonic processes such as heating, cooling, self-gravity, and star-formation play im-

portant roles (Springel et al. (2005) [186]). These complex physical processes require

different numerical recipes and high resolution (varying according to the scale of the

problem) over an wide range of length scales starting from scales of stellar clusters

(a few 10s of pc) to the galactic scales (a few 10s of Mpc). Therefore these numeri-

cal prescriptions are computationally expensive and may not show converged results

(discussed in detail in the introduction of chapter 2).

For large scale outflows leading to superwinds, superbubbles are more effective

feedback mechanism compared to single supernova explosions. In this regard, Cox

(1972) [33], Thornton et al. (1998) [204] found that single supernova explosions

lose most of their input energy soon after the initiation of the radiative phase, and

retain only a fraction ∼ 0.1 of the total energy within ∼< 0.1 Myr. In contrast, a

fraction of ∼> 0.3 of the total explosion energy is retained in the case of multiple SNe (

Strickland & Heckman (2009) [191] ). Recently, Vasiliev et al. (2015) [215], and Nath

& Shchekinov (2013) [139] have argued that to create a more effective superbubble

strong shock, supernova explosions have to be spatially and temporally coherent.

Assuming that all the supernova explosions take place within a small volume so that

they are coherent in space and time to maintain a strong shock even after radiative

losses. Roy et al. (2013) [164] estimated the threshold condition for the surface density

of SFR to be 0.3 M⊙ yr−1 kpc−2, close to the threshold condition for the superwinds
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as calculated by Heckman (2002) [77].

SNe feedback is an important topic to discuss in detail among many other feedback

processes such as radiation pressure, photoionization, and cosmic rays. There have

also been discussions whether one should inject the supernova explosion energy in a

cold, dense medium (which is the origin of massive stars) or the injection should take

place in a hot dilute medium (as the medium has been diluted by the stellar wind

feedback much before the supernovae explode). There are two important feedback

models : (i) thermal feedback ( Katz (1992) [100] ), and (ii) kinetic feedback model

( Navarro et al. (1994) [142], Navarro et al. (1997) [143], Navarro et al. (2000) [144]

). If the energy is injected in a larger volume, then the cooling time becomes shorter

than the thermalization time, and therefore the feedback mechanism is suppressed.

This is the so called numerical “over-cooling” problem in numerical cosmology (in

both Eulerian (e.g., Dubois & Teyssier (2008) [49], Tasker & Bryan (2006) [200]

), and Lagrangian ( Springel & Hernquist (2003) [185], Stinson et al. (2006) [188]

) simulations). In order to thermalize the feedback energy to couple to the ISM

effectively, these cosmological simulations ( Dubois & Teyssier (2008) [49], Gerritsen

(1997) [63], Springel & Hernquist (2003) [185] ) resort to either artificially switching

off the cooling for an uncertain period of time (which can be as long as the life-time

of the star-clusters) or depositing the injected energy in a hot, less dense medium so

that the cooling time is longer.

The overcooling problem in cosmological simulations due to the lack of the reso-

lutions motivated us to study the numerical recipes of SNe feedback in detail. Our

objective is to find out the scale at which SNe energy should be deposited in various

injection prescriptions for the energy to couple effectively to the ISM.

1.4.3 Escape of ionizing photons

Massive stars are not only the source of the mechanical or thermal energy, they are

also the source of highly energetic ionizing photons. The hydrogen ionizing photons
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(Lyc photons) influence galaxy evolutions. The ‘chimneys’ in the dense supershells

not only transport the hot, metal enriched gas to the halo, but also create optically

thin pathways for Lyc photons to escape the disk and enter the diffuse ionized medium

aka “Reynolds layer” in Milky-Way (Dove & Shull (1994) [44], Reynolds (1991) [161]).

However, for the escape of substantial fraction of Lyc photons, the superbubble shells

have to fragment before the main sequence life-time of O stars, as they are the primary

contributors to the ionizing photons from stellar sources (Dove et al. (2000) [45],

Zastrow et al. (2013) [231]). Therefore the fragmentation time-scale should be of

∼ 3–5 Myr, consistent with the dynamical timescale (td ∝ H5/3(n0/LSN)
1/3) when

the number of SNe ∼ 200 for typical disk parameters (n0, z0). In order to fragment

within this short time, thermal instabilities have to play an equally important role as

RTI (Roy et al. (2013) [164]).

The escape of Lyc photons from galaxies, or in other words, the total contribution

to the UV background radiations from all the galaxies at high redshifts (z) cause

the re-ionization of the universe at z ∼> 6. However, it is unclear whether the main

contribution to the ionizing photons arises from starburst galaxies or AGNs because

we do not have a solid knowledge of the formation mechanism of local UV background

in individual galaxies. There is a lot of work done in this regard both observationally,

and theoretically to estimate the value of the fraction of Lyc photos that escapes

galactic disks (escape fraction fesc).

We mention here a few observational methods to estimate fesc. Bland-Hawthorn

& Maloney (1999) [10] modelled the production and transport of ionizing photons

in an optically thick ISM, and with the help of Hα observations in the Magellanic

stream they have estimated fesc for our Galaxy (fesc ≤ 6%). A recent observation

by Zastrow et al. (2013) [231] obtained the emission line ratio maps of [SIII]/[SII]

(an effective tool to study the radiative transfer) for six dwarf starbursts in order to

calculate fesc, and found that the ionizing photons escape through a narrow opening

angle (∼ 40 ± 5◦ in most of the galaxies in their observations). Borthakur et al.

65



Figure 1.20: The left panel shows the Hα image of NGC 3125, indicating the opening angle of the

cone by the two red-dashed lines. In the right panel, the red, blue, and green colours represent the

emission lines of SIII, SII, and λ6680 continuum respectively ( Zastrow et al. (2013) [231] ).

(2014) [17] have also recently observed UV emission from the galaxy J0921+4509,

and estimated fesc by adopting the production rate of ionizing photons from stellar

population model. They concluded that the “picket-fence” structure of the supershells

due to the fragmentation has a substantial effect on the leaking of the Lyc photons.

There also exist various analytical and numerical prescriptions for the estimation

of fesc. However, the dependences of escape fraction on the disk parameters (mid-plane

density (n0), and scale-height (z0), or the disk mass and radius in the cosmological

terms) are yet unknown (e.g. as mentioned in Zastrow et al. (2013) [231]). The quest

for the understanding of this dependence is the motivation behind the study of fesc

in the framework of superbubble evolutions.

1.4.4 Observations of molecular outflows

The nuclear regions of nearby starburst galaxies show molecular outflows. In general,

dense molecular clouds are observed in CO. To observe and understand the dynam-

ics of these molecular outflows in the centrally located dense region, one requires to
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Figure 1.21: The details of the figure are mentioned in the figure itself (credit:Borthakur et al.

(2014) [17]).
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Figure 1.22: The left panel (credit: Bolatto et al. (2013) [13] ) shows the stellar disk of NGC 253

in the JHK composite image with an inset of central ∼ 2 kpc with a scale-bar of 250 pc as shown in

the top right. In the inset, the false colours show X-ray (in blue), and Hα (in yellow) image of the

central region with a white dashed circle indicating the central zone observed by ALMA. The white

contours show the ALMA CO(1–0) observations. The middle panel shows the Chandra soft X-ray

data (0.3–2.0 keV, shown in the colour scale) with the CO(1–0) contours in the central region of

NGC 3628, which is zoomed in the right panel (central 2′ × 2′). One can notice that X-ray image,

and the CO-contours have nice spatial correlation ( Tsai et al. (2012) [210] ).

have an instrument with both good sensitivity, covering a wide range of length scales

starting from a few 10s of pc to ∼ 500 pc, and high resolution with a resolving power

of structures less than ∼ 100 pc as well. In this regard, ALMA (Atacama Large

Millimeter/submillimeter Array) is a powerful instrument, and in light of recent ob-

servations of molecular components with the advent of ALMA, this topic has become

interesting to study in detail.

Molecular CO features associated with the outflow in the central region of NGC

253, have been observed by Bolatto et. al. 2013 with ALMA. NGC 253 has a star

formation rate ∼ 3 M⊙ yr−1, which can be as large as ∼ 9 M⊙ yr−1. Four expanding

shells have been observed with radii 60–90 pc with expansion velocities of ≃ 23–42

km s−1, indicating a dynamical age of ∼ 1.4–4 Myr. The CO-luminosities totalling

the four expanding shells is estimated to be ∼ 2 × 107 K km s−1 pc2, equally split

on both sides of the disks. Assuming an optically thin CO-to-H2 conversion factor

αCO ∼ 0.34 M⊙ K−1 km−1 s pc−2, they have estimated the total molecular mass to
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be (0.3 − 1)× 107 M⊙. They also calculated the kinetic energy associated with this

outflow to be ∼ (2 − 20) × 1052 erg. These shells are likely to outline a larger shell

around the central starburst region.

Tsai et al. (2012) [210] detected molecular outflow in the central region of NGC

3628 with the length-scale of 370–450 pc through CO(1–0) observations. They found

that the outflow gas has a velocity ∼ 90± 10 km/s, inferring an expansion time-scale

∼ 3.3–6.8 Myr. The molecular gas outflow rate is 4.1–8.5 M⊙ yr−1, and the total mass

is ∼ 2.8 × 107 M⊙. In order to eject this molecular mass with the aforementioned

velocity, one requires a mechanical energy to be ∼ (1.8–2.8)× 1054 ergs. The outflow

is dominated by the northern part of the central region with a weak bubble breaking

out (shown in the right panel of figure 1.22).

M82 also has a molecular component, which has the similar mass, size, and velocity

as the two other galaxies discussed here. The detailed morphology of the molecular

outflow in M82 is quite complicated, and is discussed in detail in the introduction of

chapter 5.

Other than the starburst galaxies in the local universe, recent observation at higher

redshift indicates that molecules can also be observed in an outflow at much larger

radii driven by the radiation pressure of the stellar sources if the SFR is high. This

study by Geach et al. (2014) [62] in CO (2–1) show molecular outflows at a radius

∼ 10 kpc in SDSS J0905+57 at redshift z ∼ 0.7. This galaxy has a compact structure

(with effective radius re ∼ 100 pc), and high SFR ∼ 260 M⊙ yr−1. They found that

∼ 35% of the total molecular mass is extended at ∼ 10 kpc with one-third of this gas

moving with velocities of as high as ∼ 1000 km/s. It has a molecular mass outflow

rate of ∼ 80 ± 20 M⊙ yr−1, and a SFR surface density of ∼ 4700 M⊙ yr−1 kpc−2

within the effective radius. This ejection of high molecular mass of total ∼ 108–109

M⊙ (both wings, and the central emitting region) with such a high velocity requires

an associated kinetic energy as high as ∼ 1056–1057 erg, which is consistent with the

available momentum flux from the stellar radiation pressure.
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Figure 1.23: This figure shows the 2 mm spectrum of SDSS J0905+57. A Gaussian profile is fitted

to the observed CO (2–1) flux density, with a width of 200 km/s (FWHM). A significant amount of

CO emission is in the high-velocity range (known as wing) upto ∼ 1000 km/s. This galaxy is also

known to have outflows of ionized gas, as shown by the strongly blue-shifted, high velocity (∼ 2500

km/s, higher than the velocity of CO gas) MgII doublet (at wavelengths λ = 2796 and 2803 A◦ in

the absorption features (Credit:Geach et al. (2014) [62]).

The striking similarities of the mass, size, and the speed of the molecular out-

flows for the three aforementioned star-burst galaxies (NGC 253, NGC 3628, M82)

in local universe motivated us to study the formation and destruction mechanisms

of molecules in the expanding superbubble shells in order to understand the generic

features of molecular outflows in star-forming galaxies.

1.5 Structure of the thesis

The thesis is comprised of four chapters based on our four publications. The thesis

structure is following :

• In chapter 2, we calculate analytic expressions for the injection radius within

which we input the SNe energy for different feedback prescriptions for effec-

tive SNe feedback. We also discuss the differences, and similarities between the
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different SNe feedback models using 1-dimensional hydrodynamic (HD) simu-

lations in a uniform density ISM.

• We investigate the connections and origins of the three different energy scales

to create galactic superwinds, synchrotron radio, and multiphase halos with the

aid of Kompaneets solution and 2-dimensional HD simulations (ZEUS-MP) of

superbubble evolution in an exponentially stratified medium in chapter 3. We

also include the effects of radiative cooling and disk gravity.

• In order to understand the connection of escape fraction (fesc) with disk-parameters,

we study the effects of superbubble evolution on the estimation of fesc, and scan

a large region in the parameter space and calculate the average fesc for each set

of n0–z0 combinations. This work is described in chapter 4.

• Chapter 5 studies the formation and destruction mechanisms of molecules in

the superbubble outflows in nuclear regions of star-burst galaxies. We use 1

dimensional HD simulations (ZEUS-MP) in a ambient medium with uniform

density in order to obtain superbubble shell position and velocity.

71





Chapter 2

Feedback to the ISM : numerical

implementation

Based on : “In a hot bubble: why does superbubble feedback work, but isolated super-

novae do not?”

Sharma, P., Roy, A., Nath, B. B., Shchekinov, Y., 2014, MNRAS, 443, 3463
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Numerical prescriptions of the supernova explosion feedback mechanism is one of

the longstanding, “not-yet-completely-resolved” issues in the field of galaxy evolution.

A single supernova loses most of its energy as it enters the radiative phase during its

evolution in the ISM, and becomes a sound wave over 10s of Myr. On the contrary,

multiple, collocated supernovae retain most of the injected thermal energy over this

timescale. The coherent supernovae are also known to produce the steady thermal

winds. There are many numerical models to implement SNe feedback. We study the

different feedback models in order to understand their benefits and drawbacks. Our

interest is also to obtain an effective feedback model that couples to the ISM. We also

study the condition to drive a steady thermal wind. We use an idealised 1-D Eulerian

hydrodynamic simulation to address the aforementioned questions.

Primary results

• Isolated supernova loses almost all its injected energy via radiative cooling

within ∼< 0.1 Myr and stalls at scales ∼< 100 pc. On the other hand, super-

bubbles can retain up to ∼ 40% of the input energy over the lifetime of the

star cluster (few 10s of Myr). These conclusions hold even in the presence of

realistic magnetic fields and thermal conduction.

• We derive analytic expressions for the injection radius (rin) in order to produce,

and maintain the strong shocks for various numerical prescriptions. We also

find that the explosion energy needs to be deposited within a small volume

(rin ∼< 10–20 pc, less than the size of the star-clusters) depending on the density

of the ambient medium, and the number of SNe going off at the centre) in all

these different models in order to effectively couple to the ISM.

• We show that a steady thermal wind within the superbubble appears only for

a large number (∼> 104) of supernovae. For smaller clusters we expect multiple
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internal shocks instead of a smooth, dense thermalized wind.
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2.1 Introduction

Gravity and dark energy govern the structure in the universe at the largest scales but

complex baryonic processes like cooling, heating, self-gravity and star formation are

important at galactic scales (e.g., Springel et al. (2005) [186]). Numerical simulations

have made tremendous progress in understanding galaxy formation, starting from

pure gravitational N-body simulations to the current models which try to model

the aforementioned complex processes. Modeling the gravitationally-interacting dark

matter is straightforward in principle, and only limited by the available computing

power. But the modeling of baryonic processes is rather involved. In particular, there

is no consensus on which baryonic processes are important and how they should

be implemented numerically. Given the dynamic range of scales, from large scale

structure (10s of Mpc) to an individual star forming cloud (∼pc), simulations have

to resort to unresolved ‘subgrid’ models for star formation and feedback due to star

formation (e.g., Gerritsen (1997) [63], Guedes et al. (2011) [69], Hopkins, Quataert,

& Murray (2012) [89], Navarro & White (1993) [140], Springel & Hernquist (2003)

[185] and references therein). While different star formation recipes seem to give

similar star formation histories and stellar mass distributions, provided molecular

clouds are resolved (e.g., Hopkins, Quataert, & Murray (2011) [88]), simulations are

quite sensitive to the various feedback prescriptions (e.g., thermal feedback due to

supernovae, momentum injection via dust absorbing/scattering photons produced by

massive stars and supernovae) even with high resolution.

Stars form in clusters and super-star-clusters (100s to 106 stars) of various sizes

and in different environments, ranging from low density galactic outskirts to dense

galactic centers (see Portegies Zwart et al. (2010) [156] for a review). These clusters

are observed to disrupt the dense molecular clouds in which they are born (e.g., see

Leisawitz et al. (1989) [114], Zhang et al. (2001) [233]). This stellar feedback (due

to strong radiation, stellar winds and supernovae) disperses cold gas and suppresses

further star formation. Because of the stellar initial mass function (IMF) and the main
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sequence lifetimes, the energy input is roughly constant per unit time over the life

time of stars more massive than 8 M⊙ (∼ 50 Myr; McCray & Kafatos (1987) [130]).

Therefore, stellar feedback is sometimes modeled as a constant luminosity driven

blast wave (Gerritsen (1997) [63], MacLow et al. (1989) [122], Weaver et al. (1977)

[224]). A superbubble (SB) expands faster than an isolated supernova remnant (SNR)

because of continuous energy injection, and suffers smaller cooling losses because most

supernovae (SNe) go off in a low density bubble.

The hot bubble breaks out through the gas disk if the outer shock driven by

overlapping SNe crosses the scale height with a sufficient Mach number within the

starburst lifetime (e.g., see section 2 of Roy et al. (2013) [164]). After breakout

the hot, metal-rich stellar ejecta is spread out into the galactic halo via the Rayleigh-

Taylor instability. Spreading of metals over large scales is required to explain the high

metallicity observed in the intergalactic medium (IGM), far away from the stellar disk

(Tumlinson et al. (2011) [212]). While this fact, that the formation of low density

bubble is important so that the explosions can occur in a medium where radiative

cooling is negligible in order to create the SNe feedback to be effective (as discussed in

chapter 1), has been appreciated (e.g., Gnedin (1998) [65], Joung & Mac Low (2006)

[95]), we present quantitative conditions for the formation of a strong shock and a

hot, dilute bubble for different thermal feedback prescriptions.

The continuous injection of mass and energy by SNe deep within the hot SB is

expected to launch a steady wind (as first calculated by Chevalier & Clegg (1985)

[25]; hereafter CC85). CC85 obtained analytic solutions for a superwind assuming a

constant thermal energy and mass input rate with an injection radius. By modeling

realistic SNe as fast moving ejecta within SBs we show that a steady CC85 wind is

obtained only if a large number of SNe (∼> 104) go off within the star cluster. For a

smaller number of SNe, an individual SN’s kinetic energy is not thermalized within a

small injection radius and there is an unsteady outflow. This should have implications

for works that simply assume a CC85 wind within the SB.
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This chapter presents the analytic results that can be readily used for the numeri-

cal implementation of thermal feedback using various recipes. These analytic criteria

are verified and extended using idealized numerical simulations. The fundamental

difference between isolated supernovae and superbubbles – that the former is inef-

fective on galactic scales – is highlighted. By modeling realistic SNe as fast moving

ejecta within SBs we also show that a steady CC85 wind is obtained only if a large

number of SNe (∼> 104) go off within the star cluster. For a smaller number of SNe, an

individual SN’s kinetic energy is not thermalized within a small injection radius and

there is an unsteady outflow. This should have implications for works that simply

assume a CC85 wind within the SB.

This chapter is organized as follows. In section 2.2 we describe various ways of

implementing thermal feedback due to SNe. Section 2.3 describes the numerical setup

used to study SNe and SBs. In section 2.4 we present different analytic criteria for

feedback to work with a range of feedback prescriptions. We also derive the conditions

for obtaining a thermalized CC85 wind within a SB. In section 4.4 we present 1-D

numerical simulations of different feedback recipes with and without cooling, and

compare the results with our analytic estimates. We also briefly discuss the effects of

magnetic fields and thermal conduction.

2.2 ISM & SN feedback prescriptions

Although ISM is multiphase and extremely complex, for simplicity we consider a

uniform, static model with a given density (typically n = 1 cm−3) and temperature

(104 K corresponding to the warm ISM). We do not consider stratification because the

disk scale height is typically a few 100 pc and the fizzling of SN feedback is essentially a

small scale problem. Moreover, the scales of interest (100s of pc; few Myr) are much

bigger than the cluster size and the local ISM/circumstellar inhomogeneities. For

simplicity we also assume that all SNe explode at r = 0. This is a good approximation
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because the size of a typical (super) star-cluster is smaller than the bubble size at the

beginning of the radiative phase.

The SN prescriptions that we consider in our analytic estimates and numerical

simulations cover the full range of methods used in the literature. These are:

1. Kinetic Explosion Models (KE): In these models the SN energy (Eej, chosen to be

1 Bethe ≡ 1051 erg) is given to a specified ejecta mass (Mej, chosen to be 1 M⊙)

distributed uniformly with an ejecta density ρej = 3Mej/[4πr
3
ej] within an ejecta

radius rej. The ejecta velocity is homologous with vej(r) = v0(r/rej) within the

ejecta; the normalization is such that the kinetic energy of the ejecta is Eej; i.e.,

v0 = (10Eej/3Mej)
1/2. The ejecta temperature is taken to be small (Tej = 104

K). After every (fixed) SN injection time tSN the innermost rej of the volume is

overwritten by the ejecta density and velocity, thereby pumping SN energy into

the ISM. After the reverse shock propagates toward the bubble center, once the

swept-up mass is comparable to the ejecta mass, the bubble density structure

is fairly insensitive to the ejecta density distribution (Truelove & McKee (1999)

[209]). This model most closely resembles a physical SNR in early stages at

small (≪ 1 pc) scales when the SN ‘piston’ at large speed rams into the ISM.

This prescription is not widely used in galaxy formation simulations (there are

some exceptions, e.g., Tang & Wang (2005) [199]).

2. Thermal Explosion Models (TE): In these models the energy is deposited within

the ejecta radius in form of thermal energy at an interval of tSN. There are two

variants of this model. In one class, the mass and internal energy densities are

overwritten within the ejecta radius (rej) such that the uniformly distributed

ejecta thermal energy is Eej (1 Bethe) and the uniformly distributed ejecta mass

is Mej (1M⊙). We abbreviate these models as TEo and they behave like KE

models. The second class of models is where we add (in contrast to overwrite)

the ejecta mass (with uniform density) to the preexisting mass and the ejecta

thermal energy (distributed uniformly) to the preexisting internal energy within
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rej. We refer to these models as TEa. There are significant differences between

the TEa and TEo/KE models in presence of cooling because TEa ejecta can

become radiative if thermal energy is added to a dense ISM. Most models in the

literature are analogous to TEa models with some variations (e.g., Katz (1992)

[100], Joung & Mac Low (2006) [95], Creasey, Theuns, & Bower (2013) [37];

some works such as Stinson et al. (2006) [188] , Thacker & Couchman (2000)

[203], Agertz, Teyssier, & Moore (2011) [2] unphysically turn off cooling for

some time for SN feedback to have an impact). Sometimes all the SN energy is

deposited in a single grid cell (e.g., Tasker & Bryan (2006) [200]) or in a single

particle (e.g., SN particle method in section 3.2.4 of Gerritsen (1997) [63]).

3. Luminosity Driven Models (LD): As discussed earlier, for typical IMFs, the

mechanical energy input due to OB stars per unit time is roughly constant. This

motivates a model in which internal energy and mass within an injection radius

(denoted by rej) increase at a constant rate corresponding to internal energy

Eej and mass Mej for each SN. Some of the works that use this prescription

are Chevalier & Clegg (1985) [25], Cooper et al. (2008) [32], MacLow et al.

(1989) [122], Mac Low & Ferrara (1999) [123], Palous̃ et al. (2013) [153], Recchi

& Hensler (2013) [160], Roy et al. (2013) [164], Strickland & Stevens (2000)

[190], Suchkov et al. (1994) [193].

All our models are identified with the number of OB stars NOB (which equals the

number of SNe in the star cluster) or luminosity Lej = Eej/tSN = NOBEej/tOB, where

tOB is the lifetime of the OB association (taken to be 30 Myr) and tSN = tOB/NOB

is the time interval between SNe. We note that the overwrite models do not strictly

conserve mass and energy. While the supernova energy is much larger than the

overwritten thermal energy, one needs to choose a small enough ejecta radius such

that the overwritten mass is subdominant relative to the ejecta mass. The explosion

models are substantially slower compared to the smooth luminosity driven models
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because of very high temperatures created due to sudden energy injection in the

former.

2.3 Numerical setup

In this section we describe the numerical setup corresponding to our one-dimensional

simulations discussed in section 4.4. Our numerical simulations use the ISM setup

and the various feedback prescriptions described in section 2.2. The ISM density and

temperature are chosen to 1 cm−3 and 104 K, respectively, unless specified otherwise.

The mean mass per particle is µ = 0.62 and per electron is µe = 1.17. The initial

density and temperature are uniform, and the velocity is zero.

We use the grid-based ZEUS-MP code in spherical, one-dimensional geometry (Hayes

et al. (2006) [73]) to solve the standard Euler equations with source terms mimick-

ing SN energy/momentum/mass injection for the chosen feedback model, and a sink

term in the internal energy equation representing radiative cooling. Our equations

are similar but not identical to Eqs. 20-22 in Roy et al. (2013) [164].1 We note that

the ZEUS code does not conserve energy to the machine precision. However, we have

confirmed that energy conservation holds to better than 90% in most of our runs. In

fact, the Sedov-Taylor blast wave in 1-D spherical coordinates is one of the standard

test problems presented in Hayes et al. (2006) [73]; the numerical results match an-

alytic solutions very closely. While most of our runs are hydro, in section 2.5.4 we

briefly discuss runs with simple models of magnetic fields and thermal conduction;

various parameters for these runs are discussed there.

The radial velocity is set to zero at the inner radial boundary and other fluid

variables are copied in the ghost cells. Outflow boundary conditions are applied at

the outer radial boundary. Note that the outer boundary is out of causal contact.

1The difference from Roy et al. (2013) [164] is that the mass and energy source terms are not

uniform in time. Moreover, different feedback heating prescriptions use different source terms; e.g.,

KE models use a momentum source term rather than a source term in the internal energy equation.
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Since the setup produces strong shocks, we use the standard ZEUS artificial viscosity

to prevent unphysical oscillations at shocks (Stone & Norman (1992) [189]). The CFL

number of 0.2 is found to be more robust compared to the standard value of 0.5, and

is used in all the simulations.

The cooling function that we use is the collisional-ionization-equilibrium based

solar metallicity table of Sutherland & Dopita (1993) [197], with the cooling function

set to zero below 104 K. The cooling step is implemented via operator splitting using

the semi-implicit method of Sharma, Parrish, & Quataert (2010) [176]. Cooling is

subcycled and the number of subcycles is limited to be less than 100.

Most of our runs use a 1024 resolution grid extending from 1 pc to 2 kpc. A

logarithmically spaced grid is used to better resolve smaller radii; there are equal

number of grid points covering 1 pc to
√
2000 pc and

√
2000 pc to 2 kpc. Some runs

with stronger SN feedback use a larger spatial extent (c.f. NOB = 106 runs in Fig.

2.3), and some uniform very high resolution runs (16384 grid points; c.f. Fig. 2.5) use

a smaller extent (1 to 200 pc). All our simulations (except the very high resolution

ones that are run for 3 Myr) are run for 30 Myr, typical age of a young star cluster.

2.4 Analytic criteria

In this section we present the analytic criteria that need to be satisfied for various

feedback models discussed in section 2.2 to work. These analytic estimates help

us understand the results of numerical simulations discussed in section 4.4. While

radiative cooling is the most discussed phenomenon in the context of fizzling SN

feedback, the feedback prescription should satisfy additional constraints for the energy

input to couple realistically with the ISM. A recurring concept in what follows is that

of thermalization; i.e., in order to be effective the input energy should have time to

couple to the ISM before it is radiated or is overwritten. In section 2.4.3 we show

that a steady superwind within a superbubble, as envisaged by Chevalier & Clegg
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(1985) [25], occurs only if the number of SNe is sufficiently large.

In the following sections we derive upper limits on the ejecta radius within which

the feedback energy must be deposited for it to be effective. We can easily convert this

radius limit into a critical mass resolution needed in smooth-particle-hydrodynamics

(SPH) simulations; namely, nnbrmcrit ≈ (4π/3)ρr3crit, where ρ is the ISM density,

nnbr is the number of neighbors used in the SPH smoothing kernel and mcrit is the

maximum SPH gas particle mass required for feedback to work.

2.4.1 Energy coupling without cooling

Ejecta radius constraint for overwrite models

In models where energy within the ejecta radius is overwritten (KE, TEo) the ejecta

radius should be smaller than a critical radius (rej ∼< rcrit) for the input energy to get

coupled to the ISM. The critical radius equals the Sedov-Taylor shock radius at tSN,
2

the time lag between SNe,

rcrit ≡
(

Eejt
2
SN

ρ

)1/5

≈ 50 pc n−1/5E
1/5
ej,51t

2/5
SN,0.3, (2.1)

where ρ (n) is the ISM (number) density (assuming µ = 0.62), Eej,51 is the ejecta

energy in units of 1051 erg, and tSN,0.3 is the time between consecutive SNe in units of

0.3 Myr. If the ejecta radius is larger than this value the ejecta energy is overwritten

before it can push the outer shock. Thus, in such a case, the input SN energy is

overwritten without much affecting the ISM.

2We use the Sedov-Taylor expression for the bubble radius in Eq. 2.1 because the shock quickly

transitions from a free-expanding to a Sedov-Taylor state; the Sedov-Taylor radius (when the swept

up ISM mass equals the ejecta mass) is rST ≡ (3Mej/4πρ)
1/3 ≈ 2.5 pc M

1/3
ej,⊙n

−1/3, much smaller

than the estimate in Eq. 2.1, where Mej,⊙ is the ejecta mass in solar units.
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Sonic constraint

For thermal SN feedback to launch a strong shock the energy should be deposited

over a small enough volume, such that the post-shock pressure is much larger than

the ISM pressure. This is equivalent to demanding the outer shock velocity to be

much larger than the sound speed in the ISM. The shock velocity (vOS ≡ drOS/dt;

rOS is the outer shock radius), expressed in terms of the shock radius in Sedov-Taylor

stage, is vOS ≈ 0.4E
1/2
ej ρ−1/2r

−3/2
OS for an isolated SN and vOS ≈ 0.6L

1/3
ej ρ−1/3r

−2/3
OS for

a luminosity driven SB (Weaver et al. (1977) [224]). The condition for a strong shock

for an isolated SN is (vOS ∼< aT ; aT is the ISM isothermal sound speed)

rej ∼< 174 pc E
1/3
ej,51n

−1/3T
−1/3
4 (2.2)

and for a SB is (see Eq. 3 in Silich et al. (2009) [181])

rej ∼< 1.5 kpc L
1/2
ej,38n

−1/2T
−3/4
4 , (2.3)

where Lej,38 is the ejecta luminosity (Lej = Eej/tSN for explosion models) in units of

1038 erg s−1 (this corresponds to NOB = 100 over tOB = 30 Myr) and T4 is the ISM

temperature in units of 104 K.

The sonic constraint (vOS ∼< aT ) is typically less restrictive than the compactness

requirements due to cooling in a dense ISM (see next section). Tang & Wang (2005)

[199], who considered supernova feedback in the hot ISM (∼ 107 K) of galaxy clusters

and elliptical galaxies, found that the shock can quickly (when outer radius is only

≈ 20 pc; see Eq. 2.2) decelerate to attain the sound speed in the hot ISM. After this

the outer shock propagates as a sound wave. While the sound wave can spread the

SN energy over a larger radius (∝ t for a sound wave, unlike a strong blast wave in

which rOS ∝ t2/5), energy dissipation is not as efficient as in shocks.
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2.4.2 Energy coupling with cooling

Luminosity driven model

In luminosity driven models (LD), SN feedback does not fizzle out (in fact, the shock

can get started) only if the cooling rate is smaller than the energy deposition rate,

i.e., 3Lej/4πr
3
ej ∼> n2Λ (Λ[T ] is the cooling function), or

rej ∼< 20 pc L
1/3
ej,38n

−2/3Λ
−1/3
−22 , (2.4)

where Λ−22 is the cooling function in units of 10−22 erg cm3 s−1.

Thermal explosion addition model

The above criterion (Eq. 2.4) for the luminosity driven models is quite different from

the criterion that we now derive for the widely used thermal explosion models with

energy and mass addition (TEa model in section 2.2). Since energy is added to the

(possibly dense) pre-existing medium, cooling in this model can be substantial. In

contrast, since the ejecta density is low, cooling losses are smaller in the overwriting

models (KE, TEo). For TEa models to launch a shock, radiative losses over the

timescale in which the shock from a point explosion reaches the ejecta radius,

tej = E
−1/2
ej r

5/2
ej ρ1/2, (2.5)

should be smaller than the energy deposited (here ρ is the density of the medium in

which energy is injected, not necessarily the ISM density); i.e.,

n2Λtej ∼< 3Eej/4πr
3
ej. (2.6)

Plugging in the expression for tej, we get

rej ∼< 31 pc E
3/11
ej,51Λ

−2/11
−22 n−5/11. (2.7)

This condition is much more restrictive than the one obtained by replacing tej in Eq.

2.6 by the CFL stability timestep. Moreover, this is the appropriate timescale to use
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because the relevant timescale for the injected energy to couple to the ISM is the

thermalization time (tej).

Creasey et al. (2011) [36] and Dalla Vecchia & Schaye (2012) [39] have used

similar arguments and derived results not too different from ours for the thermal

explosion addition models. A slight difference from our work is that they consider

energy deposition over a resolution element (a necessity because of a larger range of

scales in cosmological galaxy simulations), but we allow for energy deposition over

a resolved region. Creasey et al. (2011) [36] have expressed their resolution limit in

terms of the cooling rate per unit mass and Dalla Vecchia & Schaye (2012) [39] in

terms of the post-shock temperature; we use the cooling function (Λ) to express the

critical radius within which the energy needs to be deposited.

Overwrite models

In models where the energy and mass densities are overwritten within rej, the condi-

tion for overcoming cooling losses and launching a shock is

n2
ejΛtej ∼<

3Eej

4πr3ej
,

where ejecta number density nej = ρej/µmp and ρej = 3Mej/4πr
3
ej; note that this

expression is different from Eq. 2.6 in that the ejecta density is used instead of the

ISM density. The overwrite models (KE, TEo) behave quite differently from addition

(TEa, LD) models because a larger ejecta radius means a smaller density ejecta to

which energy is added. Replacing the ISM density by the ejecta density in Eq. 2.5

gives tej = E
−1/2
ej r

5/2
ej ρ

1/2
ej , and the condition for energy thermalization is

rej ∼> 0.003 pc M
5/4
ej,⊙Λ

1/2
−22E

−3/4
ej,51 . (2.8)

In order to avoid radiative losses the ejecta radius should be larger than above. This

early cooling of the mass loaded SN ejecta, responsible for creating cold filaments in

young SNe (e.g., Chevalier & Blondin (1995) [26]), is physical (unlike fizzling out of
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the energy addition models) and should reduce the energy available to drive the SN.

All our simulations use an ejecta radius much greater than this limit.

2.4.3 Conditions for CC85 wind

Chevalier & Clegg (1985) [25] (hereafter CC85) found analytic solutions for a lumi-

nosity driven wind with a fixed injection radius. Luminosity injection is expected to

drive both an outer shock bounding the bubble and a wind that shocks within the

hot bubble at the termination shock (see Fig. 1 in Weaver et al. (1977) [224]; see also

LD run in Fig. 2.3). In this section we show that for a small number of SNe (c.f.

Eq. 2.11) the SN ejecta does not thermalize within the termination shock. In that

case, the density inside the bubble is much lower than the CC85 wind because most

SNe occur in the dilute bubble created by earlier SNe and the thermalization radius

is comparable to the outer shock radius. This has important implications on cooling

and luminosity of SN ejecta.

Following Weaver et al. (1977) [224], the outer shock radius of a luminosity driven

bubble is given by rOS ≈ (Lejt
3/ρ)1/5, velocity by vOS ≈ 0.6rOS/t ∝ t−2/5, and the

post-shock pressure by pOS ≈ 0.75ρv2OS ≈ 0.27L
2/5
ej ρ3/5t−4/5. Assuming a steady

superwind, the ram pressure at the termination shock (rTS; the wind is assumed to

be supersonic at this radius) is ρTSv
2
TS = ṀejvTS/(4πr

2
TS), where vTS = (2Lej/Ṁej)

1/2

is the wind velocity, ρTS is the density upstream of the termination shock, and Ṁej is

the mass injection rate. The wind termination shock (rTS) is located where the wind

ram pressure balances the bubble pressure; i.e.,

ṀejvTS

4πr2TS

≈ 0.75ρv2OS.

Using vOS ≈ 0.6L
1/3
ej ρ−1/3r

−2/3
OS and Ṁej = 2Lej/v

2
TS gives,

rTS

rOS
≈

(

vOS

vTS

)1/2

≈ 0.08E
−1/12
ej,51 M

1/4
ej,⊙n

−1/6r
−1/3
OS,2 t

−1/6
SN,0.3, (2.9)

where rOS,2 is the outer shock radius in units of 100 pc, tSN,0.3 is the time between SNe

normalized to 0.3 Myr (corresponding to NOB = 100); we have used Lej = Eej/tSN
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and Ṁej = Mej/tSN. The ratio rTS/rOS depends very weakly on time (∝ t−1/5); this

comes from the time dependence of rOS in Eq. 2.9. The reverse shock for an isolated

SN very quickly (at the beginning of Sedov-Taylor stage) collapses to a point but the

termination shock for a SB is present at all times. Thus the non-radiative termination

shock can power a SB long after the outer shock becomes radiative, unlike a SN which

dies off shortly after the outer shock becomes radiative (see section 2.5.4 for our results

from simulations).

The condition for the existence of a smooth CC85 wind is that the ejecta thermal-

ization radius should be smaller than the termination shock radius. The superwind

is mass loaded by previous SNe (the bubble density in the absence of mass loading is

quite small because most of the mass is swept up in the outer shell). The swept up

mass till radius r in a CC85 wind is

Msw =

∫ r

0

4πr′2ρw(r
′)dr′ ≈ Ṁejr

vTS
=

Mejr

tSNvTS
,

where ρw(r
′) is the wind density profile; here we have assumed that the swept up

mass is dominated by the supersonic portion of the wind. Now the thermalization

radius (the radius within which the deposited energy is thermalized and which should

correspond to CC85’s injection radius) of the ejecta is where the swept up mass

roughly equals the ejecta mass, or

rth ≈ vTStSN ≈ 3 kpc E
1/2
ej,51M

−1/2
ej,⊙ tSN,0.3. (2.10)

Since the thermalization radius is quite large, a thermalized CC85 solution will only

occur for large clusters (with shorter tSN, the time lag between SNe); for modest star

clusters the ejecta will only thermalize beyond the termination shock. Of course, the

thermalization radius cannot be smaller than the size of the star cluster launching

the energetic ejecta. Using Eq. 2.9 and rOS ≈ (Lejt
3/ρ)1/5, the termination shock

radius can be expressed as

rTS ≈ 5 pc E
1/20
ej,51M

1/4
ej,⊙n

−3/10t
−3/10
SN,0.3t

2/5
0.3 ,
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where t0.3 is time in units of 0.3 Myr. A CC85 solution will appear only if this

termination shock radius is larger than the thermalization radius (Eq. 2.10); i.e., if

tSN,0.3 ∼< 0.007E
−9/26
ej,51 t

4/13
0.3 n−3/13M

15/26
ej,⊙ . (2.11)

This means that NOB ∼> 3500 (recall that tSN = tOB/NOB, where tOB = 30 Myr is

the cluster lifetime and NOB is the number of SNe) is required for a CC85 wind to

appear by 30 Myr. Thus, a thermally driven CC85 wind occurs only for a sufficiently

big starburst, with a large mass loading, and at late times.

2.5 Simulation Results

In this section we present the results from our one-dimensional numerical simulations.

We vary the ISM density and SN injection parameters to assess when SN energy can

significantly affect the ISM, both with and without cooling. We also numerically verify

the various analytic constraints presented in section 2.4. We discuss the structure of

a radiative SB and compare the energetics of isolated SNe and SBs. While isolated

SNe lose most of their mechanical energy by a few Myr, SBs can retain up to ∼ 40%

of the input energy long after the outer shock becomes radiative. Thus, SBs, and

not isolated SNe, are the viable energy sources for global, galactic-scale feedback. In

section 2.5.4 we briefly discuss the impact of magnetic fields and thermal conduction

on SBs.

2.5.1 Realistic SN shock (KE models)

The SN shock is launched once a protoneutron star forms at the center of a massive

evolved star (with size ∼ 1014 cm). In the ejecta dominated state (when the swept

up ISM mass is less than the ejecta mass) the cold ejecta is dominated by kinetic

energy (e.g., Truelove & McKee (1999) [209]). In our ‘realistic’ simulations (KE

models; see section 2) we choose the ejecta to have a constant density and a velocity
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Figure 2.1: Number density as a function of radius (scaled to the self-similar scaling) for different

parameters of realistic KE runs at 10 Myr. The outer shock is closer in for models using a larger

ejecta radius because energy is overwritten before it can couple to the ISM.

proportional to the radius (homologous expansion; this is a similarity solution for

the freely expanding ejecta) within the ejecta. The SN shock develops a reverse

shock after sweeping up its own mass in the ISM; this slows down the ejecta and

communicates the presence of the ISM to the supersonic ejecta. In this section we

compare the evolution of adiabatic (cooling is turned off) KE models with different

parameters, highlighting the importance of having a small ejecta radius (rej) even in

absence of cooling for overwrite (KE, TEo) models. We have verified that kinetic

explosion (KE) and thermal explosion overwrite (TEo) models behave in a similar

fashion.

Figure 2.1 shows the density profile as a function of radius (normalized to the self

similar scaling, rOS ≈ [Lejt
3/ρ]1/5, where Lej = Eej/tSN = EejNOB/tOB) for different

realistic runs (results are similar for TEo models) with NOB = 100, 105 at 10 Myr.

The runs with a large ejecta radius (100 pc) give a smaller outer shock radius because
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most of the energy is overwritten without being thermalized (see section 2.4.1 for a

discussion). The problem is worse for larger NOB (shorter tSN), as expected from Eq.

2.1. The normalized location of the outer shock falls almost on top of each other for

a small ejecta radius (rej = 2 pc). As expected, the shock is weaker, broader, and

with a modest density jump for a smaller number of SNe.

2.5.2 Comparison of adiabatic models

While the KE model is most realistic, we expect other models in section 2.2 to give

a similar location for the outer shock after the swept-up ISM mass equals the ejecta

mass and the shock is in the Sedov-Taylor regime. The structure within the bubble

depends on SN prescription, as we show in section 2.5.3.

Figure 2.2 shows the location of the outer shock (measured by its peak density) as

a function of time for various models (KE, LD, TEa) and SN parameters in absence

of cooling. The solid line at the bottom shows the transition from a single blast

wave (outer shock radius, rOS ∝ t2/5) to a continuously driven bubble (rOS ∝ t3/5;

Weaver et al. (1977) [224]) for NOB = 100 run. The runs with more SNe show such

a transition very early on. The dot-dashed line shows the outer shock radius for

the KE run using a large ejecta radius violating the criterion in Eq. 2.1; the outer

shock radius is much smaller than expected because energy is overwritten before it

energizes the hot bubble (see section 2.4.1). The luminosity driven (LD) and kinetic

explosion (KE) models agree only if the ejecta radius satisfies Eq. 2.1 for KE models

(we have verified that this constraint also applies to the thermal explosion overwrite

[TEo] models). TEa (thermal explosion addition) runs and LD runs fall on top of

each other for both choices of rej (2, 100 pc). The outer shock radii for the runs

with rej = 100 pc increase only after a thermalization time (Eq. 2.5; although in this

case ρ is not the ISM density but the much lower density of the bubble within which

energy is added).
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Figure 2.2: The outer shock radius as a function of time for various runs using kinetic explosion

(KE), luminosity driven (LD) and thermal explosion addition (TEa) models. The KE models give

correct results only if the ejecta radius (rej) is sufficiently small; otherwise energy is overwritten before

getting coupled to the ISM. There is no such problem for energy addition and luminosity driven

models. At early times the outer shock radius scales with the Sedov-Taylor scaling (rOS ∝ t2/5) and

later on, after many SNe go off, it steepens (rOS ∝ t3/5).
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Figure 2.3: Density profile as a function of normalized radius for luminosity driven (LD), kinetic

explosion (KE), and thermal explosion addition (TEa) models. The standard CC85 wind within the

bubble appears for the LD model, and for KE and TEa models with NOB = 106, but not for KE/TEa

models with NOB = 100; the smooth CC85 wind is identified by the density profile varying ∝ r−2

between the ejecta radius and the termination shock (various regions have been marked for the LD

run). The CC85 wind density using NOB = 106 is slightly smaller for the KE model compared to

the TEa model because density is overwritten (and hence mass is lost) in KE models.

2.5.3 CC85 wind within the bubble

In this section we show that a simple steady wind, as predicted by CC85, exists within

the bubble only if the number of SNe is sufficiently large (see section 2.4.3). Figure

2.3 shows the density profile as a function of the scaled radius for various models.

The solid line shows density for a luminosity driven (LD) model with NOB = 100 and

rej = 2 pc; various regions for the smooth CC85 wind within the bubble are marked.

The superwind has a structure identical to the CC85 wind; the sonic point is just

beyond the energy injection radius (2 pc). The wind shocks at the termination shock
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(rTS) where the wind ram pressure balances the bubble pressure. The ratio of the

termination shock and the outer shock (rOS) is ≈ 0.07, in good agreement with Eq.

2.9. For comparison, Figure 2.3 also shows the density profiles for the kinetic explosion

(KE) and thermal explosion addition (TEa) models with the same parameters. While

the outer shock radius agree for these runs, the density profiles within the bubble are

quite different. The most blatant difference, for runs with NOB = 100, is the absence

of a CC85 wind in KE and TEa models. In accordance with the discussion in section

2.4.3, SN shocks do not thermalize within the termination shock for a small number

of SNe (see Eqs. 2.10 & 2.11); therefore a smooth CC85 wind is not expected in any

model with small NOB except LD.

Only for a large enough NOB and late enough times does a CC85 wind start to

appear within the hot bubble. Figure 2.3 includes the density profiles for kinetic

explosion (KE) and TEa models using NOB = 106 (the inner [outer] radius of the

computational domain for these runs is 0.5 pc [5 kpc]; rej = 1 pc is chosen to satisfy

the constraint in Eq. 2.1). Clearly, in these cases we see the appearance of the CC85

wind solution within the termination shock because the injected energy is thermalized.

For the KE run with NOB = 106 one can still see the internal shocks due to isolated

SNe interacting with the superwind. The density profile for the KE model using

NOB = 105 is shown by the dotted line in Figure 2.1. In agreement with Eq. 2.9,

the ratio rTS/rOS increases with an increasing NOB. For NOB = 105 thermalization

is less complete as compared to NOB = 106, but happens within the termination

shock. In comparison, a clear termination shock is absent for NOB = 100 because the

thermalization radius is larger than the termination shock radius (see Eq. 2.11).

2.5.4 Effects of radiative cooling

In this section we study the effects of radiative cooling on SNe and SBs. We focus

on a few aspects: the fizzling out of thermal feedback in some models in which

energy is not injected over a sufficiently small scale; comparison of cooling losses and
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Figure 2.4: Density as a function of radius for different runs at 3 Myr to show that energy addition

totally fizzles out for a high ISM density. While TEa and LD models do not show the formation of

a hot, dilute bubble for ISM density of 20 cm−3, KE model indeed shows a bubble and a forward

shock. Also shown is the density profile for TEa model with a lower density (5 cm−3) ISM; at later

times it shows a bubble which pushes the shell outwards. The outer shock radius is larger for a lower

density ISM because rOS ∝ ρ−1/5.

mechanical energy retained by radiative SNRs and SBs; the influence of magnetic

fields and thermal conduction.

Unphysical cooling losses with thermal energy addition

As we mentioned in section 2.4.2, some models (TEa, LD) in which we add SN thermal

energy in a dense ISM, over a large radius, can suffer unphysical catastrophic radiative

cooling. In such cases a hot bubble is not even created and SN feedback has no effect,

whatsoever. Early SN feedback simulations suffered from this problem because of low

resolution.

Figure 2.4 shows the density profiles at 3 Myr for three of our energy injection

models (KE, LD, TEa) with NOB = 100 and the ISM density of 20 cm−3. The ejecta
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radius is chosen to be large such that it violates conditions in Eqs. 2.4 & 2.7. The fig-

ure shows a comparison of the luminosity driven (LD) and thermal explosion addition

(TEa) models that fizzle out, and kinetic explosion (KE) model which shows a hot,

dilute bubble. Thus, our results are in agreement with the analytical considerations

of section 2.4.2. The outer shock location for the KE model roughly agrees with the

self similar scaling of Weaver et al. (1977) [224] if the luminosity is reduced by a factor

≈ 0.35; this is comparable to the fraction of mechanical energy retained by SBs after

the outer shock becomes radiative (see section 2.5.4 and the right panel of Fig. 2.8).

For most runs in Figure 2.4 we have chosen a rather high density (n = 20 cm−3)

compared to the critical values in Eqs. 2.4 & 2.7. For lower densities (e.g., 5 cm−3 for

TEa model in Fig. 2.4) we find that the energy does not couple at early times. Energy

injection excites large amplitude sound waves and associated density perturbations,

such that at late times the lowest density regions no longer violate Eqs. 2.4 & 2.7.

After this, a hot bubble starts to grow because of energy injection in a dilute medium

(see dotted line in Fig. 2.4), and eventually the outer shock radius starts to agree

with analytic estimates.

SB evolution with cooling

This and later sections, which study the influence of radiative cooling on SBs and

SNRs, use the realistic kinetic explosion (KE) model for supernova energy injection

with ejecta radius rej = 2 pc. However, we have verified that other models discussed

in section 2.2 give similar results, as long as the conditions in section 2.4 are satisfied.

Spherical adiabatic blast waves, both SNRs and SBs, have shells with finite thick-

ness. An estimate for the shell thickness is obtained by assuming that all the swept-up

ISM mass lies in a shell and that the post shock density is 4 times the ISM density

for a strong shock; this gives ∆r/rOS ≈ 1/12. Of course, the shock transition layer is

unresolved in simulations, and in reality is of order the mean free path. The structure

of an adiabatic blast waves is fairly simple. The density jump at the shock is 4 for
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a strong shock, and as the shock becomes weaker the density jump decreases and

the shell becomes broader. Eventually, the outer shock is so weak that it no longer

compresses gas irreversibly, but instead becomes a sound wave with compressions and

rarefactions (see Fig. 2 in Tang & Wang (2005) [199]).

Since the evolution of isolated SNRs with cooling has been thoroughly studied

in past (e.g., Thornton et al. (1998) [204]; hereafter T98), we only highlight the

differences between isolated SNRs and SBs. The fundamental difference between the

two is that SNRs suffer catastrophic losses just after they become radiative because,

unlike in SBs, there is no energy injection after this stage. In SBs, the cool (yet

dilute), fast SN ejecta periodically thermalizes within the bubble and powers it long

after the forward shock becomes radiative. This keeps the radiative forward shock

moving (like a pressure-driven snowplow), as long as SNe go off within the hot bubble.

The structure of a radiative shell is quite complex. The shell become radiative

when the cooling time of the post-shock gas is shorter than its expansion time (which

is of order the age of the blast wave). Moving inward from the upstream ISM, the outer

shock transition happens over a mean free path, which is followed by a thin radiative

relaxation layer of order the cooling length (see, for example, pp. 226-229 of Shu

[177] and the top-right panel of Fig. 2.5). The radiative relaxation layer is followed

by a dense shell, which is separated by a contact discontinuity from the dilute hot

bubble. In steady state, radiative cooling is concentrated at two unresolved boundary

layers, the outer radiative relaxation layer and the inner contact discontinuity. Here

the density is high and the temperature is conducive to radiative cooling.

Figure 2.5 shows the zoomed-in density and temperature structure of the radia-

tive shell for a SB (with NOB = 105; upper panels) and a SNR (NOB = 1; lower

panels) using high resolution (with 16384 grid-points) runs. It clearly shows an outer

radiative shock and an inner contact discontinuity. Within the contact discontinuity

of the SB (NOB = 105) is the shocked SN ejecta; Figure 2.3 shows the full struc-

ture of a superwind within the SB. Just when the outer shock becomes radiative the
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in on the outer shock as a function of radius for the high resolution (16384 grid points uniformly

spaced from 1 to 200 pc) runs. Top panel: NOB = 105 run; bottom panel: a single SNR (NOB = 1)

run. Left panels correspond to a time when the outer shocks just become radiative and the right

panels are for later times. Markers represent the grid centers. For a single SNR the temperature

in the dense shell is lower than the temperature floor (ISM temperature) because of weakening of

the shock and the resultant adiabatic losses. Different regions (unshocked ISM, radiative relaxation

layer, dense non-radiative shell, and shocked SN ejecta) are marked in the top-right panel.
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coolest/densest part is compressed by high pressure regions sandwiching it (left pan-

els of Fig. 2.5). After a sound crossing time the post-shock region is roughly isobaric

and in the pressure-driven snowplow phase (right panels of Fig. 2.5).

Unlike SBs, for isolated SNRs there is no energy injection at later times; the

pressure in the bubble falls precipitously after the outer shock becomes radiative at

≈0.05 Myr. By ∼ 0.5 Myr the bubble pressure becomes comparable to the ISM

pressure, the shell density falls and it becomes momentum conserving with a velocity

comparable to the sound speed in the ISM. At even later times (∼ few Myr) the hot

bubble just oscillates as a weak acoustic wave.

Figure 2.6 shows the distribution of radiative losses in the shell and in the bubble

(shell is defined as the outermost region where density is above 1.01 times the ISM

density; bubble comprises of all the grid points with radius smaller than the inner shell

radius) for a superbubble withNOB = 105; results from runs with and without thermal

conduction are shown. Here we only discuss the run without conduction; the run with

conduction is highlighted in section 2.5.4. Unlike Figure 2.5, here we use our standard

resolution runs (1024 grid points) because we are running for a much longer time.

Results from the higher resolution runs match our standard runs, highlighting the fact

that the volume integrated cooling is the same even if the radiative relaxation layer

and the contact discontinuity are unresolved. The time and volume integrated losses

(
∫ ∫

n2Λ4πr2drdt) in bubble and shell are sampled appropriately and differentiated

in time to obtain their respective cooling rates. As already discussed, cooling is

concentrated at the radiative relaxation layer, which is included in the shell, and

at the contact discontinuity, part of which is included in the bubble. Consistent

with our previous discussion, most radiative losses are concentrated in the shell.

Fractional radiative losses in the bubble (concentrated at the contact discontinuity)

are ∼ 10−4 − 0.3, which increase with time as the outer shock becomes weaker.
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( the run with thermal conduction is discussed in section 2.5.4). Most radiative energy losses happen

at the radiative relaxation layer ahead of the dense shell. At late times, as the outer shock weakens,

radiative losses in the bubble become more dominant. Bubble is comparatively more radiative (in

fact, bubble losses exceed shell losses after 5 Myr) with conduction because of mass loading of the

bubble by evaporation from the dense shell. Results from the high resolution run and the luminosity

driven (LD) model are similar. The minimum in fractional radiative losses corresponds to the time

when the outer shock becomes radiative.
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Scales in radiative shocks

The structure of a radiative shock is well known (see, e.g., pp. 226-229 in Shu [177]).

Applying mass and momentum conservation across the radiative relaxation layer in

the shock frame, and assuming the same temperature upstream/downstream of it

(see the top-right panel of Fig. 2.5 for different regions of the outer shock) gives

ρ3/ρ1 = (u1/u3) = (u1/aT )
2 (Eq. 16.36 in Shu [177]), where ρ3 (ρ1) is the density

downstream (upstream) of the radiative relaxation layer, u1 (u3) is the upstream

(downstream) velocity in the shock rest frame, and aT is the isothermal sound speed

of upstream ISM (at T = 104 K below which radiative cooling vanishes). Thus, we

expect larger density jump across stronger shocks (u1 ≫ aT ). This is evident from

the shell density for the two cases (NOB = 105, 1) in Figure 2.5.

The thickness of the cold, dense shell can be estimated by equating the swept-up

ISM mass with the mass in the constant density shell; ∆r/rOS ≈ (aT/u1)
2/3. This

thickness is quite small, with ∆r/rOS ≈ 0.003 for a 100 km s−1 shock. This estimate

agrees with our results in Figure 2.5, and as predicted, the shell is thicker for a smaller

NOB and becomes thicker with time as the shock becomes weaker.

The thickness of the radiative relaxation layer can also be estimated. The size

of the radiative relaxation layer is Lcool (Lcool is the distance behind the outer shock

after which the advection time becomes longer than the cooling time), such that

∫ Lcool

0

dx

u
=

∫ tcool

0

dt = tcool, (2.12)

where u(x) is the velocity in the relaxation layer in the shock rest frame. While

this equation can only be solved after numerically solving for the structure of the

relaxation layer, we can make an order of magnitude estimate. The integral on the

LHS of Eq. 2.12 can be estimated as Lcool/〈u〉, where 〈u〉 = aT /2 is the geometric

mean of the velocity at the front of the relaxation layer (u1/4 for a strong shock) and

just downstream of it (u3 = a2T /u1). Similarly, the cooling time tcool in Eq. 2.12 can

be estimated by using a geometric mean of densities across the relaxation layer; i.e.,
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tcool ≈ 1.5kT/(〈n〉Λ), where 〈n〉 = 2(u1/aT )n1 and we can use the peak of the cooling

function for T and Λ. Putting this all together gives,

Lcool ∼ aT

(

aT
u1

)

kT0

n1Λ0

, (2.13)

which is ∼ 10−4 pc for fiducial numbers, far from being resolved even in our high-

est resolution runs. While the transition layers (contact discontinuity and radiative

relaxation layer) where all our cooling is concentrated are unresolved, we find that

the volume integrated quantities such as radiative losses, kinetic/thermal energy in

shell/bubble are converged even at our modest (1024 grid points; results are similar

even for 256 grid points) resolution.

Energetics of radiative SBs & isolated SNRs

In this section we focus on the energetics of SB shell/bubble and compare it with the

results from isolated SNRs. We define the shell to be the outermost region where the

density is larger than 1.01 times the ISM density. All gas at radii smaller than the

shell inner radius is included in the bubble (this definition is convenient but not very

precise as it includes small contribution from the unshocked SN ejecta). Figure 2.7

shows a comparison of kinetic and thermal energies in bubble and shell as a function

of time for a SB driven by 105 SNe. The bubble kinetic energy is not included because

it is much smaller. Also included is a comparison of the same quantities for the same

frequency of SNe that go off independently. The results for multiple isolated SNe

are obtained by combining the single SN run at different times. We simply use the

data at an interval of tSN (time between individual SNe) and add them to obtain

total kinetic/thermal energy in the shell and bubble at a given time. For instance,

the thermal energy in bubbles of all independent SNe at time 10tSN is obtained by

summing up the bubble thermal energy from a single SN (NOB = 1) run at t = 0,

tSN, 2tSN, ..., till 10tSN. This is equivalent to a cumulative sum over time for a single
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SN results are only shown till 2 Myr because SNRs become weak sound waves by then.
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SN run,

Ecum(t) =
i<N
∑

i=0

E(itSN) =
1

tSN

∫ t

0

E(t′)dt′, (2.14)

where E stands for, say, bubble thermal energy and N is the number of SNe till time

t.

Weaver et al. (1977) [224] have given analytic predictions for energy in different

components of SBs: the total energy of the shell is (6/11)Lejt (40% of this is kinetic

energy and 60% is thermal) and the thermal energy of the bubble is (5/11)Lejt (kinetic

energy of the bubble is negligible). These analytic predictions agree well with our

numerical results in the early adiabatic (non-radiative) SB phase in Figure 2.7.

Figure 2.7 shows that the SB shell loses most of its thermal energy catastrophically

at ≈ 0.25 Myr; the trough in shell thermal energy can be estimated by assuming that

all the swept-up mass till then cools to the stable temperature (104 K). The thermal

energy of the cold shell increases after that as it sweeps up mass from the ISM; this

is not a real increase in the thermal energy because the newly added material, which

was previously part of the ISM, simply becomes a part of the dense shell at the same

temperature. The bubble thermal energy and the shell kinetic energy show only a

slight decrease in slope after the radiative phase because they are energized by the

non-radiative termination (internal) shock(s) driven by SN ejecta. However, there are

some losses because of cooling at the contact discontinuity (see Figs. 2.5 & 2.6).

The shell kinetic energy and the bubble thermal energy in radiative SB simulations

at 20 Myr are roughly half of the values obtained in adiabatic simulations (which

agree with analytic predictions). Thus, the mechanical energy retained in the SB is

≈ 0.34Lejt. This should be contrasted with the energy evolution in isolated SNRs.

The isolated SNR becomes radiative much earlier (≈ 0.05 Myr; when the shell thermal

energy shown by dashed line flattens suddenly in Fig. 2.7) because of a weaker shock

compared to a SB. Note that the energies for isolated SNe in Figure 2.7 are cumulative

sums over time of a single SN run (see Eq. 2.14). The bubble thermal energy and shell

kinetic energy also drop for an individual SNR after it becomes radiative (albeit not
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catastrophically, unlike the shell thermal energy; see Fig. 3 in T98; this is the pressure-

driven snowplow stage) because of cooling at the contact discontinuity and adiabatic

losses, and because there is no new energy source (unlike the termination/internal

shocks in a SB). The total mechanical energy in the bubble and shell of a single SNR

at the beginning of the momentum conserving phase (1 Myr; when bubble pressure

is comparable to the ISM pressure) is 1050 erg, which is only 10% of the input energy

(see Fig. 3 in T98). This agrees with the energy fraction available as mechanical

energy of the SNR, as quoted by T98. After a few Myr the SNR should be considered

a non-energetic part of the ISM, as the thermal energy of the swept up ISM becomes

larger than the SNR’s mechanical energy, and the bubble becomes a weak acoustic

wave.

In order to compare isolated SNRs and superbubbles over the cluster lifetime we

must extrapolate our cumulative SN energies to 30 Myr. This is also the relevant

timescale for preventing large-scale galactic inflows from efficiently forming stars (the

free-fall timescale at ∼ 10 kpc for galactic halos is few 10s of Myr). For isolated SNRs

the shell kinetic energy + bubble thermal energy is ∼7% of the input energy by 2

Myr, and only 0.7% when extrapolated to 30 Myr. We should not extrapolate the

shell thermal energy because its rise at late times in Figure 2.7 is due to the sweeping

up of the ISM into the shell, without an increase in the temperature. To conclude,

isolated SN feedback is much weaker (by a factor ∼ 50) as compared to the feedback

due to SBs over the cluster lifetime.

The left panel of Figure 2.8 shows the total radiated energy over the whole com-

putational domain as a function of time for an isolated SNR (NOB = 1; solid line)

and for SBs (dashed lines). The results are qualitatively different for SBs (even for

NOB = 10) and isolated SNe. While an isolated SN radiates almost all of the input

energy (1051 erg) over a Myr timescale, SBs radiate a smaller fraction (0.6 − 0.8) of

their energy even till late times. The runs with smaller NOB and larger density be-

come radiative at an early time as the shock is weaker, but SB runs are qualitatively
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Figure 2.8: Radiative losses as a function of time for SBs and isolated SNe. Left panel shows

the total radiated energy as a function of time for an isolated SN run (solid line) and for SB runs

(dashed lines) with NOB = 10, 1000, 105; larger NOB leads to larger radiative losses because of

a higher density and temperature in the radiative relaxation layer (see Fig. 2.5). The right panel

shows fractional cooling losses (1 - [energy radiated]/[input energy]) as a function of time; the total

energy input at some time equals the number of SNe put in by that time multiplied by 1051 erg

(the spikes for NOB = 10, 103 in the right panel reflect the discreteness of SN energy input within

SBs). All SB runs, including those with conduction and with higher density, show that only a factor

of 0.6 − 0.8 is radiated by 20 Myr (and a factor of 0.2 − 0.4 is retained as mechanical energy). In

contrast, the isolated SN run (solid line) loses 80% of its energy by 3 Myr, after which it is no longer

over-pressured with respect to the ISM.
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similar. Unlike in isolated SNe, a significant fraction of the input energy in SBs is

retained in the bubble thermal energy and the shell kinetic energy (0.2 − 0.4; see

Fig. 2.7). The key reason for the difference between isolated SNe and SBs is that

in SBs the non-radiative termination/internal shocks keep the bubble overpressured

but isolated SNe, which do not have further energy input after the initial explosion,

simply fizzle out soon after they become radiative.

The right panel of Figure 2.8 shows the fraction of energy retained (1-the fraction

radiated) as a function of time for several runs. All SB runs, including a higher

density run (nISM = 10 cm−3) and the run with conduction (see section 2.5.4), show

the asymptotic fraction of energy retained to be ∼> 0.25. In contrast, an isolated SN

loses 90% of the input energy by few Myr (and almost all of it by 10 Myr; see also

Fig. 2.7). Radiative losses for an isolated SNR at late times (∼> few Myr) are more

than the energy input (1051 erg); these come at the expense of the thermal energy of

the swept-up ISM.

We can compare our results of coincident SNe with the case of multiple SNe

distributed over space in a random manner. The two cases presented in Figure 2.7

represent two extreme limits: spatially coincident SNe in a SB and totally independent

SNe. For spatially distributed SNe we expect results somewhere in between these two

extremes. Vasiliev et al. (2015) [215] compare the total explosion energy that remains

as the thermal energy of hot gas in the case of spatially distributed SN explosions.

They study the effects of coherent explosions, as defined in Roy et al. (2013) [164],

which implies that SNe overlap before they become radiative. If the shell radius of

a SNR when it becomes radiative is Ra and the corresponding time scale is ta, then

for a SN rate density of νSN, the coherency condition is that (4π/3)R3
a ta νSN > 1.

Vasiliev et al. (2015) [215] compare the cases in which explosions occur coherently

with those in which they do not. They find that a fraction ∼ 0.3 of the explosion

energy is retained in the gas with temperature T ≥ 3× 106 K if the explosions occur

coherently, and the fraction is 0.02− 0.2 if the explosions are incoherent. Our results
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Figure 2.9: The normalized density and temperature profiles to show the effects of magnetic fields

and thermal conduction on SB evolution with cooling. The left panel shows the profiles zoomed in

on the outer shock for MHD (initial β = 1) and hydro runs with 16384 grid points. Magnetic field

is enhanced in the shell and the shell is thicker. The right panel shows the profiles for radiative

hydro runs with and without thermal conduction (1024 grid points); unlike in the left panel, we

show the whole computational domain and the dense shell is barely visible. Thermal conduction

evaporates mass from the dense shell and spreads it into the bubble, thereby making it denser and

less hot compared to the hydro run. The temperature structure in the internal shocks (within the

superwind) is also smoothened out by thermal conduction.

here for SBs correspond to the coherent case, since tSN is always shorter than the

cooling time of the gas in the bubble. Therefore, our result of a fraction ∼ 0.35 being

retained as SB’s mechanical energy is consistent with Vasiliev et al. (2015) [215].

Effects of magnetic fields and thermal conduction

Since the ISM is magnetized, we try to assess the qualitative effects of magnetic fields

using an idealized high resolution (16384 grid points) MHD simulation. We assume

an azimuthal (φ) component of the magnetic field so that only magnetic pressure

forces (and no tension) are present. We choose a plasma β (ratio of gas pressure and

magnetic pressure) of unity in the ISM, and our SN ejecta is also magnetized with
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the same value of β. Since the ejecta is dominated by kinetic energy and the bubble

is expanding, we do not expect magnetic fields to affect the bubble and the ejecta

structure. However, the radiative shell is compressed because of cooling, and due to

flux-freezing magnetic pressure is expected to build up in the dense shell. This is

indeed what we find in our simulations with magnetic fields. The left panel of Figure

2.9 shows the zoomed-in density and temperature structure of the radiative outer

shock with and without magnetic fields. The key difference between the hydro and

MHD runs is that the dense shell in MHD has a lower density and is much broader.

This is because magnetic pressure prevents the collapse of the dense shell.3 The dense

shell (194 pc < r < 198 pc in the left panel of Fig. 2.9) is magnetically dominated

with plasma β ∼ 0.01. The MHD run has two contact discontinuities; one at the

boundary of the hot bubble (r ≈ 191.5 pc), and another at r ≈ 194 pc left (right) of

which the plasma is dominated by thermal (magnetic) pressure.

Another important physical effect, especially in the hot bubble is thermal conduc-

tion. We carry out a 1024 resolution hydro run with thermal conduction to study its

qualitative influence. However, it is difficult to determine the ISM conductivity in a

magnetized (presumably turbulent) plasma. Therefore, we use the Spitzer value with

a suppression factor of 0.2 (see Eq. 11 in Sharma, Parrish, & Quataert (2010) [176]).

Moreover, since the bubble can become very hot such that the diffusion approxi-

mation breaks down, we limit the conductivity to an estimate of the free streaming

diffusivity (chosen to be 2.6 vtr where vt is the local isothermal sound speed and r is

the radius). Thermal conduction is operator split, and implemented fully implicitly

through a tridiagonal solver using the code’s hydro time step.

Conduction is expected to evaporate matter from the dense shell and deposit it

into a conductive layer in the bubble; in steady state the rate of conductive transport

3The photon mean-free-path for a dense shell can become smaller than the shell thickness. When

this happens, the assumption of optically thin cooling breaks down, and the shell can become thicker

because of radiation pressure.
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of energy from bubble to the shell is balanced by the rate of heat advection from

shell to the bubble (Weaver et al. (1977) [224]). The outer and termination shock

locations are not affected much by conduction. However, the density and temperature

structure in the hot bubble is affected significantly. Without conduction the bubble

is very hot (∼ 109 K), but with conduction the temperature drops into the X-ray

range (107 − 108 K) and density is higher. This can enhance the X-ray emissivity of

SBs; a rough estimate of hard X-ray luminosity (
∫

4πr2n2Λdr over the hot bubble)

at 10 Myr from the right panel of Figure 2.9 is few 1038 erg s−1 (which is ∼ 0.003

the energy put in by SNe by that time). Since galactic superwinds are copious X-

ray emitters, we expect thermal conduction to be a very important ingredient for

explaining observations. Figure 2.6 confirms that the fraction of radiative losses from

the bubble is much higher with conduction than without conduction because of a

higher density. However, the right panel of Figure 2.8 shows that the total fractional

radiative losses with thermal conduction are only slightly higher compared to the

non-conductive NOB = 105 SB run.

We emphasize that our treatment of magnetic fields and thermal conduction is

extremely simplified. Realistic calculations must be done in three dimensions with

tangled magnetic fields and with anisotropic thermal conduction along fields lines.

However, we expect the qualitative effects of realistic magnetic fields and thermal

conduction to have some semblance with our simplified treatment.

2.6 Conclusions & astrophysical implications

We have obtained several important results in this paper, on both numerical imple-

mentation of SN/SB feedback and on differences between isolated SNe and SBs. SBs

are a result of spatially and temporally correlated SNe. Since most massive stars are

expected to be born in star clusters few 10s of pc in extent (e.g., Larsen (1999) 113),

pre-SN stellar winds and first SNe are expected to carve out a low density bubble,
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which by a fraction of Myr encloses the whole star cluster (see Fig. 2.5). Therefore,

subsequent SNe happen in the low density bubble and we are in the SB regime of

coherent SNe (see Vasiliev et al. (2015) 215? ).

Magnificent galactic outflows, such as M82, are powered by multiple super-star-

clusters and the problem of understanding coalescing SBs is important. Star clusters

more massive than 105M⊙ (and hence with > 1000 SNe) are rare (e.g., see Portegies

Zwart et al. (2010) 156); therefore, the superbubbles in M82 and in our NOB =

105 SB model should be considered as giant bubbles driven by 100s of overlapping

superbubbles due to individual star clusters. Indeed, 100s of star clusters have been

observed in the central few 100 pc of M82 (O’Connell et al. (1995) 148). We note

that vertical stratification is important for the acceleration and assimilation of the

metal-rich bubble into the halo. In this paper we consider the idealized smaller-scale

problem of the behavior of isolated SNRs and multiple coincident SNe within a SB

in a uniform ISM. Some of our most important results are:

• Our most realistic kinetic explosion (KE) models (and other models in which

SN energy is overwritten), in which the SN energy in kinetic form is overwritten

in a small volume, give correct results only if the energy is deposited within a

small length scale (see section 2.4.1); otherwise, energy is overwritten without

coupling to the ISM. This is true even without considering any radiative losses.

• With cooling, if feedback energy is deposited within a length scale rej larger

than the critical values mentioned in section 2.4.2, such that the input energy is

radiated before it is thermalized, a hot bubble is not formed in the widely used

luminosity driven and thermal explosion addition (LD, TEa) models. Thus SN

fizzles out at early stages due to artificially large cooling losses.

• With insufficient resolution and large ISM densities the bubble fizzles out com-

pletely in the luminosity driven (LD) and thermal explosion addition (TEa)

models (in which energy is added to the ISM; see section 2.2) and cannot have
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any effect on the ISM (see Fig. 2.4). As also pointed out previously (e.g., by

Creasey et al. (2011) 36, Dalla Vecchia & Schaye (2012) 39), early galactic-scale

SN feedback simulations failed mainly because of this. However, for a realistic

SN (as mimicked by our KE model) a bubble is formed and subsequent SNe

occuring within the non-radiative bubble power the radiative outer shock. An-

other, probably more serious, problem faced by numerical simulations is that

the SN energy is not typically put in coherently over a small volume in space

and within a short interval. Feedback due to SNe in young star clusters is ex-

pected to be coherent and much more effective than a similar number of isolated

SNe (see Figs. 2.7, 2.8). For correlated SNe, isolated SN bubbles overlap to

form a superbubble which is powered by the non-radiative termination/internal

shocks, long after the outer shock becomes radiative. In contrast, an isolated

supernova becomes powerless a bit after (∼ 1 Myr) the outer shock becomes

radiative.

• A smooth CC85 wind within the superbubble is possible only if the number of

SNe (NOB) over the cluster lifetime is large (i.e., NOB ∼> 104). Only in these

cases, individual SNe going off inside the superbubble are able to thermalize

within the termination shock. This result has implications for modeling the

X-ray output, for example, in individual bubbles blown by star clusters and in

the inner regions of galactic outflows, since the CC85 wind structure is often

assumed where it may not be valid.

• Most of the radiative losses come from the unresolved radiative relaxation layer

at the outer shock. The fractional radiative losses from the interior region,

concentrated at the contact discontinuity between the shocked ISM and the

shocked ejecta, varies between ∼ 0.001 − 0.3, with larger losses occurring at

later times. While these radiative layers are unresolved even in our highest

resolution simulations, the volume integrated radiative losses in them converge
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even for a modest resolution.

• As compared to isolated SNe, superbubbles can retain a larger fraction of the

initial energy of explosions as thermal/kinetic energy of the gas. Isolated SNe

are mixed with the ISM soon after they become radiative; by few Myr they

are incapable of affecting the ISM at all. While most energy is radiative away

(close to 100%, and not ∼ 90%, as is often assumed) for isolated SNe over 10

Myr, a SB can retain a fraction ∼ 0.35 (for n = 1 cm−3) as the bubble thermal

energy + the shell kinetic energy. This fraction is only weakly affected by a

higher ISM density and by thermal conduction (see the right panel of Fig. 2.8).

Thus, SBs are expected to significantly affect even a dense ISM. Substantial

radiative losses can partly explain the smaller observed bubble sizes compared

to what is expected by modeling the stellar populations (see Oey (2009) 149 for

a summary).

• The temperature profile of SBs strongly depend on thermal conduction, whose

inclusion can decrease (increase) the temperature (density) and thereby enhance

the X-ray luminosity. Thermal conduction (and other sources of mass loading of

the hot bubble, such as turbulent mixing) plays an important role in explaining

the X-ray emission from galactic superbubbles because very little gas is expected

to be in the X-ray emitting regime (106 − 108 K) in its absence (see the right

panel of Fig. 2.9).

Our simple one-dimensional simulations show that isolated supernova remnants,

owing to large radiative losses, are much weaker feedback agents compared to su-

perbubbles driven by coherently overlapping supernovae. However, detailed three-

dimensional calculations, particularly with a realistic distribution of stars in a cluster,

and magnetic fields and thermal conduction, are required in order to make quantita-

tive comparisons with observations. This will be done in future.
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Chapter 3

Superbubble breakout in disk

galaxies

Based on : “Superbubble breakout and galactic winds from disc galaxies”

Roy, A., Nath, B. B., Sharma, P., Shchekinov, Y., 2013, MNRAS, 434, 3572
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Multiple supernovae not retain most of their thermal energy as discussed in the

previous chapter, and they produce superbubbles that eventually create galactic super-

winds. Superbubble shells are known to undergo various instabilities such as thermal,

and Rayleigh-Taylor (RT) instabilities, and are therefore prone to ‘corrugations’. The

corrugations in the shell help to fragment it into clumps and channels. At a later

epoch, the top of the shell is blown off, and the fragmented dense shell remnants

move in the hot, dilute gas creating a multiphase halo. The highly energetic electrons

accelerated at shocks generate synchotron emission as they follow the magnetic field

lines. There are various threshold energy input rates for different observational man-

ifestations of SNe feedback such as superwinds, multiphase halo, and radio halo. In

addition to the effective feedback model (as described in chapter 2), we incorporate

density stratification of the ambient gas, and perform 2D simulations to address the

following questions : (i) what are the threshold conditions, energy input rates, and

Mach numbers, etc., to create galactic superwinds, mutiphase halo and radio halo,

(ii) is there any connection between the three different energy input rates, and (iii)

can they all be produced from the same physical processes? We are also interested in

determining the epochs and the nature of instabilities that play a dominant role in

corrugating the supershells.

Primary results

• By including radiative cooling in the Kompaneets solution, we analytically es-

timate that ∼ 30% of the input energy is retained in the superbubble. This

result matches well with our estimate from numerical simulations as discussed

in chapter 2.

• Using hydrodynamic simulations in stratified discs we find that superbubbles

can break out of the discs with a clear demarcation between the two energy input
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rates : (i) with Mach number of ∼ 2–3 corresponding to an energy input rate

of ∼ 10−4 erg cm−2 s−1, which is the threshold energy input rate for synchotron

emitting galaxies, (ii) A larger energy injection threshold ∼ 10−3 erg cm−2 s−1

corresponding to the threshold condition for the multiphase halo gas in the disc

galaxies. This is equivalent to the threshold surface density of SFR of ∼ 0.1 M⊙

yr−1 kpc−2 corresponding to the threshold condition for the galactic superwinds.

The final energy input rate corresponds to a Mach number ∼ 5–10, which can

only be produced by super-starclusters evolving coherently in space and time.

The former energy scales can be obtained by the milder superbubbles driven by

large OB-associations.

• We find that RT-instability becomes dominant after the shell reaches a few scale-

heights, contrary to the general belief that RT-instability occurs right when the

shell reaches a scale-height.
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3.1 Introduction

Observations of nearby and high-redshift galaxies have shown that star formation

in them often leads to galactic winds. Starburst galaxies, with star formation rate

(SFR) in excess of a few tens of M⊙ yr−1 are known to excite such outflows. However,

Heckman (2002) pointed out that it is not the average SFR, but the SFR surface

density which is a deciding factor for the existence of outflows. He found a threshold

SFR surface density of ∼ 0.1 M⊙ kpc−2 yr−1 as a prerequisite for starbursts to be

able to produce galactic winds.

The standard scenario of star formation leading to the wind phenomena posits

that super-starclusters give rise to a large number of supenovae (SN) in a relative

small region, which can produce a superbubble in the disk and can break out of the

disk with enough momentum to produce a wind. Such super-star clusters, or young

globular clusters, have been observed to have masses in the range of few ×105–6×107

M⊙ within a typical radius of ∼ 3–10 pc (Ho 1997; Mart́ın-Hernández et al. 2005,

Walcher et al. 2005). The large amount of energy deposited into the interstellar

medium (ISM) by these objects in the form of UV radiation and mechanical energy

is believed to be an important feedback process. The mechanical energy from these

super-starclusters has been shown to be important for the superbubble produced by

the combined SNe to break out of the disk and produce a large scale wind (e.g.,

Tenorio-Tagle, Silich, Muñoz-Tuñón 2003).

There have been a number of calculations, both analytical and numerical, dealing

with the breakout of superbubbles from disk galaxies. The conditions for breakout

depend strongly on the assumption of the stratification of gas in the disk. Consider an

exponentially stratified disk with mid-plane ambient gas pressure P0, gas density ρ0,

scale height z0, and a bubble being blown by mechanical luminosity L. Mac Low &

McCray (1988) defined a dimensionless parameter D ≡ Lρ1/20 /(P
3/2
0 z20) , and noticed

in their numerical simulations that breakout of bubbles occurred when D ≥ 100. The

importance of this parameter can be understood by considering the self-similar evolu-
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tion of a superbubble driven by an energy injection rate of L, given by r ∼ (Lt3/ρ0)1/5,
and ṙ ∼ (3/5)(L/ρ0)1/5t−2/5. This implies a speed of∼ (3/5)(L/ρ0z20)1/3 ∝ D1/3 when

the superbubble reaches a distance of the scale height, for an ambient gas at a given

temperature. According to this criterion, for a scale height z0 = 200 pc, and mid-

plane gas density µHn0 ∼ 2.3× 10−24 g cm−3, P0/kb ∼ n010
4 K cm−3, a bubble with

total mechanical luminosity of L ∼ 3.8× 1037 erg s−1 will be able to breakout of the

ISM.

Basu et al. (1999) defined a dimensionless parameter b ≡ (27/154π)1/2L1/2ρ
1/4
0 P

−3/4
0 z−1

0

which is a ratio of the radius where the Mach number of the superbubble becomes

unity, to the scale height. This is motivated by the self-similar solution of a stellar

wind, r ∼ (125/154π)1/5L1/5ρ
−1/5
0 t3/5. They showed that this parameter is related

to the above mentioned D parameter as D = 17.9b2. In other words, a superbubble

with b < 1 is likely to be confined where as blowout will occur for b ≥ 1.

Koo & McKee (1992) analytically determined a condition for the breakout. Since

the bubbles accelerate after reaching a distance of order the scale height, owing to

the rapidly decreasing density, it becomes liable to fragment due to Rayleigh-Taylor

instability. If the Mach number of the bubble at scale height is ≥ 3, then they

argued that the bubble would be able to breakout. They used radiative bubble model

of Weaver et al (1977) for a uniform density atmosphere in order to derive a critical

mechanical luminosity for which the Mach number is unity, Lcr ∼ 17.9ρ0z
2
0c

3
s, where cs

is the isothermal sound speed of the ambient gas. The Mac Low & McCray condition

of D ≥ 100 translates to L/Lcr ≥ 5. As we will find in our simulations, the Mach

number of a bubble after breakout is of order (1/5cs)(L/ρ0z20)1/3. Therefore, the Mac

Low-McCray condition of D ≥ 100 translates to the condition that the Mach number

at breakout is of order unity. We also note that they considered superbubbles that

originated at a height from the mid-plane, which made it easier for bubbles to break

out. Our simulations show that the critical luminosity for Mach number at a distance

of the scale height to be unity is Lcr ∼ 125ρ0z
2
0c

3
s, larger than the estimate of Koo &
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McKee (1992).

Koo & McKee (1992) then considered an additional strata of HII gas with a scale

height of 1 kpc and mid-plane number density 0.025 cm−3, and found the breakout

condition to be of order NOB ∼ 800, or equivalently, L ≥ 4.1 × 1038 erg s−1. Silich

& Tenorio-Tagle (2001) considered the effect of halo gas pressure and determined a

minimum energy for the superbubble to blow out of the galaxies (with both disk and

spherical ISM distribution) with ISM gas mass in the range of 106–109 M⊙. For a

disk galaxy with MISM ∼ 109 M⊙, they found a minimum energy of ∼ 1038 erg s−1,

corresponding to NOB ∼ 1000.

As Heckman (2002) has emphasized, it is the surface density of SFR that deter-

mines the condition for the existence of galactic winds, and not the total luminosity.

To translate the above energy conditions into a surface density, we need to estimate

the surface area of such bubbles at the breakout epoch. In this chapter, we re-visit

this issue in order to understand the empirical threshold SFR surface density for

galactic winds. Murray, Ménard, Thompson (2011) have recently argued that radia-

tion pressure from UV radiation from a disk with a SFR surface density larger than

0.1 M⊙ kpc−2 yr−1 can produce a large scale wind. This estimate however crucially

depends on the assumption of the grain opacity, and as Sharma & Nath (2012) have

shown the relevant opacity at UV may fall short of the requirements.

There have also been studies on the existence of multiphase gas in the halos of spi-

ral galaxies, and their connection to the star formation properties in the disk. Dahlem,

Lisenfeld, Golla (1995) considered nine edge-on galaxies with extended synchrotron

emitting halo gas, and derived a minimum value of surface density of energy injection

for superbubble breakout, as ∼ 10−4 erg s−1 cm−2. Tüllmann et al. (2006) further

considered X-ray, radio and far-infrared (FIR) emission from the extended halo gas in

a sample of 23 edge-on spiral galaxies, and found that the halo contained gas at low

and high temperatures (multiphase) if the surface density of energy injection in the

disk exceeds ∼ 10−3 erg s−1 cm−2. If the existence of multiphase halo gas depends on
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the process of superbubbles breaking out of the disk and depositing hot interior gas

( as suggested by Tomisaka & Ikeuchi 1986; Tenorio-Tagle, Rozyczka, Bodenheimer

1990), as well as cold gas in the shell, then it would be interesting to compare the

energetics of such superbubbles and the observed threshold energy injection rate.

In this chapter, we study the standard scenario of thermal pressure of the gas inte-

rior to superbubbles being the driving mechanism for the wind, and derive a threshold

condition for the superwind. We find that radiative loss of energy is important for the

dynamics of shocks, and the inclusion of radiation loss increases the energy budget

for the bubbles to breakout of the disk and produce a wind. We also find that our

estimate of the threshold energy requirement can explain the observed threshold SFR

surface density for galactic outflows.

The chapter is organized as follows. In §2 we derive an order-of-magnitude esti-

mate of the threshold based on the key idea that the superbubble energetics needs to

balance radiative cooling. Then we present the analytical formalism in §3 and discuss

the results in §4. We then present the results from numerical simulations in §5, and
discuss the effect of thermal and RT instability in §6.

3.2 Analytic Estimates

To begin with, we derive a threshold rate of SNe for a superbubble to continue to grow

and ultimately breakout of the disk from simple arguments. We can first consider

the condition that the superbubble is able to drive a strong shock in the disk. This

requires the volume energy injection time scale to be shorter than the sound crossing

time. In other words, if we consider a region of radius R in the disk and an energy

injection rate of L, then one needs

1.5nkT

L/(4πR3/3)
≪ R/cs , (3.1)

where cs is the sound speed. This gives a lower limit of L/(πR2) ≫ 3 × 10−6nT
3/2
4

erg s−1 cm−2, where n is the ambient gas particle density in cm−3, and T = T4 10
4 K.
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A second, and more stringent, constraint on SNe luminosity comes from account-

ing for radiative losses. Let us assume that when a SN remnant enters the radiative

stage it quickly loses its energy and does not contribute to the energy input of the

superbubble. Assume then that the radiative stage begins when the post-shock tem-

perature is Ts ≃ 2 × 105 K such that the radiation loss function is maximum and

much larger than the minimum at ∼ 106 K. We therefore define the time when a

SN remnant loses its energy at time when the shock velocity is vs = 120 km s−1

(corresponding to the post-shock temperature of 2× 105 K). It determines the corre-

sponding time and radius as (see also Kahn 1998, who defined this as the beginning

of phase III in the evolution of a bubble),

ta = 1.4× 105
E

1/3
51

n1/3
yr, Ra = 37

E
1/3
51

n1/3
pc . (3.2)

One can therefore define the coherency condition as,

4π

3
R3

ataνSN
> 1 , (3.3)

which means that before a SN remnant stalls because of cooling losses, another SN

explosion injects energy into the remnant and forms a single bubble. This condition

determines the required SN rate

ν
SN

> 30× 10−12

(

n

E51

)4/3

SNe yr−1 pc−3 . (3.4)

We can estimate the surface density of SNe, by multiplying this rate density by the

scale height, which is the height of a bubble at the epoch of breakout. For a scale

height of 500 z0 = z0,0.5 pc, this corresponds to 1.5×10−2(n/E51)
4/3 z0,0.5 SNe yr−1 kpc−2.

(The scale height is relevant here because, as we will see later, the maximum radius

of bubbles in the plane parallel to the disk is of order πz0.) Finally, we recall that

for a Salpeter IMF, one SN corresponds to 150 M⊙ of stellar mass, considering stars

in the range of 1–100 M⊙. Therefore the threshold condition for SFR surface den-

sity becomes ∼ 2.5(n/E51)
4/3z0,0.5M⊙ yr−1 kpc−2. The corresponding surface density
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of energy injection is ∼ 0.05n4/3E
−1/3
51 z0,0.5 erg s−1 cm−2. It is interesting to find

that these above estimates of the threshold energy injection or SFR surface density

are comparable to the observed threshold for the existence of multiphase halo gas

(Tüllmann et al. 2006) and superwinds (Heckman 2002).

3.3 Kompaneets approximation

We first discuss the expansion of blastwaves in a stratified atmosphere, in the adiabatic

case and then for radiative shocks. Kompaneets (1960) had first analytically worked

out the case of adiabatic shocks in this case (see, e.g., Bisnovatyi-Kogan & Silich 1995).

Consider an exponentially stratified medium described by ρ(z) = ρ0 exp (−z/z0),

where ρ0 is the midplane density and z0 is the scale height and E0 is the explosion

energy. It is assumed that the shock pressure is uniform, and is given by,

Psh =
(γ − 1)λE0

V
, (3.5)

where λ ∼ 1 (Kompaneets 1960) is a constant that differentiates the shock pressure

from the average pressure inside the bubble; Bisnovatyi-Kogan & Silich (1995) eval-

uated λ = 1.33. We use λ = 1 for simplicity. We define a dimensionless time-like

parameter as,

y =

∫ t

0

√

(γ2 − 1)E0

2ρ0V
dt . (3.6)

Where Eth is the thermal energy of the interior gas, V is the volume of the bubble

and t is the time. The shape of the shock front is derived as,

r = 2z0 arccos
{1

2
exp (z/2z0)

[

1− y2

4z20
+ exp (−z/z0)

]}

. (3.7)

The location of the top and bottom of the bubble then follows by setting r = 0 ( with

ỹ = y/z0),

z±(ỹ) = −2z0. ln (1∓ ỹ/2) , (3.8)
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which shows that the top of the bubble reaches infinity when y → 2z0 while t remains

finite. This implies that the bubble accelerates in the z-direction due to stratification,

after an initial deceleration phase when the bubble is small and spherical, as in the

usual Sedov-Taylor solution. The maximum cylindrical radius of the bubble is also

obtained from the above solution by putting (∂r/∂z) = 0,

rmax(ỹ) = 2z0 arcsin (ỹ/2) . (3.9)

The z-component of the velocity of the topmost point of the bubble is given by,

vz(ỹ) =
1

(1− ỹ/2)

√

(γ2 − 1)

2

E0

ρ0V (t)
. (3.10)

3.3.1 Continuous energy injection

We can extend Kompaneets approximation and radiative blastwave calculation to the

case of continuous energy injection. Schiano (1985) had done a similar calculation

in the case of an active galactic nucleus. Consider an association with NOB stars

with masses above 8 M⊙, which ultimately produce supernovae. If we consider the

main-sequence lifetime as τSN ∼ 5× 107 yr for these stars, then the total mechanical

luminosity of the SN in the association can written as,

L = 6.3× 1035NOB E51 (τSN/5× 107yr)−1 erg s−1 , (3.11)

where supernova energy is 1051E51 erg. As McCray and Kafatos (1987) have argued,

since the main sequence life time scales with the stellar mass as τ ∝ M−1.6
∗ , and since

the initial mass function (IMF) is given by, dN∗/d(logM∗) ∝ M−1.35
∗ , for a Salpeter

IMF, the rate of SN will scale with time as ∝ dN∗

dM∗

dM∗

dt
∝ t2.35/1.6 t−1/1.6−1 ∝ t1.35/1.6−1,

which is roughly constant in time. Here we have used dM∗

dt
∝ t−1/1.6−1, given the above

mentioned dependence of stellar main sequence lifetime. Therefore we can write, for

the adiabatic case, the total energy in the superbubble as Eth = Lt.
Instead of eqn 3.10, the z−velocity of the top of the bubble is then given by,

vz(ỹ) =
1

(1− ỹ/2)

√

(γ2 − 1)

2

Lt
ρ0V (t)

, (3.12)
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Figure 3.1: The ratio of cooling time to time (tcool/t) is plotted against the height of adiabatic

superbubble with continuous energy injection, for different combinations of NOB, n0, and z0.

and the corresponding y parameter is also written in terms of t, as

y =

∫ t

0

√

(γ2 − 1)Lt′
2ρ0V (t′)

dt′ . (3.13)

These equations can determine the dynamics of the superbubble in the case of

continuous energy injection.

3.3.2 Radiative loss with continuous injection

Radiative losses can be important for the dynamics of both the blastwave and a

superbubble with continuous energy injection. Shocks become radiative when the

cooling time tcool ≪ t. The cooling time behind the shell can be estimated as

tcool = 1.5kT/(4nΛ(T )), for a strong shock with n = n0 exp(−z/z0), and the shock

temperature being estimated from the shock speed (in the z−direction, say). We

assume a cooling function, as given by Eqn 12 in Sharma et al. 2010, appropriate for
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gas with 104 ≤ T (≡ 106T6) ≤ 107 K and given as follows:

Λ(T ) = 10−22(8.6× 10−3T−1.7
keV + 5.8× 10−2T 0.5

keV +

6.3× 10−2) erg s−1cm3 , T > 0.02 keV.

= 6.72× 10−22(TkeV /0.02)
0.6 erg s−1cm3 ,

T ≤ 0.02 keV, T ≥ 0.0017235 keV.

= 1.544× 10−22(TkeV /0.0017235)
6.0 erg s−1cm3 ,

T < 0.0017235 keV , (3.14)

where TkeV is the temperature in keV. Figure 3.1 shows the ratio tcool/t as a function

of the bubble height z+ for bubbles with continuous energy injection for a few cases.

The curves show that the shock enters the radiative phase much before reaching the

scale height unless the ambient density and scale height are very small and NOB is

very large (e.g., the case with n0 = 0.1 cm−3, z0 = 200 pc, NOB = 5000).

Radiation loss from the shocked medium can therefore be important (see also

Maciejewski & Cox 1999). Kovalenko & Shchekinov (1985) had calculated the dy-

namics of a blastwave with radiative loss, assuming that the shock kinetic energy is

converted into thermal energy of gas in a thin shell behind it, and that radiative loss

from this shell keeps the shock isothermal. It can then be shown that for a strong

shock the energy lost per unit mass is ∼ (1/2)u2
s, where us is the shock speed. From

the Hugoniot condition for a strong shock that,

u2
s =

(γ + 1)Ps

2ρ0
=

(γ2 − 1)Eth

2ρ0V (t)
, (3.15)

where Eth is the thermal energy of the shocked gas. The structure of the shock in

this case is such that the interior gas remains hot and adiabatic, whereas the shocked

ambient gas that is swept into a shell loses its energy radiatively and is kept at

a constant temperature ( at ∼ 104 K). We note that Mac Low & McCray (1988)

showed that the radiative loss from the interior hot gas of the bubble does not change

the dynamics of the bubble.
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Following the calculation of Kovalenko & Shchekinov (1985) for a radiative blast-

wave, we assume that bubbles with continuous energy injection also form an isother-

mal thin shell, after a certain time t1 when it enters the radiative phase. For sim-

plicity, we also assume a self-similar solution for a spherical shock, of the type given

by Weaver et al. (1977), rs = AL1/5t3/5, where A is a constant depending on the

ambient density. Furthermore, Weaver et al. (1977) have pointed out that a fraction

6/11 of the total energy is stored in the shell and the rest in the rarefied gas inside.

In the spirit of Kovalenko & Shchekinov (1985) we assume the total shell energy to

be thermal in nature. In other words, initially Eth = (6/11)Lt. We can determine

the time evolution of Eth as follows.

Using the result derived in eqn 3.15 that the amount of energy lost per unit volume

is (1/2)ρ0u
2
s = (γ2 − 1)Eth/(4V (t)), we can write for the evolution of thermal energy

in this case,

Eth(r) =
6

11
Lt− π(γ2 − 1)

∫ r

r1

Eth(r)

V
r2dr ,

=
6

11
L2/3

( r

A

)5/3

− π(γ2 − 1)

∫ r

r1

Eth(r)

V
r2dr . (3.16)

Here r1 is the radius at time t1. We can explicitly solve this equation for a spherical

shock, and then use the results to estimate the z− velocity of an oval shaped bubble.

For a spherical shock (with volume V = 4
3
πr3), the energy equation (no. 3.16) can

be shown to yield a solution of the type Eth(r) = brα, where

b[α +
3

4
(γ2 − 1)]rα−1 =

6

11

5

3

L2/3

A5/3
r2/3 . (3.17)

Comparing the powers of r from both the sides we get, α = 5
3
. Putting this value of

α in eqn 3.17 and comparing the coefficients of time on both sides we get,

b =
30

99

L2/3

A5/3
. (3.18)

Therefore Eth(r) becomes,

Eth(r) = 0.3Lt , (3.19)
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Figure 3.2: The evolution of the ratio of vz to cs (the sound speed for an ambient gas at 104

K) is plotted against time, for an adiabatic blastwave (thick solid line), adiabatic superbubble with

continuous energy injection (dashed) and with radiative loss (dotted line).
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showing that roughly 70% of the total energy is radiated away. Note that this is an

asymptotic value of the loss in the limit r ≫ r1, in the regime where the approximation

E ∝ rα is valid. We can therefore use equations 3.12 and 3.13, with the above value of

Eth, and determine the dynamics of a radiative superbubble with continuous energy

injection.

3.4 Analytic results

Figure 2 shows the evolution of the Mach number for a 104 K gas as a function of

time, for an adiabatic blastwave, a superbubble with continuous energy injection with

and without radiative loss. It is convenient to define a dynamical time scale for this

problem (Mac Low & McCray 1988), td ∼ z
5/3
0 (ρ0/L)1/3, which is the expected time

to reach the scale height for a self-similar evolution of superbubbles. For z0 = 200pc,

L ∼ 1.3× 1037 erg s−1 and ρo ∼ 10−25 g cm−3 (for µ ∼ 0.6) , td ∼ 2.8 Myr. We find

that the z−velocity shows a minimum at ∼ 1.5td, when it reaches a distance of the

scale height. We denote this minimum value of z−velocity as vz,min, and refer to this

epoch as the ’stalling epoch’ in our discussion below.

Figure 3.3 shows the Mach number at stalling height, as a function of L, the

mechanical luminosity (which scales as NOB). Interestingly, superbubbles with Mach

number (at stalling height) of order less than unity can be triggered by even a single

SN. These, in principle, can accelerate later and therefore breakout of the disk. How-

ever, as we shall see later with our simulations, there is a minimum number of SNe

needed for superbubbles to breakout of the disk, particularly for high density disks.

We also find from Fig 3.3 that in order to achieve a Mach number at stalling height

of order ∼ 5, one needs L ≥ 7× 1038 erg s−1, for n0 = 1 cm−3 and z0 = 500 pc. This

is larger than the estimate of Koo & McKee (1992), and Mac Low & McCray (1988),

because of the inclusion of radiative loss from the shell. If we consider vz,min/cs ≥ 5

as the breakout condition, then we find that larger densities and scale heights put
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Figure 3.3: The ratio vz,min/cs of the z−velocity of the top of the bubble to the sound speed of the

ambient gas at 104 K is plotted as a function of L the mechanical luminosity, and NOB, the number

of SNe responsible for the bubble. Different lines correspond to different values of mid-plane gas

number density (1, 0.1) cm−3 and scale heights (200, 500) pc.

more stringent condition on the bubble to breakout.

Next we plot in Figure 3.4 the minimum Mach number as a function of the surface

density of NOB, considering the surface area of the bubble at the stalling height. Note

that we are not concerned with the mean surface density of SFR in the disk galaxy

here. The energy injection considered here is localized, but the relevant surface area

as far as an emerging superbubble is concerned, is the area of the bubble in the plane

of the disk at the point of breaking out. We find that for the surface density of energy

deposition the analytic curves become independent of the scale height and depend

only on the gas density and number of SNe. This is because the area of a superbubble

in the plane parallel to the disk, scales with z20 , and is a constant for a given scale

height. We find that for a scale height of 500 pc, the threshold surface density of SNe

is NOB ∼ 1000 kpc−2.
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3.5 Numerical Simulations

In addition to analytic estimates and approximate calculations, we have performed

2-D axisymmetric hydrodynamic simulations of breakout using the ZEUS-MP code

(Hayes et al. 2006). ZEUS-MP is a publicly available, second-order accurate Eulerian

hydrodynamics code. We have carried out two sets of simulations: the first set

compares numerical simulations with the analytic Kompaneets calculation of strong

shocks in stratified atmospheres (hereafter these runs are referred to as ‘Kompaneets

runs’); and the second set of calculations use a more realistic setup, such as disk

gravity, mass-loading of the ejecta, for shock (superbubble) breakbout in starforming

galaxies (hereafter these runs will be called ‘realistic runs’).

In this section we introduce the equations that we solve numerically, the initial

and boundary conditions, and the choice of setup parameters. The simulations are

run using the 2-D axisymmetric, spherical polar (r, θ, φ) coordinates.

3.5.1 Governing Equations

We solve the following standard Euler’s hydrodynamic equations including cooling,

external gravity, and mass and energy loading at inner radii.

dρ

dt
= −ρ∇.v + Sρ(r) , (3.20)

ρ
dv

dt
= −∇p+ ρg , (3.21)

de

dt
= −q−(n, T ) + Se(r) , (3.22)

where d/dt ≡ ∂/∂t + v.∇ is the Lagrangian derivative, ρ is the mass density, v is

the fluid velocity, p is the thermal pressure, e = p/(γ − 1) is the internal energy

density (we use γ = 5/3 valid for an ideal non-relativistic gas), g = −sgn(z)gẑ

(sgn[z]=±1 for z ≷ 0) is the constant external gravity pointing towards the z = 0

plane, q− ≡ neniΛ(T ) is the cooling term due to radiation where ne and ni are the

electron and ion number densities, Λ(T ) is the cooling function (as given in eq 3.14).
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There are source terms in the mass and internal energy equations (Sρ, Se). These

terms are non-zero and constant only within rin, a small injection radius (as discussed

in chapter 2) within which supernovae pump mass and energy into the interstellar

medium. Note that the mass loading (Sρ) and external gravity (g) terms are used

only for the realistic simulations and are set to zero for the Kompaneets runs.

The energy source function is chosen to mimic the energy input by supernovae,

Se = L/[(4π/3)r3in], where L = ESNNOB/t∗ = 6.3× 1035NOB erg s−1 is the supernova

heating rate, ESN = 1051 erg, t∗ = 50 Myr is the average lifetime of main sequence

OB stars, and NOB is the number of OB stars. The mass-loading source function Sρ

is chosen as Sρ = Ṁ/[(4π/3)r3in] where Ṁ = βRf(L/4× 1041erg s−1)M⊙yr
−1; where

Rf is the return-fraction (= 0.3) and β = 3, that includes the effect of stellar winds,

as inferred by Strickland & Heckman (2009) in the case of M82. Tables 3.1 and 3.2

list the parameters for our Kompaneets and realistic simulations respectively.

We implement energy injection by assuming the deposited energy to be thermal-

ized within a radius rin, which we determine from the condition that the corresponding

analytic solution of superbubble radius enters the Sedov-Taylor (ST) phase. We note

that our estimation of rin in this method matches quite well with the analytical ex-

pression of rin as calculated in the previous chapter (chapter 2) since the superbubble

evolves in almost a uniform density ambient medium when it enters the ST phase. We

assume a mass loading (1/2)NOB 10 M⊙ ∼ 5NOB M⊙, for a typical mass of OB stars

of order 10 M⊙ and half the progenitor mass being ejected during the supernova. This

is an approximation, however we found that mass loading at this level has negligible

effects on the evolution of superbubbles. The superbubble enters the Sedov-Taylor

phase when the ejecta mass equals the mass swept up by the shell. We choose this

radius to be our rin because before this phase, most of the energy of the superbubble

is in kinetic form, and the assumption of most of the energy being thermalized is

appropriate only in the Sedov-Taylor phase. Moreover, rin should be smaller than the

radius at which the shock becomes radiative. Tables 3.1 and 3.2 show the values of
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rin for different simulations.

3.5.2 Initial and Boundary conditions

We have used ZEUS-MP in spherical polar (r, θ, φ) coordinates. We fix the inner

radial boundary (the mass and energy injection radius) at rmin < rin, and the outer

boundary at rmax = 3–10 kpc, depending on the distance reached by the superbubble

in 1.23×1015 s (39.3 Myr) , the maximum time for which we run the simulations. For

θ−φ coordinates, θ goes from 0 to π, and φ goes from 0 to 2π. We use a logarithmically

spaced grid in the radial direction such that there are equal number of grid points in

[rmin, (rminrmax)
1/2] and [(rminrmax)

1/2, rmax]; the grid is uniformly spaced in the other

directions. The resolution adopted for our simulation is 512 × 256 × 1, in the r, θ, φ

directions (although we have used a higher resolution of 1024×1024×1 for our study

of thermal instability in the relevant cases). Outflow boundary conditions are applied

at the outer radial boundary. Inflow-outflow boundary condition is applied at the

inner radial boundary such that mass is allowed to leave or enter the box. Reflective

boundary conditions are imposed at θ = 0, π, and periodic boundary conditions are

applied in the φ direction.

The initial conditions in Kompaneets and realistic runs are different. Both set

of runs have an initial temperature of 104 K corresponding to the stable WIM. In

Kompaneets runs the density is stratified in the vertical (z−) direction as ρ(t =

0) ∝ e−z/z0 , where z0 is the scale height. Thus, the initial state is not in dynamical

equilibrium. However, since the sound speed is very small, the evolution occurs

because of fast energy injection in the center. We have verified that the results are

the similar as for simulations with a constant initial pressure. For the Kompaneets

runs, we have used a scale height of z0 = 200 pc.

For realistic runs the initial ISM is symmetric with respect to the vertical direc-

tion, with ρ(t = 0) ∝ e−|z|/z0, where the scale height is determined self-consistently for

an isothermal gas in hydrostatic equilibrium; i.e., the strength of the constant gravi-
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Table 3.1: Parameters for Kompaneets runs (L = 6.3× 1035 erg s−1 NOB)

n0 (cm−3) NOB rin (pc) rmin (pc) rmax (pc)

0.1 1 10 5 2500

0.1 10 21 10 2500

0.1 100 44 30 2500

0.1 300 63 40 3000

0.1 1000 94 70 3500

1.0 1 5 3 2500

1.0 10 10 5 2500

1.0 100 20 10 2500

1.0 300 29 15 3000

1.0 1000 44 30 3000

tational acceleration is chosen to be g = c2s/z0 where cs ≡
√

kT/µmp (k is Boltzmann

constant, µ is the mean particle mass, and mp is proton mass) is the isothermal sound

speed and z0 is the scale height.

3.5.3 Kompaneets runs

We first describe the results of our Kompaneets runs, of superbubbles in a stratified

atmosphere without external gravity or mass-loading. Figure 3.4 shows the variation

of the minimum Mach number of the top of the superbubble as a function of the

surface density of energy injection in the disk, for a scale height of 200 pc and two

values of ambient density, n0 = 0.1 and 1 cm−3. We find that the analytical results

overestimate the Mach number of the superbubbles compared to the simulations by

a factor of order ∼ 1 for the case of large ambient density (1 cm−3), because the

analytical estimate of energy loss described in the previous section is based on sim-
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plified assumptions. Note that since we determine the value of z+ by the position

of the maximum density, clumps in the shell formed due to thermal instability (see

below for details) introduce some uncertainity. This manifests in the kinks seen in

the simulation results in Fig. 4 and also later in Fig. 6.

3.5.4 Realistic runs

Next we describe simulations that includes vertical disk gravity and mass loading.

We study the case of ambient gas at T = 104 K, with mid-plane densities n0 = 0.1

and 1 cm−3, and scale heights z0 = 100 and 500 pc.

Our choice of parameters essentially brackets the possible range of gas density and

scale height in disk galaxies. For example, the distribution of the extraplanar gas in

Milky Way has two components, that of warm ionized gas and cold HI. The warm

ionized gas has been observed to have an exponential profile with n0 ∼ 0.01–0.03 cm−3

and z0 ∼ 400–1000 pc (Reynolds 1991; Nordgren et al. 1992; Gaensler et al. 2008). For

HI distribution, Dickey & Lockman (1990) found that the vertical distribution is best

described by a Gaussian with FWHM of 230 pc and a central density of 0.57 cm−3.

The combined distribution of these two components are bracketed by exponentials

with the scale heights and mid-plane densities assumed here.

We also use smaller scale heights in our simulations. The scale height near the

centres of galaxies is smaller than that in the outer regions, because of deeper gravi-

tational potentials in the central regions. Also Dalcanton, Yoachim, Bernstein (2004)

found that the HI scale height of disk galaxies varies with the rotation speed (or,

equivalently, the galactic mass). Dwarf spirals with rotation speed ∼ 50 km s−1 have

z0 ∼ 200 pc whereas larger galaxies (with rotation speed in excess of 120 km s−1)

have z0 = 500–1000 pc. Also, as Basu et al. (1999) have found, the scale height

encountered by Milky Way superbubbles such as W4 is rather small (≤ 100 pc).

We first find that unlike in the analytical case, where superbubbles ultimately

break out of the disk sooner or later, irrespective of the energetics, the realistic sim-

136



Table 3.2: Parameters for Realistic runs

z0 (pc) n0 (cm−3) NOB rin (pc) rmin (pc) rmax (pc)

100 0.1 1 10 5 1000

100 0.1 10 21 10 2500

100 0.1 100 44 10 2500

100 0.1 300 63 10 2500

100 0.1 1000 94 50 2500

100 1 100 20 10 2500

100 1 300 29 15 2500

100 1 1000 44 30 2500

100 1 2000 55 40 2500

100 1 3000 63 40 2500

500 0.1 10 21 10 2500

500 0.1 100 44 10 2500

500 0.1 300 63 30 3500

500 0.1 1000 94 50 3500

500 0.1 3000 135 110 3500

500 0.1 10000 201 160 3500

500 0.1 50000 344 300 12000

500 0.1 100000 433 400 12000

500 1 1000 44 30 2500

500 1 2000 55 40 2500

500 1 3000 63 40 2500

500 1 5000 75 50 3500

500 1 10000 94 70 3500

500 1 100000 201 150 5500
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Figure 3.5: Velocity of the topmost point of the bubble is plotted against time for NOB = 1000, but

for different combinations of scale height (z0 = 100, 500 pc) and mid-plane gas density (n0 = 0.1, 1

cm−3). The horizontal lines in each case shows (1/5)(L/ρ0z20)1/3, the expected scaling.

ulation runs show that for high density disk material (n0 ≥ 1 cm−3) , superbubbles

keep decelerating for ever for a surface density of OB stars ∼ 100(z0/100 pc) kpc
−2.

In other words superbubbles never break out of the disk in these cases. The corre-

sponding energy injection surface density is ∼ 2–5 × 10−5 erg cm−2 s−1 For lower

density ambient gas, n0 ∼ 0.1 cm−3, however, even a single SN event can drive a

bubble through the disk. We note that this limit is consistent with that found by

Silich & Tenorio-Tagle (2001) for a Milky Way type disk.

In the case of a superbubble breaking out of the disk, there are differences in the

way they evolve depending on the energy injection rate. We show the evolution of

the speed of the topmost point of the bubble as a function of time for four cases

in Figure 3.5, for two mid-plane densities (n0 = 0.1, 1 cm−3), and two scale heights

(z0 = 100, 500 pc), all for a surface density of OB stars of 1000 kpc−2. The curves show

that the bubbles show acceleration after breakout of the disk only for the case of low
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density and small scale height ( see the curve at the top-left corner, for n0 = 0.1 cm−3,

z0 = 100 pc). In other cases, for disk column density ≥ 3 × 1019 cm−2, the bubbles

either coast along with the the speed that they reach at the breakout, or decelerate

to some extent, for a considerable period of time before they start accelerating after

reaching a distance of several scale heights. The curves show that the speed at the

stalling height, or the minimum speed of the bubbles, is an important characteristics

of the bubble dynamics. It is important because this is the characteristic speed with

which the bubble sweeps most of the extra-planar region of the halo. Also, since the

bubble begins to accelerate only after reaching a distance of a few times the scale

height, the corresponding Rayleigh-Taylor instability should not set in at the scale

height, but at a much larger distance. We shall re-visit this point in the next section

on instabilities. In some cases, the curves show a deceleration at late times. This is

due to the formation of clumps in the shell from radiative cooling, which often sink

through the hot gas owing to gravity.

We have found that typically the minimum speed vz,min ∼ (1/5)(L/ρ0z20)1/3 ∼
z0/(5td), where td is the dynamical time defined earlier. These values are shown

as horizontal lines in Figure 3.5 for respective cases. It is easy to see that in case

of little radiation loss, the speed of the bubble at the time of reaching the scale

height is ∼ (3/5)(L/ρ0z20)1/3, as expected from the self-similar evolution of a bubble

(r ∼ (Lt3/ρ0)1/5). Our simulations show that the actual speed is roughly a third of

this value, and therefore shows the importance of radiative loss in the dynamics of

superbubbles. As analytically derived earlier, radiation losses remove as much as 70%

of the total energy of the superbubbles. We recall that for an ambient medium with a

given temperature, the dimensionless quantity defined by Mac Low & Norman (1988)

is D ∼ (5vz,min/cs)
3, so that their condition of D ≥ 100 for break out corresponds to

a minimum Mach number of order unity.

We show the resulting value of minimum Mach number of superbubbles for dif-

ferent n0 and z0 in Figure 3.6, as a function of surface density of energy injection.
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Figure 3.6: The minimum Mach number of the top of the bubble in our realistic runs are shown

as a function of NOB per kpc−2, and L/πr2 (erg cm−2 s−1), for no = 0.1, 1 cm−3 and z0 = 100, 500

pc. Note that, for n0 = 1 cm−3, the shocks stall for a surface density of OB stars ≤ 500 kpc−2.

The cases for which tcool < tff , are shown by darkened points, these cases are marked by thermal

instability.
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The curves show that in terms of energy injection or SNe surface density, the crucial

parameter is the mid-plane gas density, which separates the curves, as was also indi-

cated by our analytical results. Superbubbles with a given surface density of energy

injection find it easier to break out of disks with lower mid-plane density. However,

scale height also makes a small difference unlike in the analytical calculations; a higher

energy density is required to clear a thicker disk.

The important features of our results as shown in Figure 3.6 are:

• As mentioned above, the condition for a break out from a dense ambient medium

with gas density of n0 = 1 cm−3 is an energy injection rate surface density of

2–5 × 10−5 erg cm−2 s−1. For lower gas densities, the required rate density is

∼ 10−6 erg cm−2 s−1. The corresponding Mach number for these superbubbles

that can be as low as of order unity.

• Superbubbles that can break out with a larger Mach number of ∼ 3–5 corre-

sponds to ∼ 1000 NOB kpc−2, or an energy injection surface density of 10−4

erg s−1 cm−2, for the most realistic spiral disks, with n0 = 0.1 cm−3, z0 = 500

pc, or n0 = 1 cm−3, z0 = 100 pc (which for Milky Way case describes either

the warm extra-planar or cold gas). We note that the largest OB associations

have ∼ 104 M⊙ (McKee & Williams 1997), and with a cross-sectional area of

order π (πz0)
2 (since rmax ∼ πz0 asymptotically; see equation 3.9), a superbub-

ble blown by such a large OB association can only have ≤ 103 SNe kpc−2, for

a Salpeter IMF. Therefore we can conclude that (a) only the largest of the OB

associations can produce a bubble that can break out of Milky Way-type disks,

(b) this also corresponds to the minimum energy injection rate of 10−4 erg s−1

cm−2 as observed by Dahlem et al. (1995) for the existence of radio emitting

halo gas, and (c) larger ISM density or scale height would require more than

one OB association to produce a superbubble or adjacent multiple bubbles that

can coalesce and grow together. Recent simulations show that cosmic rays can

stream through ISM gas to considerable heights above the disk, and break out
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of superbubbles can provide such channels (Uhlig et al. (2012).

• As explained earlier, the minimum speed of 3–5 cs ∼ 30 km s−1, for an ambient

gas at 104 K, also corresponds to the case where the hot (and multiphase gas;

see next section on instabilities and gas cooling) interior gas can sweep up to a

height of ∼ 1 kpc within a time period of ∼ 50 Myr, the time scale over which

OB stars explode and keep injecting energy in the bubble. Combined with the

result mentioned above, we can conclude that an energy injection rate of 10−4

erg s−1 cm−2, or ∼ 1000 NOB kpc−2 can not only produce a bubble that can

break out of the disk but also fill the halo up to a height of order ∼ 1 kpc.

• If we insist on a larger Mach number at stalling height, to be 5–10, then the

energy injection rate becomes ∼ 10−3 erg s−1 cm−2, with ∼ 2× 104 NOB kpc−2.

Using a time scale of ∼ 50 Myr of OB stars, the corresponding SFR surface

density for a Salpeter IMF is ∼ 0.06 M⊙ yr−1 kpc−2. If superbubbles seed

galactic outflows, then the gas speed is required to be a few hundred km s−1, and

the Mach number at stalling height is needed to be much larger than ten, and

the corresponding requirement on SFR surface density increasing to ∼ 0.1 M⊙

yr−1 kpc−2, the observed threshold. Therefore, the Heckman (2000) threshold

( ∼ 0.1 M⊙ yr−1 kpc−2) for superwinds corresponds to a larger requirement on

the part of superbubbles, of not only breaking out of disks but doing so with a

large Mach number.

3.6 Thermal and Rayleigh-Taylor instability

The focus till now was on the important vz/cs parameter (the minimum Mach number

of the shell) which determines the fate of the superbubble after it crosses the scale

height. In this section we discuss the role of different instabilities, in particular

Rayleigh-Taylor and thermal instabilities, in our 2-D breakout simulations. When the

superbubble reaches about a scale height, the shock is generally believed to accelerate
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Figure 3.7: Temperature contours (colour coded) for a superbubble with NOB = 5000, n0 = 1

cm−3, z0 = 500 pc, at t = 9 Myr, when the top of the bubble has reached a distance of the scale

height (left panel), at 39.3 Myr, when it has reached a distance ∼ 3z0 (middle panel). The rightmost

panel shows the case of the same superbubble without radiative cooling at t = 39.3 Myr, the same

evolutionary epoch as the middle panel.

owing to the decrease in pressure. This should lead to the onset of the Rayleigh-

Taylor (RT) instability, as has been invoked in previous analytical works (e.g., Koo &

McKee 1992) and seen in numerical simulations (e.g., Mac Low, McCray & Norman

1989). However, as mentioned earlier, our simulations show that superbubbles do

not accelerate until after they reach a distance of several scale heights (as was also

suggested by Ferrara & Tolstoy 2000 who assumed spherical bubbles). Therefore

RT instability occurs at a distance much larger than the scale height. Also we find

that before the onset of RT instability, the superbubble expanding in the disk suffers

from thermal instability in the early stages of its evolution. This instability leads to

clumping and fragmentation of the shell of the superbubble well in advance of the RT

instability, and can therefore affect the outcome of the RT instability.

Figure 3.7 shows the 2-D snapshots of temperature at two different times for our

fiducial high resolution run (NOB = 5000, n0 = 1 cm−3, z0 = 500 pc). Figure 3.6

indicates that the minimum Mach number for this case is ≈ 2 and the bubble is just

143



about able to break out within the starburst timescale. The temperature snapshot at

early time (9 Myr), when the bubble has just reached the scale-height, shows that the

bubble is roughly spherical. The radiative shell seems to develop corrugations where

the hot bubble gas and the radiatively cooled shocked gas interpenetrate. The shell is

at ≈ 104 K (the same as the ambient ISM temperature), the temperature below which

the cooling function drops suddenly and the gas becomes thermally stable. The dense

shell is more clearly seen in the density snapshots of Figure 3.8. The corrugations

are definitely driven by radiative cooling because the run without radiative cooling

shows a smooth shell (the third panel in Figs. 3.7 and 3.8).

While the fragments of cold shell are confined to the bubble boundary at early

times, the cold gas lags behind the hot gas at later times because the hot gas is

pushed out by supernova heating. The cold blobs are only pushed out because of the

drag force due to the hot gas but eventually trail behind. The cold blobs embedded

in the hot gas are reminiscent of the cold multiphase filaments observed in galactic

outflows, such as M82. Since in our simulations cold gas leaves the simulation box

from the inner boundary, all the cold blobs embedded in the hot bubble come from

the fragmenting cold shell. In reality, some cold gas from the cold star-forming regions

can also be uplifted by the hot gas. At late times, in the runs with cooling, there

are some signs of bubble breaking out because of RT instability close to the polar

regions. All such signatures of RT instability are missing in the run without cooling

(panel 3). This is mainly because RT instability in the run with cooling is seeded

with large amplitude perturbations by corrugations caused by shell cooling.

In order to assess the relative importance of thermal and RT instabilities, we com-

pare the two times scales in Figure 3.9. We note that the time scale for RT instability

(tRT =
√

1/(v̇z + g)k) is comparable to the free-fall time (tff =
√

2z/(v̇z + g), for the

largest mode with k ∼ 2π/z, where z and v̇z are the height and acceleration of the

shell, and g is the acceleration due to gravity. We plot this time scale with a solid

line in Figure 3.9, along with the cooling time (tcool = 1.5kT/nΛ) of the shell as a
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Figure 3.8: Density contours for the same cases as in Fig 3.7. Here, fragmentation of the shell is

clearly seen in the run with cooling.
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function of time for runs corresponding to Figures 3.7 & 3.8. We use the position of

the outermost densest part to identify the shell position. In the left panel of Figure

3.9, we show the case of NOB = 5000, n0 = 1 cm−3, z0 = 500 pc. We expect the shell

to cool radiatively if tcool is shorter than time. And indeed, the radiative cooling time

is shorter than time at early times. This is consistent with the cooling and fragmen-

tation of the dense shell seen in Figs. 3.7 & 3.8. One point of caution: we should

ideally plot the cooling time of the shell assuming the shell temperature and density

corresponding to an adiabatic shock because cooling will happen if this timescale is

short. Here we are plotting the cooling time of the shell, which for the left panel case,

has already cooled to low temperatures. Since cooling time increases sharply below

104 K, tcool is barely smaller than time in the left panel of Figure 3.9. At later times

tcool becomes longer than time and we do not expect the newly accumulated shell

material to cool. The RT timescale (≈ tff) is always longer than time for the fiducial

run. The free-fall time increases initially as the shock slows down until a scale height.

After that the shock moves at a small Mach number ∼ 2. This is consistent with the

fact that we do not see vigorous RT instability in Figures 3.7 & 3.8.

The middle panel of the Figure 3.9 shows various timescales for a midplane density

of n0 = 0.1 cm−3. The cooling time for this case is shorter than the cooling time for the

higher density case. This seems inconceivable given the higher density and efficient

cooling for the run in the left panel. This discrepancy arises because although the

density for the n0 = 0.1 cm−3 is smaller, the temperature of the post-shock gas is

105 K, where the cooling function peaks. Consequently the cooling time is shorter

than the higher density run. For comparison, we have also plotted the cooling and

free-fall timescales for the runs without cooling in the right panel. The density and

temperature snapshots for this run do not show cooling-induced fragmentation.

We have shown in Figure 3.6 by darkened points the cases in which tcool is always

less than tff , for different values of L/πr2, z0 and n0. We find that these cases mostly

appear for which, roughly, 10 ≥ vz,min ≥ 3, except for the case of z0 = 500 pc and
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n0 = 1 cm−3, for which there is a cross-over point in time after tcool ≥ tff . We note

that this range of vz,min corresponds to a case in which the shell temperature (Ts)

remains in the range of 2 × 104 ≤ Ts ≤ 106, where the cooling function peaks. This

implies a range in NOB for which thermal instability is imporant. In the low NOB

limit, the shock is not strong enough and Ts ≤ 104 K, and in the high NOB case, the

shock is very strong (Ts > 106 K) and tff (RT timescale) is shorter than tcool at late

times.

We are therefore led to conclude that superbubbles are affected not only by RT

instability but also by thermal instability, depending on the density and energy in-

jection. This implies that the fragmentation of the bubble shell that releases the hot

interior gas into the halo occurs under the combined effects of thermal instability at

early times and RT instability at late times if the Mach number at stalling epoch is

large enough.

3.7 Discussion & Summary

Superbubbles with fragmented shells are believed to ultimately form ‘chimneys’ (Nor-

man & Ikeuchi (1989), which connect the halo gas to the processes in the disk in

different ways. Apart from transporting hot gas to the halo, chimneys provide a nat-

ural channel for Lyman continuum photons from hot stars in the disk to reach the

diffuse ionized medium of the Reynolds layer (Reynolds 1991; Dove & Shull 1994). It

is however important for the superbubble shells to fragment before the main sequence

life times of O stars for a substantial fraction of ionizing radiation to escape the disk

(Dove, Shull, Ferrara 2000). This implies a fragmentation time scale of ∼ 3–5 Myr,

which is comparable to the dynamical timescale (td ∼ z
5/3
0 (ρ0/L)1/3), for superbub-

bles with L ∼ 1038 erg (corresponding to NOB ∼ 200), typical disk parameters. This

is the energy scale for the largest of the OB associations, and as our results show

superbubbles with smaller energetics find it hard to pierce through the disk, unless
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the OB association is located much above the mid-plane level.

In other words, for superbubbles to act as effective conduits of ionizing radiation

for the halo, or for the intergalactic medium (at high redshift, in the context of the

epoch of reionization), the superbubbles need to fragment roughly around the time

when they reach a scale height. This is unlikely to happen only through RT instability

as superbubbles do not accelerate until reaching a distance of several scale heights.

Also, as de Avillez & Breitschwerdt (2005) have discussed on the basis of simulations

of a magnetized ISM, superbubble shells can stabilize against RT instability in the

presence of magnetic fields. In this regard, the clumping of the shell from thermal

instability at an early phase of evolution of the superbubble can be important.

We have studied the evolution of superbubbles in stratified disks analytically and

with simulations. Our results can be summarised as follows:

• Our analytic calculations show that radiation losses are important for super-

bubble dynamics. Radiation loss is more important for superbubbles with con-

tinuous energy injection than a supernova remnant of similar total energy. We

estimate almost 70% of the total energy being radiated away. We have further

checked our analytical results with numerical simluations. We found that ana-

lytic results match the simulations well, differing at most by a factor of order

unity for the case of large ambient density. The results obtained by the ana-

lytical means therefore provide a useful benchmark to compare with realistic

simualtions. Also, for disks with large gas density, with n0 ≥ 1 cm−3, superbub-

ble breakouts are not possible for surface density of OB stars ≤ 100(z0/100 pc)

kpc−2, or an equivalent energy injection surface density of ≤ (2–5) × 10−5 erg

cm−2 s−1.

• Superbubbles that emerge from the disk with Mach number of order 2–3 require

an energy injection rate of ∼ 10−4 erg cm−2 s−1, corresponding to explosions

triggered by the largest OB associations with 104 M⊙. This energy injection

scale corresponds to disk galaxies with synchrotron emitting gas in the extra-
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planar regions.

• Vigorous superbubbles that break out of the disk with sufficiently large Mach

number (≥ 10) , correspond to an energy injection rate of ∼ 10−3 erg cm−2

s−1, or equivalently, a SFR surface density of ∼ 0.1 M⊙ yr−1 kpc−2. These

superbubbles require more than one OB associations to produce and sustain

their dynamics, and this energy injection scale corresponds to (a) the existence

of multiphase gas in the halo of disk galaxies, and (b) the Heckman threshold

for the onset of superwinds.

• Superbubbles do not accelerate until reaching a vertical distance of a few scale

heights (of order ∼ 2), which implies that RT instability helps to fragment the

shells not at a distance of a scale height but at a much larger height. Also,

we find that for typical disk parameters, thermal instability acts on the shell

at the early stages of superbubble evolution, and forms clumps and fragments

in the shell, much before the shell is acted upon by RT instability. Radiative

cooling therefore manifests in seeding thermal instability, which has important

implications for the clumping of superbubble shell and producing channels of

leakage for ultraviolet radiation into the halo.
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Chapter 4

Escape fraction of LyC photons

from disk galaxies

Based on : “Narrow escape: how ionizing photons escape from disc galaxies”

Roy, A., Nath, B. B., Sharma, P., 2015, MNRAS, 451, 1939
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Superbubbles play a role in enriching the ISM and the IGM by ejecting hot, dilute,

and high metallicity gas via the shell channels (as discussed in chapter 3). These path-

ways also help the hydrogen ionizing photons (Lyc photons) emanating from central

OB-associations to escape. Although there are various observational and theoretical

estimates of the escape fraction (fesc) of Lyc photons and its evolution with redshift

(z), the dependence of fesc on the basic disc parameters (n0, z0) remains unexplored.

In this chapter, we scan the parameter space of (n0, z0) in order to understand the

dependence of fesc on the disc parameters and redshift z.

Primary results

• We find that the ionizing photons escape through a narrow cone angle ∼ 40◦,

which is consistent with observations.

• The escape fraction initially decreases with time as the superbubble is buried

under the dense disk. After the superbubble breaks out of the disk on reaching

a few scale-heights, the shell fragments into clumps and channels due to RTI.

These channels are the optically thin pathways through which the Lyc photons

escape.

• The average (angle averaged, time averaged, and averaged over the luminosity

functions of OB associations) escape fraction is related to the disk parameters

such that fα
escn

2
0z

3
0 is a constant with α = 2.2.

• We find that the value of the escape fraction for disk galaxies is fesc ∼ 10± 5%,

with weak variations with disk mass, and redshift if disk temperature is kept

constant.

• This value of fesc fulfils the requirements for the creation of the diffuse ionized

152



gas beyond the Milky-Way’s HI disk (aka “Reynold’s layer”). It is also suffi-

ciently large for the universe to be reionized by stellar sources around z ∼ 6.
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4.1 Introduction

The evolution of galaxies is tuned by various regulatory mechanisms. Galaxies eject

gas, radiate photons, accelerate high energy particles, thereby affecting their sur-

roundings, which in turn influence their evolution. The leakage of ionizing photons

from galaxies is one such crucial mechanism, since it produces an ultraviolet back-

ground radiation that significantly influences the evolution of galaxies in the universe.

The sources of the ionizing photons determine the spectrum of the background ra-

diation in the intergalactic medium (IGM), which has important implications, e.g.,

in the reionization of the universe at z ≥ 6. However, it remains uncertain whether

star forming galaxies or active galactic nuceli (AGNs) were the main contributors to

the epoch of re-ionization. One of the main reasons for the uncertainty is our lack of

knowledge of how the local ionizing background in individual galaxies is produced,

because all extrapolations to high redshift depends on it.

The understanding of this background radiation depends on the knowledge of fesc,

the fraction of ionizing photons from massive stars that can escape the galaxies. Sev-

eral workers have estimated this ‘escape fraction’ from both theoretical considerations

and observations. Since there is a wide disagreement in the value of escape fraction,

we summarise below these estimates and the methods used to produce them.

Direct observations: Observational estimates of the escape fraction of ionizing photons

from extragalactic objects became possible with the new generation of UV telescopes

in 1990s. Leitherer et al. (1995) [116] observed the luminosity of four starburst galax-

ies at 900 Å, and estimated fesc ≤ 3%. This estimate was revised upwards by Hurwitz

et al. (1997) [91] to lie between 3–57% after taking into account a detailed model of

interstellar absorption. Bland-Hawthorn & Maloney (1999) [10] used Hα measure-

ments of the Magellanic Stream to infer fesc ≤ 6% for our Galaxy. Observations of

CII interstellar absorption line at λ1036 with FUSE allowed Heckman et al. (2001)

[74] to estimate fesc ≤ 6% for a set of five bright starburst galaxies. While compar-

ing their estimate with that from starburst galaxies with outflows, Heckman et al.
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(2001) [74] posed the question if the outflowing gas affect fesc and concluded that

outflows do not necessarily increase its value by creating additional channels in the

ISM. However, in their later study with a bigger sample, Heckman et al. (2011) [76]

concluded that outflows from starburst can significantly increase the escape fraction.

They also discovered four objects, whose central regions are very compact (∼ 102 pc)

and massive (∼ 109 M⊙), and which had significant outflows. They have recently

shown that one of these extreme objects has an escape fraction ∼ 20% (Borthakur et

al. (2014) 17). Working with FUSE archival data, Leitet et al. (2013) [115] estimated

fesc ≤ 2.5% for a local starburst. Recently, Zastrow et al. (2013) [231] obtained the

emission-line ratio maps of [SIII]/[SII] for a few dwarf starbursts, and observed the

ionizing photons to be confined within a cone of opening angle ∼ 40◦. This means

that the direct measurement of the escape fraction by modeling the absorption in UV

lines depends sensitively on the orientation. They also pointed out that the escape

fraction is large for galaxies older than the time needed by supernovae to create path-

ways for ionizing photons (∼ 3 Myr), but young enough so that O stars (the main

contributors to ionizing photons) are still present (main sequence life time of ∼ 5

Myr).

Observational constraints on the escape of ionizing photon from high redshift

galaxies are sparse. Soon after the Lyman Break Galaxies (LBG) were discovered at

z ∼ 3, the escape fraction from them were estimated to be 10–20% (Adelberger &

Steidel (2000) 1; although Haehnelt et al. (2001) 72 argued that it could be as large as

50%). Recent observations by Nestor et al. (2011) [145] have yielded fesc ∼ 10%, and

Cooke et al. (2014) [30] found fesc ∼ 16 ± 4% for LBGs. At a lower redshift, z ∼ 1,

observations of starbursts in the GOODS field have suggested fesc ≤ 2% (Siana et al.

(2010) 179).

Constraint from UV background radiation: It is possible to put constraints on fesc

from the observations of the UV background radiation and considering the possible

contribution from starburst galaxies (or AGNs). Shull et al. (1999) [178] argued that
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starbursts would be able to contribute as much to the UV background radiation as

AGNs if fesc ≥ 5%. Inoue et al. (2006) [93] reconsidered this issue in light of more

recent observations, and concluded that fesc ≤ 1% at z ≤ 1 and increases to ∼ 10%

at z ≥ 4. Fujita et al. (2003) [58] simulated superbubbles in dwarf starburst galaxies,

and argued that high redshift galaxies may make a significant contribution to the

background radiation if the escape fraction is ≥ 20%. Recently, Kollmeier et al.

(2014) [106] have suggested that the intensity of the UV background radiation at low

redshift (z < 0.4) is likely to be higher than previously thought, which would imply a

corresponding increase in the required escape fraction. However, the assumed fiducial

value of escape fraction at low redshift is quite low in this calculation, the ‘minimal

reionization model’ of fesc = 1.8× 10−4(1 + z)3.4 (Haardt & Madau (2012) 71).

Constraint from the epoch of reionization: It is also possible to put constraints on

the escape fraction from the requirement of explaining the observations related to

reionization (the minimum redshift by which the universe is believed to have been fully

ionized and the total Thomson optical depth). Madau & Shull(1996) [124] estimated

the required fesc ∼ 50% in order to keep the universe ionized at z ∼ 5. However,

this calculation depends on the assumption of luminosity function of galaxies at high

redshift or, if a theoretical mass function is used, on the assumption of star formation

efficiency in galaxies. Inoue et al. (2006) [93] estimated the minimum requirement

for reionization, as fesc = 1.8 × 10−4(1 + z)3.4, which implies fesc ∼ 2% at z = 3.

Recently Mitra et al. (2013) [136] have used their semi-analytical model of galaxy

formation to compare with the observed luminosity functions at high redshift, and

then to calculate the requirement from reionization observations. They concluded that

reionization requires fesc ∼ 7(±5)% at z = 6, and a mild (but uncertain) increase to

∼ 18+33
−13% at z = 8.

Theoretical calculations: Dove & Shull (1994) [44] analytically calculated the escape

fraction for the Milky Way (∼ 10%), considering HII regions around OB association

that likely produces ‘HII chimneys’ for ionizing photons to escape. They argued
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that this process could explain the ionizing radiation needed for the existence of the

Reynolds layer of warm ionized medium. Wood & Loeb (2000) [229] estimated the

escape fraction considering a disk galaxy in steady state, with sources embedded in

it, using a 3-D radiation transfer code. They used a stratified disk with redshift

dependent parameters, using the prescriptions of Mo, Mao & White (1998) [137].

Naturally, their disks had large density and were thin at high redshift, and their

escape fraction rapidly decreased with an increasing redshift. Galaxies with mass

1012 M⊙ at z = 0 have fesc ∼ 1%, whereas smaller galaxies, say with 109 M⊙,

have similar escape fraction at z ∼ 3. On average they predicted an escape fraction

≤ 1% at z ∼ 10. A similar calculation by Benson et al. (2013) [8] took into account

the effect of high energy photons in the case of sources of hard spectrum. Instead of

radiation transfer through a disk, Ferrara & Loeb (2013) [55] considered the evolution

of ionization fronts in dark matter halos containing gas at 104 K, and found the escape

fraction to increase with redshift during reionization.

In contrast to these calculations, Dove et al. (2000) [45] and Clarke & Oey (2002)

[28] emphasised the importance of the time evolution of superbubbles in this regard.

It is clear that the structure of the ISM must be important in determining the leakage

of ionizing photons. The typical HI column density in galaxies (≥ 1021 cm−2) is much

larger than needed to make the ISM on average opaque to these photons, since only

NHI ≥ 1017 cm−2 is needed to shield them. Dove et al. (2000) [45] considered the

OB associations in the Milky Way and propagation of ionizing photons through the

superbubbles triggered by them. These superbubbles first decelerate during their

early evolution, following the results of Weaver et al. (1977) [224] for the self-similar

evolution of stellar wind driven bubbles. However, after they reach the scale height of

the stratified disk, they accelerate (Kompaneets (1960) 107, Roy et al. (2013) 164),

which can fragment the superbubble shells through Rayleigh-Taylor instability and

create pathways for ionizing photons to escape. Dove et al. (2000) [45] estimated

the escape fraction to be ∼ 6–15%, depending on the assumption of star formation
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history. This idea was carried forward with the help of hydrodynamic simulations by

Fujita et al. (2003) [58], who studied the time evolution of the escape fraction for OB

associations of a given mass (with number of OB stars NO = 40000), and stressed that

superbubbles can effectively trap the ionizing photons before blowout. Their work

explained the time evolution of fesc in light of the two competing processes, between

a diminishing source of ionizing photons from an evolving OB association and the

increasing number of pathways created by the superbubbles. Therefore, the observed

low values of fesc ≥ 5% in local dwarf galaxies could be explained if they were young

(before the feedback processes could carve out enough channels in the ISM); the time-

averaged fesc could be larger than these observational estimates. They estimated the

escape fraction in high redshift disk galaxies to be ∼ 20% and highly dependent on

the dynamics of superbubbles in them (because at high density, escape of ionizing

photons would be difficult without the aid of superbubbles).

Several authors have also used hydrodynamic simulations for galaxy formation,

with star formation and their feedback processes included in them, and estimated the

escape fraction. These simulations have less control on the parameters and therefore

the results are often difficult to interpret. Gnedin et al. (2008) [67] found the escape

fraction to decrease rapidly with a decreasing galactic mass, because of the increasing

disk thickness and the paucity of young stars on the periphery of the disks. On the

contrary, Razoumov & Sommer-Larsen (2010) [159] estimated the escape fraction to

increase with a decreasing galactic mass and an increasing redshift (see also [226]),

reaching an average of ∼ 80% at z ∼ 10. Yajima et al. (2011) [230] concluded that

massive disks were more clumpy than low mass disks, and this decreased fesc in large

galaxies, since stars were embedded deep in the clumps. They estimated fesc ∼ 40%

for 109 M⊙ galaxies and ∼ 7% for 1011 M⊙ galaxies. Paardekooper et al. (2013) [152]

and Hutter et al. (2014) [92] also arrived at similar conclusions. However, this view

of the effect of clumps on the escape fraction runs opposite to that of Fernandez &

Shull (2011) [54], who argued that fewer, high-density clumps would lead to a greater
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escape fraction than in the case of more numerous low-density clumps. Kimm &

Cen (2014) [105] found from the study of a large number of galaxy halos in their

simulation that on average fesc ∼ 10% with little variation with galactic mass and

redshift, although instantaneous values of the escape fraction could reach ≥ 20%.

They also found that run away OB stars could increase the average escape fraction

to ∼ 14%.

Our goal in this chapter is to extend the previous works on the escape fraction by

focusing on the effect of superbubbles. The distinctive features of this work are: (1)

controlled hydrodynamic numerical experiments on a wide range of disc parameters,

with disc densities ranging between 0.5–50 cm−3 and scale heights between 10–600

pc; (2) the escape fraction is weighted by the luminosity function of OB associations

and does not use OB associations of a particular size. Our strategy is to focus on

the effect of important disc parameters on the escape fraction, rather than to explore

a large number of effects at once, such as ISM clumpiness or cosmological mergers.

In our simulations we use gas without any initial clumpiness, but we discuss the

effect of clumpiness on the escape fraction by considering the covering fraction of the

fragmented superbubbles.

This chapter is organized as follows. In section 4.2 we present the numerical set

up, including the model for superbubbles and the warm disk. In section 4.3 we present

the method for calculating the escape fraction, which is a function of viewing angle,

time and the number of OB stars, in addition to the disk parameters (n0, z0). In

section 4.4 we present our results on the escape fraction, including variation with

redshift and the galactic mass; we also discuss the influence of clumpiness. Section

4.5 discusses and compares our results with previous works.
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4.2 Numerical setup

The numerical setup in this chapter is similar to what we have discussed in section

3.5 of chapter 3 with the following differences :

• We use the Sutherland & Dopita (1993) [197] cooling function for solar metal-

licity in the temperature range 104–108 K; below 104 K Λ(T ) is set to zero. The

initial isothermal gas temperature is assumed to be 104 K.

• We have used spherical (r, θ) coordinates for our simulations, similar to what

we have used in the previous chapter. However, our radial grid extends from

1 pc (rmin) to 2 kpc (rmax); in some higher NO runs (NO ≥ 104, NO being the

number of O stars) the outer boundary extends up to rmax = 3 kpc. In the

highest density cases (n0 = 50 cm−3) the inner radial boundary is rmin = 0.5

pc, maintaining the strong shock condition (see eqn 4 in Sharma et al. (2014)

[174]).

• Our runs with various parameters use different resolutions. Specifically, high

density disks (higher n0) with lower energy injection (smaller NO, the number of

O stars) result in extensive formation of multiphase gas, and the number of dense

clumps increases with an increasing resolution (this is true in all simulations

which do not resolve the transition layers between hotter and cooler phases;

e.g., see Koyama & Inutsuka (2004) [112]). The low density and higher NO runs

do not show much multiphase gas and are less sensitive to resolution. Detailed

resolution studies are discussed in Appendix A.1. Various parameters for our

different runs, including resolution, are mentioned in Table 4.1.

• The CFL number is the standard value 0.5, but in high density ( n0 ≥ 1.5 cm−3)

and low NO cases ( NO < 104) we use the CFL number of 0.2 as it is found to

be more robust.
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Table 4.1: Parameters for various runs

n0 (cm−3) NO Resolution rmin (pc) rin (pc)

0.15, 1, 1.5 100 –105 256× 128 1 2

5, 15 100 – 300 512× 512 1 2

5, 15 600 –105 256× 128 1 2

50 100 –105 256× 128 0.5 1

• We have carried out a large number of runs to cover a range of values in n0,

z0 (disk scale-height) and NO. This was necessary to obtain the key result of

this chapter discussed in section 4.4.3. We have carried out 2-D axisymmetric

simulations because 3-D simulations are very expensive due to a larger number

of grid points and a much smaller stability time step. In Appendix A.3 we show

that the results for our 2-D fiducial run are similar to the results obtained in

3-D.

4.2.1 The warm neutral disk

The vertical structure of the thin disk is determined by self-gravity and gas temper-

ature. Hydrostatic equilibrium for the gas in z-direction is given by,

dp(z)

dz
= −ρ(z)g(z) (4.1)

where p is the thermal pressure of the gas, ρ(z) is the density and g(z) is the vertical

disk gravity, the z− component of g. Using Poisson’s equation along with eqn 4.1

leads to the vertical density distribution of the disk gas (Spitzer 1942),

n(z) = n0 sech
2
( z√

2z0

)

, z0 =
cs

√

4πGµmpn0

. (4.2)

Here, n0 is the mid-plane density of the disk (z = 0) and z0 is the scale height of the

gas in the disk, and cs =
√

kbT/µmp is the isothermal sound speed of the gas. The
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corresponding value of g(z) is,

g(z) =

√
2kbT

µmpz0
tanh

( z√
2z0

)

. (4.3)

We consider only the self-gravity of the initial stratified gas, and assume it to be

constant with time, which is a caveat in our calculations. Also, we assume that the

initial ISM is non-clumpy.

The equilibrium value of n0, z0 and T are related as (eqn 4.2)

z0 = 257 pc

(

T

104K

)1/2
( n0

0.5 cm−3

)−1/2

, (4.4)

where we have used µ = 1.33. Later we vary n0 and z0 independently to study

the variation of escape fraction as a function of these disk parameters (c.f. Fig.

4.10). We note that cs needs to be adjusted with (n0, z0) to obtain a self-consistent

hydrostatic equilibrium (Eqs. 4.2 & 4.3). We use the initial disk temperature of 104

K, corresponding to the thermally stable warm neutral phase (Wolfire et al. (2003)

[227]). We, therefore, keep the initial temperature fixed at 104 K, even when we vary

n0 and z0 independently of each other. This means that our disks with general n0,

z0 parameters are not in perfect hydrostatic balance, except when they satisfy eqn

4.4. However, we note that for all the cases considered here, the dynamical time scale

of superbubbles breaking through the disk (eqn 4.10), which is important for the

determination of escape fraction, is always shorter than the gravitational time scale

(free-fall) for the disk to evolve. Therefore, the disks are stable for the time scale

of importance in our calculation of escape fraction. Most of our runs highlighted

in various figures correspond to a self-consistent hydrostatic equilibrium for 104 K

(closely satisfying eqn 4.4).

We only consider a warm neutral disk at 104 K and do not include a cold neutral

(100 K) component. This is justified because the cold neutral medium is expected

to be clumpy. Moreover, even if we consider a self-consistent cold disk, the scale

height z0 should be much smaller ∝ (T/n0)
1/2 (eqn 4.2). The fraction of LyC photons
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absorbed by the disk is roughly given by (c.f. eqn 4.7) 4πα
(2)
H n2

0z
3
0/S, which scales

as p1/2T (p is pressure). Thus, for a warm and cold disk at pressure equilibrium the

escape fraction is dominated by the hotter (104 K) warm disk.

4.2.2 Superbubble implementation

The mass and energy source functions in Eqs. B.1 & Euler equations (equations 3.20,

3.21, 3.22 of chapter 3) are applied in a small enough volume such that radiative

losses do not quench the formation of a superbubble (Sharma et al. (2014) [174]).

The mass source function Sρ = Ṁin/(4πr
3
in), where Ṁin = NOMej/tO = 6.33×1018NO

g s−1, Mej is the ejected mass in a single supernova explosion (chosen as 1M⊙), tO

is 10 Myr (the lifetime of O stars), NO is the number of O stars present initially, or

equivalently, the total number of supernova explosions within time tO. We note that

the final results in our simulations are insensitive to our choice of Mej, which only

affects the structure of the hot/dilute gas within the superbubble. The energy source

function, which mimics the energy input by supernova explosions within rin, is given

by Se = L/(4πr3in) , where L is the mechanical luminosity of supernovae. We consider

rin = 2 pc in all our simulations except for runs with n0 = 50 cm−3, for which we

take rin = 1 pc to prevent artificial cooling losses.

We run our simulations for a period of 10 Myr, the average lifetime of O9.5 stars

(Chiosi, Nasi & Sreenivasan (1978) [27], Meynet & Maeder (2003) [134], Weidner et

al. (2010) [225]), the least massive O stars of mass 20.8M⊙ (Vacca et al. (1996) [214]),

since O stars are thought to produce most of the ionizing photons (Dove & Shull

(1994) [44]). The mechanical luminosity produced by O-stars in the association is,

L = NOEej/tO = 3.16× 1036NO erg s−1 , (4.5)

where Eej = 1051 erg is the explosion energy of one SN (1051 erg).

The escape fraction, which we describe shortly in the next section, depends very

crucially on the structure of the ISM, in particular to the low density channels opened

163



x (pc)

z 
(p

c)

time=0.5 Myr

 

 

0 100 200
−200

−100

0

100

200

x (pc)

4 Myr

 

 

0 500 1000
−1000

−500

0

500

1000

x (pc)

9.5 Myr

 

 

0 1000 2000

−2000

−1000

0

1000

2000

−27

−26

−25

−24

−23

−22

log
10

ρ

Figure 4.1: Density contour plot of the superbubble at different times (0.5, 4.0, 9.5 Myr) for

n0 = 0.5 cm−3, z0 = 300 pc and NO = 104. Early, intermediate and late stages of superbubble

evolution are shown. Notice the low density cone through which photons should escape at late times.

by the expanding superbubble. As studied in detail in Roy et al. (2013) [164], the

evolution of a superbubble for a sufficiently strong starburst shows two stages: first,

the Sedov-Taylor stage when the outer shock radius is smaller than the scale height;

and second, the fast breakout of the superbubble due to thermal and Rayleigh-Taylor

instabilities after it crosses a few scale-heights. The escape fraction for a density-

bounded (Strömgren radius > disk scale height) disk is expected to decrease with

time in the first stage as photons are absorbed in the dense shell. After breakout,

the escape fraction increases with time because of opening of low density channels

in the ISM. We see this effect in the time evolution of the escape fraction described

later. Figure 4.1 shows the density contour plots of our fiducial run (n0 = 0.5 cm−3,

z0 = 300 pc, NO = 104) at early, intermediate and late times. As the escape fraction

is intimately connected to the ISM porosity, it is useful to remember these various

stages of superbubble evolution in order to interpret our results.
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4.3 Calculation of escape fraction

In this section we describe the formalism to calculate the escape fraction assum-

ing photoionization equilibrium (ionization rate equals recombination rate). We can

calculate the number of photons absorbed per unit time, and hence the number of

photons escaping along different directions and at different times. Thus, the escape

fraction is a function of angle (θ), time (t) and disk/starburst parameters (n0, z0, NO).

Since the distribution of OB associations is similar in different regions, we average

our escape fraction in time, angle, and the number distribution of OB associations.

4.3.1 Ionization Equilibrium

In order to calculate the fraction of ionizing photons that escapes the disk, consider

the ionizing photons emitted within a solid angle dΩ within angles θ and θ + dθ.

First consider the case of ionization equilibrium in the disk gas, and assume that

all ionizing photons are absorbed in the medium, so that the escape fraction is zero.

If S denotes the time-dependent luminosity of ionizing photons (number of ionizing

photons produced per unit time ∝ NO; discussed in section 3.2), and α
(2)
H denotes the

recombination coefficient for case B (‘on the spot’ ionization case), then we have in

the case of ionization equilibrium in a solid angle dΩ,

S
dΩ

4π
=

∫

α
(2)
H n2

H(r)r
2drdΩ , (4.6)

where nH(r) is the number density of hydrogen (which is equal to the electron/proton

density within the ionized bubble). These considerations apply in the standard cal-

culation of Strömgren sphere (Dyson & Williams (1997) [50]), which is ionization

bounded.

In general, however, all the ionizing photons will not get absorbed; some will

escape and thus eqn 4.6 will not hold. In this case the ISM is density bounded.

Therefore, the escape fraction of ionizing photons in an angle between θ and θ + dθ
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can then be written as,

fesc(θ, t, NO;n0, z0) =
SdΩ/4π −

∫∞

0
α
(2)
H n2

H(r)r
2dr dΩ

SdΩ/4π

= 1− 4πα
(2)
H

S

∫ ∞

0

n2
H(r)r

2dr, (4.7)

where we have indicated the dependence of the escape fraction on various parameters

in parentheses. Later we will average the escape fraction over time, angle and number

of O stars. The averaged escape fraction is denoted as 〈fesc〉 where the parameters

over which averaging is done denoted in subscript; e.g., 〈fesc〉θ,t denotes the time- and

angle-averaged escape fraction as a function of NO for a fixed n0 and z0. Note that

the photon luminosity (S ∝ NO) is time dependent, and for a given OB association

S decreases abruptly after the most massive stars die off (c. f. Fig. 4.2).

The expression in eqn 4.7 is valid when the recombination time scale is shorter

than other time scales in the problem, e.g., the dynamical time scale. This puts a

condition on n0 and z0 (mid-plane density and scale height respectively) for which

we can calculate the escape fraction using eqn 4.7. The recombination time scale is

given by,

treco ≡
1

nα
(2)
H (T )

=
1

4nHα
(2)
H (T )

= 0.04n−1
H T

3/4
4 Myr , (4.8)

where we have written n = 4nH , since most of the recombinations occur in the dense

shell and α
(2)
H (T ) = 2 × 10−13T

−3/4
4 cm−3 s−1 (Dyson & Williams (1997) [50]). This

means that the balance between ionization and recombination is achieved in a very

short time.

The radius of a superbubble in a uniform density medium with density ρ is given

by (Weaver et al. (1977) [224]),

r =
(Lt3

ρ

)1/5
. (4.9)

For a scale height z0 of the gas distribution in the disk, the dynamical time is given
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by (the time taken by the superbubble to reach the scale height),

td =
(ρ0z

5
0

L
)

1

3

= 4n
1/3
H z

5/3
0,100pc N

−1/3
O Myr, (4.10)

where L is the mechanical luminosity (eqn 4.5), nH is hydrogen number density in

cm−3 and z0,100pc = z0/(100 pc), and we have assumed µ = 1.33. The condition

treco < td implies,
n4
Hz

5
0,100pc

NO
> 10−6 . (4.11)

This means that the assumption of ionization equilibrium holds for the relevant ISM

parameters and the use of equation 4.7 is valid. This assumption breaks down only

for low mid-plane densities and small scale-heights, as discussed in section 4.4.

4.3.2 Stellar ionizing luminosity

The escape fraction of ionizing photons depends on the total ionizing luminosity S

(eqn 4.7), which in turn depends on the size of the OB association, characterised

by NO, the total number of O stars. The time evolution of the ionizing luminosity

depends on the initial mass function (IMF) of the OB association and how the ionizing

luminosity and main sequence life time of stars depend on their masses. We use

Starburst99 (Leitherer et al. (1999) [117]) to calculate the evolution of the ionizing

luminosity S(t) for an OB association. The time dependence of LyC luminosity, S(t),

is assumed to be the same for all OB associations, but S(t) scales linearly with the

number of O-stars (NO). We have used the case of an instantaneous starburst and

assumed Salpeter IMF between 0.1 and 100 M⊙. Note that we have only considered

O stars in our calculation as these stars contribute the most towards the total ionizing

luminosity of an OB association. Since the least massive O stars with ∼ 20 M⊙ have

a life time of ∼ 10 Myr (see the discussion before eqn 4.5), we have used a lower

mass cutoff for supernovae at 20 M⊙ to calculate the value of NO for a given cluster

mass. This is also consistent with the relation of mechanical luminosity with NO in

eqn 4.5. The ionizing photon luminosity is initially constant when all the O-stars are
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Figure 4.2: Normalized LyC photon luminosity as a function of time for a starburst calculated

using Starburst 99. The dynamical time scale (of superbubble shells reaching the scale height) for

n0 = 0.5 cm−3, z0 = 300 pc ranges between 0.4–4.2 Myr for different NO. For these values, we also

sketch the superbubble shells vis-a-vis the disk, beginning from the left with a small spherical shell,

then with an elliptical shell slowly breaking out and finally ending with a shell whose top has been

blown off by instabilities. The short vertical line at 0.4 Myr corresponds to the dynamical time (td)

for NO = 105.
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present in the main sequence, and it decreases abruptly after 3 Myr as the sources of

ionizing photons (O-stars) start to die off. We plot a representative sketch of ionizing

luminosity as a function of time in Figure 4.2. We also sketch the different evolution

stages of the superbubble. Initially the superbubble shell is completely buried inside

the disk, and then it takes an elliptical shape. After that, the shell breaks out of the

disk, and in the final stages the superbubble ends up with a shell whose top has been

blown off by thermal instabilities and RTI.

4.3.3 Escape fraction

We calculate the escape fraction along different lines of sight varying the angle from

0 to π/2 (where we measure θ from the perpendicular to the disk), using eqn 4.7 at a

given time and for a particular NO. Then we average it over 4π steradian to get the

θ-averaged escape fraction as a function of time and NO:

〈fesc〉θ(t, NO) =
1

4π

[

2

∫ π/2

0

fesc(θ) sin(θ)dθ

∫ 2π

0

dφ

]

. (4.12)

The time-averaged escape fraction for a given NO is then,

〈fesc〉θ,t(NO) =

∫ tO
0

〈fesc〉θ(t, NO)S(t)dt
∫ tO
0

S(t)dt
, (4.13)

where tO = 10 Myr.

We plot this 〈fesc〉θ,t(NO) (eqn 4.13) as a function of NO for nH = 0.5 cm−3 and

for two values of z0 = 10 and 300 pc in Figure 4.3. For z0 = 10 pc, the dynamical

time td < treco, the recombination time scale, and the escape fraction is independent

of NO (blue dashed line), whereas for z0 = 300 pc, it increases with NO (black solid

line). In the first case, the superbubble reaches the scale height before substantial

recombination takes place in the shell, and the escape fraction is dominated by the

dynamics of the superbubble than by the recombination rate. Our formalism is not

valid in the first case, as explained in section 3.1.
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Figure 4.3: Time- and angle-averaged escape fraction as a function of the number of O stars

for two scale heights, including a smaller one for which the recombination time is longer than the

dynamical time.

Next we convolve 〈fesc〉θ(t, NO) with the luminosity function of OB associations,

as given by McKee & Williams (1997) [133],

dn

dNO

dNO ∝ 1

N2
O

dNO , (4.14)

where the LHS denotes the number of OB associations with the initial number of O

stars in the range NO and NO + dNO. The NO-averaged escape fraction as a function

of time is defined as

〈fesc〉θ,NO
(t) =

∫ NO2

NO1

〈fesc〉θ(t, NO)S(t)
dn
dNO

dNO

∫ NO2

NO1

S(t) dn
dNO

dNO

. (4.15)

For Salpeter IMF, the number of O stars NO = 0.3NOB, the total number of OB

stars. We use a lower limit NO1
= 100, corresponding to the smallest star clusters

observed by Zinnecker et al. (1993) [235], and an upper limit of 105, for the largest

clusters (Ho (1997) [85], Martin (2005) [127], Walcher et al. (2005) [220]).
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The angle and time dependence of the escape fraction from all the OB associations,

averaging over only the luminosity function, is another important quantity. We define

the luminosity-function-averaged escape fraction as:

〈fesc〉NO
(θ, t) =

∫ NO2

NO1

fesc(θ, t, NO)S(t)
dn
dNO

dNO

∫ NO2

NO1

S(t) dn
dNO

dNO

. (4.16)

We use this definition in Figure 4.5.

Finally, the average escape fraction takes the form,

〈fesc〉θ,t,NO
=

∫ NO2

NO1

〈fesc〉θ,t(NO)
dn
dNO

dNO

∫ NO2

NO1

dn
dNO

dNO

, (4.17)

which is equivalent to
∫

〈fesc〉θ,NO
(t)dt/tO.

4.4 Results

In this section we present our results, beginning with the angle and time dependence

of the escape fraction. Then show the the escaping LyC luminosity as a function of

time. Later we show the most interesting result of our study, namely, that the escape

fraction increases slightly with a decreasing halo mass and a decreasing redshift.

Finally we discuss the effects of clumpiness as applied to high redshift galaxies.

4.4.1 Angular dependence

We first turn our attention to the angular dependence of the escape fraction for

particular values of the mid-plane density (n0), scale height (z0) and NO. In Figure

4.4 we plot the escape fraction fesc(θ) (eqn 4.7) as a function of θ at different epochs

for n0 = 0.5 cm−3, z0 = 300 pc, NO = 104. The blue dotted line, black solid line, and

green dashed line represent the angle dependence of the escape fraction at 0.5, 4.0,

9.5 Myr respectively (times corresponding to the snapshots in Fig. 4.1). The escape

fraction at all epochs slowly decreases with θ at small angles from the poles and then
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Figure 4.4: Escape fraction as a function of angle (θ) at different times (0.5, 4.0, 9.5 Myr) for

n0 = 0.5 cm−3, z0 = 300 pc, and NO = 104. The corresponding dynamical time td ∼ 1 Myr. The

blue dotted line represents the escape fraction at 0.5 Myr (at t ≪ td, when the superbubble is deeply

buried in the disk), the black solid line at 4 Myr (t ≈ 4td, when the superbubble shell begins to

fragment, making the line zigzag), and the green dashed line at 9.5 Myr, when the shell opens up

completely at small angles.
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drops sharply at a cut-off angle. The reason for the decrease is that at larger angles

(away from the poles) the line of sight encounters more of the disk/accumulated gas,

and there is more recombination, making it difficult for the ionizing photons to escape.

At time scales t ≪ td, the superbubble is mostly spherical and buried deep in the

disk, and the escape fraction decreases smoothly with angle, since all lines of sight

encounter approximately the same path length through the disk, until θ ≥ 1 radian.

At these epochs, S is large, and therefore the maximum value of the escape fraction

(at small θ) is also large.

At t ∼ 2–3td, after the superbubble breaks out from the disk, the shell begins

to fragment due to radiative cooling and Rayleigh-Taylor instability (RTI; Roy et al.

(2013) [164]). These clumps give rise to the zigzag nature of the angular dependence

of the escape fraction. At small θ, the absorption of ionizing photons mostly occurs

in the shell. At angles larger than ∼ 1 rad, the escape fraction decreases rapidly,

when the path of the photon begins to encounter the swept-up disk material. At

later times the ionizing luminosity decreases (S[t]; see Fig. 4.2), and therefore the

maximum value of the escape fraction (at small θ) also decreases. At a much later

epoch, t ≫ td, the shell opens up completely at small angles, giving a boost to

the maximum value of escape fraction. However, the further decline of the ionizing

luminosity also ensures a rapid decrease in the escape fraction with angle. We also

notice a large drop in the escape fraction at small angles (near the θ-boundary in our

numerical simulation) at 9.5 Myr. This is due to artificial accumulation of cold/dense

gas near the poles, which is a feature of spherical geometry used for the simulation.

Since the solid angle covered by these small angles is negligible, our results are not

affected by this spurious behavior at the poles.

The opening angle of the cone can be estimated from the Kompaneets approxi-

mation of an adiabatic superbubble Kompaneets (1960) [107]. Consider cylindrical

geometry with (R, z) coordinates, and consider the epoch when the superbubble has

reached a height of 2z0 in the z-direction. The shell intersects the plane z = z0 at
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Figure 4.5: Luminosity-function-averaged escape fraction as a function of θ at different times (0.5,

4.0, 9.5 Myr) for our fiducial disk (n0 = 0.5 cm−3, z0 = 300 pc). The blue dotted, black solid and

green dashed lines represent the cases at 0.5 Myr, 4 Myr, 9.5 Myr respectively.

some distance from the axis r = 0. The perpendicular distance of the point of inter-

section of the shell with the plane z = z0 is (see Eqs. 7 and 8 in Roy et al. (2013)

[164]),

r = 2z0 cos
−1
[

√
e

2
[1− (1− 1/e)2 + 1/e]

]

. (4.18)

The angle that this point of intersection makes with the pole is

θ = tan−1 r

z0
= tan−1

[

2 cos−1
(

√
e

2

(3

e
− 1

e2

))]

∼ 52◦ , (4.19)

or roughly 1 rad, as expected from simple arguments mentioned above.

Next, we calculate the angular dependence of the escape fraction after convolving

with the luminosity function of OB associations (using eqn 4.16), for the same mid-

plane density and scale height. Figure 4.5 shows the angular dependence at three

different epochs (0.5, 4.0, 9.5 Myr, shown with blue dotted, black solid, green dashed

lines). The convolution with luminosity function ensures a greater contribution from

174



0 2 4 6 8 10
25

30

35

40

45

50

55

60

65

time (Myr)

θ co
ne

 

 

n
0
=0.5 cm−3

z
0
=300 pc

Figure 4.6: The time evolution of the ionization cone opening angle (θcone; where escape fraction

falls by [1− 1/e] of its peak value) for our fiducial disk (n0 = 0.5 cm−3 and z0 = 300 pc).

associations with lower NO, which leads to a marked decrease in the peak value of

fesc with time, compared to that seen in Figure 4.4.

For the parameters used in Figure 4.5, the dynamical time td ≈ 2 Myr for the

dominant NO = 600 (see Appendix A.2 for the estimate of dominant NO). The blue

dotted line shows the angular dependence at t ≪ td, when the shell is approximately

spherical and small. The solid black line shows the case when the superbubble has

broken out of the disk and has started fragmenting due to RTI. The green dashed

line shows the case at a much later epoch (t ≫ td) with a rapid fall with angle, as

explained above.

Defining the cone angle θcone as the angle at which the value of fesc drops to

(1 − e−1) of its peak value, we plot θcone as a function of time in Figure 4.6. We

find the cone angle to be ∼ 55–65◦ (of order 1 rad) at t ≤ td, as expected from the

above discussion in eqn 4.19. After superbubble breakout, θcone declines rapidly, and

reaches an asymptotic value ∼ 40◦. This is because of opening of the top part of the
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shell due to instabilities. We note that the cone angle does not represent just the

opening up of the superbubble shell as it evolves (as shown in Figure 4.1); it is also

affected by the decreasing ionizing luminosity with time. This is how we reconcile a

decreasing θcone in Figure 4.6 with an increasingly wider superbubble seen in Figure

4.1 as time progresses.

We note that our result is consistent with the results of Fujita et al. (2003) [58],

who found an opening angle of 30–40◦ of the superbubble at ∼ 6 Myr (after the

shell fragments due to RTI) in their simulation of dwarf galaxies. Our result is also

consistent with the recent observations of Zastrow et al. (2013) [231], who found an

average cone angle of ≈ 40◦ in the case of six nearby dwarf starburst galaxies. In a

survey of 6 Lyman Break Galaxies and 28 Lyman-α Emitters at z ∼ 3, Nestor et al.

(2011) [145] concluded that LyC photons escape over a fraction 0.1–0.2 of the total

solid angle, which implies a cone angle of 30–40◦.

The fact that the opening angle is never larger than about 1 radian for a disk

galaxy (eqn 4.19) also leads to an important conclusion. If we only consider the

geometric effects on the escape of ionizing photons, and assume that all ionizing

photons inside the cone manage to escape, and those outside of it do not, then the

maximum escape fraction from a disk galaxy is ∼ (1 − cos[1 radian]) = 0.5. As we

have discussed in the Introduction, this inevitable limit appears to be borne out by

the observations of fesc.

4.4.2 Time dependence of average escape fraction

The time-dependence of the escape fraction is governed by the competition between

dynamical evolution of the superbubble which opens up an ionization cone and the

lifetime of O stars. If dynamical time is short, O stars are still around at the time of

opening up of the superbubble and the escape fraction can be high.

Figure 4.7 shows the luminosity function and θ-averaged escape fraction as a

function of time for z0 = 100 pc and for two different mid-plane densities n0 =
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Figure 4.7: Luminosity-function-averaged θ-averaged escape fraction as a function of time for two

different n0 (1.5, 15 cm−3) and a particular z0 = 100 pc, to show the difference in their overall

behaviour as a function time. The dynamical time (td) for the two cases is marked with a short

vertical line.

1.5, 15 cm−3. Initially the superbubble is small compared to the scale height, and the

escape fraction depends on the magnitude of recombination in the dense shell of the

superbubble (greater recombination reduces the escape fraction). As the superbubble

grows in size, it sweeps up more and more of the ISM gas, the thickness of the shell

increases, and the escape fraction decreases. After the superbubble breaks out of the

disk, and the top of the shell opens up due to Rayleigh-Taylor instability (RTI), the

escape fraction increases if the O stars are still around.

The time scale of the onset of the RTI depends on NO, or equivalently, the me-

chanical luminosity driving the superbubble. For n0 = 1.5 cm−3, superbubbles with

NO ≈ 200 dominate (see Appendix A.2 for a discussion of dominant NO) the inte-

gration in eqn 4.17, for which td ∼ 1 Myr (marked in the figure). The onset of RTI

takes place at 4–5 times the dynamical time (Roy et al. (2013) [164]), and therefore

the escape fraction keeps decreasing until (4–5)× td. In the case of a denser medium,

177



the integration in eqn 4.17 is dominated by larger superbubbles, in this case with

NO ≈ 3 × 104, for which td ≈ 0.4 Myr. Since the dynamical time is shorter in this

case, the escape fraction reaches a minimum value at an earlier time, as shown in the

bottom panel of Figure 4.7.

Since the life times of the most massive O stars lie in the range 2–4 Myr, if the

superbubble shell breaks much later than this, the escape fraction does not increase

much at later epochs (top panel of Figure 4.7). Zastrow et al. (2013) [231] found that

the optimal time scale for the escape of LyC photons is 3–5 Myr, before which the

superbubbles have not broken out of the disk, and after which the LyC luminosity

starts declining. This is consistent with our results.

It is also important to study the final emergent ionizing luminosity (fesc × S(t)),

since this is what is observed. Figure 4.8 shows the evolution of the ionizing luminosity

for NO = 104, for the fiducial disk parameters (n0 = 0.5 cm−3, z0 = 300 pc), and for a

higher density (n0 = 50 cm−3) and a smaller scale-height (30 pc) case. Disk galaxies

produce most of their ionizing photons in the initial ≤ 3 Myr, after which the total

ionizing output decreases rapidly. Although fesc increases at later epochs (∼ 10 Myr)

due to opening up of the shell, the observed ionizing luminosity is typically small

because the decrease in photon luminosity (Fig. 4.2) is much more than the increase

in the escape fraction (Fig. 4.7). This is also borne out in the observations of SMC

and LMC by Pellegrini et al. (2012) [154] who found escape fractions from individual

cluster regions to be ∼ 0.4, but which had low ionizing luminosities. A comparison of

the emerging photon flux for the fiducial and the higher density cases shows that the

emerging flux can be larger at later times for the higher density disk, even though

the time-averaged escape fraction is lower (see Fig. 4.9). This can be understood in

terms of the propagation of the ionization front and the opening up of the low density

cone due to supernovae. The escape fraction is initially smaller for the high density

case as n2
0z

3
0/S is larger, but the superbubble breaks out faster (see eqn 4.10) for this

case because of a smaller scale height.
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Figure 4.8: Time variation of the escaping ionizing photon luminosity from a star-cluster for two

cases: n0 = 0.5 cm−3, z0 = 300 pc, NO = 104; and n0 = 50 cm−3, z0 = 30 pc, NO = 104.

4.4.3 Average escape fraction

The most important quantity for reionization and UV background is the average

escape fraction, averaged over all angles, times and the OB-association number dis-

tribution. The angular and time dependence of the escape fraction is more relevant

to understand the escape of UV photons in a particular system.

Figure 4.9 shows the average escape fraction as a function of z0 for different n0.

The curves show that with an increase in gas density, the decrease of the escape

fraction with scale height becomes sharper. For disks with small density and scale

height, the average escape fraction can be as larger as ∼ 0.5, while for n0 = 0.5 cm−3

and z0 = 300–500 pc, similar to the Milky Way disk, the escape fraction is ∼ 0.05.

However, the cases with small densities and small scale heights need to be considered

with caution, as explained below.

Figure 4.10 is a contour plot of the average escape fraction as a function of loga-

rithmic n0 and z0. The colour bar represents the value of the escape fraction. As is
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Figure 4.9: Time-averaged, luminosity-function-averaged and θ-averaged escape fraction as a func-

tion of z0 for different n0. Notice the sharp fall in the escape fraction with an increase in z0.

evident in Figure 4.9, the regions in the parameter space of n0–z0 with small density

and small scale height show larger values of the escape fraction than at high density

and large scale height.

A note on the dominant NO that contributes the most to the value of the escape

fraction is in order here. For small n0 and z0, near the bottom-left corner of Figure

4.10, the dominant value of NO is ≈ 100, and superbubbles with larger NO start

dominating as one goes towards the top-right corner (large n0 and z0). For n0 = 5

cm−3 and z0 = 100 pc, the dominant NO = 4000 (see Appendix A.2 for a discussion

of the dominant NO as a function of the disk parameters n0 and z0). The dominant

NO corresponds to the value for which the integrand in the numerator of eqn 4.17

peaks.

Recall the discussion on the validity of the assumption of ionization balance in

§3.1. Our formalism is not valid if treco > td, and this inequality depends on NO for a

given combination of disk density and scale height. We have found that this problem
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arises for small values of NO, especially at the bottom-left corner of Figure 4.10 for

small n0 and z0. In this region, the dominant NO = 100 and treco > td. We show

with a black dashed-dotted line the locus of points with treco = td for NO = 100. The

results for escape fraction for the region on the left of this line are not strictly valid.

On the right hand side of this line, the dominant NO is such that treco < td, and our

results are valid. We note that photoionization/recombination equilibrium holds for

most n0 and z0 considered here. Also, equilibrium disks with these combinations of

density and scale height correspond to very low ISM temperatures (in the range of

150–4000 K, see eqn 4.2), and should not be considered realistic.

The grey dashed thick, thinner and thinnest lines in Figure 4.10 represent constant

column densities of 1022, 1021 and 5 × 1020 cm−2, respectively, for a vertical line-of-

sight. The column density is given by,

NH = n0

∫ ∞

−∞

sech2
( z√

2z0

)

dz = 2
√
2n0z0.

(4.20)

We note that at redshift z ∼ 0, disks with NHI ∼ 1021 cm−2 dominate the mass density

of HI (Zwaan et al. (2005) [238]), and possibly also at high redshifts. Prochaska et al.

(2005) [157] however suggests that disks with NHI ∼ 1020.3 and 1021.3 contribute more

or less similarly in the overall mass-density of HI. It has been pointed out by several

authors (Cen (2012) [22], Hirashita & Ferrara (2005) [84], Schaye (2001) [171], Zwaan

& Prochaska (2006) [237]) that at z ∼ 0 the systems above NHI ∼ 1022 are very

difficult to find due to HI-H2 coversion. In general, the escape fraction is lower for

low column density systems, as expected.

The magenta solid thick and thin lines in Figure 4.10 correspond to the ISM

temperatures of 104 K and 8000 K respectively. Wolfire et al. (2003) [227] considered

the thermal and ionization balance in the Milky Way ISM, and inferred a range in

the disk temperature in which two phases can coexist to be T ∼ 7000–8500 K. We

show the lines for disks with ISM temperatures of 8000 K and 104 K according to

eqn 4.4 The escape fraction from disks at higher temperature (T ∼ 104 K) is lower
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than that at lower temperature (8000 K). As we see from eqn 4.4, higher temperature

corresponds to a larger scale height (for a given density) due to the puffing up of the

disk. In that case, it becomes difficult for ionizing photons to escape the disk, and

thus explains the behaviour of fesc with the disk temperature.

It is important to note that this density-height relation is roughly independent

of the disk (galaxy) mass and redshift. The WNM disk column increases with the

galaxy mass and redshift, but the relation between the mid-plane density and the

scale height satisfies eqn 4.4, as long as the disk temperature remains the same and

the disk is in hydrostatic equilibrium.

Finally we come to the main result of this chapter. The contours of equal values

of escape fraction roughly obey the relation n2
0 ∝ z−3

0 . In other words, disks in which

the mid-plane density and scale height are related such that n2
0z

3
0 is constant, would

have similar escape fractions. Note that in the case of a constant ionizing luminosity,

the Strömgren sphere has a radius Rs ∝ n
−2/3
0 . This means that, the disks in which

the Strömgren radius for a constant ionizing luminosity is a fixed ratio of the scale

height, would have similar values of escape fraction. In hindsight, one could argue

that this is expected from a simple theoretical argument, because the escape fraction

must depend on the amount of ionizing photons absorbed by the disk gas, and so the

ratio of the Strömgren radius to the scale height must be a relevant parameter. But

without the aid of detailed calculation such as presented here, one could not have

drawn such a conclusion with confidence, since there are a large number of competing

factors (such as opening up of low density channels) at play.

Note that lines of isothermal disks (n0 ∝ z−2
0 ; eqn 4.4) and those of constant

column density (n0 ∝ z−1
0 ; eqn 4.20) straddle the iso-fesc contours from two sides in

Figure 4.10. In other words, fesc of disks with constant WNM temperatures or disks

with a given column densities would differ slightly. Consider disks with similar WNM

temperatures that lie on the solid thick line in Figure 4.10. Disks of galaxies with

different masses would be separated on this line, given by eqn 4.23 (explained later
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in §4.5). We show two such points corresponding to halo masses 1011 and 1012 M⊙

at the present epoch. The escape fraction for the disk of the less massive galaxy is

slightly larger than that of the more massive one (by a factor ∼ 1.4).

Roughly one can fit the values of the escape fraction to the mid-plane disk density

and the scale height as,

fesc ∼ 0.1
( n0

1 cm−3

)−2/2.2( z0
135 pc

)−3/2.2

. (4.21)

This fit is reasonably good for values of n0 and z0 for which 0.133 ≤
(

n0

1 cm−3

)2(
z0

135 pc

)3

≤
7.5 and n0 ≤ 15 cm−3. Since gas density and scale height depend on the WNM tem-

perature (eqn 4.4) and the galactic mass (eqn 4.23), we can use this fit to determine

the dependence of fesc on galactic mass and the WNM temperature. Equation 4.23

states that n0 ∝ M2/(c2sR
4
d). Since Rd, the scale length, scales as the virial radius,

which scales as M1/3, we have n0 ∝ M2/3c−2
s . Combining with the above fit and the

relation n0z
2
0 ∝ c2s, we finally have

fesc ∝ M−0.15c−0.9
s . (4.22)

Therefore, decreasing the mass of a galaxy by a factor of 10 increases the escape

fraction by a factor ∼ 1.4 (as also seen from the two marked points in Figure 4.10).

Present day disks occupy the upper-left corner of the parameter space in Figure

4.10, shown by the marked points for two halos. Disk galaxies therefore have an

escape fraction of fesc ∼ 0.05–0.15, with a weak variation with galactic mass.

This result admittedly pertains to discs that are not clumpy and we have not

evolved the discs in a cosmological setting. However, our result does reveal an inter-

esting connection between disc parameters and the escape fraction. This interesting

result could be obtained only after scanning a large parameter space of n0–z0 that we

have done here for the first time. In order to scan the parameter space, we used 48

different combinations of disc density and height, and each combination had 13 runs

with different NO for the averaging over OB associations. Our aim was to explore
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the effect of disc parameters in a simple case before introducing other effects such as

clumpiness or cosmological and galactic evolutionary effects.

Another word of caution is in order here. Although we have drawn the points

in Figure 4.10 for two halo masses, guided by the eqn 4.23, they may not represent

real disk galaxies with those halo masses. For one reason, the column densities in

the prescription of Mo, Mao & White (1998) [137] are an overestimate. For example,

the disk of our Milky Way (corresponding to a halo mass of ∼ 1012 M⊙) has a

WNM column density of ∼ 2× (1.6× 1020) cm−2 at high latitudes (implying a face-

on geometry; Table 1 in Kanekar et al. (2011) [98]), almost an order of magnitude

smaller than that predicted byWood & Loeb (2000) [229] and two orders of magnitude

smaller than in the prescription of Mo, Mao & White (1998) [137]. Therefore, the

marked points in the figure should be used with caution, and we use them here to

demonstrate that low mass disks would in general occupy the upper-left corner of the

n0 − z0 space.

4.4.4 Effect of clumping in the shell

Clumpiness in the ISM can strongly affect the escape routes of ionizing photons in

more than one way. Ionising photons escape easily through the low density channels

in the ISM. On the other hand, recombination rate is high in denser regions but

the escape fraction also depends on the photon luminosity. Therefore it is not en-

tirely clear how clumpiness should affect the angle-averaged, time-averaged and OB

association luminosity-function-averaged escape fraction. Although there may not be

a one-to-one correspondence between clumpiness (for a given definition) and the es-

cape fraction, it is expected that fesc increases with an increasing clumpiness (a higher

clumpiness corresponds to the availability of low density escape paths for photons).

Wood & Loeb (2000) [229] considered distributed sources in a disc and found that

increasing the volume filling factor of clumps decreased the escape fraction. They

found that the escape fraction is larger than 1% only if the filling factor is ≤ 0.2, or
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Figure 4.11: Escape fraction for a few cases (different n0, z0, NO) are shown against the cor-

responding covering fraction (see text for details). All the densities are in cm−3 and all the scale

heights are in pc. Different points in the plot correspond to the values of θ-averaged fesc and covering

factor at different epochs of the superbubble evolution.

if the interclump (empty) regions filled up more than 80% of the ISM volume.

Thermal and Rayleigh-Taylor instabilities give rise to clumps and channels in su-

perbubble shell. These channels help the ionizing photons to escape and can increase

the value of the escape fraction. Although we have not taken into account the clumpy

nature of the ISM, the clumps in the superbubble shell mimic the clumpiness in the

ISM. In this section we discuss how a clumpy ISM can affect the escape fraction, by

studying the effect of the clumps in the shell on the escape fraction. We show that

an increased clumpiness in the medium (in the shell, and therefore, by extrapolation,

in the ISM) decreases the escape fraction.

Instead of the volume filling factors of clumps, which is difficult to infer in pro-

jected images of galaxies, we study the effect of surface covering factor on the escape

fraction in our simulations. We define the covering factor as the fraction of the total

surface area around the central source along which the line-of-sight column density
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is ≥ 10 % of the initial value. We calculate the covering factor from the epoch when

the escape fraction increases after reaching a minimum, when the shells are clumpy

enough so that one can distinguish between clumps and channels in the shell. The

column density along polar regions deceases as the superbubble evolves with time,

since most of the volume is filled with the low density gas. We have also checked the

density contours at different snapshots visually, and found that our definition of the

covering factor matches well the surface covering fraction estimated by considering

dense clumps along different lines of sight.

We show a plot of the escape fraction in a few cases (gas density, scale height

and NO) as a function of the covering fraction in Figure 4.11. One can notice that

there is a rough trend that as the covering factor decreases, the value of the escape

fraction increases. It is clear that the escape of ionizing photons is facilitated by

the opening up of pathways, which corresponds to a small covering fraction. For the

escape fraction to be larger than 10%, the covering fraction needs to be less than

∼ 70%.

While we have used a particular definition of the covering factor (or clumpiness),

in general we expect the escape fraction to rise with a decreasing covering factor.

An exception is when the UV sources are embedded inside the high density massive

clumps (which is not the case, at least in our simulations).

4.4.5 Variation with redshift

One can use the prescription of Mo, Mao & White (1998) [137] to estimate the disk

gas density for different galaxies at various redshifts (see also Wood & Loeb (2000)

[229]). Assume that the disk mass Md is a fraction md of the halo mass. Then,

assuming a stratified disk with a (vertical) density profile given by eqn 4.2, we have

(eqn 8 of Wood & Loeb (2000) [229])

n0 =
GM2

d

128πµmpc2sR
4
, (4.23)
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Figure 4.12: Escape fraction for the initial disk (without superbubbles) as a function of redshift,

for a few halo masses and NO = 100, 104. The purpose of this figure is to compare with the results

of Wood & Loeb (2000) [229].

where R is the scale radius of the mid-plane disk density (this is half of the scale radius

corresponding to the surface density, which is used in Mo, Mao & White (1998) [137];

this factor of two can make a factor of 16 difference in n0 if one is not careful). The

redshift factor enters into this relation through the scale radius R, which is related

to the virial radius rvir, which depends on the redshift (see eqn 5 of Wood & Loeb

(2000) [229]). One therefore obtains n0 (and therefore z0) for the disk of given halo

mass at a certain redshift. At high redshifts, disks with the same WNM temperature

would slide down the solid lines in Figure 4.10 towards higher density and smaller

scale height. Therefore in principle, one predicts smaller fesc for disks with a given

mass and temperature at higher redshifts. However, this weak trend is likely to be

mitigated by the stronger effect of clumpiness on the scape fraction, as described

below.

We note that instead of the mid-plane density and scale height, another set of
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parameters that can describe a disk are the disk mass and its spin. The mid-plane

density (n0) is connected to the disk mass (Md) and scale radius (R) via equation

4.23. In the scenario of dark matter haloes gaining angular momentum through tidal

torque, it is conventional to use a dimensionless spin parameter λ as,

λ = Jh|Eh|1/2G−1M
−5/2
h , (4.24)

where the angular momentum of the halo is Jh and its total energy it Eh, with a

total mass Mh. The fraction of the halo angular momentum transferred to the disk

is parameterised by jd = Jd/Jh, where Jd is the disk angular momentum. Thus the

scale radius (R) is connected to the spin parameter via the following equation (Mo,

Mao & White (1998) [137]),

R =
( jd√

2md

)

λrvir (4.25)

The scale height is also connected to the mid-plane density via equation 4.2. There-

fore, n0 and z0 are related to the disk mass and the spin parameter.

We recall that Wood & Loeb (2000) [229] considered discs with distributed sources,

without any dynamical movement of the gas in the disc. For such discs, the escape

fraction depends only on radiation transfer aspects (and not on opening up of the

superbubble), and depend on the redshift because of the n2 dependence of the re-

combination rate. High redshift discs with large gas density would have small escape

fraction. Wood & Loeb (2000) [229] showed that the escape fraction drops sharply

with an increasing redshift because of this. In Figure 4.12 we show the variation of

fesc with the halo mass and redshift for NO = 100 and 104, but without considering

the dynamical effects of superbubbles. The case with large NO has large values of fesc

and falls less sharply with redshift because of a higher ionizing luminosity (see eqn

4.7). However, when the luminosity function of OB association is taken into account,

the low NO associations dominate, and therefore the discs in our calculation also show

rapid decline of fesc with z as in Wood & Loeb (2000) [229].

We do not expect the Wood & Loeb (2000) [229] prescription for the structure of

smooth disks to apply at high redshifts because it predicts extremely large densities
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and tiny scale heights for even moderate redshifts. For example, for Mh = 1012M⊙ at

z = 3, the density n0 ∼ 200 cm−3 and a scale height z0 ∼ 13 pc. These disks are likely

to cool quickly (tcool ∼ 3.3× 10−6 Myr), form stars and puff up from feedback effects.

These disks will therefore not be able to sustain their high density and small scale

heights for long time. Moreover, frequent mergers at high redshifts make it difficult

for smooth equilibrium discs to survive.

Observationally, one does not find disc-like structures at redshifts beyond ∼ 2, and

high redshift disc galaxies are likely to be clumpy (Conselice (2014) [29]). Drawing

from our discussion on clumping in the previous section, it is then likely that fesc

increases with redshift due to increasing clumpiness in discs. Such an increase is

consistent with the requirements of reionization (Mitra et al. (2013) [136]).

Figure 4.13 shows a schematic representation of a clumpy ISM expected in a high

redshift galaxy. We expect the escape fraction to be higher for such a case for several

reasons: clumps are more spherical (the difference between z0 and the scale radius

is not as large as in disks) and photon escape both due to radiative effects and due

to gas dispersal via supernovae can lead to photon escape in all directions (unlike in

disks in which photons moving along the disk plane are always absorbed); the clumps

are themselves more perforated because of higher star-formation and merger rates

at higher redshifts; if most of the clumps are molecular (as is likely in at least in

star-forming galaxies at high redshifts; Tacconi et al. (2010) [198]) then the escape

fraction is higher (as the temperature is much lower and since n2
0z

3
0 ∝ T ; see eqn 4.7).

A self-consistent numerical calculation is required to calculate the escape fraction in

disturbed galaxies at high redshifts because of several complexities, but the escape

fraction is likely to be larger than in static equilibrium disks.

Based on the discussion above, it is then likely that disks at high redshifts did not

have extremely large density (or very small scale heights) as expected from simple

extrapolations of scaling relations. If disks at high redshifts had gas density in the

range n0 ≤ 10 cm−3 and scale height ≥ 100 pc, then our results imply that those
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Figure 4.13: Schematic diagram of a clumpy ISM at high redshift. The ellipses represent ISM

clumps in which star formation occurs; one of them has a starburst at its center which opens up a

superbubble. The thin rays with arrows show LyC photon trajectories through the ISM.

disks also had an escape fraction fesc ∼ 10(±5)%, similar to present day disks. The

presence of clumpiness at high redshift would introduce an additional uncertainty,

and is likely to increase the value of the escape fraction.

4.5 Discussion

Our main result is that the escape fraction of ionizing photons depends on the com-

bination of disk gas density and scale height, in particular, on the combination of

n2
0z

3
0 . The relation between gas density and scale height in turn depends on the disk

gas (WNM) temperature. The dependence of the escape fraction on other galactic

parameters (such as mass and redshift) will be determined by how the WNM temper-
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ature and the disk structure depend on these parameters. The WNM temperature

in our Milky Way is known to be ∼ 8000 K (Wolfire et al. (2003) [227]). It is be-

lieved that the WNM temperature increases with decreasing metallicity, because of

lack of cooling routes in a low metallicity gas. It is therefore generally thought that

the WNM temperature is higher at high redshift, because of metallicity evolution in

galaxies. Recent observations of damped Lyman-α systems at z ∼ 3 support this

idea and have found a WNM temperature of ∼ 104 K (Cooke et al. (2015) [31]). The

fact that the spin temperature for 21 cm radiation tends to increase with redshift

also supports this ( Kanekar et al. (2014) [99]). Therefore disk galaxies at z ∼ 3 will

have similar escape fractions as in the Milky Way, since the escape fraction does not

change substantially for WNM temperature in the range of 8000–104 K, as seen in

Figure 4.10. At higher redshifts, however, the disk column density is higher and the

escape fraction is expected to be smaller (see section 4.5 for details).

Our result of an increasing escape fraction with a decreasing galactic mass can be

compared with previous results. Razoumov & Sommer-Larsen (2010) [159], Yajima

et al. (2011) [230] have found a decreasing trend of escape fraction with an increasing

galactic mass, although Gnedin et al. (2008) [67] found an opposite trend. However,

these results stem from the dependence of clumpiness on disk mass (disks in Yajima

et al. (2011) [230]’s simulation became more clumpy with increasing mass), or the

dependence of disk thickness with galactic mass (in the case of Gnedin et al. (2008)

[67]). In contrast, our results pertain to smooth disks, and relate the escape fraction in

terms of fundamental disk parameters instead of explicitly coupling it to the galactic

mass. We have separately discussed the effect of clumpiness on the escape fraction,

which can be used in conjunction with our basic result.

Figure 4.10 shows that present day disks likely occupy a region of the parameter

space of density and scale height such that fesc ∼ 10(±5)% (upper left corner of the

solid line for isothermal disks). This matches with the requirements for the presence

of the Ultraviolet (UV) background radiation in the galaxies (Heckman et al. (2001)
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[74], Hurwitz et al. (1997) [91], Leitherer et al. (1995) [116]), as well as with direct

estimates of escape fraction of Milky Way and present day disc galaxies (Bland-

Hawthorn & Maloney (1999) [10], Zastrow et al. (2013) [231]). However, one must

bear in mind that, fesc strongly depends on the orientation of the object in the plane

of the sky, as previously shown (Dove et al. (2000) [45], Fujita et al. (2003) [58]) and

as our calculations confirm. Therefore, the observational estimates may be lower than

the angle-averaged values presented in this chapter.

If high redshift disks have disk gas density ≤ 10 cm−3 and scale heights ≥ 100

pc, then our results imply that those disks would also have fesc ∼ 10(±5)%, modulo

the effect of clumping. This is consistent with requirements from models that explain

the epoch of reionization with stellar sources (Barkana & Loeb (2001) [6], Fujita et

al. (2003) [58], Gnedin (2000) [66], Inoue et al. (2006) [93], Madau & Shull(1996)

[124], Miralda-Escudé et al. (2000) [135], Mitra et al. (2013) [136], Paardekooper et

al. (2013) [152], Razoumov & Sommer-Larsen (2010) [159], Robertson et al. (2013)

[162], Sommerville et al. (2003) [184], Yajima et al. (2011) [230]). Recent numerical

simulations by Kimm & Cen (2014) [105] have found an average value of fesc ∼ 10 %

(∼ 15% including the effect of runaway OB stars) in galaxies with mass 108–1010.5 M⊙,

and also found this average value to be constant over redshift. Our calculations put

these results in the perspective of the underlying connection between disk parameters

and the escape fraction.

4.6 Summary & Conclusions

We summarise our conclusions below:

• Ionizing photons escape from disc galaxies within a cone of angle ∼ 55◦, before

the superbubble breaks out of the disc, and within ∼ 40◦ towards the end of

the lifetime of OB stars.

• The ionization cone is unlikely to be larger than an opening angle of 1 radian for
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disk galaxies. This puts an upper limit on the escape fraction for disk galaxies

of 0.5 from geometric considerations.

• The escape fraction initially decreases, when the superbubble is buried within

the disc. It reaches a minimum at the breakout epoch and slowly increases with

the opening of the shell and the formation of clumps and pathways for ionizing

photons.

• The time-averaged, angle-averaged and OB association luminosity-function-

averaged escape fraction for non-clumpy discs depends mostly on the WNM

temperature and the column density. For typical parameters, we estimate an

escape fraction of disk galaxies to be ∼ 10(±5)%.

• Escape fraction decreases with the increase of surface covering fraction, although

there is no one-to-one correspondence, because the escape fraction depends on

several factors (such as the gas density, scale height, OB association mass, and

time). Therefore, the escape fraction for high redshift discs is likely to be higher

due to the clumpy nature of ISM at those epochs.

• A non-negligible escape fraction, especially at high redshifts relevant for reion-

ization, is possible only if superbubbles open up a low density ionization cone

through which ionizing photons leak into the IGM. The clumpiness of the ISM

and the distribution of massive stars (which produce most UV photons) play

an important role in determining the escape fraction.
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Chapter 5

Molecule formation in violent

environment : starburst nuclei

Based on : “Molecular outflows in starburst nuclei”

Roy, A., Nath, B. B., Sharma, P., Shchekinov, Y., 2016, submitted to MNRAS,

arXiv:1607.04328
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Apart from the escape of ionizing photons (discussed in chapter 4), the evolution of

superbubble shells in a dense ambient medium can also give rise to molecular ouflows

in the central region of a star-burst galaxy. There are a few observations of nuclear

molecular outflows in the local universe, and it is surprising that all of them have sim-

ilar molecular masses, sizes, and expansion velocities. Striking similarities pose some

obvious questions : (i) Do all of these molecular outflows have similar origins? (ii)

Do all of them have similar molecule formation and destruction mechanisms? In this

chapter, we address these questions and model the molecular outflows theoretically.

Primary results

• We find that molecules can form in expanding shells in the central region of star-

burst galaxies with SFR≥ 1 M⊙ yr−1, equivalently the number of O, B stars in

the OB association corresponds toNOB ≥ 105 in the nuclear region with the mid-

plane density n0 ∼ 200–1000 cm−3 and scale-height z0 ≥ 200(n0/100cm
−3)−3/5

pc. This threshold condition of (n0, z0) implies that molecules form in environ-

ment where the threshold gas surface density is ≥ 2000 M⊙ pc−2.

• Molecule formation is favoured by the SFR surface density of 10 ≤ ΣSFR ≤ 50

M⊙ yr−1 kpc−2, matching well with observations.

• The estimated molecular mass of the outflow comes out to be ∼ 106–107 M⊙

at a distance of ∼ a few 100 pc from the centre of the discs with an expansion

speed of ∼ 30–40 km s−1, consistent with observations.
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5.1 Introduction

Observations show that outflows from starburst galaxies contain gas in different

phases, which manifest with different emission mechanisms and are probed in dif-

ferent wavelengths. The fully ionised component usually show up through free-free

emission and is probed by X-ray observations (Strickland et al. (2004) [192], Heck-

man et. al. (1990) [79]). Partially ionized/atomic component are more clumpy than

the fully ionised gas, and are probed by line emission from various ions, e.g. NaI,

MgII etc Heckman et al. (2000) [75]. Outflows from some nearby starburst galaxies

have also been observed to contain a molecular component. Understanding the dy-

namics of this molecular component has become an important issue, in light of recent

observations with ALMA and further observations in the future.

Bolatto et al. (2013) [13] observed a molecular outflow in the central region of NGC

253 with a rate of ≥ 3 M⊙ yr−1 (likely as large as 9 M⊙ yr−1), with a mass loading

factor 1–3. Four expanding shells with radii 60–90 pc have velocities of ≃ 23–42 km

s−1, suggesting a dynamical age of ∼ 1.4–4 Myr. The inferred molecular mass is

(0.3 − 1) × 107 M⊙, and energy ∼ (2 − 20) × 1052 erg. These shells likely outline a

larger shell around the central starburst region.

Tsai et al. (2012) [210] observed a molecular outflow in NGC 3628 with the CO

(J=1-0) line. The outflow shows almost a structureless morphology with a very weak

bubble breaking through in the north part of the central outflow. Its size of∼ 370–450

pc, inferred molecular mass of ∼ 2.8× 107 M⊙, and outflow speed ∼ 90± 10 km s−1,

suggest a total kinetic energy of molecular gas of ∼ 3× 1054 erg.

More recently Salak et al. (2016) [167] observed dust lanes above the galactic

plane in NGC 1808 along with NaI, NII, CO(1-0) emission lines tracing extraplanar

gas close (within 2 kpc) to the galactic centre with a mass of 108 M⊙, and a nuclear

star formation rate of ∼ 1 M⊙ yr−1. The velocity along the minor axes varies in

the range 48–128 km s−1 and most likely indicates a gas outflow off the disk with an

estimated mass loss rate of (1–10) M⊙ yr−1.
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The molecular outflow observed in M82 has a complex morphology. The part of it

outlined by CO emission is at a larger radii than the part seen with HCN and HCO+

lines. The CO (J=1-0) observations show diffuse molecular gas in a nearly spherical

region of radius ∼ 0.75 kpc, with a total molecular mass 3.3×108 M⊙, with an average

outflow velocity of ∼ 100 km s−1 Walter et al. (2002) [222]. The corresponding kinetic

energy of the CO-outflow is of ∼ 3× 1055 erg. More recently Salak et al. (2014) [166]

re-estimated the mass and kinetic energy of CO gas to be larger by factors of 3 and

3-10 respectively. Notably, the molecular outflow morphology is similar to that of the

dust halo described by Alton, Davies & Bianchi (1999) [4].

The morphology of the region of the outflow observed in HCN/HCO+ is similar

to that of the CO outflow – it is amorphous and nearly spherical with slightly smaller

length scale: the radius of the HCN region is of 400–450 pc, and around 600 pc for

HCO+; both HCN and HCO+ emissions show clumpy structure with characteristic

size of 100 pc Salas et al. (2014) [168]. The kinematics and the energetics differ slightly

from those inferred for the CO-outflow: the mean de-projected outflow velocity for

HCO+ is 64 km s−1, while for HCN it is 43 km s−1. The total molecular mass

contained into the HCN (HCO+) outflows is ≥ 7(21)× 106 M⊙, which in total is an

order of magnitude lower for molecular outflows associated with CO Walter et al.

(2002) [222]. The kinetic energy of the outflow associated with HCN/HCO+ emission

ranges between 5–30× 1052 erg. The molecular outflow rate is ≥ 0.3 M⊙ yr−1. They

also inferred a SFR of ∼ 4–7 M⊙ yr−1 from free-free emission.

These observations pose a number of questions that we address in this chapter:

are the molecules formed in situ in the flow or are they entrained the flow, or are

the residues of the parent molecular cloud (in which the superbubble has gone off)?

What are the typical length scales, time scales, molecular mass and speed? How are

these related to the SFR, or disk parameters (e.g., gas density, scale height)?

In this chapter we outline a model which includes the basic physical processes

for producing a molecular outflow in starburst nuclei, and addresses some of these
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issues. We have kept our model simple enough to be general, but it has the essential

ingredients in order to explain some of the observed parameters mentioned above,

namely the length scales and velocities, as well as an estimate of the molecular mass.

Our results can become the base models of more sophisticated numerical simulations

which would be able to address finer details of this complex phenomenon.

We use a model of a shell propagating in a stratified ISM in our calculation. Such

an outflow is inherently 2-dimensional, with the dense shell pushed out to a roughly

constant stand-off radius in the plane of the disk, while the top of the bubble is blown

of by Rayleigh-Taylor instability. In steady state, a dense shell (in which molecules

can form) exists in a dynamically young (r/v ∼ few Myr) conical shell confined within

a few times the scale-height (see Figure 5.2 for a cartoon; for numerical simulations,

see Figs 2, 3 of Sarkar et al. (2015) [169]). For analytical tractability, we consider the

formation and survival of molecules in the dense shell expanding in a stratified disk.

All starburst nuclei discussed in the chapter show a CO disk and biconical outflows

emanating from them. We expect our simple estimates to apply, at least to an order

of magnitude, for the realistic scenario.

We begin with a discussion of the phase space of molecular and ionic components

of outflows from starbursts, and after eliminating various possibilities we arrive at

a basic scenario (§2). In the later part of this section, we study various physical

constraints on the parameters of the starburst and the disk galaxy for producing

molecular outflows. Next we discuss the physical processes involved in the formation

and destruction of molecules in these outflows (§3) and present our results in §4.
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5.2 Arriving at a physical model

5.2.1 Radius-velocity space of molecular and atomic compo-

nents

The phase space of the outflows with molecular and ionic components that we intro-

duce below can be instructive in order to arrive at a physical model. Consider the

case of a dense shell of a superbubble triggered by an OB association. In the case of

a uniform ambient medium density ρ, the position and velocity of the shell are given

by,

r ∼
(Lt3

ρ

)1/5

; v ∼ 3

5

(L
ρ

)1/5

t−2/5 ≈ 3

5

(L
ρ

)1/3

r−2/3 , (5.1)

where L is the mechanical luminosity driving the superbubble. In other words, the

position and velocity of the shell are related as r ∝ v−3/2. We can first compare this

with observational data. However, in order to make a meaningful comparison between

galaxies with different SFR, one can take out the dependence on SFR, by plotting

v/(SFR)1/5 against r/(SFR)1/5, since both r and v depend on L (and consequently,

the SFR)

We show in Figure 5.1 data from observations of molecular components from NGC

253 and NGC 3828 (black points), and M82 (HCN component in magenta, and the

warm component in cyan). The length scales and velocities of this component are

known from imaging and spectroscopic observations. It is not easy to determine the

distances of atomic clouds that are usually probed by absorption lines. However

there are a handful of cases of outflows from edge-on galaxies where one has reliable

information on the position and speed of the atomic clouds (M82, NGC 3079, 5253,

1482, 4666, 1808). These are shown as olive green points in the same figure. We also

show the data of atomic components in outflows from ULIRG as red points (from

Martin (2005) [127]).

We also show as brown slanted lines the simple scaling of v ∝ r−2/3, for different

uniform ambient densities ρ, with the density being the largest in the bottom-left
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Figure 5.1: Phase space of molecular and atomic outflows, with points representing different

observations of molecular (black and magenta points) and atomic outflows (olive green points), as

well as atomic outflows from ULIRGs (red points). The cyan point represent the warm (2000 K)

molecular outflow of M82. The black-dashed, green-dotted, magenta-dashed-dotted and the brown

solid lines show the simulation results for superbubble evolution with radiative cooling for different

combinations of mid-plane density and scale height (as labelled, with the first number of the pair

being density in cm−3 and the second being the scale height in pc). Orange solid lines represent the

v–r lines for different fixed hydrogen particle densities (of the ambient medium) ranging from 0.01

cm−3 (top) to 104 cm−3 (bottom), and for a given mechanical luminosity injection. The density

increases from top to bottom with the increment by a factor of 10 between two consecutive lines.

The blue solid lines are for different epochs in the logarithmic scale. The first ten lines are separated

by 1 Myr starting from 1 Myr to 10 Myr, and the rest of the ten lines have a separation of 10 Myr

between two consecutive lines ranging from 10 Myr to 100 Myr.
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corner (n0 = 104 cm−3) and the smallest (n0 = 10−2 cm−3) in the top-right corner

of the diagram. The blue lines are the iso-chrones at different times, starting with 1

Myr from the top and each line separated by 1 Myr from the next, and separated by

10 Myr after the 10 Myr mark.

It is interesting that the molecular and atomic components separate out into

different regions in the phase-space. (One cyan point among the olive green and red

points for atomic component refers to the case of warm (2000 K) molecules in M82.)

They also separate out with regard to the constant density lines although there are

some exceptions. In other words, molecules appear to probe small scale outflows

and high ambient density regions, whereas the atomic components probe large scale

outflows (≥ 1 kpc) and low ambient density. However, we note that here the length

scales and velocities are normalized by SFR1/5 and so the diagram may not allow such

a neat interpretation in terms of length scales and velocities.

The molecular and atomic components may not appear to be parts of an evo-

lutionary sequence in the context of a uniform ambient medium, but they may be

related if the density is not uniform as in the case of a stratified disk gas. We show

the evolution of the vertical heights of superbubbles triggered by an association of

105 OB stars (the reasons for this choice of parameter will be explained later), in

an exponentially stratified medium characterised by mid-plane density n0 and scale

height z0. The dashed, dot-dashed, dotted and solid lines show the cases for different

combinations of mid-plane density and scale heights (labelled by these parameters,

n0 in units of cm−3, and z0 in pc). The evolutionary tracks are different from slanted

lines because of stratification and radiative cooling in the simulations. However, the

point to be noted is that the atomic/ionic outflow data points may be connected to

the molecular outflow data points through such evolutionary curves of superbubbles

in a stratified medium, connecting these two apparently disparate phenomena with

an evolutionary sequence.
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5.2.2 Preliminary estimates

These observations lead to a few preliminary estimates. For example, from typical

sizes and velocities in observed outflows in NGC 253 and NGC 3068 one infers a

dynamical age of r/v ∼ 2–4 Myr. Assuming that the age of the star cluster associated

with the outflow is longer than the main sequence lifetime of the least massive OB

star, i.e. 30 Myr, and with a constant SFR of a few M⊙ yr−1, the total number of SNe

exploded during the dynamical time scale is ∼ 105, and a total SNe energy of ∼ 1056

erg. The total kinetic energy deposited by these SNe is ∼ 7 × 1055 erg. However,

when a SN remnant enters the radiative phase, its energy (both kinetic and thermal)

is lost and a small fraction remains in the form of kinetic energy. Smith (1993) [182]

have shown that the energy of SN remnants decrease as ∝ R−2 in the radiative phase.

Assuming that SN remnants merge with each other earlier than when their radii grow

3 times since the onset of radiative phase Nath & Shchekinov (2013) [139], we arrive

at the estimate of kinetic energy available for molecular outflow as ≃ 7 × 1054 erg.

Therefore the observed kinetic energy of the molecular outflow (< 1053 erg s−1) is

much smaller than the mechanical energy deposited by stars. This is even smaller

than the mechanical energy retained by the superbubble, assuming that 90% of the

mechanical energy is lost via radiative cooling Gupta et al. (2016) [70], Sharma et al.

(2014) [174], Vasiliev et al. (2015) [215].

These considerations point towards the following scenario. Suppose that the cen-

tral starburst drives a shell by multiple SNe explosions. A quasi-spherical expanding

shock wave from an OB-association becomes unstable against Rayleigh-Taylor and

Kelvin-Helmholtz instabilities (the latter begins to be operative when the shock front

expands into the halo where the front goes up faster due to decreasing density and

a tangential component emerges) Mac-Low et al (1998) [120]. In the next stage the

uppermost part of the front breaks and forms an outflow in the vertical direction,

while the rest of the shell fragments and forms multiple clouds and clumps moving

pervasively within the expanding shell. The expanding molecular gas can be swept
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up at the observed distance D ∼ 500 pc by the quasi-spherical shock wave propagat-

ing in an exponentially stratified gas layer with the scale height z0 = 100 pc and the

mid-plane density n0 = 3×102 cm−3, such that characteristic cooling time at T ∼ 106

K is only 100 yr, and the current observed state of molecular outflow is consistent

with the fact the majority of energy has been lost.

We elaborate on this model in the rest of the chapter. However, let us consider

here briefly the possibility that the molecular clumps are pushed by radiation pressure.

Molecular clumps are dense enough to ensure tight collisional coupling between dust

and gas particles. In such conditions the radiation force acting on the clump, and the

resulting acceleration, are

FR ∼ πR2

c
Φ, aR ∼ 3

8

Φ

mHNHc
, (5.2)

where R is the clump radius, Φ is radiation energy flux, NH is the column density

of the clump, where we explicitly assumed NH2
= 2NH. The energy flux can be

estimated as Φ ∼ 300N∗L⊙/4πD
2, for a Kroupa IMF with N∗ being total number of

stars in the underlying central stellar association, D is the distance of clumps from

the galactic centre. For the same IMF one can assume N∗ ≃ 100NOB, NOB being the

number of OB stars in the association. For D ∼ 500 pc, NH ∼> 1022 cm−3 for a typical

molecular cloud, one obtains

v ∼
√

2

∫

aRdr ∼ 30 km s−1 × (NOB/10
5)1/2 . (5.3)

Therefore radiation pressure alone cannot possibly explain the typical length scale

and velocities of the observed outflows. Moreover, although the molecular outflow is

dynamically young, the nuclear starburst may be old enough such that most luminous

O-stars (producing radiative acceleration) are absent. 1-D numerical simulations show

that radiative acceleration plays a subdominant role after a few Myr Gupta et al.

(2016) [70].
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Figure 5.2: Schematic diagram for the model of outflow used in this chapter, with a superbubble

shell ploughing through a stratified disk. The observed morphology is shown in grey tones, and the

idealised superbubble shell is shown with dashed lines. A zoomed version of the shell is shown on

the right, highlighting the region where CO forms (for details, see §4.2). The arrows at the bottom

of the zoomed shell denote photons incident on the shell. Another zoomed version of the shell is

shown on the left, that portrays the density and temperature profile in and around the shell. See

§4.1 for an explanation of this aspect.
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5.3 Physical model

Consider a central OB association embedded in a dense stratified disk. The strat-

ification in the disk is assumed to be exponential, with a scale height of z0 and a

mid-plane particle density n0. The ambient temperature is assumed to be in the

range of few tens of K, appropriate for a dense region, with densities in the range

of 100–1000 cm−3. The mechanical luminosity arising from stellar processes in the

OB association drives a shock through the ambient medium, and this superbubble

sweeps up ambient matter, which cools and forms a dense shell. The morphology of

the observed molecular outflows (mentioned in §1) suggests an epoch when the shell

has broken out of the disk, as shown in the schematic diagram in Figure 5.2. The

observed morphology is shown in grey tones whereas the idealised scenario of a su-

perbubble adopted in this chapter is shown with dashed lines. Mac-Low et al (1998)

[120] have shown that most of the mass in the superbubble is confined to regions near

the disk. However, for analytical simplicity of a 1-dimensional calculation, we assume

a quasi-spherical shell, and consider its height as the indicator of its distance. The

diagram also shows a zoomed version of the shell, and highlights the region of CO

formation which will be our region of interest for the calculation of molecule forma-

tion/destruction (§4.2). Another schematic zoomed view of the shell is shown on the

left that shows the density and temperature profiles in and around the shell. We will

describe this structure in detail in §4.1.

The parameters used for the stratified disk (the midplane density from 100 to 103

cm−3, and the scale height 50 to 200 pc) correspond roughly to a molecular cloud with

the surface gas density of Σg ≃ (103 − 104)M⊙ pc−2 (equivalent to typical column

densities of molecular clouds N(H) = 1023–1024 cm−2), or the total mass of molecular

cloud with size D = 1 kpc of M ∼ 2× 108 − 1010M⊙ (for µ = 2, where µ is the mean

molecular weight).

Consider the minimum size of the OB association needed to explain the obser-

vations which show outflowing shell at ∼ 500 pc with a speed ∼ 50 km/s. The
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Figure 5.3: The evolution of mechanical luminosity (Lmech), Lyman continuum photon luminosity

and luminosity in the FUV (SFUV), and Lyman-Werner band for NOB = 105 (SLW), calculated

using Starburst99. In this figure, we have plotted Lmech × 1012 to accommodate the mechanical

luminosity curve along with the other luminosity plots. The slowly growing part on mechanical

luminosity on initial stages (t < 2 Myr) is due to active stellar wind from massive stars; at t > 3

Myr SNe explosions become dominant.

observations of a molecular mass of ≥ 107 M⊙ implies a minimum gas density of

∼ 100 cm−3. For a superbubble expanding in a uniform medium of density ρ, the

required mechanical luminosity L for an outflow to have a speed v at distance r,

is given by L ≈ (5/3)3ρ v3r2. The above mentioned observed parameters of speed,

distance and density, therefore implies a minimum mechanical luminosity of ≥ 1041

erg s−1, which corresponds to ≥ 105 OB stars (which we refer to as NOB) Roy et al.

(2013) [164]. We will use this value of NOB as a fiducial number in our work here.

The evolution of the Lyman continuum luminosity of the central source is calcu-

lated with Starburst99 code for instantaneous star formation. We also show the evolu-

tion of Lyc and Lyman-Werner band photon luminosities in Figure 5.3 for NOB = 105.

Although the mechanical luminosity varies with time, for simplicity we use a constant
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value (1041 erg s−1) as shown by a red dashed horizontal line, and which is a reason-

able approximation within the time scale of 10 Myr considered here. Note the initial

rise and subsequent decline in the FUV luminosity (solid line) with time. This be-

haviour of the FUV luminosity will be important in understanding the evolution of

the thermodynamics of the shell, as will be described later in this chapter.

5.3.1 A flow-chart of our calculation strategy

We first describe the formalism of our calculation before discussing the details.

• Dynamics :–We first study the dynamics of a superbubble in a stratified medium.

Since the density is large, cooling is important, and therefore the standard so-

lution of Weaver et al. (1977) [224] for uniform media, or the Kompaneets

approximation Kompaneets (1960) [107] for an adiabatic shock wave from a

point explosion in a stratified atmosphere, is not adequate. We use hydrody-

namical simulations with gas cooling in order to obtain the evolution of the

shell. However, in order to focus on the essential physical processes, we only

use the vertical height of the shell (denoted here by z+), and ignore the effects

of deviations from sphericity of the shell. We describe the numerical set up in

§B.1, and use the results of z+(t) and the corresponding superbubble velocity

in our calculation.

• Thermodynamics:– Given the knowledge of the dynamics of the superbubble,

we then discuss the (density and temperature) structure of the shocked gas in

§5.4.1. We focus on thermodynamics of the the cool, dense shell that forms

behind the shock. We assume the density jump between the shell density and

the stratified ISM density to be constant in time, for simplicity. Although not

precise, this assumption allows us to glean qualitative trends. The estimates

of the density jumps are given in 5.4.1 in the presence of the ISM magnetic

field. Then we describe the dominant heating processes (photo-electric heating)
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and gas cooling (§5.4.2). The photo-electric (PE) heating rate is calculated for

the FUV photon luminosity (SFUV ) with dust extinction (see Appendix B.4

for details). One also needs to have an estimate of the electron density (ne)

to calculate the PE-heating rate. The diffuse ISM UV photon luminosity is

responsible for ionization of the ambient gas, that lies outside the Strömgren

sphere for the central source. We calculate ne assuming ionization equilibrium.

We solve two coupled equations using thermal equilibrium (equating PE-heating

with cooling) and ionization equilibrium to obtain the equilibrium shell tem-

perature (Tshell(t)), and ne. We also demonstrate that the heating and cooling

time scales are much shorter than the dynamical time scale, and thus thermal

equilibrium in the shell is a good approximation (§B.5).

• Molecule formation:–Equipped with the knowledge of the density and tem-

perature of the dense shell, we discuss the processes of molecule formation

and destruction (using H2 as a proxy for all molecules) in §5.5, and calculate

the amount of molecules formed in the shell in different cases (§5.5.1). The

Lyman-Werner band photon luminosity (SLW ) is used to calculate the photo-

dissociation of the molecules, after taking into account the effect of dust extinc-

tion.

A schematic diagram of the flowchart of the calculation strategy is shown in figure

5.4.

However, the formation of molecules requires some basic conditions to be met.

In section 5.3.2, we discuss the threshold conditions for molecule formation in the

outflowing shell, determined by the ionization due to the OB association.
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Figure 5.4: The schematic diagram of the flowchart of the calculation

5.3.2 Threshold conditions for molecule formation in out-

flows

When the OB association is born, the initial spurt of ionizing photons will send an

ionisation front propagating through the surrounding medium, asymptotically form-

ing an ionized zone (Strömgren sphere). The gas will be largely swept-up in a shell

such that the remaining gas becomes as dilute as having 2 to 2.5 orders of magni-

tude lower density than in the host cloud Dale et al. (2014) [38], Freyer, Hensler &

Yorke (2003) [57], Garćıa, et al. (2013) [61]. At the same time the supernovae and

stellar winds arising in the OB association trigger an expanding superbubble that

ploughs through the surrounding medium. Conditions inside the ionisation front will

not support the formation any molecules, and any existing molecule (entrained from

the parent molecular cloud) will likely get photo-dissociated. Therefore, as long as

the superbubble shell is inside the ionisation front, its shell will propagate in a low-

density environment and will not show any molecules. Initially, the ionization front

would always move faster than the superbubble, and molecules cannot form in the

shell until it has overtaken the ionization front.
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corresponding n0–z0 cases.
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We use hydrodynamical simulation (described in detail in Appendix A) in order

to calculate the evolution of the superbubble. The mechanical luminosity driving

the superbubble is assumed to be constant in time, L ≈ 1041 erg s−1 × (NOB/10
5)

as obtained from Starburst99. In order to focus our attention to the basic physical

processes, we consider the evolution of the vertical height (z+) of bubble and compare

with the ionization front in that direction.

The evolution of the ionization front rI is obtained by integrating,

drI
dt

=
(SLyc(t)− 4πr3IαHn

2/3)

4πr2In
, (5.4)

where αH is the case B recombination coefficient of hydrogen. We have calculated rI

for the Lyc photon luminosity profile (SLyc(t)) as obtained from Starburst99, and for

an exponentially stratified density structure. As the ionisation front propagates, it

gives rise to a D-type front, whose distance can be estimated by eqn 37.26 of Draine

(2011b) [48]. The epoch of conversion in to a D-type front can be estimated by eqn

37.15 of Draine (2011b) [48].

For simplicity, we have calculated the evolution of the ionization front and the

superbubble shell independently. In other words, the shell is assumed to move in a

neutral medium, and the ionization front is assumed to move in a uniform density

medium. For most cases, except for n0 = 100 cm−3, z0 = 200 pc, the corresponding

error is small, because the gas mass within the Strömgren sphere is not large enough

to considerably change the dynamics of the shell.

Figure 5.5 shows the evolution of the ionization front, and the vertical location

of the superbubble shell for four sets of n0–z0 values and for NOB = 105. The figure

shows that the Stömgren sphere radius in the different cases is of order ∼ 50–100 pc

(shown by the black, red and green dashed lines). The ionization fronts transform to

D-type fronts (prior to 0.1 Myr) and expand slowly beyond the Strömgren radii, to

reach heights of order ∼ 80–140 pc in ∼ 4 Myr. At the same time, the corresponding

superbubble shells overtake the ionization fronts at heights of order ∼ 60–120 pc.

Figure 5.5 also shows that there are two different regimes: at low column densities
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of the layer N(H) = n0z0 the ionization front moves ahead so quickly such that the

superbubble shell can never catch up with, and the shell propagates in a low-density

ionized gas (as shown by magenta lines). At high column density limit, the shell can

overtake the ionization front, as shown by black, red and green solid lines.

It is reasonable to contend that molecular outflows can form behind the supernova-

driven shock wave only in the latter case. These considerations lead us to determine

the locus of the threshold combination of n0 and z0 for the formation of molecules in

outflowing shell. We show the result with the thin blue solid line in Figure 5.6. The

curve can be approximated by a fit,

z0 ≥ 200 pc
( n0

102 cm−3

)−3/5

(5.5)

Note that for a uniform ambient medium of density n0, and a constant Lyc luminosity

of 4× 1053 photons s−1, the Strömgren radius is given by ∼ 116 pc(n0/10
2 cm−3)−2/3.

The difference between this estimate and the above fit is due to (a) density stratifi-

cation and (b) variation of Lyc luminosity with time.

In Figure 5.6 we also show lines of constant surface density, marked in the units

of M⊙ pc−2. We find that molecular outflow is possible in a starburst nuclei region

with surface density roughly ≥ 1500µ (SFR/M⊙ yr−1) M⊙ pc−2.

It is interesting that Nath & Shchekinov (2013) [139] derived a lower limit on the

molecular surface density of order 1000 M⊙ pc−2 in starburst nuclei for producing

outflows. A surface gas density of Σ ∼ 1.5 × 103 µ M⊙ pc−2 with µ = 1.33 implies a

SFR surface density of ∼ 10 M⊙ yr−1 kpc−2 from Kennicutt-Schmidt law Kennicutt

(1998) [102]. This is incidentally ∼ 100 times larger than the threshold SFR surface

density for galactic superwinds Heckman et. al. (2015) [78]. Considering a nucleus

region of radius ∼ 300 pc, this translates to a SFR of ≥ 3 M⊙ yr−1.

At the same time, our threshold relation also puts an upper limit on the SFR that

can produce molecular outflows. Recall that the size of the Strömgren sphere depends

on the ratio of (LLyC/n
2)1/3. Since the density stratification has rendered a scaling

of z0 ∝ n−3/5, therefore our threshold condition on the scale height likely scales as
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N
3/10
OB , or (SFR)3/10. Recalling that NOB = 105 corresponds to a SFR of ∼ 0.3 M⊙

yr−1, we can re-write our threshold condition as,

z0 ≥ 200 pc
( n0

102 cm−3

)−3/5 ( SFR

0.3M⊙ yr−1

)3/10

(5.6)

Considering the size of the central starburst nuclei region to be ∼ 300 pc, we can

transform this relation to one involving surface densities. We have,

ΣSFR ≤ 50M⊙ yr−1 kpc−2

×
( Σ

1.5× 103 µM⊙ pc−2

)10/3 ( n0

102 cm−3

)−4/3

(5.7)

This essentially implies that the SFR has to be lower than a certain value for a given

column density of the starburst nucleus; a larger SFR than the above inequality would

inhibit the formation of molecules by ionizing the gas in the superbubble shell.

We then have three relevant scales for SFR surface density. A lower limit of

ΣSFR ≥ 0.1 M⊙ yr−1 kpc−2 ensures a galactic wind. However, the production of

molecular outflows is limited to SFR surface densities 10 ≤ ΣSFR ≤ 50 M⊙ yr−1

kpc−2. It is interesting to note that the SFR surface densities of galaxies observed

to host molecular outflows fall in this range. Therefore our threshold condition for

disk parameters for hosting molecular outflows is consistent with observations. We

should, however, emphasize that galaxies show a considerable variation around the

Kennicutt-Schmidt law and the above constraint on SFR surface density may not be

a strong one.

5.4 Shell density and temperature

Given the knowledge of the threshold density and scale height for molecule formation,

the next important issues for molecules to form are the heating and cooling in the

superbubble shell. In this section, we discuss the heating and cooling processes that

play an important role in determining the shell temperature.
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5.4.1 Four-zone structure

From the point of view of the presence of molecular gas in the expanding shell asso-

ciated with the wind outflow it is convenient to separate the whole post-shock flow

on to four distinct zones, which are schematically shown on the left in Fig 5.2 (see

also Figure 5 of Sharma et al. (2014) [174]). The zones described below are shown

in the schematic diagram as being separated by dotted lines, from top to bottom: i)

the viscous layer where kinetic energy of the inflowing gas is transformed partly in

to thermal energy, and the entropy grows to the post-shock value Zeldovich & Raizer

(1966) [232], ii) the radiative relaxation layer (RRL) where radiative losses lead to

the formation of a dense shell, iii) thin dense shell restricted from the bottom by

iv) the still hot low-density gas formed by the termination shock. Dissipation due to

viscous forces brings the gas into a new high-temperature state and vanishes beyond

the viscous layer. The thickness of this layer is determined by the viscosity, but for

strong shock it can be as thin as a few free-path length of gas particles Zeldovich &

Raizer (1966) [232]. In numerical models its thickness is always unresolved as this

thickness is equivalent to a few times the mean-free path. The rate of energy loss

due to radiation losses in the second zone depends on post-shock temperature and

density and becomes important when the dynamical time becomes comparable to the

cooling time.

We show in Appendix C that the density in the cool/dense shell (region iii) can

be larger than the ambient density by a factor of a few to ∼ 100. Magnetic field in

the ISM prevents the shell density from becoming exceedingly large. We characterise

the density in the shell as,

nsh = 10 η10 namb , (5.8)

where namb = n0e
−z+/z0 . Given this density jump, the shell thickness (△rsh) can be

found by equating the total swept up mass to the shell mass,

∫ z+

0

4πz2n0e
−z/z0dz ≈ 4πz2+△rshnsh , (5.9)
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which gives the value of △rsh. Here we have assumed the shell to be spherical, which

is a reasonable approximation since the spherical shape of superbubble shell is roughly

maintained until it reaches a few times (2–3) the scale height. The shell thickness is

shown in the left-most panel of Figure 5.7 for different cases. The lower set of curves

are for η10 = 10 and the upper set of curves, for η10 = 1.

Although the radius and thickness increases with time, since the density in a

stratified medium decreases with height, the total column density in the shell does

not increase monotonically. It rises until the shell reaches the scale height and then

decreases. We show the evolution of the total opacity in the shell (proportional to the

column density) in the middle panel of Figure 5.7. The visual extinction is related to

the column density as Av ≈ (NH/1.9× 1021 cm−2) Bohlin et al. (1978) [12]. We find

that the maximum visual extinction Av lies in the range of 10–20, which is attained

at roughly the scale height. Note that the value of Av does not depend on the value

of density jump.

The temperature in the shell is determined by the balance of heating and cooling

processes, which we consider next.

5.4.2 Heating and cooling processes in the shell

The physical state and ionization structure of the shell resembles the so-called photo-

dissociation region (PDR) considered in the literature Hollenbach & Tielens (1997)

[87]. Going outward from the central region, beyond the ionized gas, one first en-

counters a region of neutral atoms, after which there are regions whose ionization

structure is dominated by the influence of FUV photons on different trace elements,

beginning with carbon. Here we focus on the region where CO/H2 are produced in

significant quantity. According to Wolfire et. al. (2010) [228] (their eqn 21), the

visual extinction Av corresponding to CO and H2 are comparable, and is given by,

Av(mol) ≈ 0.1 ln
[

3.3× 107(G0/1.7n)
2 + 1

]

, (5.10)
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where G0 is the FUV photon density (number of photons per unit volume) obtained

from Starburst99 code.

The rightmost panel of Figure 5.7 shows the value of Av(mol) corresponding to

the molecular region that we will focus on, calculated with eqn 5.10. Recall the rise

and decline in the FUV luminosity of the central OB association (see Fig 5.3). This

evolution in the FUV luminosity makes the value of Av(mol) also rise and then decline

(through the term G0), as seen Fig 5.7. For the cases of small scale height (solid lines),

the shell density decreases rapidly with height, increasing the value of Av(mol).

The corresponding ionization fraction of the free carbon ions xC+ ≡ nC+/nC in

the carbon dominated region is given by Tielens (2005) [205]

1− xC+

x2
C+

≈ 3.3× 10−6
( n

104 cm−3

)( T

300K

)−0.6

×
(G0

104

)−1

exp[2.6Av] . (5.11)

The ionization fraction therefore is given by xe = ACxC+ , where AC = 1.4 × 10−4

is the carbon abundance for solar metallicity. The ionization fraction depends on

temperature weakly, and is roughly given by xe ≈ AC , since xC+ ≈ 1, from eqn 5.11.

The dominant heating process in this region of the shell is photoelectric (PE)

heating, and it cools through radiation. Given the large density of this region, the

temperature is likely to be in the range of ∼ 10–20 K. We show in Appendix D and

E with detailed calculation the values of the ionization fraction and the equilibrium

temperature, for different shell densities, and for different cases of n0 and z0. The

results of the calculation confirms that the ionization fraction xe ≈ 1.4 × 10−4 and

that the equilibrium temperature is of order ∼ 10–20 K (which, to be specific, we

approximate as 15 K). We assume thermal equilibrium to calculate the shell tempera-

ture and xe, as heating and cooling time scales of the shell are much shorter than the

dynamical time throughout the evolution of the shell. In the following calculations

for molecule formation we adopt these values of xe and T .
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5.5 Molecule formation and dissociation

While the observations of molecular outflows have shown that the velocity and the

momentum of the molecular component is in rough agreement with the expectations

from a star formation driven outflow, the existence of molecules in the outflowing gas

is not trivially explained, for the following reasons. The molecular component that

is seen at a few hundred pc can either be formed in the outflowing gas, or can be

a residue of the molecules entrained from the parent molecular clouds, whatever has

survived the destruction process while the shell has evolved and has been shocked. In

this section, we study the molecule formation and destruction processes in detail. The

two important mechanism for the dissociation of molecules are the photo-dissociation

and the collisional dissociation.

5.5.1 Formation and destruction of molecules in the shell

Consider the case of a shell propagating outward, and being irradiated by Lyman-

Werner band photons from the OB stars responsible for the outflow in the first place.

We consider the formation and dissociation of molecular hydrogen as hydrogen is

the most abundant element. Photons in the Lyman-Werner band (11.2–13.6 eV) are

responsible for the dissociation of hydrogen molecule. The net rate of formation of

molecular hydrogen, for a gas density n, is given by,

dnH2

dt
= Rf nnHI −Rd,thinfdust,H2

fshield,H2
nH2

−kD nnH2
, (5.12)

where nH2
is the number density of H2 molecules. As mentioned above, Rd,thin de-

pends on the radiation field, and therefore on the distance of the shell from the

centre and the Luminosity in the Lyman-Werner band. The formation rate Rf ≈
3 × 10−18T 1/2 cm3 s−1, for solar metallicity Hollenbach & McKee (1979) [86]. The

density and temperature refers to the shell density and equilibrium temperature cal-

culated in Appendix B.5.
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Rd,thin = 3.3 × 10−11GLW s−1 is the photo-dissociation rate in optically thin gas

Draine & Bertoldi (1996) [46], GLW being the strength of the radiation field in units

of Habing field. The factor fdust,H2
takes into account the effects of dust extinction

and fshield,H2
, that of H2 self-shielding. We calculate GLW similar to the equation B.7

with the replacement of SFUV by SLW , albeit without the extinction factor.

For the shielding due to dust, we have,

fdust,H2
= exp(−3.5Av(mol)) . (5.13)

For the self-shielding due to molecules, we use the fit given by Draine & Bertoldi

(1996):

fshield,H2
=

0.965

(1 + x/b5)2
+

0.035√
1 + x

exp
(

−8.5 × 10−4
√
1 + x

)

, (5.14)

where x = NH2
/(5×1014 cm−2), b5 = b/(105 cm s−1), b2 = kT/mH , being the Doppler

broadening parameter.

The collisional dissociation is another important dissociation process for destruc-

tion of molecules. This process crucially depends on the shell temperature and density.

The dissociation rate coefficient (kD(n, T )) is given by Lepp & Shull (1983) [118],

log kD(n, T ) = log kH − log(kH/kL)/(1 + n/ncr) , (5.15)

where kH(T ), and kL(T ) are the dissociation rate coefficients for the high, and low

density limits respectively given in Table 1 of Lepp & Shull (1983) [118]. The critical

density ncr depends on temperature and is calculated using equation 6 of Lepp &

Shull (1983) [118]).

The formation time scale of molecules is given by,

tform ≈ (Rf n)
−1 ≈ 10−2Myr

( n

103 cm−3

)−1 ( T

100K

)−1/2

, (5.16)

The photo-dissociation time scale of molecules is given by,

tdest ≈ 7× 10−7Myr
( SLW

1053 s−1

)−1 ( r

100 pc

)2

×(fdust,H2
fshield,H2

)−1 . (5.17)
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Figure 5.8: Evolution of molecular fraction (left), and the bubble shell velocity (right) with the

size of the superbubble shell, for NOB = 105, for different n0, z0, and η10 cases. The thick, and

thin lines correspond to η10 = 10, 1 respectively. All the calculations of molecule formation and

dissociation are performed in the dense superbubble shell after it crosses the D-type ionisation front.

In general, the collisional dissociation time scale is much longer than the photo-

dissociation time scale, given the low temperature of the dense shell.

These time scales should be compared with the dynamical time scale of the dense

shell. We found that the formation time scale becomes comparable to or shorter than

the dynamical time scales, when the shell size exceeds ∼ 200 pc, signalling the onset

of molecule formation.

5.5.2 Results

Figure 5.8 (left panel) shows the resulting molecular fraction as a function of shell dis-

tance for NOB = 105, for the fiducial cases. The right panel shows the corresponding

velocity of the shell.

There is an abrupt jump in the value of the molecular fraction (fH2
) from a small

value of 10−6 to a maximum value of 1 for large value of η10 (=10) whereas for the

case of small η10(=1), fH2
increases slowly to a maximum value of 0.8–0.9 for all the

n0–z0 cases. The sharp rise in the molecular fraction corresponds to the epoch of the

shell crossing the ionization front, as discussed in §5.3.2.
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Figure 5.9: Evolution of the total hydrogen column density (left) and molecular column density

(right), with the size of the superbubble shell, for NOB = 105, for different n0, z0, and η10 cases.

The details of the line-styles, and line-colours for different parameters are mentioned in the caption

of the figure 5.7.
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Figure 5.10: The evolution of molecular mass with the size of the superbubble shell, forNOB = 105,

for three different n0–z0 cases, and for the two different values of η10 (1, 10). Refer to figure 5.7 for

the details of the different line-styles, and line-colours. The molecular mass is the integrated mass

over the molecular region of the shell.

The velocity of the superbubble shell for all the n0–z0 cases at ∼ 100–300 pc is

∼ 10− 40 km/s, which matches with the velocities of the molecular outflows as seen

in observations, particularly of NGC 253 Bolatto et al. (2013) [13].

Figure 5.9 shows the total hydrogen column density and the corresponding molec-

ular column densities, in the left and right panels respectively. The total column

density plots have been explained earlier in the context of total visual extinction in

Figure 5.7. The H2 column density first rises and then falls due to decreasing shell

density and column density. It falls more rapidly in the case of small scale height

when the gas density rapidly decreases with height.

Figure 5.10 shows the evolution of the total molecular mass (integrated over the

shell) for different parameters. The molecular mass is found to be in the range of ∼
107–108 M⊙) at ≥ 200 pc, in the three fiducial cases, consistent with observations. As

both the dissociation rates (photo-dissociation, and collisional dissociation) are much

smaller compared to the formation rate of molecules, for most cases the molecular

224



mass does not decrease as the radius of the superbubble shell increases– rather its rate

of increase may slow down, particularly in the case of disks with small scale heights.

For the cases of large mid-plane density and small scale height, the molecular mass

decreases, as the column density of the shell decreases with increasing height. We

note that at larger radii, when the shell crosses a few scale heights, the shock-heating

can be an important mechanism (as the velocity goes up till ∼ 50–100 km/s, and

also the density of the shell reduces) to destroy the molecules in the dense shell, and

thus reducing the molecular mass integrated over the shell. This aspect is beyond the

scope of the present work.

The important parameters that can be used to compare with observations are

the molecular mass and the length scale of the molecular shell (as well as its speed).

We wish to determine the ranges in the combination of gas density and scale height

(for the given NOB = 105) that can give rise to molecular outflows with a certain

molecular mass and radius of the shell. We consider the molecular mass attained at

the time of crossing the disk scale height. We show in Figure 5.11 the regions in the

parameter space of n0 and z0 that correspond to molecular masses (calculated at the

scale height) of different ranges. The lower blank portion corresponds to the lower

limit of Figure 5.6.

5.6 Discussion

5.6.1 Previous studies

Despite a rather long history of numerical simulations of galactic winds (see the

seminal papers Suchkov et al. (1994) [193], Suchkov et al.(1996) [194]), only one paper

with theoretical analysis of galactic winds published to date appears to be relevant for

the formation of molecular outflows. Thompson et al. (2016) [208] described a steady-

state model of a galactic wind with a detailed description of the thermal processes,

such as radiative cooling and thermal conduction, along with a qualitative analysis
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Figure 5.11: Regions in the parameter space of n0 and z0 that can give rise to molecular mass of

different ranges in shells triggered by star formation activity, with NOB = 105, and with η10 = 1.

Corresponding CO luminosities are also indicated.

of thermal instability and convection in the expanding gas. Their study focuses,

however, on generic features of such a flow, connecting the central energy and mass

source and a distant circumgalactic gas. The inner boundary conditions here are

set at R = 0.3 kpc from a central energy and mass injection source as described by

Chevalier & Clegg (1985) [25], which is actually comparable to the sizes of regions

where molecules are already seen in galactic winds. Moreover, gas density (n ≤ 1

cm−3) and temperature (T ≥ 2 × 103 K) in the outflow always remain in the range

that is unsuitable for the formation of molecules.

A more plausible scenario for the observed molecular outflows, and the one that

we favour, is the cooling of the shocked gas in the radiative outer shock. Thompson et

al. (2016) [208] (see also Sarkar et al. (2016) [170]) only consider multiphase cooling

in the mass-loaded galactic outflow and not the dense shell. Thompson et al. (2016)

[208]). In our non-steady outflow, the formation of a shock in the very beginning
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(at scales of a few pc) is an essential event which makes the gas cool down quickly

to T ∼< 100 K within a few Myr or less. At this stage, the ambient gas density is

quite high and therefore the post-shock density and temperature are in the range

n > 103 cm−3 and T ∼< 10 − 30 K where molecules can efficiently form. Moreover,

these conditions are suitable for line emission of CO and HCN/HCO+.

Girichidis et al. (2016) [64] simulated the effect of SNe driven outflows and stud-

ied the effects of clustering and frequency of SNe. Their simulations showed that

molecules formed at vertical distances less than the disc scale height (their Figure

2). However, their focus was on the velocity dispersion of different phases of gas in

a typical disc galaxy, and not on the dynamics and chemistry of expanding shells

triggered by large OB associations, as have been observed in starburst nuclei.

We also note that Zubovas & King (2014) [236] considered the formation of

molecules in AGN driven outflows. However, their model is more relevant for the

formation of molecules in outflows with speed ∼ 1000 km s−1 and with mass outflow

rates of ∼ 1000 M⊙ yr−1, and is different in scope and nature than the small scale

outflows in starburst nuclei with smaller speeds.

5.6.2 Comparison with observations

It is readily seen from Figure 5.10 that in a wide range of parameter space (n0, z0),

the model predictions are consistent with the observed molecular outflows. Moreover,

numerical models reveal the range of physical parameters under which starbursts

generate powerful high-mass molecular outflows. In particular, it is clear from Figure

5.10 that for small gas scale heights z0 the expanding molecular layers widen, thereby

decreasing the column density due to mass conservation NH2
∝ (z0/z)

2 with nearly

constant molecular fraction. The decrease in NH2
is faster in models with smaller

z0. As a result, the maximum molecular mass in such models remains relatively

low Mmol ∼ 106 M⊙, while larger scale heights can give rise to increasing molecular

mass beyond ∼ 300 pc. Unfortunately, observations of molecular w inds are yet too
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Figure 5.12: Molecular column density is plotted against the expansion velocity. The line styles

correspond to the same cases as in Figure 5.7.

few, and such an interrelation between density profiles in gas preceding the starburst

cannot be inferred from the available observational data.

In general, our calculations show that competitive processes governing the ther-

modynamics and chemical kinetics of the shell, viz, the heating and ionization by

Lyman continuum from the underlying nuclear stellar cluster on one side, and from

the shock front on the other, and an additional effect from magnetic pressure – deter-

mine the possibility to form and expel high velocity molecular gas into the outflow.

It is seen from Figure 5.8 and 5.9 that in general for a given n0-z0 pair, the molecular

outflow may show distinct paths on the NH2
− v plane, as shown separately in Figure

5.12.

We find that the H2 column density grows steeply at a nearly constant velocity

when the outflowing shell is small. Then, at higher z the expansion velocity decreases

while the H2 column density continues to grow. At a certain point close to the

breakout level, the column density starts to decrease and the velocity increases – this

path is clearly seen for the case of small scale height of z0 = 50 pc (black solid line).

For larger values of z0, the curve NH2
(v) shifts left (decreasing velocity), and the loop
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occurs at a lower velocity, vmin ∝ ρ
−1/3
0 z

−2/3
0 . Even though we show results for a fixed

numbers of massive stars NOB in the cluster, this relation allows to predict that in

general the scaling would be vmin ∝ N
1/3
OBρ

−1/3
0 z

−2/3
0 , as follows from a simple wind

model in an exponential density p rofile.

It is worth noting that in realistic conditions the molecular layer is expected

to disintegrate due to Rayleigh-Taylor instability with fragments moving outwards

nearly ballistically, with the velocity close to the minimum velocity at the loop. In

general, the velocity range spanned by the paths agrees with observations. One can

therefore expect that the range of observed velocities in molecular outflows relates to

the central gas density, its scale height and likely the number of massive stars, and

may help to constrain them.

5.6.3 Off-centered shells

We have considered the OB associations that trigger the expanding shells to be located

at the mid-plane for simplicity of calculations. However, in reality it could be situated

at some height z′ ≤ z0, the scale height. Below, we briefly consider the case of off-

centered expanding shells. As an extreme case, we show in Figure 5.13 the case

of a superbubble triggered by an association at a height z′ = z0, and compare the

molecular fraction and molecular mass with those of a superbubble located at mid-

plane.

In the case of an off-center location of stellar cluster, there are two competing

factors: (1) the decreasing column density of the shell and (2) the large distance

traversed by the ionization front, because of density stratification. The column density

of the shell roughly decreases as (since the accumulated mass is being distributed over

the expanding shell),

NH ≈ n0z0
3

( z0
z+ − z′

)2

. (5.18)

When the shell crosses the ionization front at zI , the visual extinction should exceed

a critical value (∼ 3) in order to form a substantial amount of molecules. In other
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Figure 5.13: Molecular fraction and molecular mass for an off-centered superbubble (centered at

z′ = z0) are compared with the case of superbubbles located at the mid-plane, for n0 = 200 cm−3

and z0 = 200 pc.

words,

n0z0
3× 1.9× 1021 cm−2

( z0
zI − z′

)2

≥ 3 . (5.19)

In this case illustrated above, for n0 = 200 cm−3, z0 = 200 pc, and z′ = z0, the

ionization front quickly reaches zI ∼ 1 kpc. Therefore the above condition is not

satisfied and molecules do not form in substantial quantity. This estimate could, in

principle, put constraints on the height z′/z0 of the stellar cluster that can trigger a

molecular outflow. However, one could argue that such a large OB association (with

NOB = 105) is likely to be located close to the mid-plane, where the density is highest,

rather than being far above the disk. Another point to note is that the expansion

speed of an off-centered expanding shell will increase monotonically, if z/z0 ∼ 1, and

will not have any loops as shown in Figure 5.12.

5.6.4 Caveats

We had set out to understand the dynamical parameters of observed molecular out-

flows in nearby starburst galaxies, namely, the length scales and velocities, as well as
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the corresponding molecular masses. We also sought to understand the possible range

of parameters for producing molecular outflows in highly energetic winds. Our 1-D

calculations, with simplified assumptions of molecule formation in a spherical shell,

show that it is possible to understand the observed outflow sizes (≥ 50 pc) and veloci-

ties (∼ 30–100 km s−1) in the context of superbubbles triggered by starburst activity.

The corresponding predicted molecular masses are of order several times 106–107 M⊙,

also consistent with observations of NGC 253 and NGC 3628. The morphology, dy-

namics and molecular masses of M82 are admittedly not explained by our simplified

model, and therefore we wish to point out various caveats in our calculations.

To begin with, it is not possible to discuss the morphologies of observed molec-

ular outflows with a 1-D calculation, and as a first step towards understanding this

phenomenon our strategy has been to assume a spherical shell. In reality, this shell is

likely to fragment, especially after the shell has broken out of the disk, due to ther-

mal and Rayleigh-Taylor instabilities Roy et al. (2013) [164]. Therefore the covering

factor of the shell is likely to be much smaller than unity, allowing radiation and gas

to leak through. This is consistent with the observation of Hα radiation from gas far

beyond the molecular outflow in M82, for example. These considerations imply that

our estimate of molecular mass is at best approximate, and should be viewed/used

with caution. As we mentioned in the introduction that the morphology and dynam-

ics of molecular outflows are diverse, and therefore a better estimate would have to

consider the details of the PDR region in the shell, and possible clumping in it, as

well as the differences in the formation/destruction processes for different molecules,

which are beyond the scope of the present work in this chapter.

5.7 Summary & Conclusions

We summarise our main findings as follows:

• We have considered a simple 1-D model of molecule formation in expanding
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superbubble shells triggered by star formation activity in the nuclei of starburst

galaxies. We have determined a threshold condition (eqn 5) for disk parameters

(gas density and scale height) for the formation of molecules in superbubble

shells breaking out of disk galaxies. This threshold condition implies a gas sur-

face density of ≥ 2000 M⊙ pc−2, which translates to a SFR of ≥ 3 M⊙ yr−1

within the nucleus region of radius ∼ 300 pc, consistent with observed SFR of

galaxies hosting molecular outflows. We also show that there is a range in the

surface density of SFR that is most conducive for the formation of molecular

outflows, given by 10 ≤ ΣSFR ≤ 50 M⊙ yr−1 kpc−2, consistent with observa-

tions.

• Consideration of molecule formation in these expanding superbubble shells pre-

dicts molecular outflows with velocities ∼ 30–40 km s−1 at distances ∼ 100–200

pc with a molecular mass ∼ 106–107 M⊙, which tally with the recent ALMA

observations of NGC 253.

• We have considered different combinations of disk parameters and the predicted

velocities of molecule bearing shells in the range of ∼ 30–100 km s−1 with length

scales of ≥ 100 pc are in rough agreement with the observations of molecules in

NGC 3628 and M82.
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Chapter 6

Conclusions & future directions
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In this thesis, we have studied the overall aspects of superbubble evolution, and

its implications for galactic feedback and evolution. In this chapter we highlight a few

important outcomes of the thesis in order to obtain a comprehensive understanding

and importance of it in the context of the problems that initially motivated us to study

them in detail. We also discuss the relevance of these results in galaxy formation and

evolution. We end with some future projects.

6.1 Conclusions

Supernova feedback in the ISM is an important feedback mechanism among various

other complicated physical processes governing galaxy evolution. However realistic

implementation of SNe feedback in numerical simulations has always been a chal-

lenging issue. In various cosmological simulations of galaxy evolution, the lack of

resolution makes the heating due to SNe ineffective, and thus earlier simulations suf-

fered from numerical overcooling. This problem prompted us to study SNe feedback

realistically and to estimate the radius within which SNe energy needs to be deposited

for it to effectively couple to the ISM. This problem has been addressed in chapter 2.

In chapter 2, we have also compared the various existing SNe feedback recipes, and

derived the analytic expression for the injection radius (rin).

For effective feedback due to SNe, the heating rate has to be larger than the cooling

rate. In other words, the heating time-scale has to be shorter than the cooling time-

scale. We found that different existing numerical models such as the luminosity driven

(LD) model, the thermal energy addition (TEa) model, and the most realistic kinetic

explosion (KE) model produce similar results when the energy is deposited within a

small volume. We also discussed that to create a strong shock, one requires multiple

SNe to evolve coherently in space and time. Bubble created by a single SN fizzles out

within a few dynamical time-scales, and therefore loses almost all the input energy

by the end of a star cluster lifetime. However superbubble created by multiple SNe
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can retain ∼ 35% of the injected energy in the form of bubble thermal and shell

kinetic energy. These multiple SNe go off within a hot, dilute bubble carved by the

initial SNe and stellar winds, and do not suffer extensive radiative losses as isolated

SN explosions.

In chapter 3, we studied a few outflow problems in detail applying SN feedback

mechanism to realistic galactic disks. Tüllmann et al. (2006) [211] studied multiphase

halos in edge-on galaxies, and determined the cut-off surface density of energy injec-

tion rate for the creation and existence of multiphase halos. Dahlem et al. (1995)

[40] studied synchrotron radio emission from five edge-on galaxies. They concluded

that for the creation of radio halos, the threshold surface density of energy injec-

tion rate has to be ∼ 10−4 erg cm−2 s−1, which is an order of magnitude lower than

the threshold condition for a multiphase halo. For galactic “superwinds”, Heckman

(2002) [77] estimated the threshold SFR surface density, which implies an equivalent

surface density of energy injection rate, similar to the requirement for multiphase

halo. The mismatch between energy scales for the aforementioned different outflow

observations motivated us to study each of these individual phenomena in detail in

chapter 3.

Our analytic estimates of superbubble energetics show that almost 70% of the

total input energy is radiated away towards the end of the superbubble evolution,

similar to what we obtained in numerical simulations (as discussed earlier, and also

in chapter 2). We found a clear demarcation between the two energy input rates :

(i) a milder explosion (corresponding Mach number of order 2–3), triggered by the

largest OB-association with 104 M⊙, can only produce radio-synchrotron halos which

requires an energy injection rate of ∼ 10−4 erg cm−2 s−1, whereas (ii) a multiphase

halo (and galactic superwinds of Heckman) requires a larger energy input rate of

∼ 10−3 erg cm−2 s−1 with an equivalent SFR surface density of ∼ 0.1 M⊙ yr−1

kpc−2), which can be produced by the spatially and temporally coherent evolution

of multiple OB-associations. In this work, we also found that superbubbles do not
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accelerate before they reach the vertical heights of a few times the scale-heights,

and thus the Rayleigh-Taylor instability (RTI) plays an important role in corrugating

superbubble shells only at that height. Before RTI fragments the shell into clumps and

channels, thermal instability corrugates the shell and seeds the RTI. These optically

thin channels in superbubble shells create pathways for the hydrogen ionizing photons

emanating from the central O, B stars in the OB associations to escape.

The effect of superbubble evolution on the escape of Lyc photons is an impor-

tant aspect that we study in detail. There are various observational and theoretical

studies in the literature that estimates the escape fraction (fesc). However the de-

pendence of fesc on the disk parameters has not been explored and understood. In

order to understand the aforementioned connection between fesc and disk parameters,

we have studied superbubble evolution using two-dimensional hydrodynamic (ZEUS-

MP) simulation with the assumption that the disc is in ionization equilibrium. This

problem has been addressed in chapter 4.

We found that ionizing photons do not escape through all solid angles, instead they

have a preferred cone angle of∼ 40◦ at the end of the lifetime of OB stars. fesc initially

decreases with time as the superbubble is buried in the disc, and therefore most of

the ionizing photons get absorbed by the dense shell, and the disc. After the bubble

crosses a few scale-heights, the clumping in the shell due to thermal instabilities and

RTI creates optically thin channels (discussed earlier). These “chimneys” help fesc

to increase with time at later epochs. The time-averaged, angle-averaged fesc, when

convolved with the luminosity-function of OB associations gives the averaged fesc

from a disk galaxy. We found that this averaged escape fraction is connected to

the disk parameters such that fα
escn

2
0z

3
0 is a constant, where α = 2.2. We estimated

the averaged escape fraction for non-clumpy discs for typical disc parameters to be

∼ 10(±5)%, which is roughly constant for all the real discs if the disc temperature is

fixed. However, fesc weakly varies with the disk mass and redshift. This value of fesc

is sufficient for only stars to reionize the universe at high redshifts.
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Apart from fesc, the dense superbubble shells in starburst nuclei can be important

sites for molecule formation. Several observations (discussed in detail in chapter 5) of

starburst nuclei in the local universe show molecular outflows within a central region

of ∼ 100–200 pc with expansion velocities of a few 10s of km s−1 to ∼ 100 km s−1 and

a total molecular mass of ∼ 107–108 M⊙. These striking similarities in masses, radii,

and velocities of molecular outflows have inspired us to study molecule formation

and dissociation mechanisms in expanding superbubble shells. We have performed a

one-dimensional equilibrium (ionization, thermal, and chemical) calculation to study

molecule formation and dissociation in these outflows in chapter 5.

We found that molecules can form in the expanding superbubble shells in the

nuclear region of starburst galaxies for a gas surface density of ≥ 2000 M⊙ pc−2. This

value of gas surface density implies to a SFR of ≥ 3 M⊙ yr−1 within the nucleus

region of radius ∼ 300 pc, consistent with the observed SFR of the host galaxies

of molecular outflows. Our analytic calculation also determines the range of surface

density of SFR to be ≃ 10 ≤ ΣSFR ≤ 50 M⊙ yr−1 kpc−2, for which molecule forma-

tion is favoured. This range of SFR surface density is consistent with observations.

If ΣSFR ≥ 50 M⊙ yr−1 kpc−2, then the SFR would be higher, and thus the ioniz-

ing and dissociating photon luminosities would also be higher. The higher ionizing

photon luminosity would increase the ionizing radius, and therefore molecules would

form at a larger radius and at a later epoch. The higher luminosity of dissociating

photons and low density at large radii would resist the in-situ molecule formation.

We also explained the observed parameters (mass, size, and expansion velocity) in

the expanding, dense superbubble shells in central regions of starburst galaxies via

in-situ molecule formation and dissociation mechanisms.
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6.2 Future directions

We have so far summarised the brief motivations and important results of the thesis.

Some aspects of superbubble evolution can be studied further.

While discussing “molecular outflows” in starburst nuclei in chapter 5, we briefly

mentioned the evolutionary scenario of molecules (molecule-atom-ion). However, a

more detailed study is required to understand : (i) whether the molecules dissociate

at larger radii, and give rise to atomic outflows, (ii) what is the transition radius

for molecular outflows to become atomic, and (iii) the metallicity environment in

which one might expect to observe molecules. In order to answer these questions, one

needs to perform detailed numerical hydrodynamic simulations with high resolution

(almost a tenth of a pc) with a more realistic supernova feedback model, magnetic

fields, turbulent interstellar medium (ISM), and accurate cooling tracing the metals

in the post shock dense material. In order to get a complete picture of the effect of

clumping on molecule formation (as clumps are the denser regions where molecule

formation is more probable) and dissociation (as turbulence might prevent molecule

formation), one needs to perform two-dimensional simulations in a clumpy ISM. The

realistic model should also cover a wide range of length-scales starting from a few

10s of pc to a few kpc to follow the entire evolutionary track of molecule-atom-ion

conversion.

The evolution of fesc at high redshifts is another important and interesting aspect

to study in detail. At high redshifts (z), the ISM is more clumpy than the ISM

at z = 0 as shown in figure 4.13 in chapter 4. Also at high redshifts, the dense

superbubble shells will be optically thick, and thus one can not perform the ionization

equilibrium calculation to determine fesc. In the calculation of fesc in chapter 4, SFR

is kept constant although we varied the column densities of galactic disks, and this is

a caveat in our model. However for a realistic estimation of fesc, the SFR should be

varied with the column density following the Kennicutt-Schmidt law. Therefore to

determine fesc at high redshifts, one needs to perform radiation transfer calculation
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with the realistic size and mass distributions of the clumps, and with realistic star-

formation rates. The model should also include an effective SNe feedback prescription

at high redshifts. It is also interesting to estimate the AGN-contribution to fesc, as

compared to the stellar contribution.

There are also various other aspects of outflows which are not yet completely

understood, such as : (i) the creation and existence of multi-phase halos, (ii) the metal

enrichment of the IGM, and metallicity mixing in the ISM via superbubbles. These

problems require large scale simulations upto few 10s of kpc away from the disks,

tracing metals to evaluate accurate cooling as mentioned earlier and superbubble

evolution till few 100s of Myr (longer than the life-time of OB-associations) after the

driving sources (wind + SNe) vanish within a few 10s of Myr.
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Appendix A

Escape fraction

A.1 Convergence test

We compare the resolutions of 256× 128, 512× 256, and 512× 512 for the time and

angle dependence of the escape fraction. In Figure A.1 the upper panel shows the

time dependence of the θ-averaged escape fraction. Both the subplots are for n0 = 0.5

cm−3, z0 = 300 pc and NO = 1000. We notice that initially the escape fraction with

low resolution is slightly higher than with high resolutions. However, after 2-3 td

(td = 2 Myr), the escape fraction for all resolutions are similar.

The bottom panel of Figure A.1 shows the angular dependence of the escape

fraction for the three resolutions at 4 Myr for the same parameters, after the shell

fragments due to RTI. One can see the zigzag nature in the high resolution curve,

whereas the low resolution curve is comparatively smooth. At higher resolutions,

there are more high density clumps and it results in absorption over many angles.

In Figure A.2, we show the time dependence of the escape fraction for 256× 128,

512 × 256 and 512 × 512 resolution runs for n0 = 15 cm−3, z0 = 30 pc, and for two

different NO. The upper and lower panels represent the cases for NO = 300 and

NO = 105 respectively. The density considered is high, and consequently there is

more clumping at t < td for higher resolution. This leads to a high escape fraction in
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Figure A.1: Comparison between the resolutions of 256 × 128, 512 × 256 and 512 × 512 for the

angle and time dependence of the escape fraction for n0 = 0.5 cm−3, z0 = 300 pc, NO = 1000. The

upper panel shows the time dependence and the bottom panel represents the angle dependence at 4

Myr, when the fragmentation of the shell becomes important due to RTI. All 〈fesc〉θ values in the

top panel are zero after 5 Myr.
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high resolutions than that in the low resolution case initially. After the superbubble

crosses 2–3 scale heights, the different resolution cases start behaving differently due

to the different widths of the clumps and channels in them. The bottom panel shows

the time dependence of the escape fraction for the same n0 and z0 but for NO = 105.

One can notice that the escape fraction at any epoch for all the resolutions are roughly

the same and the small changes arise from the detailed structure of the shell at a given

epoch.

In Figure A.1, the time-averaged and θ-averaged escape fraction for the resolutions

of 256×128, 512×256 and 512×512 are 0.1392, 0.1274 and 0.1278 respectively. The

percentage change in escape fractions is thus ≤ 8%. One can also easily notice

that at both the high resolution (512 × 256 and 512 × 512) cases the percentage

difference of escape fraction is 0.3%. In our simulations NO ranges from 100 [235] to

105 ([85, 127, 220]) and z0 ranges from 10 pc to 600 pc. The maximum difference in

the average escape fraction between low (256× 128) and high resolutions (512× 256

and 512× 512) for the whole range of NO and z0 used in our simulations for the low

n0 (n0 < 5 cm−3) runs is ≈ 10%.

In Figure A.2 we notice that for low NO (NO = 300), the average escape fraction

for three resolutions (256 × 128, 512 × 256 and 512 × 512) are 0.023, 0.07 and 0.05

respectively. Thus the percentage change in average escape fraction is 68% between

resolutions of 256 × 128 and 512 × 256 but it is 28% between 512 × 256 and 512 ×
512. For high NO case the average escape fraction for low and high resolutions

are 0.4165, 0.4243 and 0.4060 respectively, giving a maximum percentage change in

escape fraction of∼ 4%. We also find that the difference in the average escape fraction

between resolutions of 256×128 and 512×256 for large n0 (5 cm−3 ≤ n0 < 50 cm−3)

cases comes within 10% for NO ≥ 1000 for all the values of z0. The high density

simulations with n0 = 50 cm−3 are numerically very expensive and we have to use a

relatively low resolution (256× 128) for these runs.

Table 4.1 shows the resolution for our different runs using different n0, z0 and NO.
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Figure A.2: Comparison between low and high NO (NO = 300, 105 respectively) cases for the

resolutions of 256 × 128, 512 × 256 and 512 × 512 for the time dependence of escape fraction for

n0 = 15 cm−3, z0 = 30 pc.

We have chosen a high enough resolution in each case such that the time- and angle-

average escape fraction does not change by more than 20% for a higher resolution

run.

A.2 Convolution of escape fraction with OB-association

It is of interest to estimate the value of NO that dominates the process of averaging

fesc over the luminosity function of OB associations. In eqn 4.17 we have convolved

time-averaged and θ-averaged escape fraction with the luminosity function of OB-

association. On one hand the luminosity function scales as N−2
O , on the other hand

fesc increases with the number of OB stars. Therefore the integrand (of the numerator)

in eqn 4.17 peaks at a certain value of NO.

Figure A.3 plots the integrand as a function of NO for n0 = 1.5 cm−3 for two

different z0 (60 pc (the black solid line), 300 pc (the red dashed-dotted line)) and
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Figure A.3: The integrand of the numerator of eqn 4.17 as a function of NO for different n0 and

z0. The blue dashed line represents n0 = 0.5 cm−3, z0 = 300 pc; the black solid line and the red

dashed-dotted lines represent n0 = 1.5 cm−3 cases (z0 = 60 and 300 pc respectively).

n0 = 0.5 cm−3, z0 = 300 pc (the blue dashed line). For n0 = 1.5 cm−3 and for large

scale heights (300 pc), the escape fraction decreases to zero for small NO (≤ 1000)

and thus the integrand peaks at higher value of NO (NO = 4000). The integrand

decreases with NO for small z0 (z0 = 60 pc) in the case of n0 = 1.5 cm−3. Thus for

the small scale heights, the averaging process is dominated by the lowest value of NO

(NO = 100). In general, the average escape fraction is dominated by larger NO for

higher n0 and z0.

A.3 Comparison between 2D and 3D numerical

simulations

In this section we show the angle and time variation of the escape fraction for 2D

(256× 128) and 3D (256× 128× 32) simulations for the fiducial case (n0 = 0.5 cm−3,
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The plot is for the fiducial case (n0 = 0.5 cm−3, z0 = 300 pc, NO = 104).

246



0 2 4 6 8 10

10
−1

time (Myr)

<
f es

c>
θ

 

 

2D
3D

n
0
=0.5 cm−3

z
0
=300 pc

N
O

=104

Figure A.5: The comparison of time variation of the escape fraction between 2D and 3D numerical

runs. The blue-dashed and black solid lines represent the 2D and 3D runs respectively. This plot is

also for the fiducial case (n0 = 0.5 cm−3, z0 = 300 pc, NO = 104).

247



z0 = 300 pc, NO = 104). In 3D simulation we have uniformly spaced grid points in

the φ-direction.

Figure A.4 shows the angular variation of the escape fraction for the 2D and 3D

runs at three different times. The angular variation of the escape fraction in 2D and

3D matches at early times (0.5 Myr). At a later epoch (4.0 Myr), when RTI starts

playing a crucial role for the detailed structure of the shell, the angular variations

show some differences. The differences are small enough to have a negligible effect

on the final < fesc >θ (refer to the figure A.5). At very late times the escape cone

is slightly larger in 2D compared to 3D, which makes < fesc >θ a bit higher in 2D.

The time-averaged theta-averaged escape fraction in 2D and 3D (0.315 and 0.3137,

respectively) are very similar. Thus, the use of the faster 2D simulations to calculate

the escape fraction is justified.

248



Appendix B

Molecular Outflow

B.1 Numerical Setup

In this section, we describe our simulation set up. Our simulation set up is similar to

the ones described in chapter 4 except a few following differences,

• We extend the cooling function below 104 K for molecular cooling for an electron

fraction (xe = ne/nH) of ∼ 10−3, guided by the observed ionization fraction for

CNM (cold neutral medium), ∼ 10−3–10−4[48]. The cooling function is also

independent of xe, for 10−4 < xe < 10−2, between 10 K to 104 K. We have

assumed the initial isothermal ambient medium temperature to be 10 K.

• We use the exponential density stratification (n = n0 exp(−|z|/z0), where n0,

and z0 are the mid-plane density, and the scale-height of the disc respectively)

for the ambient ISM gas.

• We implement continuous mechanical luminosity till the life-time of OB asso-

ciation (10 Myr), L = 1037NOB erg s−1 (mechanical luminosities from stellar

winds and supernova explosions) as obtained from Starburst99.

• In the r–direction, we use 512 grid points to calculate the evolution of super-

bubble shell. We show that the time evolution of superbubble shell position is
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Figure B.1: The time evolution of superbubble shell position and velocity for n0 = 200 cm−3,

z0 = 200 pc, and for NOB = 105. The left panel shows the shell position, and the right panel

represents the shell velocity. The blue-dashed, the black-solid, and the light brown dashed-dotted

lines are for 512, 1024, 2048 grid points respectively.

similar for different resolutions with a maximum percentage change of 10% (see

B.2). We also show that the velocity evolution for different resolutions are also

similar (B.2). We adopt n0 = 200 cm−3, and z0 = 200 pc to be the fiducial case.

B.2 Convergence test of superbubble shell posi-

tion & velocity

We show the time evolution of the shell position and velocity for three resolutions

(512, 1024, 2048 grid points), and for n0 = 200 cm−3, z0 = 200 pc, NOB = 105. The

left panel shows the time evolution of the shell position, and the right panel represents

the shell velocity.
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One can notice that superbubble shell positions for the three resolution are com-

parable. The low resolution runs (512, 1024 grid points) show a similar evolution,

whereas the high resolution case (2048 grid points) varies slightly from the low reso-

lution cases with a maximum percentage change being of order ∼ 10%. One can also

notice that the velocity evolutions show similar results as in the case of the evolution

of the shell positions (showing that the low resolution runs are similar, and a maxi-

mum percentage change of 10% for the case of 2048 grid points). Therefore, we run

all our numerical simulation with 512 grid points with an error of ∼ 10 % in both the

cases of the shell position, and velocity evolution.

B.3 Density jump in the superbubble shell

Since the formation of molecules takes place in the cool/dense shell (region iii), it is

important to estimate its density. Let (ρ1, u1) and ρ3, u3 be the density and velocity

of the ISM (region i) and the shell (region iii), respectively, in the shock rest frame.

The conservation of mass, momentum, and magnetic flux gives

ρ1u1 = ρ3u3; (B.1)

ρ1u
2
1 + p1 + pmag,1 = ρ3u

2
3 + p3 + pmag,3; (B.2)

B1u1 = B3u3; (B.3)

where p1,3 (pmag1,3 ≡ B2
1,3/[8π]) is the gas (magnetic) pressure in region i,iii, and B1,3

is the field strength in region i,iii. We assume the field lines to be in the shock-plane

(this component is important in preventing the shell to be compressed to very high

densities). All the cooling is concentrated in region ii, and the temperatures T1 and

T3 correspond to the stable thermal equilibrium temperatures in regions i and iii (this

replaces the energy equation, required to solve for downstream quantities in region

iii; see Fig. 5 in [? ]). Lets define the compression ratio r = ρ3/ρ1 = u1/u3 = B3/B1.
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Figure B.2: Compression factor (numerical solution of Eq. B.4) as a function of upstream β1

for various values of the upstream Mach number. The influence of the ratio of the temperatures in

regions 1 and iii is small in the relevant β1 regime.

Then, Eqs. B.1-B.3, and the temperature information gives,

r3

β1

+

(

c3
c1

)2

r2 −
(

1 +M2
1 +

1

β1

)

r +M2
1 = 0, (B.4)

where c21,3 ≡ γ1,3kBT1,3/(µ1,3mp) is the sound speed, M1 ≡ u1/c1 is the upstream

Mach number, and β1 ≡ 8πp1/B
2
1 is the upstream plasma β. Eq. B.4 can be solved

numerically for various parameters (β1, M1, c3/c1).

Figure B.2 shows the compression factor as a function of a reasonable range in

upstream plasma β for three different Mach numbers, assuming the same temperature

in regions i and iii (c1 = c3). As expected, the compression factor is larger for a higher

Mach number. The compression factors with a reasonable upstream magnetic field

β ∼ 1 is much smaller than the hydrodynamic limit (r ∼ M2
1 as β → ∞). A

reasonable value for ρ3/ρ1 for typical ISM β is in the range few to 100 (see also [182]).
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B.4 Heating and cooling in the shell

The dominant heating process in the molecular region of the shell is photoelectric

(PE) heating. We use the PE heating rate given by [227], in which they take into

account the electron-PAH collisions by the term φPAH (which takes into account

the fraction of PAH). At a given density, the heating rate depends on the electron

abundance, the diffuse incident UV radiation, temperature of the medium, and φPAH.

Therefore, the heating rate per unit volume is given by,

nΓpe = 1.3× 10−24nǫGFUV ergs cm−3 s−1 , (B.5)

where n is the density of the hydrogen nucleus, GFUV is the incident UV radiation

field with the dust-extinction (see equation B.7) in terms of the Habing radiation,

and ǫ is the heating efficiency given by,

ǫ =
4.9× 10−2

1 + 4.0× 10−3(GFUV T 1/2/neφPAH)0.73

+
3.7× 10−2(T/104)0.7

1 + 2.0× 10−4(GFUV T 1/2/neφPAH)
, (B.6)

[47], where T is temperature of the medium, ne is the electron density. The heating

rate weakly depends on φPAH value varying from 0.25 to 1 [227]. In our calculation,

we have assumed the value of φPAH ∼ 0.5.

We assume a central OB association at the centre of the galactic disk. We use the

Starburst99 code to calculate the FUV (5.4–13.6eV) photon luminosity (SFUV ) (see

figure 5.3 in section 5.3) to obtain GFUV as a function of z+ as,

GFUV (z+) =

(

SFUV exp(−τFUV )/4πz
2
+

)

(

4× 10−14c/hν1000A◦

)

=
(SFUV exp(−τFUV )/4πz

2
+)

6× 107
, (B.7)

where c is the speed of light, τFUV (= σdAv(mol) × 1.87 × 1021) is the optical depth

of the shell for the FUV photons for the dust extinction cross-section of σd. We

have considered σd at 1000Åto be ∼ 6 × 10−22 cm2 for dense clouds with reddening
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Figure B.3: The time evolution of the heating rate in superbubble shell at the time when its

uppermost position is z+ , for three different n0, z0 cases (n0 = 1000 cm−3, z0 = 50 pc; n0 = 200

cm−3, z0 = 200 pc, and n0 = 500 cm−3, z0 = 100 pc), for two η10 cases and for NOB = 105. The

thick, and thin solid lines correspond to η10 = 10, 1 respectively. The black, green, and the red lines

represent n0 = 1000 cm−3, z0 = 50 pc; n0 = 200 cm−3, z0 = 200 pc, and n0 = 500 cm−3, z0 = 100

pc cases respectively.
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parameter of Rv = 5.5 [46]. We have used the fact that Habing field has an energy

density of 4× 10−14 erg cm−3 at 1000 A◦ [46].

We show the PE heating in Figure B.3 for the two fiducial cases. We calculate

the PE-heating rate once the shell crosses the Strömgren sphere radius for all the

three combinations of n0, z0. We notice that PE-heating depends on electron density,

and FUV luminosity, and the equilibrium shell temperature. On the other hand, the

electron density depends on the shell density and temperature (as recombination is

temperature dependant) which in turn is determined by the heating (PE-heating)

and cooling balance. Thus one needs to solve the equations of ionization and thermal

equilibrium simultaneously to obtain ne, and Tshell, and to understand their effect

on PE-heating rate. The electron density (ne) has a strong dependence on the shell

density, thus ne decreases as the shell density decreases. Therefore, the PE-heating

rate also drops initially. In all these three n0– z0 combinations the shell radius reaches

at ∼ 200 pc in 2–3 Myr, when the FUV photon luminosity starts dropping drastically,

and thus we notice kinks in the curves of PE-heating rates at ∼ 200 pc, and PE-

heating rate drops after 200 pc due to the drop in SFUV .

We use the same cooling function as in our simulation for the dynamics of the

superbubbles, the details of which are described in §B.1.

B.5 Density and temperature in the dense shell

The heating and cooling time scales in the shell are shorter than the dynamical time

scale (z+/t) at all times. Thus one can assume thermal equilibrium to calculate the

shell temperature.

First we show the ionization fraction, total gas density and electron density in the

shell in Figure B.4. The nature of the curve for ne mimics that of the curve for the

total shell density, nsh, albeit with small differences which show clearly in the plot

for xe, the ionization fraction. Here again there are kinks in the curves at ∼ 200 pc,
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Figure B.4: The evolution of the ionisation fraction as a function of the vertical height of the

superbubble. All the line styles, and line-colours representing different n0, z0, and η10 are mentioned

in the caption of figure B.3.

and they arise because of the change in the FUV luminosity as mentioned earlier.

Next we show the equilibrium shell temperature as a function of the position of

the shell in Figure B.5, for three different combinations of n0, z0 and for NOB = 105.

In the case of larger scale height (200 pc), the shell temperature initially is ∼ 10–20

K, and it falls to ∼ 10 K at larger radii. This is owing to the high density in the shell,

and consequently, greater cooling. In the case of smaller scale height, the low density

at large heights, the ionization fraction increases and so does PE heating, and thus

the shell temperature increases with radius. Again, kinks arise due to the nature of

FUV luminosity evolution.
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Figure B.5: The equilibrium temperature of the shell is plotted as a function of the shell-radius

for three difefrent n0, z0 cases for NOB = 105, and for η10 = 1, 10.
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A., & Melo, V. 2009, ApJ, 700, 931

[182] Smith, M. D., 1993, A&A, 272, 571

[183] Smith, N., 2014, ARA&A, 52, 487

[184] Sommerville, R. S., Bullock, J. S., Livio, M. 2003, ApJ, 593, 616

[185] Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289

[186] Springel, V. et al. 2005, Nature, 435, 629

[187] Staveley-Smith et al. , 1997, MNRAS, 289, 225

[188] Stinson, G., Seth, A., Katz, N., Wadsley, J., Governato, F., & Quinn, T. 2006,

MNRAS, 373, 1074

269



[189] Stone, J. M. & Norman, M. L. 1992, ApJS, 80, 753

[190] Strickland, D. K. & Stevens, I. R. 2000, MNRAS, 314, 511

[191] Strickland, D. K. & Heckman, T. M. 2009, ApJ, 697, 2030

[192] Strickland, D. K, Heckman, T. M., Colbert, E. J. M., Hoopes, C. G., Weaver,

K. A., 2004, ApJ, 606, 829

[193] Suchkov, A. A., Balsara, D. S., Heckman, T. M., & Leitherer, C. 1994, ApJ,

430, 511

[194] Suchkov, A. A., Berman, V. G., Heckman, T. M., Balsara, D. S. 1996, ApJ,

463, 518

[195] Suchkov, A. A., Shchekinov, Y. A., 1974, Astrophysics, 10, 159

[196] Sunyaev, R. A., Strelnitsky, V. S., Astron. Rept.

[197] Sutherland, R. S., Dopita, M. A. 1993, ApJS, 88, 253

[198] Tacconi, L. J. et al. 2010, Nature, 463, 781

[199] Tang, S. & Wang, Q. D. 2005, ApJ, 628, 205

[200] Tasker, E. J. & Bryan, G. L. 2006, ApJ, 641, 878

[201] Tenorio-Tagle, G., Rozyczka, M., Bodenheimer, P. 1990, A&A, 237, 207

[202] Tenorio-Tagle, G., Silich, S., & Muñoz-Tuñón, C. 2003, ApJ, 597, 279
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