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Curvature instability of chiral colloidal membranes
on crystallization
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Buckling and wrinkling instabilities are failure modes of elastic sheets that are avoided in the

traditional material design. Recently, a new paradigm has appeared where these instabilities

are instead being utilized for high-performance applications. Multiple approaches such as

heterogeneous gelation, capillary stresses, and confinement have been used to shape thin

macroscopic elastic sheets. However, it remains a challenge to shape two-dimensional self-

assembled monolayers at colloidal or molecular length scales. Here, we show the existence of

a curvature instability that arises during the crystallization of finite-sized monolayer mem-

branes of chiral colloidal rods. While the bulk of the membrane crystallizes, its edge remains

fluid like and exhibits chiral ordering. The resulting internal stresses cause the flat membrane

to buckle macroscopically and wrinkle locally. Our results demonstrate an alternate pathway

based on intrinsic stresses instead of the usual external ones to assemble non-Euclidean

sheets at the colloidal length scale.
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Thin elastic sheets are a common motif found in both bio-
logical and synthetic structures1. Sufficiently thin sheets
undergo curvature instability to buckle out of plane in the

presence of compressive stresses2,3. The origin of this instability
lies in the fact that in-plane stretching energy becomes prohibi-
tively larger than out-of-plane bending energy as the thickness of
the sheet is reduced4,5. Similar curvature instability also sets in
when internal residual stresses appear in the system due to dif-
ferential (non-uniform) growth or strain5. For example, growing
leaves and petals6,7, torn plastic sheets8, and heterogeneous
swollen gels9 do not remain flat instead spontaneously buckle and
develop wrinkles. While shaping of thin sheets through curvature
instabilities is a well explored phenomenon at the bulk con-
tinuum length scales, it remains an experimental challenge to do
the same at the colloidal or molecular length scales10–13.

Lipid bilayers and cell membranes are classic examples of
molecular thin sheets whose local curvature is typically modu-
lated by external agents such as proteins. Proteins bind to the
membranes and cause curvature changes either by imposing their
own intrinsic curvature at the site of binding or by distorting the
leaflet structure of the membrane through partial insertion14.
Nanometer length scales and complex heterogeneous composi-
tion of cell membranes pose significant barriers in studying cell
membrane mechanics. Colloidal monolayer membranes, on the
other hand, are much more amenable to detailed investigation
due to micron-sized simple controllable building blocks. External
boundary constraints like confinement and non-equilibrium
phenomena such as drying are some of the strategies employed
to modulate their curvature10,11. However, internal phase tran-
sitions that may drive curvature generation remains an unex-
plored pathway in the context of molecular and colloidal
membranes.

Here, we show the existence of a unique curvature instability
that arises during the crystallization of self-assembled colloidal
monolayer membranes composed of aligned chiral colloidal
rods15. Combining complementary microscopy and scattering
techniques with suitably chosen assembly conditions, we follow
the kinetics of crystallization and associated instabilities in real
time by varying the sample temperature. There are two opposing
tendencies in the system: inter-rod chiral interaction favoring rod

tilting and depletion interaction promoting uniform parallel
alignment of rods. The competition between the two results in
curvature instabilities during, and on completion of fluid to
crystal transition. Such complex crystallization pathways are
rarely found in other colloidal systems. We perform discrete
Monte–Carlo simulations to validate our understanding of the
experimental results. We find that the resultant curvature and
surface roughness post crystallization are governed by the size of
the membrane and the number of nucleation centers. Further-
more, the crystalline colloidal membranes fracture under external
stresses. Unlike conventional dried colloidal films, fractures in
these membranes can be annealed by simply tuning the tem-
perature. Our work establishes crystallization as a robust method
for making colloidal membranes self-shaping materials with
tunable surface roughness and curvature.

Results
Phase diagram. Rod-like viruses M13KO7, 1.2 μm in length and
6.6 nm in diameter, spontaneously assemble into monolayers in
presence of depletion attraction induced by non-adsorbing
polymer Polyethylene Glycol (PEG 35k)16. The directional nat-
ure of depletion interaction results in all the rods to be aligned
along their long axes within the one-rod length thick monolayer
membranes (Fig. 1a). At low concentration of PEG (20 mgml−1),
the rods are free to diffuse within the membrane. Consequently,
the positional order of the rods within these membranes is dis-
ordered or fluid-like16. Finite line tension causes the fluid
membranes to have circular shape whose edges undergo thermal
fluctuations at macroscopic length scales (Fig. 1c; Supplementary
Movie 1). Theoretical phase diagram of 2D colloidal membranes
predicts that rods within the membranes crystallize at high
strength of depletion interaction for large enough rod-aspect ratio
(Fig. 1b)15,17. At higher concentration of PEG (24 mgml−1), we
not only find this theoretically predicted solid phase but also
discover that the solid membranes are highly roughened and
buckled (Fig. 1d; Supplementary Movie 1). Clearly, a hitherto
unseen curvature instability arises in conjunction with crystal-
lization of colloidal membranes.

We measure the small angle x-ray scattering (SAXS) profiles
(Methods) of the fluid and solid colloidal membranes (Fig. 2a) to
validate the microscopic structure of the two phases. A broad
peak is observed for the fluid phase corresponding to an inter-rod
spacing of 11.74 nm. This peak shifts to 10.03 nm in the solid
phase, consistent with the expected increase in the density during
2D crystallization18. The first zero of the form factor of viruses,
calculated by modeling them as cylinders of uniform electron
density with a diameter of 6.6 nm, occurs at q= 1.16 nm−1, which
is almost precisely half way between the positions of the (11) and
(20) peaks expected from a two-dimensional hexagonal lattice.
Therefore, higher order peaks beyond (10) peak become
immeasurably small in the SAXS profile of the crystalline phase.

Mechanism of fluid–crystal transition. We visualize the
curvature instability associated with the fluid to solid transition
in colloidal membranes by tuning the osmotic pressure of PEG
with temperature19. At intermediate polymer concentration
(22 mgml−1), membranes transform from fluid into solid on
cooling to about 15 °C. This transformation is mediated by
nucleation and growth (Supplementary Movie 2) as shown by the
time-lapse images in Fig. 2b–d. The nucleation time of ~30 min is
set by both the degree of supercooling and the overall polymer
concentration. The faceted nature of boundary of the growing
domain provides further evidence that the solid phase has
positional order associated with it. A network of local ridges
(protrusions) appear within the growing solid domain as it
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Fig. 1 Fluid and crystalline phases of colloidal membranes. a Schematic of a
fluid colloidal membrane. b Schematic of a polycrystalline colloidal
membrane assembled with more than one nucleation center. Yellow rods
highlight the domain walls. c Differential interference contrast (DIC) image
of a fluid colloidal membrane at 20mgml−1 PEG concentration. Scale bar,
10 μm. d DIC image of solid colloidal membrane at 24mgml−1 PEG
concentration. Scale bar, 10 μm
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relieves the excess strain energy associated with dislocations,
disclinations, and tilt distortions through out-of-plane buckling
(Fig. 2d). As part of the growing domain makes contact with the
membrane edge, the local ridges begin to anneal with the rest of
the domain continuing to engulf the remaining fluid membrane
(Fig. 2e–g). When the membrane transforms into the solid phase
in its entirety, it buckles macroscopically as is evident from the
partially out of focus edge (highlighted by an arrow in Fig. 2g).
The transformation is reversible as the solid membrane melts into
the fluid phase when temperature is increased back to room
temperature (Supplementary Movie 2). The size of the solid
domain increases linearly with time implying interface controlled
growth (Supplementary Fig. 1)20. The growth rate of the size of
the domain was found to be 1.12± 0.01 μm s−1 when membranes
were supercooled to 15 °C. The final morphology of the solid
membrane obtained in this time sequence is more uniform and
smoother than the one shown in Fig. 1d because of differences in
the kinetic pathways of transformation that are discussed below.

Numerical simulations. The mechanism of local ridge formation
shown in Fig. 2b–d can be understood by considering the
microscopic chirality of the constituent rods. A single nucleation
center in Fig. 2b implies that the grains surrounded by the local
ridges are likely to have very small crystalline lattice orientation
mismatch, if any. We, therefore, analyze the orientational stability
of a 2D hexagonal lattice of chiral rods with their long axes
initially oriented along ẑ using Monte–Carlo simulation of a
discrete model for chiral nematics21,22. Consider nematic direc-
tors n̂i (long axes of the rods) arranged on a 2D hexagonal lattice,
where i denotes the lattice site. We simulate a finite system,
consisting of 2314 rods, and having a circular boundary where
torque free boundary condition is imposed23,24 (Supplementary
Note 1). The energy of the system is given by,

H ¼ �ϵN
X
nn

n̂i:n̂j
� �2þϵC

X
nn

r̂ij: n̂i ´ n̂j
� �� �

n̂i:n̂j
� �� q

� �2�ϵD
X
i

n̂i:ẑð Þ2;

ð1Þ

where r̂ij is the unit vector from the i-th to j-th director. The
sums in the first two terms are over all nearest neighbor (nn)
pairs (i, j) and all the terms have n̂ ! �n̂ symmetry. The first
term promotes nematic ordering as in the Lebwohl–Lasher
model25 and the third term represents depletion interaction
which aligns the rods along the membrane normal (along ẑ). The
second term embodies the simplest chiral interaction term
r̂ij: n̂i ´ n̂j

� �� �
n̂i:n̂j
� �

26. We generalized this term to include a
preferred chirality q, as in continuum Frank free-energy to
account for the chiral nature of the viruses24,27,28. The nematic
and the depletion interaction together promote uniform vertical
ordering of the rods along ẑ, while the chiral term opposes it
(Supplementary Note 1). Due to this competition, a uniformly
oriented state (along the membrane normal) is unstable and
spontaneously gives rise to grain boundaries, where the rods have
higher inclination angle and higher energy compared to the grain
interior (Fig. 2h; Supplementary Figs. 2–5). Experimentally, the
grain boundaries locally buckle out of plane and the rods within
them gather tilt by following the local layer normal, an effect
which our simplistic 2D model cannot capture. The size and the
chiral orientation of the grains are controlled by the preferred
chirality q (Supplementary Figs. 2, 3).

Dynamics of rods within the colloidal membranes. The struc-
ture and dynamics of edge of the membrane is responsible for
annealing of the local ridges during the phase transformation. We
track the motion of single individual rods in colloidal membranes
where 1 out of 30,000 rods are fluorescently labeled (bright spots
in Supplementary Movie 3, Methods) to follow the dynamics of
fluid and crystalline phases. The mean squared displacement
(MSD) of rods in the fluid phase is a linear function of time with
diffusion coefficient of 0.98 × 10−2 μm2 s−1 (Fig. 3a; Supplemen-
tary Movie 3). On the other hand, diffusion coefficient of rods in
the bulk of solid membranes is four orders of magnitude lower
with a value of 1.3 × 10−6 μm2 s−1, as is expected of in a crystalline
phase (Supplementary Movie 3). At long time scales, MSD for
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Fig. 2 Curvature instability during fluid–crystal transition in colloidal membranes. a SAXS intensity as a function of scattering wave vector (q) for fluid
(black stars) and crystalline (red circles) colloidal membranes at 20 and 25mgml−1 PEG concentration, respectively. b–d Time lapse sequence of
nucleation and growth of a crystalline domain within a fluid membrane. The growing domain spontaneously develops a network of local ridges
(protrusions). Scale bar, 10 μm. e–g Time-lapse sequence showing annealing of the ridges, shown in b–d, as the growing domain encounters the edge. The
black arrow in the last panel highlights the out of focus edge of the transformed membrane. Scale bar, 10 μm. h Grain boundary formation as obtained in the
discrete MC simulation using Eq. (1). The plot in grayscale shows the z-component of the directors, i.e., n̂ið Þz2 ½0; 1�
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these rods saturates to 5.3 × 10−4 μm2, which is consistent with tilt
fluctuations of rods within the membranes (Fig. 3b). While
dynamics of rods in the bulk of the membranes is as expected, the
rods at the edges of the membranes behave differently. Rods at
the edge and in a thin region near the edge are tilted with respect
to the layer normal in fluid membranes (Fig. 1a)29. The resultant
twist penetration depth is set by the microscopic chirality of the
constituent rods. This edge-bound cholesteric does not turn into
crystalline phase during the transformation due to large energetic
barrier associated with untwisting of the rods. It shows complex
dynamics, where rods continue to diffuse along the edge and
maintain a dynamic equilibrium between attachment and
detachment to the bulk solid phase (Supplementary Movie 3
highlighting the edge-bound rods in the circled area). We
determine the MSD for these edge bound rods during the time
periods, where they remain mobile and find it to be a linear
function of time with diffusion coefficient 1.86 × 10−2 μm2 s−1

(Fig. 3a). The edge-bound rods in solid membranes continue to
diffuse over days (Supplementary Fig. 6). We can therefore infer
that a thin liquid layer encloses the bulk solid membrane.

The chiral interaction energy is lowest for the rods at the edge
of the membrane compared to the rods at the local ridges, where
chiral interactions are only partially satisfied (Supplementary
Fig. 5c). Therefore, the grain within the growing domain that is in
contact with edge has lower energy density than all other grains
and consequently grows at the expense of others (Fig. 2e;

Supplementary Fig. 7)30. This causes annealing of almost all the
local macroscopic ridges that were present before the membrane
edge was encountered by the growing solid domain. This is
further supported by the fact that when there are more than one
nucleation center in the fluid membranes, all the local ridges can
not be annealed completely due to significant mismatch in the
crystalline lattice orientations of the growing domains which pose
large energetic barriers (Supplementary Movies 5–7).

Continuum structure and mechanics of crystalline membranes.
We measure the extent of buckling, that occurs post annealing of
local ridges, by 3D imaging of the solid membranes formed
through nucleation and growth from a single nucleation center
(Fig. 3c, Methods). Figure 3d shows deformation amplitude, given
by difference of maximum and minimum height across the solid
membrane, i.e., ΔH=Hmax −Hmin, as a function of size of the
membrane (Supplementary Movie 8). ΔH monotonically
increases with membrane size (Fig. 3d) as is expected from elastic
theory of thin plates4.

Solid membranes formed through nucleation and growth at
more than one site in the membrane show local wrinkling in
addition to global buckling. Figure 4a–c show confocal images of
the solid membranes that have been formed from varying number
of nucleation centers, N (Supplementary Movies 4–7). Supple-
mentary Movie 5 shows N= 2 case, where solid domains grow
from two different nucleation centers simultaneously. A
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Fig. 3 Dynamics and macroscopic structure of crystalline colloidal membranes. a Mean squared displacement (MSD) as a function of time for rods within
the bulk of a crystalline membrane (red closed circles), bulk of a fluid membrane (blue open circles), and rods at the edge of the crystalline membrane
(green stars). b Zoomed-in MSD of the rods within the bulk of the crystalline membrane. MSD of rods in the bulk of the crystalline membranes, bulk of the
fluid membranes, and edge of the crystalline membranes was obtained by analyzing the individual trajectories of 186, 102, and 50 tracer rods, respectively,
present across multiple membranes and multiple sample chambers. The average of all these data sets is plotted in symbols with the standard deviation as
the error bar. c 3D rendered confocal image of a crystalline colloidal membrane formed out of a single nucleation center. Sidebar shows the color code for
z-axis values. d Deformation amplitude, ΔH= Hmax −Hmin as a function of diameter of the colloidal membrane. The raw data corresponding to different
membrane diameters were binned to compute a mean deformation corresponding to a mean membrane diameter. The standard deviation of a particular
bin has been used as the error bar for that bin
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macroscopic ridge (domain wall) gets trapped near the center of
the membrane at the end of the crystallization. Membranes
formed through N> 2 have multiple domain walls within them,
which results in local minima and maxima in the height across
the entire area of the membranes. Figure 4e shows the fraction of
membrane area covered by local peaks and troughs, ϕ, as a
function of N to characterize the change in surface morphology of
the membranes (Methods). ϕ is lowest for N= 1, consistent with
the fact that surface topography of such membranes remains
locally smooth in absence of any ridges and are buckled at the
continuum length scales (Fig. 3c). ϕ increases abruptly at N= 2
and remains constant for N> 2. Though the variation of ϕ
establishes that membranes formed out of N> 2 are all locally
rough, the topography of such membranes can be further
distinguished by studying the variation of the number of local
peaks and troughs with N (Fig. 4f). The number of local peaks
and troughs increase with increase in N.

We study fluid–solid transition in membranes with edge-on
configuration (membranes whose layer normal is parallel to the
horizontal/coverslip) to determine the effect of steric interactions
with the substrate (coverslip) on the curvature instability, if any
(Methods). We find that these solid membranes wrinkle in a
manner similar to the data reported in Fig. 4 for the face-on
membranes (Supplementary Fig. 8).

Solid membranes are mechanically brittle. Gentle external
tapping/shaking of the sample chamber is enough to cause
fracture in these membranes (inset of Fig. 4g). Fractured
membrane edges are jagged and remain so over days (the
samples were observed upto 10 days). We characterized their
roughness by computing the roughness exponent of the boundary
profile of the edge, Y(X), using root mean square correlation
method (Methods). The standard deviation of the boundary
profile computed over a window size l and averaged over multiple

windows, σ lð Þh i scales as ~lκ with roughness exponent κ≅ 0.84
(Fig. 4g), implying that these roughened edges are self affine in a
manner similar to those found in rocks, glasses, and metals31,32.
Interestingly, fractured colloidal membranes are one of the few
model systems in which the roughened colloidal interface is still
surrounded by the solvent unlike the fractures in dried colloidal
films. This enables us to anneal the roughened interface by
heating the sample and initiating fluidization (Supplementary
Movie 9).

Role of chirality in the curvature instability. So far this study
has used rod-like viruses which are chiral (left handed) in nature.
We utilize miscible mixtures of left handed and right hand viruses
to address the role played by chirality in the curvature instabilities
discussed here33. Membranes assembled from miscible mixtures
of left handed and right handed viruses are significantly weaker in
chirality compared to those assembled from purely left handed
ones (Methods)34. We find that these membranes remain com-
pletely flat, within the diffraction-limited axial resolution, during
and on completion of the phase transformation into the crystal-
line phase (Fig. 4d). Each growing domain remains flat (Sup-
plementary Movie 10) unlike the time lapse sequence shown in
Fig. 2b–d (Supplementary Movie 2) wherein local ridges had
spontaneously appeared during the growth. The domains walls
separating the domains also remain unbuckled. This results in the
crystallized weakly chiral membranes to have negligible curvature
both locally and globally (Fig. 4d). We, therefore, establish both
experimentally and numerically that the chiral nature of the
constituent rods is essential for the curvature instabilities to set in.

Discussion
Crystallization is a fundamental phenomenon that is of both
scientific and technological interest20. Our experiments on
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fluid–crystal transition in chiral colloidal membranes have shown
that restraining crystallization to two dimensions with shape
anisotropic chiral building blocks lead to curvature instabilities.
M13 viruses used in these experiments are an ideal model system
of hard rods, as demonstrated by a number of theoretical,
experimental, and simulation studies35. Therefore, our results
hold relevance for colloidal or nanorods interacting through
excluded volume interactions. The assembly principles presented
here are general enough for the assembly of nanorod arrays that
have a wide range of potential applications such as solar cells,
light emitting diodes, etc. Therefore, understanding the principles
that govern the curvature of such arrays is essential for optimizing
device applications. Our work also has indirect relevance to cell
membrane remodeling, which is usually driven by specialized
proteins acting in conjunction with chiral building blocks of the
membranes. The microscopic constituents and driving forces that
assemble colloidal membranes and lipid membranes are funda-
mentally different. Despite these differences, both lipid mem-
branes and colloidal membranes are governed by the same elastic
energy as both systems have the same set of symmetries. Con-
sequently, our results also point to a phase transition-driven
pathway that may be relevant to membrane remodeling.

Methods
Virus growth and sample preparation. We purified filamentous virus M13KO7,
diameter 6.6 nm, contour length 1.2 μm using standard biological protocol36.
Purified virus was suspended in 20 mM Tris-HCl (pH = 8.0) buffer containing
100 mM NaCl to screen the electrostatic interactions. Primary amines of the major
coat protein of M13KO7 were labeled with amine-reactive fluorophore (DyLight
550 NHS Ester, Thermo Scientific) for fluorescence and confocal microscopy
imaging. There are about 3681 labeling sites available on a single virus rod surface.
We labeled the virus surface in two different degrees of labeling (2 and 10%, i.e.,
~74 and ~368 dye molecules per virus, respectively). Samples were prepared by
mixing virus suspension and non-adsorbing polymer polyethylene glycol (PEG
35k, Sigma-Aldrich) and injecting the resultant suspension into a sample chamber.
The chamber was prepared using a microscope slide and a coverslip with a thin
spacer of parafilm placed between two. Finally, sample chamber was sealed with an
epoxy glue to minimize evaporation. Glass slides and coverslips were thoroughly
cleaned with hot 1% soap solution (Hellmanex; Hellma Analytics). Coverslips were
further treated with ethanol and potassium hydroxide. Cleaned coverslips were
coated with a polyacrylamide brush to suppress the depletion interaction between
viruses and glass surfaces. The PEG concentration was varied from 20 to 24 mgml
−1 for obtaining the equilibrium phase behavior. For all experiments except those
involving edge-on membranes, final concentration of virus in the sample was
1.5 mg ml−1. Edge-on membranes used to rule out the effect of the substrate were
self-assembled at a virus concentration of 5 mgml−1, wherein there is a propensity
for few membranes to grow perpendicular to the plane of the coverslip. Crystal-
lization kinetics was followed by preparing samples with PEG concentration at
22 mgml−1 along with temperature variation from 30 to 15 °C. Decrease in tem-
perature increases the PEG osmotic pressure, which leads to solidification of the
fluid membrane. A typical sample chamber contains more than 100 membranes
with varying sizes, which statistically start crystallizing through nucleation and
growth around 20 °C.

Small angle x-ray scattering measurement. Virus polymer mixtures were
injected into a 0.7 mm glass capillaries (Hampton Research), which were then
sealed with flame. The capillaries were exposed to X-rays (Hecus S3-Micro system
equipped with a 1D position-sensitive detector, HECUS PSD50M) for about an
hour and half to obtain well-averaged SAXS intensity vs. scattering vector (q)
profiles.

Optical microscopy methods. The differential interference contrast and fluores-
cence images of membranes were recorded using an inverted microscope (Olympus
IX73) equipped with an oil-immersion objective (1.3 NA, 100X UPlanFL N) and
connected to a charged-coupled device camera (Cool Snap HQ2, Photometrics).
Solid-state source (Sola light engine, Lumencor) and TRITC filter cube (excitation
wavelength 511–551 nm, emission wavelength 573–613 nm) were used for fluor-
escence imaging.

We doped colloidal membranes of unlabeled viruses with fluorescently labeled
viruses for the individual rod-tracking measurements. The ratio of number of
labeled to unlabeled viruses in these membranes was about 1:30,000. The degree of
labeling of individual fluorescent viruses was 10%. Each fluorescently labeled virus
appears as an isolated bright spot. The fluorescence images were recorded at
100 ms exposure time.

3D images of solid membranes were obtained by imaging their cross sections
using laser scanning confocal microscopy setup (Zeiss LSM 880 Airyscan). System
optimized step size value was used for spacing of cross sections. Samples were
prepared using fluorescently labeled viruses with 2% degree of labeling.
Fluorescence images were acquired by excitation with a 543 nm He-Ne laser. Raw
images were stacked and rendered using Matlab.

Measurement of deformation amplitude. Fluid colloidal membranes are typically
conjoined to other membranes through liquid crystalline defects such as pi-walls
and pores37. We used optical tweezers to slice a larger colloidal membrane into a
smaller isolated one or slice through the liquid crystalline defects to obtain an
isolated membrane of desired size. Consequently, it is not practically feasible to
obtain membranes of identical size repeatedly. The isolated membranes were
crystallized by lowering the temperature below the room temperature post-which
3D confocal images were recorded. The deformation amplitude was measured
using image processing Matlab codes. The data obtained were then binned to
compute a mean deformation corresponding to a mean membrane size. The
standard deviation of a particular bin was used as the error bar for that bin.

Roughness exponent analysis. DIC images of broken solid membrane edges were
recorded using the optical microscopy setup described above. Appropriate
threshold was used in Matlab image processing programs to detect the jagged
profile of the broken edge, Y(X). The roughness exponent was calculated using
root mean square correlation method. We computed standard deviation of Y(X)
for a given window size of length l. The window was then scanned across the
profile to obtain an average value of standard deviation, σ lð Þh i, for a given l. The
window size for two given end points (Y2, X2) and (Y1, X1) was calculated by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 � Y1ð Þ2þ X2 � X1ð Þ2

q
to account for the fact the mean profiles were not

always along the horizontal/X-axis.

Determination of membrane area covered by peaks and troughs. The topo-
graphy of the membranes was characterized by height maps, h(x, y) generated from
the confocal 3D stacks using ImageJ Plugin Extended Depth of Field. These were
further smoothened out using Matlab image processing programs to remove image
acquisition noise. The mean surface of membranes was obtained by fitting a
polynomial to the height map. Absolute value of the difference between height map
value for each pixel and the corresponding value of the fitted mean surface was
computed. This matrix was renormalized to have values between 0 and 1 so that
the point belonging to the tallest peak had a value equal to 1. All points in the
matrix with value larger than 0.35 were said to be belonging to a local peak/trough.
Fraction of membrane area covered by local peaks/troughs, ϕ, was simply given by
total number of points belonging to a local peak/trough divided by total number of
points in the height map. The same threshold of 0.35 was used for determination of
ϕ in all the samples. The numerical values of ϕ as shown in Fig. 4e change as this
threshold is changed. However, the trend of data remains the same, namely, the
area fraction covered by peaks and troughs undergoes a significant jump when
number of nucleation centers is increased from 1 to 2.

Tuning the chirality of colloidal membranes. M13KO7 and M13KO7-Y21M are
oppositely handed viruses with identical length. M13KO7-Y21M has three times
higher persistence length and significanlty weaker chirality compared to that of
M13KO7 (the cholesteric pitch of bulk M13KO7-Y21M samples is four times
larger or more compared to that of bulk M13KO7 samples at similar concentra-
tions)33. We, therefore, prepared uniform mixtures of M13KO7-Y21M and
M13KO7 in the 8:2 stoichiometric ratio to determine the effect of lowering the
chirality on the observed curvature instabilities. The two kinds of viruses remained
uniformly mixed within the colloidal membranes assembled from the above
mentioned mixtures. The membranes were assembled using 18 mgml−1 of PEG
and 178 mM NaCl in the suspension buffer. M13KO7-Y21M viruses were fluor-
esecently labeled with a degree of labeling of 2% to enable confocal microscopy of
such membranes.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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