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Preface

This thesis deals with phononic energy transport in one-dimensional systems, both quantum

and classical. The chief application is to the behavior of thermal conductivity in nanowires and

nanotubes. We are primarily concerned with the question of anomalous versus normal energy

transport in these systems. Normal transport refers to fluctuations that relax to equilibrium

following the diffusion equation, for which well-defined transport coefficients exist. Anomalous

diffusion, on the other hand, shows a more complicated mathematical behavior, and is charac-

terized by diverging (or vanishing) transport coefficients. Energy diffusion in one-dimensional

models is quite generally anomalous, though some specific conditions imposed on the model

lead to normal transport. The central problem of this thesis is to understand and characterize

anomalous transport properties of energy in one dimensional systems, and also to identify general

criteria necessary for normal transport of energy. The problems addressed in various chapters of

the thesis are briefly summarized below.

Chapter 1: Introduction

This chapter introduces the central problems and relevant literature.

Chapter 2: The Fermi-Pasta Ulam chain: Steady State and Thermal Conductivity

This chapter studies heat transport in the Fermi-Pasta-Ulam (FPU) chain, through nonequilibrium

and equilibrium simulations, and for both symmetric and asymmetric inter-particle interactions.

It identifies interesting finite-size effects and questions some previous results based on the use of

the Green-Kubo formula for closed systems.

ix



x Preface

Chapter 3: Equilibrium Correlations and Hydrodynamics for the FPU Model

The spatiotemporal correlations of conserved fields in the FPU model is studied, and discussed

in reference to the predictions of nonlinear fluctuating hydrodynamics. Implications for the heat

conductivity are discussed, and connections with the nonequilibrium simulations of the previous

chapter are made.

Chapter 4: Normal Heat Transport in the Coupled Rotator Model: Role of

Conserved Quantities

The coupled rotator model is discussed as the exceptional case of a momentum-conserving model

that shows normal transport, and fluctuating hydrodynamics is used to analyze and understand

the model. As an outcome of the analysis, certain general hydrodynamic criteria for normal

transport in one dimension are proposed.

Chapter 5: Exact Expression for Transmission Coefficients in Quantum Harmonic

Lattices

An exact treatment of quantum harmonic lattices with arbitrary masses and spring constants

connected to generalized Langevin baths is presented. In particular, an exact expression for

transmissivity is given in terms of the transmission coefficients for individual frequencies. Both

Lippmann-Schwinger scattering theory and direct solution of the wave equations are used to find

transmission coefficients, and their equivalence is demonstrated.
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1
Introduction

1.1 The problem of heat transport

The science of thermodynamics was developed in the eighteenth and nineteenth centuries as a

description of the bulk properties of matter in equilibrium. Thermodynamics is phenomenological,

and an attempt to understand the microscopic origins of the laws of thermodynamics led to the

development of statistical mechanics in the late nineteenth and twentieth centuries. Although

matter in equilibrium admits a simple and unified mathematical description, most interesting

processes in the real world involve flow of mass, energy or charge. To understand these processes,

phenomenological laws have been proposed and extensions of statistical mechanics have been

made to explain nonequilibrium phenomena. As a general rule, dynamical properties exhibit less

universality than static ones, and consequently nonequilibrium statistical mechanics has become

a rich tapestry of theories, and the effort to understand transport phenomena continues to be

3



4 Introduction

one of the major projects of physics. This thesis is primarily concerned with one particular topic

of nonequilibrium physics - that of heat transport in one-dimensional systems with short-range

interactions.

One of the oldest phenomenological laws of nonequilibrium physics is Fourier’s law of heat

transport. In one dimension it reads:

j = −κ∂T
∂x

, (1.1)

where j is the heat current, κ is the thermal conductivity, T (x) is the local temperature. This

is analogous to Ohm’s law of electrical conduction, where an electrical current is proportional

to the electrostatic potential gradient. However this superficial similarity hides an important

difference - the electrostatic potential is a mechanical quantity that can be incorporated in a

Hamiltonian, whereas temperature is an entropic quantity that emerges from a sufficiently chaotic

dynamics at the microscopic scale. The existence of a local temperature is a necessary (but not

sufficient) condition for the validity of Fourier’s law, but there are no general theorems regarding

the existence of local equilibrium in one dimension. On the contrary, there are simple models

that explicitly show an absence of a local temperature. This gives an indication of the kind of

problems associated with the microscopic modeling of heat transport phenomena.

The validity of Fourier’s law is a central question in heat transport because Fourier’s law implies

normal transport of heat, whereas departure from Fourier’s law signals anomalous transport.

Normal transport means that energy fluctuations decay diffusively, i.e in accordance with the

diffusion equation. The continuity equation for energy is ∂te = −∂xj, where e is the local energy

density, assuming that heat flow is the only mechanism of energy transport. In combination with

Fourier’s law and the thermodynamic definition of specific heat density cv, it gives

∂T

∂t
= D

∂2T

∂x2
, (1.2)

where D = κ/cv. Thus when a heat pulse is put into a specific point in the system at t = 0,

the temperature profile at any later time t is a Gaussian centered about that point and with a

variance 2Dt. Since the continuity equation holds universally, Fourier’s law is a necessary and

sufficient condition for the normal diffusion of heat.

Typical nonequilibrium studies of heat transport attach heat baths at two different temperatures

to the two ends of a one-dimensional lattice of size N , resulting in a steady heat current j. The
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size-dependent conductivity is given as

κ(N) ≡ j∆T

N
(1.3)

where ∆T is the temperature difference between the two baths (it is important to that the

temperature difference is smaller than the mean temperature of the baths, to ensure that the

system is in the linear response regime). When Fourier’s law holds, one expects that the system

has a finite thermal conductivity in the large N limit, i.e the LimN→∞κ(N) exists. What one

finds more generally, however, is that the asymptotic behavior of κ is

κ ∼ Nα (1.4)

where 0 ≤ α ≤ 1, and the exact value of α depends on the model. The case α = 0 corresponds

to a finite conductivity in the thermodynamic limit, and therefore to Fourier’s law. However, as

mentioned earlier, one should additionally check that local equilibrium exists in order to ensure

that Fourier’s law truly holds. When α > 0, the diffusion equation no longer holds, and one

requires an alternate description. There is good evidence that anomalous heat transport is

characterized by Levy walks, and phenomenological Levy walk models of heat transport show

reasonable agreement with molecular dynamics simulations.

This thesis studies phononic heat transport in one dimensional lattice models with nearest-

neighbor couplings. The thesis builds on existing work, both old and recent, and a variety of

analytical and numerical methods are used. The theory as described and developed here has direct

ramifications for heat transport in nanowires and nanotubes, but also, hopefully, contributes in a

more general way to the understanding of low-dimensional statistical mechanics.

The standard concepts, methods and theorems of statistical mechanics that are used through-

out the thesis are outlined in the next section.

1.2 Basic concepts and theorems

1.2.1 The Langevin bath and the Einstein Relation

The effect of coupling of a system to a thermal environment is usually modeled through a

stochastic heat bath, sometimes called a thermostat. There are several models of thermostats
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available, but for this thesis we shall be using Langevin heat baths. For example, to numerically

simulate the steady state of classical chains in Chapters 2 and 3, two ends of the system will be

coupled to Langevin baths at two different temperatures.

The Langevin equation for the motion of a particle of mass m in a potential U(x) is written

as

m
dv

dt
+ γv = −U ′(x)− γv + η(t), (1.5)

where γ is the coefficient of viscous friction and the thermal noise term η satisfies the statistical

properties 〈η(t)〉 = 0, and 〈η(t)η(t′)〉 = Dδ(|t− t′|)〉.

It can be shown that the equilibrium distribution of the particle follows the Gibbs formula

provided that

D = 2γkBT, (1.6)

where kB is Boltzmann’s constant. This result, often written in a slightly different form (owing

to a different convention for defining D and γ), is called the Einstein relation. It can be extended

in a straightforward way to many degrees of freedom with multiple noise and dissipation terms

all corresponding to a thermal source at temperature T . Such a version of the theorem will be

stated in Chapters 3 and 4.

1.2.2 The Fluctuation-Dissipation Theorem

Let x and y be two coordinates associated with a system, and let their correlation in equilibrium

be

Cxy(t) ≡ 〈x(t)y(0)〉 − 〈x〉〈y〉. (1.7)

From here on, angular brackets without subscripts denote equilibrium averages unless otherwise

mentioned. Now consider an external field f(t) turned on at time t = 0 that couples with x in

the Hamiltonian in the form f(t)x. When f(t) is small, the response of y to the field is given by

〈y(t)〉ne − 〈y〉 =
w t

0
Rxy(t− t′)f(t′)dt′ (1.8)
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where 〈...〉ne denotes average over the non-equilibrium ensemble. Rxy(t) is known as the response

function. The fluctuation-dissipation theorem states that

d

dt
Cxy(t) = kBTRxy(t). (1.9)

This is one of the central results of linear response theory.

In the context of stochastic dynamics, it is possible to derive the Einstein relation from the

fluctuation-dissipation theorem. In view of this, the Einstein relation is also sometimes called the

(first) fluctuation-dissipation theorem.

1.2.3 The Green-Kubo formula

Transport coefficients can be related to the auto-correlation functions of the corresponding equi-

librium current through the Green-Kubo formulas. We shall state here the Green-Kubo formula

for the thermal conductivity κ.

κ =
1

kBT 2
lim
τ→∞

lim
L→∞

1

L

w τ

0
dt〈J(0)J(t)〉, (1.10)

where J(t) is the total heat current, and L is the system size. The ordering of the limits is

important. The derivation of the formula assumes that the system is closed, and the formula is

strictly valid only for finite transport coefficients, i.e when Fourier’s law is valid. However, as we

saw earlier, in one dimension one typically finds a diverging κ, and the usual method in such cases

is to put the upper limit of the time integral at τ = L/c, where c is the speed of sound, whereby

a scaling of κ with L is obtained. This method is of a somewhat heuristic nature. However,

there exists an exact Kubo-like formula for open systems of any size, and this is more suited to

numerical simulations since it avoids any unexamined finite-size effects. This and other issues

regarding the Green-Kubo formula will be further discussed in Chapter 2.

1.2.4 Local Thermal Equilibrium

Notice that the statement of Fourier’s law, or indeed any mention of a temperature gradient,

assumes the existence of a local temperature. This means that there must exist a length-

scale much smaller than the system size such that the steady-state distribution of the particles
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within that length is closely approximated by a Gibbs distribution with a suitably defined local

temperature. This is the assumption of local thermal equilibrium, and is by no means easy to

prove in a general case. In fact, lack of local thermal equilibrium has been explicitly demonstrated

in certain models. Thus in non-equilibrium simulations one needs to verify the existence of local

equilibrium, say by checking for the moments of the velocity distribution. This will be of relevance

in Chapter 2 and will be discussed further there.

1.3 A Brief Overview of Early Results

One of the earliest investigations into the microscopic theory of heat transport was done by Reider,

Lebowitz and Lieb [1]. They considered an ordered harmonic chain with two ends coupled to

Langevin heat baths at two different temperatures. They obtained the exact steady state of the

system, which is a multivariable Gaussian. The temperature profile was shown to be uniform

with jumps at the boundaries, and the heat current was independent of the system size. This

implies that the conductivity diverges as κ ∼ N . The ballistic divergence is not surprising since in

this problem all the normal modes are extended and non-interacting and thus heat is transported

without scattering.

Mass-disordered harmonic chains were investigated by Casher and Lebowitz [2] and they showed

that the system approaches a unique stationary state for a variety of baths. A landmark paper

by Matsuda and Ishii [3] found that almost all modes in a disordered harmonic chain were

exponentially localized, and at low frequencies the localization length for mode with frequency

ω is proportional to 1/ω2. This implies that for frequencies ω ∼ 1/
√
N or less, the modes are

essentially extended and can contribute to heat transport across the lattice. It has in fact been

found that for free boundary conditions, the heat conductivity κ ∼ N1/2 for these systems. The

conductivity, however, depends on boundary conditions and even spectral properties of baths.

For example, for fixed boundary condition and white noise baths, the conductivity goes to zero

as N−1/2.

Attention soon turned to interacting systems, but relatively few rigorous analytical results are
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available till date. In the main two different kinds of systems have been studied - momentum-

conserving and momentum non-conserving systems. Momentum non-conservation is often im-

plemented through pinning potentials at lattice sites. But there is also another model, that

of the harmonic chain with random velocity flips, which has been worked out in considerable

detail. Momentum non-conserving models show normal transport properties, with a converging

conductivity at large system sizes.

Momentum conserving systems, however, tend to show anomalous conduction, with the con-

ductivity diverging as κ ∼ Nα. A large number of numerical studies testify to this. However, there

is considerable disagreement regarding the value of α, and even its universality for nonintegrable

chains. A renormalization group-type calculation for systems at non-zero pressure was done in

[18] and a universal exponent α = 1/3 was predicted. A mode coupling theory developed in [5]

made similar predictions. More recently, a theory of fluctuating hydrodynamics was developed for

transport in one dimension by van Beijeren [6] and Spohn [7], which predict, among other more

detailed results, that α = 1/3 for anharmonic chains at non-zero pressure and α = 1/2 at zero

pressure. Contrary to this, previous simulations that were reported, for example, in [8], claim to

find that anharmonic chains with asymmetric interaction potentials show normal transport at low

temperatures and a transition to anomalous transport at high temperatures. Further, detailed

numerical studies of the coupled rotator model, which is a momentum-conserving system, show

clear signatures of normal transport. Thus, although certain approximate analytical results are

available, the universality of these are not yet established, and several contradictory and even

surprising results have been reported in the numerical literature.

1.4 Problems Addressed in the Thesis

We address, with varying degrees of success, the following problems in the thesis. We give a

chapter wise summary of the problems treated.
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1.4.1 Chapter 2

Does the heat conductivity exponent α for anharmonic chains depend on the nature of the

anharmonic potential, or on the temperature? Recently, it has been suggested in [8], that one

obtain normal transport at low temperatures for asymmetric interparticle potentials. This is in

contradiction to results from previous mode-coupling theories. Are there any unusual finite-size

effects that explain the results obtained in [8, 9] and other related works?

1.4.2 Chapter 3

The theory of nonlinear fluctuating hydrodynamics [7] predicted certain universal behavior for

the spatiotemporal correlations of conserved fields in one-dimensional anharmonic chains. The

theory has important implications for energy transport, but depends on a number of crucial

approximations. To what extent do the predictions of the theory match with direct molecular

dynamics simulations of the equilibrium correlations of anharmonic chains? How do these results

tie up with the asymptotic scaling behavior of thermal conductivity?

1.4.3 Chapter 4

It has generally been believed that breaking translational invariance is crucial for normal heat

transport in one dimension. However, an important counter-example in which normal transport

has been observed is the chain of coupled rotators in one dimension. We realize that this model in

fact belongs to a different universality class owing to the fact that it has less than three conserved

fields. Can one use the theory of fluctuating hydrodynamics to understand energy transport in

this model? What are the necessary and sufficient conditions for a one-dimensional classical

model to exhibit normal heat transport?

1.4.4 Chapter 5

For quantum harmonic lattices with arbitrary parameters and coupled to generalized Langevin

baths, we rigorously derive the Landauer formula, with an exact formal expression for the thermal

conductivity. In particular, we relate the reflection and transmission coefficients of individual
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modes to the energy transmissivity, using the Langevin Equation Green’s Function (LEGF) as

well as the boundary scattering approach.





2
The Fermi-Pasta-Ulam chain: Steady

State and Thermal Conductivity

2.1 Introduction

One of the predictions from Fourier’s law is about the scaling form of heat current J with system

size N for a system with a fixed applied temperature difference. Fourier’s law predicts J ∼ 1/N

but for one dimensional (1D) momentum conserving systems one typically finds:

J ∼ 1

N1−α α > 0 . (2.1)

In the linear response regime where a small temperature difference ∆T is applied, one can define

the finite-size conductivity through the relation κ = JN/∆T . For anomalous systems one

then expects the thermal conductivity to diverge with system size as κ ∼ Nα [5, 7, 10, 18].

13
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Determining the exact value of the exponent α and identifying universality classes has been an

outstanding problem on which there is no consensus so far.

Two recent papers [8, 9] studied heat transport in several 1D models where the inter-particle

interaction potential V (x) is taken to be asymmetric, i.e V (x) 6= V (−x). Based on nonequilib-

rium simulations as well as Green-Kubo formula-based equilibrium computations they conclude

that, in certain parameter regimes, Fourier’s law is satisfied in these systems, i.e for these systems

κ converges to a size-independent value. This is a surprising result which raises a few questions:

Do the analytical predictions based on mode-coupling theory and hydrodynamic arguments fail for

asymmetric potentials? Zhong et al [8] find normal transport at low temperatures and anomalous

transport at high temperatures. Is there a nonequilibrium phase-transition in this system as a

function of temperature, or are finite size effects stronger at low temperatures, so that the true

asymptotic (anomalous) behavior is only seen for much larger system sizes?

Section 2.2 considers the size-dependence of the conductivity at various temperatures and

identifies important finite size-effects. Section 2.3 looks at other steady state properties such

as temperature and thermal expansion profiles and substantiates these effects further. Section

2.4 looks at equilibrium heat current autocorrelations and connects them to behavior of the

conductivity. Use of the usual closed-system Green-Kubo formula is shown to be problematic by

comparing results from it to the conductivity obtained from direct non-equilibrium simulations as

well as results from the open-systems Green-Kubo formula.

2.2 The Fermi-Pasta-Ulam Chain: Heat Current and

Conductivity

We investigate the problem by studying a specific yet typical model of a nonlinear chain, the

Fermi-Pasta-Ulam (FPU) model. This model is interesting in being one of the simplest nonlinear

models about which a lot is known in the literature. Questions of zero-temperature dynamics

as well as equilibration and transport have been studied in this model, and some contradictory

claims and subtle issues are involved which will be discussed and addressed in due course. In this

chapter we present a thorough numerical study of this model in a non-equilibrium ensemble, and
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identify several interesting aspects of the finite-size behavior of conductivity.

The FPU model is described by the following Hamiltonian:

H =
N∑
l=1

p2
l

2m
+

N+1∑
l=1

[k2
(ql − ql−1)2

2
+ k3

(ql − ql−1)3

3
+ k4

(ql − ql−1)4

4
], (2.2)

where {ql, pl} denote the displacement about equilibrium lattice positions and momenta of par-

ticles. It is known from previous work in one-dimensional models that boundary conditions can

have strong effect on the conductivity, and hence we consider and compare simulations with

various boundary conditions. Fixed and free BCs are obtained by setting q0 = qN+1 = 0 and

q0 = q1, qN = qN+1 respectively. The interparticle harmonic spring constant is denoted by k2

(which we set to 1) while k3, k4 denote the strengths of the cubic and quartic interactions re-

spectively. To set up a heat current in this system the particles at the two ends of the chain

are connected to stochastic white noise heat baths at different temperatures. The equations of

motion of the chain are then given by:

mq̈l = −(2ql − ql−1 − ql+1)− k3[(ql − ql−1)2 − (ql − ql+1)2]

−k4[(ql − ql−1)3 + (ql − ql+1)3]− γlq̇l + ηl , (2.3)

with ηl = ηLδl,1 + ηRδl,N , γl = γ(δl,1 + δl,N). The noise terms satisfy the fluctuation dissi-

pation relations 〈ηL(t)ηL(t′)〉 = 2γkBTLδ(t − t′), 〈ηR(t)ηR(t′)〉 = 2γkBTRδ(t − t′), kB being

Boltzmann’s constant.

The energy current on the bond between particles l and l + 1 is given by

jl =
1

2
(q̇l + q̇l+1) ∂H/∂ql . (2.4)

We will mainly be interested in the ensemble-averaged heat current which is given by 〈j〉 =∑N−1
l=1 〈jl〉/(N−1), where 〈...〉 denotes a steady state average. For small temperature differences

∆T = TL−TR, the current will vary linearly with ∆T and we define a size-dependent conductivity

as

κ =
N〈j〉
∆T

. (2.5)

In general κ will be a function of T = (TL+TR)/2 and the parameters k3, k4. As noted in [11],

Eqs. (2.3) are invariant under the transformation TL,R → sTL,R, {ql} → {s1/2ql} and (k3, k4)→
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Figure 2.1: Plot of the conductivity κ versus system size in the FPU α− β model for (a)free and
(b)fixed BCs at various values of the average temperature T = (TL + TR)/2 between 0.1 and 1.0. The
parameters in the simulation were set at k2 = k4 = 1 and k3 = −1. The dashed lines in (b) are results
for the FPU β (k3 = 0) model at temperatures T = 0.1 (upper curve) and T = 1.0.

(k3/s
1/2, k4/s). This implies the scaling relation J(TL, TR, k3, k4) = sJ(TL/s, TR/s, s

1/2k3, sk4).

Defining the conductivity as in Eq. (2.5) we then get κ(T, k3, k4) = κ(1, T 1/2k3, Tk4). In our

study we keep k3, k4 fixed and study the effect of changing T . Note that increasing the tempera-

ture is equivalent to increasing both nonlinear terms in the interparticle potential, but the quartic

term increases much faster, and so we expect any effect of an asymmetric potential to be more

pronounced at low temperatures. This is borne out by our simulations.

The simplest way of determining the conductivity is through direct molecular dynamics (MD)

simulation of the non-equilibrium steady state. In our simulations we used the velocity-Verlet

algorithm with time steps dt = 0.005 [12]. We used O(109) steps for relaxation and about the

same number of steps for averaging. In our simulations we set m = 1, γ = 1.0, k2 = k4 = 1

and k3 = −1 ((except where otherwise mentioned), with TL = T + ∆T/2 and TR = T −∆T/2.

We obtained data for (T,∆T ) = (1.0, 0.5), (0.5, 0.2), (0.3, 0.1), (0.2, 0.05), (0.1, 0.05). The size

dependence of κ at these temperatures is plotted in Fig. (2.1) for fixed and free boundary

conditions (BC).

For free BC, we see a clear anomalous behavior, κ ∼ N0.33, at high temperatures. As has
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been observed in [8], the low temperature thermal conductivity seems to saturate at large system

sizes. However, we see that the κ(N) curves at intermediate temperatures (T = 0.2, 0.3 and

0.5) seem to flatten out in an intermediate range of N before turning around and increasing. At

T = 0.5, 1 the curves seem to approach the asymptotic form κ ∼ N0.33, as has been predicted

by certain previous studies. As the temperature is reduced, the intermediate-size effect becomes

stronger rapidly: the flattening is barely noticeable for T = 0.5, while it is clear for T = 0.3, 0.2.

For T = 0.1, one only sees a flattening of the κ(N) curve, yielding a (substantially) smaller

apparent α (it is more pronounced for fixed BC). Based on our observations for T > 0.1, we

believe that this is because the large-N asymptotic regime has been pushed outside the size limit

of our simulations. Note that if κ(N) were to satisfy Fourier’s law for large N , we would expect

the flattened regime in the κ(N) plots to broaden and move to the left as the temperature is

lowered but with no subsequent turnaround, but this is not what is seen. Thus, although the

asymmetry in the potential has greater impact at lower temperatures, we conjecture that the

asymptotic scaling is temperature-independent.

The results for fixed BC as the temperature is varied are qualitatively similar, but with one

difference - the flattening effect is much stronger, whereas the eventual approach to the anomalous

scaling at large N is slower. Even the curve for T = 1 shows α < 0.33. We note that this is

probably because the additional scattering induced by pinning at the boundaries leads to a higher

junction resistance, which is known to cause stronger finite-size effects.

2.3 Steady State Properties

We now examine other steady state properties. The temperature profile (defined as Tl = m〈ẋ2
l 〉)

in the system gives some indication as to whether one is in the hydrodynamic regime. The

temperature profiles for large N should collapse and jumps at the boundaries should be small. In

Figs. (2.2,2.3) we plot the size dependence of temperature profiles for free and fixed BCs at low

(T = 0.1) and high (T = 1.0) temperatures. In the insets we also plot the profile for the thermal

expansion given by 〈rl〉 = 〈ql+1 − ql〉. The most relevant observation from the temperature

and expansion profiles is that at low temperatures, even at the largest system sizes, we do not

see a collapse of the temperature profiles and this tells us that that the asymptotic regime has
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Figure 2.2: Plot of temperature profiles for different system sizes for free BC at temperatures (a)
T = 0.1 and (b) T = 1.0. The insets show the expansion profile and the solid lines are from predictions
assuming local thermal equilibrium.

not yet been reached. Secondly we see that for free BC the convergence is faster. Both these

observations are consistent with our conclusions from the conductivity curves, that the change

seen in the thermal conductivity of the system as the temperature is lowered does not reflect the

asymptotic large-N behavior in this temperature regime.

We also compare the measured local expansion to the prediction from the measured local

temperature and the assumption of local thermal equilibrium, to see if the assumption is valid.

The local expansion can be obtained by assuming local thermal equilibrium and using the local

temperature. For the case of free BC this is simple and the local expansion 〈rl〉 is given by

〈rl〉 =

r∞
−∞ drl rl e

−βlV (rl)

r∞
−∞ drl e

−βlV (rl)
, (2.6)

where βl = 1/Tl. For the case of fixed BC the variables are not independent and we need impose

the constraints q0 = qN+1 = 0 or equivalently q0 = 0,
∑N

i=0 ri = 0. The local expansion is then

given by

〈rl〉 =

r∞
−∞ dr0 . . .

r∞
−∞ drN rl e

−
∑
l βlV (rl) δ(

∑N
j=0 rj)r∞

−∞ dr0 . . .
r∞
−∞ drN e−

∑
l βlV (rl) δ(

∑N
j=0 rj)

.
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Figure 2.3: Plot of temperature profiles for different system sizes for fixed BCs at temperatures
(a) T = 0.1 and (b) T = 1.0. The insets show the expansion profile.

Introducing the Fourier representation δ(y) =
r∞
−∞ dke

iky/(2π) we then get

〈rl〉 =
1

2π

r∞
−∞ dk

∏
j 6=l f̃j(k)

r∞
−∞ drl rl e

ikrl e−βlV (rl)

1
2π

r∞
−∞ dk

∏
j f̃j(k)

, (2.7)

where f̃j(k) =
r∞
−∞ drje

ikrje−βjV (rj). The solid black lines in the inset of Fig. (2.2) show the

local equilibrium predictions for 〈rl〉. For fixed BC it is difficult to evaluate Eq. (2.7) numerically

for large system sizes, but for smaller sizes we find reasonable agreement with simulation results.

2.4 Thermal conductivity from linear response theory

The Green-Kubo formula relates transport coefficients of a system to the relevant equilibrium

time correlation functions. For heat transport in one dimension, the Green-Kubo formula states

κGK = lim
τ→∞

lim
N→∞

N

kBT 2

w τ

0
〈j(0)j(t)〉dt, (2.8)

where the current operator j = ΣN
1 jl/N and the angular brackets indicates an averaging over

the initial equilibrium distribution. The time evolution is Hamiltonian. The order of the limits

in Eq.(2.8) is important. κGK should be equal to lim∆T→0 limN→∞ κ, where κ is defined by
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Eq.(2.5). One also expects that the precise choice of boundary conditions in the evaluation of

the correlation function should not matter in the thermodynamic limit.

Here we must advocate a word of caution regarding usage of the Green-Kubo formula for

closed systems with initial conditions drawn from the canonical ensemble. It is essential while

doing simulations to set the initial centre-of-mass momentum to zero for any particular trajectory

of the system. If this is not done, then it can be shown that the correlations of the current J in

the lab-frame is related to that of the current Jc in the centre-of-mass frame through

〈J(0)J(t)〉 = 〈Jc(0)Jc(t)〉+NP 2/β, (2.9)

where P is the pressure, and thus clearly the Green-Kubo formula gives a divergent conductivity

due to the second term. See Appendix below for a derivation of the above relation.

For systems whose transport coefficients diverge in the thermodynamic limit – as is the case

here – the limit N →∞ Eq.(2.8) does not exist. Typically the current-current correlation decays

with a slow power law tail for an infinite system, giving a divergent conductivity. If instead one

evaluates the integral on the right hand side of Eq.(2.8) for a finite system, it has been shown

for a hard particle system [13] that the result is qualitatively different with periodic BC and with

open BC connected to baths, calling into question any analysis that relies on periodic boundary

conditions; this is because the tail of the correlation function is cut off differently in the two

cases. For a chain, it is usual to set the upper cut-off in the Green-Kubo integral to ∼ N/c,

where c is the speed of sound, and thereby obtain the scaling of the conductivity (but not its exact

magnitude). But this ad hoc procedure and has not been adequately justified in the literature.

As shown in [14], an exact Green-Kubo like linear response relation can be developed for open

systems with the boundaries connected to heat baths. It relates the nonequilibrium κ to the

equilibrium current autocorrelation decay in the following way:

κ = lim
∆T→0

N〈j〉
∆T

=
N

kBT 2

w ∞
0
〈j(0)j(t)〉dt, (2.10)

where the current operator now is j = ΣN−1
1 jl,l+1/(N − 1). Formally Eq. (2.8) and Eq. (2.10)

have the a similar structure but the correlation functions in the two cases are computed with

different dynamics. Also, Eq. (2.10) is well-defined for finite N (in fact, it is exact for dynamics

with Langevin heat baths), which is not the case for Eq. (2.8).
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Figure 2.4: Plot of equilibrium current-current correlations using Hamiltonian dynamics for different
system sizes at temperatures (a)T = 0.1 and (b)T = 1.0. The insets shows the integrated correlation
function whose saturation value (divided by T 2) gives the thermal conductivity as defined by Eq (2.8).
Periodic BCs were used in this simulation. In these simulations we set k3 = 2.0.

We note that Ref. [9] and most simulations that use the Green-Kubo formula find the current

auto-correlation for systems with periodic BCs. In view of the discussion above, we instead use

heat bath dynamics and fixed BCs. The heat bath dynamics corresponds to Eqs. (2.3) with

TL = TR = T . We also show the results for Hamiltonian dynamics with periodic BCs for

comparison. In our simulations the system was initially equilibrated by connecting all points to

Langevin type heat baths at the specified temperature. After equilibration, the heat baths were

removed and the system was evolved using the two different dynamics. In the periodic BC case, for

every initial condition, the center of mass momentum of the system was subtracted, as discussed

before. We set the cubic anharmonicity to a larger value (k3 = 2.0) in these simulations.

In Figs.(2.4) and (2.5), we show the structure of the heat current autocorrelation function

in detail for Hamiltonian and heat bath dynamics respectively. Computing temporal correlation

functions from simulations is numerically challenging, and we find that it is difficult to produce

accurate data at larger system sizes. For the system sizes we can simulate, the form of the

correlation functions for heat bath and Hamiltonian dynamics appear to be completely different.

In the heat bath case with fixed BC we observe large oscillations in the correlation functions

whose amplitude and period scale with system size. These correspond to sound modes which
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Figure 2.5: Plot of equilibrium current-current correlations using heat bath dynamics for different
system sizes at temperatures (a)T = 0.1 and (b)T = 1.0. The insets show the integrated correlation
function whose saturation value (divided by T 2) gives the thermal conductivity as defined by Eq (2.10).
Fixed BCs were used in this simulation. In these simulations we set k3 = 2.0.

are reflected at the boundaries. The periodic BC correlations do not show these oscillations

and look very different. As has also been seen in [15] these, for some reason, seem to be very

small in FPU models. Thus the difference between periodic and heat bath boundary conditions

is even stronger than in Ref. [13]: not just the large-t cutoff but the form of the heat current

autocorrelation function is different for the two cases. Thus, although we find that the heat

current autocorrelation function decays rapidly as a function of time for periodic BC as in Ref. [9],

this does not allow us to draw conclusions about the thermal conductivity. We note in passing

that the tail of the autocorrelation function is ∼ t−1.5 in the low temperature plot, which is slower

than the ∼ t−2 at high temperatures.

In Fig. (2.6) we plot the thermal conductivity obtained from the heat current autocorrelation

function, both for Hamiltonian and heat bath dynamics, for different system sizes, and compare

to the thermal conductivity directly obtained from nonequilibrium simulations. In the light of
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Figure 2.6: Comparison of the thermal conductivity obtained from the current-current correlation
measurements of Figs. (2.4,2.5) and those obtained from direct nonequilibrium measurements for (a)
T = 0.1 and (b) T = 1.0 .

the discussion above, it is not surprising that the periodic BC case, which shows very weak N

dependence, is quite different from the nonequilibrium results. The results with open BC and

heat baths agree with the nonequilibrium results, as required by Eq.(2.10), but nonequilibrium

simulations can be performed for much larger system sizes with relatively smaller error-bars.

Therefore, we do not attempt to obtain the asymptotic large-N conductivity using the equilibrium

Green-Kubo approach.

2.5 Conclusions

In this chapter, we provided numerical evidence to support the conclusion that the asymptotic

large-N behavior of the thermal conductivity for (anharmonic) chains of particles does not de-

pend on whether the interparticle potential is symmetric or asymmetric, contrary to recent sug-

gestions [8, 9]. While the apparent thermal conductivity at low temperatures behaves differently

for the sizes we have been able to simulate, the behavior as the temperature is tuned suggests
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that this is due to insufficiently large system sizes. However, we are not able to completely rule

out a phase transition in the system between diffusive and anomalous heat transport. We have

also shown that computations based on the Green-Kubo formula have to be performed with the

proper (i.e. heat bath) boundary conditions, in which case they agree with the results from our

nonequilibrium simulations. Computing the Green-Kubo correlations is numerically more difficult,

and one is restricted to smaller system sizes than for the nonequilibrium simulations.

It is an interesting question why, for the system sizes we are able to simulate, the heat conduc-

tivity at low temperatures differs so markedly from that at higher temperatures. In Refs. [8, 9],

it is suggested that this may be due to inhomogeneous thermal expansion, which gives rise to

an additional scattering mechanism that reduces the conductivity significantly (possibly due to

the formation of localized modes). It is true that the hot and cold ends of the chain have differ-

ent thermal expansion for asymmetric interparticle potentials, but this cannot affect the thermal

conductivity in the linear response (∆T → 0) regime: when ∆T is small, the variation in the

local thermal expansion will be O(∆T ), and its impact on the heat current — which would be

O(∆T ) for uniform thermal expansion — is O(∆T 2). If the inhomogeneous thermal expansion

does affect the measured thermal conductivity significantly, it indicates that the system is not

simulated in the linear response regime (which, in our simulations, we have checked it is). Thus

the observed finite-size effect cannot be understood in terms of non-uniform thermal expansion,

and remains an open question.

APPENDIX

Let us consider a closed system of size N in equilibrium. The initial conditions for the dynamics

are chosen from a canonical distribution, and the subsequent dynamics is Hamiltonian. Aver-

ages are taken over different realizations. The momenta of the individual particles satisfy the

Maxwell-Boltzmann distribution, and the center-of-mass (COM) momentum pcm =
∑
pi/N has

a Gaussian distribution with 〈p2
cm〉 = 1/(βN) (this is exact and follows from the properties of

Gaussians).

Now the total current

J ≡
∑

ji =
∑

pifi−1,i (2.11)
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where fi−1,i is the force on the i-th particle due to (i− 1)-th particle. (One would expect that

formally different but statistically equivalent definitions of current should obey the same analysis.)

One can re-write

pi(t) = pcm + pi,cm(t), (2.12)

where the first term on the r.h.s is the centre of mass momentum for any particular phase-

space trajectory (corresponding to a specific set of initial conditions), and the second term is the

momentum of each particle in the COM frame for that same trajectory. Since net momentum is

conserved for a closed system, pcm is constant. So the total current is now written as

J = pcm
∑

fi−1,i +
∑

pi,cmfi−1,i = pcmPnet + Jc (2.13)

where Pnet =
∑
fi−1,i is the net pressure. The local pressure is Pi = fi−1,i. and the thermo-

dynamic pressure is P = 〈Pi〉 = 〈Pnet〉/N . Jc is the heat current in the centre of mass frame.

Using these relations,

〈J(0)J(t)〉 = 〈Jc(0)Jc(t)〉

+ 〈pcmPnet(0)Jc(t)〉+ 〈pcmPnet(t)Jc(0)〉

+ 〈p2
cmPnet(0)Pnet(t)〉.

(2.14)

We shall keep only terms O(N) in the r.h.s in the thermodynamic limit, and drop higher-

order corrections. Thus we can write Pnet = NP in the second, third and fourth terms, since

fluctuations in Pnet give terms O(
√
N). With this replacement, the second and third terms on

the r.h.s now contain correlations like 〈pcm(t1)Jc(t2)〉. Now the current Jc depends only on the

initial momenta pi,cm in the COM frame and co-ordinates xi. Further, in equilibrium the joint

distribution of coordinates and momenta is separable into the product of the distributions for

the center-of-mass momentum pcm, the xi and the pi,cm (with the distribution of the last one

subject to the constraint
∑
pi,cm = 0, the constraint being independent of pcm). Thus pcm is

uncorrelated to Jc, and 〈pcm(t1)Jc(t2) = 0〉. Thus one finally obtains

〈J(0)J(t)〉 = 〈Jc(0)Jc(t)〉+ 〈p2
cm〉N2P 2

= 〈Jc(0)Jc(t)〉+NP 2/β
(2.15)



26 The Fermi-Pasta-Ulam chain: Steady State and Thermal Conductivity

which is true in the thermodynamic limit at all times.

In the microcanonical ensemble restricted to the part of phase space with pcm = 0, one

should just see the first term, but in the canonical ensemble one should see both, even in the

thermodynamic limit.

All this is valid for closed systems, for example Hamiltonian dynamics with free or periodic

boundary conditions (this goes into the assumption of momentum conservation). In particluar, for

the open-systems Green-Kubo formula discusssed in Chapter 1, equilibrium dynamics is stochastic

and hence this derivation does not apply.



3
Equilibrium Correlations and

Hydrodynamics for the FPU Model

3.1 Introduction

While non-equilibrium studies and equilibrium current auto-correlations directly give the thermal

conductivity of a system, a systematic analytical approach to anomalous transport in those areas

is lacking. On the other hand, one-dimensional hydrodynamics has been developed in a more

thorough way and some universal predictions for equilibrium spatiotemporal correlations exist.

These can be used to understand thermal transport.

In this chapter we perform direct molecular dynamics simulations of the Fermi-Pasta-Ulam chain

to compute various spatiotemporal correlation functions and compare them with the predictions

from hydrodynamics. This helps us establish connections with thermal conductivity exponents.

27
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Section 3.2 summarizes the scaling predictions of fluctuating hydrodynamics for more details

see [7]. Section 3.3 presents results from the simulation of the FPU model in various temperature

and pressure regimes, as well as with symmetric and asymmetric interparticle interactions, and

discusses agreements and disagreements with the predictions from hydrodynamics. The salient

points are summarized in Section 3.4.

3.2 Predictions of nonlinear fluctuating hydrodynamics

Apart from direct simulations of the steady state of a one-dimensional system, the thermal

conductivity can be found by using the Green-Kubo formula through the integral of the equilibrium

heat current auto-correlation function. Simulations and several theoretical approaches [6, 17–22]

find that the correlation function has a slow power law decay ∼ 1/t1−α and this gives a divergent

conductivity. A number of papers [13, 23–29] have studied the decay of equilibrium energy

fluctuations or of heat pulses and find that they show super-diffusion. This has been understood

through phenomenological models in which the energy carriers perform Levy walks [25–28]. A

significant step towards understanding anomalous heat transport in one-dimension was achieved

in [6, 7], where a detailed theory of hydrodynamic fluctuations in anharmonic chains has been

developed and several analytical results obtained. The main power of this theory is that it is able

to make very detailed predictions that can be verified through direct simulations of microscopic

models. Unlike earlier studies which have mainly focused on the thermal conductivity exponent

α, the hydrodynamic theory predicts the scaling forms of various correlation functions, including

prescriptions to compute various parameters for given microscopic models. The hydrodynamic

theory naturally has to make various assumptions to arrive at the results and hence there is a

need to perform direct molecular dynamic simulations that can check the theory. A recent paper

[16] has presented results for such a test for the case of a hard particle gas interacting via the

so-called shoulder potential. Here we consider the Fermi-Pasta-Ulam (FPU) chain as a typical

anharmonic model and report simulation results on equilibrium correlations in different parameter

regimes. Implications for thermal conductivity exponents are discussed in detail.

We first summarize the results of the theory in [7]. Consider N particles with position and

momenta described by the variables {q(x), p(x)}, for x = 1, . . . , N , and moving on a periodic
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ring of size L such that q(N + 1) = q(1) + L and p(N + 1) = p(1). Defining the extension

variables r(x) = q(x+ 1)− q(x), we consider the system to have the following Hamiltonian with

nearest neighbor interactions

H =
N∑
x=1

ε(x), (3.1)

where ε(x) =
p2(x)

2
+ V [r(x)] ,

where the particles have been taken to have unit masses. From the Hamiltonian equations of

motion one sees that the extension r(x), momentum p(x) and energy ε(x) are locally conserved

quantities satisfying the following equations of motion

∂r(x, t)

∂t
=
∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −∂P (x, t)

∂x
,

∂e(x, t)

∂t
= − ∂

∂x
[p(x, t)P (x, t)] , (3.2)

where P (x) = −dV (r)/dr|x−1 is the pressure and ∂f/∂x = f(x+1)−f(x) denotes the discrete

derivative. Suppose the system is in a state of thermal equilibrium described by zero total average

momentum and where the average energy and expansion are respectively fixed by specifying the

temperature (T = β−1) and pressure (P ) of the system. This corresponds to an ensemble

described by the distribution

P({p(x), r(x)}) =
N∏
x=1

e−β[p2x/2+V (rx)+Prx]

Zx
, (3.3)

where Zx =
w ∞
−∞

dp
w ∞
−∞

dre−β[p2/2+V (r)+Pr] .

Now consider small fluctuations of the conserved quantities about the equilibrium values

u1(x, t) = r(x, t) − 〈r〉eq, u2(x, t) = p(x, t) and u3(x, t) = ε(x, t) − 〈ε〉eq. The fluctuating

hydrodynamic equations for the field u = (u1, u2, u3) is now written by expanding the conserved

currents in Eq. (3.2) to second order in the nonlinearity and then adding dissipation and noise

terms to ensure thermal equilibration. One then gets the hydrodynamic equations

∂tuα = −∂x
[
Aαβuβ +Hα

βγuβuγ − ∂xD̃αβuβ + B̃αβξβ

]
. (3.4)
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The noise and dissipation matrices (B̃, D̃) are related by the fluctuation-dissipation relation

D̃C+CD̃ = B̃B̃T , where the matrix C corresponds to equilibrium correlations and has elements

Cαβ(x) = 〈uα(x, 0)uβ(0, 0)〉.

Neglecting the nonlinear terms, we move to the normal modes of the linearized equations

by effecting the transformation (φ−1, φ0, φ1) = φ = Ru, where the matrix R diagonalizes A,

ie., RAR−1 = diag(−c, 0, c). The diagonal form implies that there are two sound modes

(φ±) traveling at speed c in opposite directions, and one stationary but decaying heat mode

(φ0). Next one solves the nonlinear hydrodynamic equations within mode-coupling approxima-

tion and makes predictions for the equilibrium spatiotemporal correlation functions Css′(x, t) =

〈φs(x, t)φs′(0, 0)〉, where s, s′ = −, 0,+. For the generic case of non-zero pressure, (i.e P 6= 0),

which corresponds either to asymmetric inter-particle potentials or to externally applied stress,

the prediction for the left-moving sound mode and the heat mode are respectively

C−−(x, t) =
1

(λst)2/3
fKPZ

[
(x+ ct)

(λst)2/3

]
, (3.5)

C00(x, t) =
1

(λet)3/5
f

5/3
LW

[
x

(λet)3/5

]
, (3.6)

where fKPZ(x) is the KPZ scaling function discussed in [7, 30], and tabulated in [31]. f νLW (x)

is the Fourier transform of the Levy characteristic function e−|k|
ν
. For the special case P = 0,

the corresponding quantities are:

C−−(x, t) =
1

(λ0
st)

1/2
fG

[
(x+ ct)

(λ0
st)

1/2

]
, (3.7)

C00(x, t) =
1

(λ0
et)

2/3
f

3/2
LW

[
x

(λ0
et)

2/3

]
. (3.8)

where fG(x) is the unit Gaussian with zero mean.

For the non-zero pressure case, the scaling coefficients λs and λe for the sound and heat mode

respectively are given by

λs = 2
√

2|G1
11|, λe = λs

−2/3C−1/3(G0
11)

2
ae, (3.9)

where ae = 2
√

3 Γ(1/3)
r∞
−∞ dxfKPZ(x)2 = 3.167... is a model-independent numerical constant,

and the matrices Gα are related to the nonlinear coupling matrices Hα through the normal mode

transformation effected by R (see Appendix for details).
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For the case of zero pressure, λ0
s depends on the coefficients of the noise and dissipation terms

introduced in Eq. 4.1, and since all of the coefficients are not simultaneously determined by the

temperature and the fluctuation-dissipation relations, λ0
s remains undetermined by the theory.

The scaling coefficient for the heat mode in this case is

λ0
e = (λ0

s)
−1/2c−1/2(G0

11)
2
(4π)2a0

e, (3.10)

where a0
e = 4

r∞
0
dt t−1/2cos(t)

r∞
−∞ dx fG(x)2 =

√
2. A simulation of the microscopic dynamics

can be used to find λ0
s, and from there one can calculate λ0

e using the above formula.

In the following section, we discuss the results of our molecular dynamics simulations to com-

pute the correlation functions and compare them with the scaling predictions.

3.3 Molecular Dynamics Simulations

We consider the FPU α− β model described by the following inter-particle potential

V (r) = k2
r2

2
+ k3

r3

3
+ k4

r4

4
. (3.11)

The set of variables {r(x), p(x)} are evolved according to the equations of motion

ṙ(x) = p(x+ 1)− p(x), ṗ(x) = V ′(r(x))− V ′(r(x− 1)) , (3.12)

for x = 1, 2, . . . , N and with initial conditions chosen from the distribution given by Eq. (3.3).

The product measure means that it is easy to generate the initial distribution directly and one

does not need to dynamically equilibrate the system. The integrations have been done using both

the velocity-Verlet algorithm [12] and also through the fourth order Runge-Kutta algorithm and

we do not find any significant difference. The full set of two-point correlation functions were

obtained by averaging over around 106 − 107 initial conditions. Here we present results for four

different parameter sets.

Set I: k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 0.5, P = 1.0. These are the set of parameters used

in [16] for the numerical solutions of the mode-coupling equations. In Fig. (3.1) we show the

heat mode correlation C00 and the sound mode correlations C−−, C++ at three different times.

The speed of sound is c = 1.45468... The dotted vertical lines in the figure indicate the distances
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Figure 3.1: Set I: Correlation functions for the heat mode and the two sound modes at three
different times. At the latest time we see that the heat and sound modes are well separated. The
parameters of the simulation are k2 = 1, k3 = 2, k4 = 1, T = 0.5 and P = 1. The speed of sound is
c = 1.45468 and the system size was N = 8192.

` = ct. The sound peaks are at their anticipated positions. In Fig. (3.2) we show the heat mode

and the left moving sound mode after scaling according to the predictions in Eqs. (3.5,3.6).

One can see that the scaling is excellent. For comparison we have also plotted a Lévy-stable

distribution and the KPZ scaling function [31], and find that the agreement is good for the heat

mode but not convincing for the sound mode. One observes a significant asymmetry in the sound

mode correlations, contrary to what one would expect from the symmetric KPZ function.

From our numerical fits shown in Fig. (3.2) we obtain the estimates λs = 2.05 and λe = 13.8.

The theoretical values based on Eq. (3.9) are λs = 0.675 and λe = 1.97 (see Appendix), which

thus deviates significantly from the numerical estimates obtained from the simulations. The

disagreement could mean that, for this choice of parameters, we are still not in the asymptotic

hydrodynamic regime. We expect that the scaling will improve if the heat and sound mode are

more strongly decoupled. To check this, we simulated a set of parameters where the sound speed

is higher and the separation between the sound and heat modes is more pronounced. We now

discuss this case.

Set II: k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0, P = 1.0. This choice of parameters gives

c = 1.80293 and we see in Fig. (3.4) there is much better separation of the heat and sound

modes. We again find an excellent collapse of the heat mode and the sound mode data with

the expected scalings in Fig. (3.5) . The heat mode fits very well to the Lévy-scaling function.
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Figure 3.2: Set I: Scaled plots of heat mode and left moving sound mode correlations, at different
times, using a Levy-type-scaling for the heat mode and KPZ-type scaling for the sound mode. The
parameters in the simulation were k2 = 1, k3 = 2, k4 = 1, T = 0.5, P = 1.0 and N = 8192. We see
here that the collapse of different time data is very good. The fit to the Levy-stable distribution with
λe = 13.8 is quite good, while the fit to the KPZ scaling function with λs = 2.05 is not convincing.
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Figure 3.3: Set I: Scaled plots of heat mode and right moving sound mode correlations, at different
times, using a diffusive scaling ansatz. The parameters in the simulation were k2 = 1, k3 = 2, k4 =
1, T = 0.5, P = 1.0 and N = 8192. We see here that the collapse of different time data is very good.
The fit o the Levy-stable distribution with λe = 13.8 is quite good while the fit to the KPZ scaling
function is not so good.
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Figure 3.4: Set II: Heat and sound mode correlations at three different times for the parameter
set as in Fig. (3.1) but with T = 5.0. The speed of sound in this case was c = 1.80293 and the system
size was N = 8192. In this case we see that the separation of the heat and sound modes is faster and
more pronounced than for the parameter set of Fig. (3.1).

Figure 3.5: Set II: Scaled plots of heat mode and left moving sound mode correlations at different
times, using a Levy-type-scaling for the heat mode and KPZ-type scaling for the sound mode. The
parameters in the simulation were k2 = 1, k3 = 2, k4 = 1, T = 5.0, P = 1.0 and N = 8192. We
see here that the collapse of different time data is very good. Again we find a very good fit to the
Levy-stable distribution with λe = 5.86 while the fit to the KPZ scaling function is poor.



3.3 Molecular Dynamics Simulations 35

-2000 -1000 0 1000 2000
x

0

0.002

0.004

0.006

0.008
t=800
t=1200
t=1600

Figure 3.6: Set III: In this plot we show the heat mode correlation and the two sound mode
correlations at three different times. At the latest time we see that the heat and sound modes are well
separated. The parameters of the Hamiltonian are k2 = 1, k3 = −1, k4 = 1, T = 0.1, P = 0.07776
and N = 4096.
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Figure 3.7: Set III: Scaled plots of heat mode and left moving sound mode correlations, at different
times, using a Levy-type-scaling for the heat mode and KPZ-type scaling for the sound mode. The
parameters in the simulation were k2 = 1, k3 = −1, k4 = 1, T = 0.1, P = 0.07776 and N = 4096. We
see here that the collapse of different time data for the heat mode is reasonably good.
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Figure 3.8: Set IV: The parameters of the Hamiltonian are k2 = 1, k3 = 0, k4 = 1, P = 0, T = 1
and N = 8192. The scaling used here corresponds to Eq. (3.7,3.8), with λ0

s = .416 and λ0
e = 3.18.
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Figure 3.9: Set IV: The parameters of the Hamiltonian are k2 = 1, k3 = 0, k4 = 1, P = 0, T = 1
and N = 8192. The scaling used here corresponds to Eq. (3.5,3.6). We see that the scaling is not as
good as in Fig. (3.8).
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Figure 3.10: Set V: The parameters of the Hamiltonian are k2 = 1, k3 = 0, k4 = 1, P = 1, T = 1
and N = 3200. The scaling used is the same as for Sets I and II.

However the sound-mode scaling function still shows significant asymmetry and is different from

the KPZ function. The theoretical obtained values of λs = 0.396 and λe = 5.89 are now close

to the numerically estimated values λs = 0.46 and λe = 5.86.

Set III: k2 = 1.0, k3 = −1.0, k4 = 1.0, T = 0.1, P = 0.07776. Our third choice of the

parameter set is motivated by recent nonequilibrium simulations [8, 9] which find that the thermal

conductivity κ at low temperatures seems to converge to a size-independent value, as discussed

in the previous chapter. We suggested that this could be a finite size effect [32]. Here we want

to check if the heat mode correlations show any signatures of diffusive heat transport and if they

provide any additional insight regarding the strong finite size effects seen in the nonequilibrium

studies. The temperature chosen is T = 0.1, which for the FPU potential parameters above

correspond to the regime at which normal conduction has been proposed.

The speed of sound is calculated to be c = 1.09352, which matches with the numerical

data, as seen in Fig. (3.7). The heat mode seems to follow the predicted anomalous scaling

reasonably well (though the convergence is, as expected, slower than in the high-temperature

case). We have checked that the same data, when scaled as t1/2C00(x/t1/2) for different times,

shows no indication of convergence. Thus we find no evidence for normal heat diffusion at low

temperatures. The sound mode agrees quite well with the KPZ-type scaling exponents observed

for higher temperatures, though the shape of the correlation function remains asymmetric as in
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the high-temperature case. It will be noted that the heat mode shows two peaks near the edges

which do not follow the Lévy scaling - these peaks arise from interaction with the sound modes,

indicating that there is still some overlap between the two modes near the edges. The sound

mode, on the other hand, is found to be undistorted, which is consistent with the prediction from

[7] that at long times the mode-coupling equations for the sound modes becomes independent

of the heat mode, but not vice versa. The same effect can be seen in sets I and II, but are less

pronounced as the modes separate more quickly at higher temperatures.

Set IV: k2 = 1.0, k3 = 0.0, k4 = 1.0, T = 1.0, P = 0.0. This is the special case of an

even potential at zero pressure for which the prediction from the hydrodynamic theory is a

diffusive sound mode, while the heat mode is Lévy but with a different exponent. The predicted

scalings are given in Eqs. (3.7,3.8). The speed of sound for this case is c = 1.46189. We

see from Fig. (3.8) that the proposed scaling leads to an excellent collapse of the heat mode

at different times. The sound mode, with diffusive scaling, shows a strong convergence but

not yet a collapse. Fig. 3.9 shows the same data but scaled according to the predictions in

the non-zero pressure case. It is clear that the data are non-convergent with this scaling. The

sound mode is predicted by the theory to be Gaussian, Eq. (3.7), but as seen from Fig. (3.8),

the fit to the Gaussian form is poor. From the data we estimate that λ0
s = 0.416, and upon

using Eq. (3.10), we find λ0
e = 1.17, whereas the numerically obtained value is 3.18. Set V:

k2 = 1.0, k3 = 0.0, k4 = 1.0, T = 1.0, P = 1.0 Parameters are identical to the above set, except

that the pressure is non-zero. Since the potential is even, the pressure arises from externally

applied stress to the system. The speed of sound is c = 1.59143. We find in Fig. 3.10 that

the correlations satisfy the same scaling as for asymmetric potentials with non-zero pressure (as

in sets I, II, III). This confirms that the universality class is determined by the asymmetry of

V (r) + Pr and not of V (r) by itself.

3.4 Conclusions

For the FPU chain at non-zero pressure, we find that the heat mode scales according to the

Levy-5/3 distribution, as predicted by fluctuating hydrodynamics, both at high and low temper-

atures. This implies that in one-dimensional heat transport (in momentum-conserving systems)
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the scaling is universally anomalous, and the hypothesis of a non-equilibrium phase transition from

normal to anomalous conduction probably does not hold. For the zero-pressure case, the heat

mode scales according to the Levy-3/2 distribution as predicted, thus confirming the existence of

a second universality class for heat transport in one-dimensional momentum-conserving systems.

For non-zero pressure the sound mode inspirationally scales with the same exponents as the

KPZ function, but the shape of the modes is observed not to have collapsed to the KPZ function.

This could be because the simulation times are not in the asymptotic regime for the sound modes,

which would be consistent with the slowly-decaying correction terms to the scaling forms of the

sound mode as discussed in [7]. Thus the prediction that the the sound mode correlations have

the form of the KPZ function is not conclusively verified.

The case of zero pressure is very similar, with the sound mode satisfying diffusive scaling, but

the limit of the Gaussian scaling form is not reached in our simulations.

Although the Levy stable distribution fits the heat modes very well, we find that at low temper-

atures the theoretically predicted values for the scaling coefficients λs and λe do not match the

numerical values well. This is consistent with the numerical study in [16], where the authors find

that for certain hard-point potentials the scaling forms show an excellent match, but the scaling

coefficients are still drifting and one might expect them to converge to the predicted values at

larger times. However at high temperatures where the modes are well-separated, the theoretical

λe matches very well with the numerical data, and the theoretical λs is not far off from the

numerically obtained value.

The studies here confirm that heat conduction in one- dimensional chains is anomalous and

is universal, except for the special case of zero pressure and even potentials. Thus the heat

conduction exponent is α = 1/3 for the general case of non-zero pressure, and α = 1/2 for the

special case of zero pressure (see [7] for details).

But notice that neither of this were confirmed conclusively through the steady-state simula-

tions in Chapter 2. It remains an an open and important problem to tie up the picture obtained

from the correlation dynamics in our equilibrium studies, with simulations of the steady state

in Chapter 2 and the various related results cited there. In the momentum-conserving anhar-

monic systems that apparently show normal transport, the nonequilibrium simulations indicate

an apparent saturation of the thermal conductivity with increasing system size, while equilibrium
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studies show an integrable decay of current autocorrelations, as discussed before. Some of our

simulations in this chapter were in fact done in parameter regimes (low temperatures, asymmetric

potentials) where diffusive-like transport had been reported in earlier work based on nonequilib-

rium simulations. However, we do not see any signatures of this apparent diffusive behavior, even

at intermediate times. This discrepancy is possibly related to finite-size effects coming from the

boundaries, which are not present in the equilibrium studies with periodic boundary conditions.

This conclusion is further supported by the quantitative differences seen between the free and

fixed boundary conditions in the previous chapter. However, more thorough studies are required

for a convincing resolution of the problem of finite-size effects.

APPENDIX

The matrix R, which diagonalizes the matrix A, is given by

R =

√
2β

c2



∂lp −c ∂ep

κ̃p 0 κ̃

∂lp c ∂ep


, (3.13)

where the columns, including the normalization factor, provide the right eigenvectors Vα, α =

−1, 0, 1, of the A matrix. The Hessian tensor H encodes the quadratic corrections to the

couplings between the original hydrodynamic variables. Hα
βγ represents the coupling of the field

component α to the field components β, γ. The tensor can be represented through three 3× 3

matrices, one for each value of α,

Hr = 0, Hu =



∂2
l p 0 ∂l∂ep

0 −∂ep 0

∂l∂ep 0 ∂2
ep


, He =



0 ∂lp 0

∂lp 0 ∂ep

0 ∂ep 0


.

After transforming to the normal modes ~φ, the nonlinear hydrodynamic equations become

∂tφα = −∂x
[
cαφα + 〈~φ.Gα~φ〉 − ∂x(Dφ)α + (Bξ)α

]
.
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The term in angular brackets is the inner product of Gα with respect to ~φ. Also, D = RD̃R−1

and B = RB̃ satisfy the fluctuation-dissipation relation BBT = 2D. The vector ~c = (−c, 0, c).

The tensor G represents the coupling between the normal modes and is given by

Gα =
1

2

∑
α′=−,0,+

Rαα′(R−1)THα′
R−1. (3.14)

The elements of Gα can be represented through cumulants of V , r with respect to the single site

distribution up to order three, see [? ].

The values of R and G0 and G1 are given below. The elements of G−1 are a rearrangement of

the elements of G1 as follows from G−1
−α −β = −G1

αβ, G−1
−10 = G−1

01 and G−1
αβ = G1

βα [? ]. The

long time behavior is dominated by the diagonal G entries. The off-diagonal entries are irrelevant.

Gs
ss are the self-couplings. Note that G0

00 = 0, as claimed before. Also for the even potential at

zero pressure case the only leading terms are G0
ss, s = ±1. There is considerable variation in the

diagonal matrix elements.

Set I

R =



−0.7935 −1. 0.66118

1.89594 0.0 1.89594

−0.7935 1. 0.66118


, G0 =



−0.689497 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.689497


,

G1 =



−0.24236 −0.075565 .238543

−0.075565 −0.0669417 −0.075565

.238543 −0.075565 0.238543


.

Set II
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R =



−0.547157 −0.316228 0.0229798

0.229483 0.0 0.229483

−0.547157 0.316228 0.0229798


, G0 =



−1.03436 0.0 0.0

0.0 0.0 0.0

0.0 0.0 1.03436


,

G1 =



−.0671336 .240399 .140022

.240399 −.152971 .240399

.140022 .240399 .140022


.

Set III

R =



−2.3376 −2.23607 1.38344

0.793106 0.0 10.1994;

−2.3376 2.23607 1.38344


, G0 =



−0.55766 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.55766


,

G1 =



−0.0721968 0.0206018 0.0790847

0.0206018 −0.0353259 0.0206018

0.0790847 0.0206018 0.0790847


.

Set IV
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R =



−1.03371 −0.707107 0.0

0.0 0.0 1.09893

−1.03371 0.707107 0.0


, G0 =



−0.803254 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.803254


,

G1 =



0.0 0.133622 0.0

0.133622 0.0 .133622

0.0 .133622 0.0


.

Set V

R =



−0.964170 −0.707106 −0.964171

1.05385 0.0 1.05385584

0.161141 0.707107 0.161141


, G0 =



−0.838569 0.0 0.0

0.0 0.0 0.0

0 0 0.838569


,

G1 =



−0.112782 0.07359 0.143663

0.07359 −0.104607 0.07359

0.143663 0.07359 0.143663


.





4
Normal Heat Transport in the Coupled

Rotator Model: Role of Conserved

Quantities

4.1 Introduction

The previous two chapters show that heat transport in anharmonic chains is quite generically

anomalous. While some doubts remain regarding the precise value of the exponents and the

form of the sound-mode correlation functions, that conduction in the Fermi-Pasta-Ulam model

is anomalous, at least in the high-temperature regime, seems to be evident. Further, if nonlinear

fluctuating hydrodynamics is to be believed, the exponents hold for all non-integrable models

with three conserved quantities and at all temperature regimes. This brings us back to one of the

45
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central questions of the thesis: Is there a one-dimensional translationally invariant model where

heat transport is normal?

Assuming that the fluctuating hydrodynamic theory is correct, a third universality class could

exist only for systems which have less than three conserved quantities. Interestingly, a simple

model in that class has already been numerically studied in the literature, namely the model of

coupled rotators on a one-dimensional lattice, but it has so far not been realized that the model

has only two conserved fields, and therefore its hydrodynamics should be distinct from generic

anharmonic chains, such as the much-studied Fermi-Pasta-Ulam model. In this chapter we show

that stretch is not a conserved field in the coupled-rotator model, and this leads to a linear two-

variable hydrodynamics, where on a sufficiently coarse-grained scale the currents are represented

solely by noise and dissipation terms. This straightforwardly leads to a Gaussian solution for

the spread of momentum and energy packets. As an outcome of our analysis, we propose some

general criteria for normal transport based on the existence of conservation laws.

Section 4.2 discusses the implications of fluctuating hydrodynamics for anomalous transport in

one dimension. Section 4.3 identifies the coupled rotator model as constituting an exception to

the usual hydrodynamic treatment of momentum-conserving models. Numerical and analytical

results demonstrating normal transport of momentum and energy are presented, and the low-

temperature regime is discussed. Section 4.4 presents a unified picture of the hydrodynamic

criteria for normal transport of conserved quantities in one dimension.

4.2 Fluctuating hydrodynamics and anomalous transport

We briefly recapitulate the basic ideas behind fluctuating hydrodynamics. Consider one-dimensional

systems on a ring, each particle described by a coordinate q(x) and momentum p(x), with

x = 1, . . . , N . Defining r(x) = q(x+ 1)− q(x), the Hamiltonian is written as H =
∑N

x=1 e(x),

where e(x) = p2(x)
2

+ V [r(x)]. The key ingredient in hydrodynamics is to identify the locally

conserved fields in the system, with their fluctuations around the equilibrium value represented by

the vector ~u(x, t) = {u1, . . . , un} for n conserved variables. The corresponding currents are de-

noted by ~j(x, t). In fluctuating hydrodynamics, as we saw earlier, one adds noise and dissipation
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terms to the currents, and takes the continuum limit to obtain

∂tuα = −∂x [jα − ∂xDαβuβ +Bαβξβ] , (4.1)

where the noise terms ξ are stationary Gaussian processes satisfying 〈ξα(x, t)〉 = 0 and

〈ξα(x, t)ξβ(x′, t′)〉 = δαβδ(x − x′)δ(t − t′). The noise and dissipation matrices B,D, satisfy

the fluctuation-dissipation relation DC0 + C0D = BBT , where C0
αβ(x) = 〈uα(x, 0)uβ(0, 0)〉,

angular brackets denoting equilibrium averages.

It is important to understand what the stochastic and dissipative terms physically represent.

In deriving the continuum hydrodynamic equations, one necessarily loses information about the

short-wavelength behavior, with the continuum equations containing only the modes that relax

on the longest length and time scales. Although a rigorous derivation is lacking, the fluctuation

and dissipation terms may be taken to represent the effects of the faster modes on the long-

wavelength behavior of the system. The fluctuation-dissipation relation asserts that these modes

are thermalized, whereas the lack of correlation of the noise terms in space and time indicate

their fast relaxation in equilibrium. It should also be possible in principle to derive the diffusion

coefficients in Eq. (4.1) following the Hamiltonian derivation of the Navier-Stokes equations in

[33].

In a general one-dimensional non-integrable system, such as the FPU lattice described in

Chapter 3, one has three conserved fields and corresponding currents given respectively by ~u =

(r, p, e) and ~j = (−p, P, pP )), where the field now represents the local fluctuations of stretch,

momentum and energy about their respective equilibrium values. The local pressure field is

P (x, t) ≡ −∂rV (r(x, t)), and the thermodynamic pressure is given by P̄ = −〈∂rV (r)〉. This is

the case addressed in [7] (see Chapter 3) where the hydrodynamics is treated by expanding the

currents up to second order in the fields:

jα = Aαβuβ +Hα
βγuβuγ . (4.2)

The tensors A and H are expressed in terms of the derivatives of the pressure P̄ with respect

to the energy and volume of the corresponding microcanonical ensemble, using Maxwell-type

thermodynamic relations. When the expansion is truncated to first order (i.e set Hα
βγ = 0), the

resulting linear hydrodynamics can be diagonalized to obtain the three normal modes φα. The
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second-order terms in the expansion can then be expressed as a coupling between these normal

modes φα, as we saw earlier, and the dynamical correlators 〈φα(x, t)φβ(0, 0)〉 of the resulting

theory are calculated within a mode coupling approximation. In particular one finds that the heat

mode correlations exhibit superdiffusive (Levy) scaling, which implies super-diffusive transport of

heat and universal non-zero values for a.

To explore the possibility of normal diffusion of heat, one has to look for cases in which there

are less than three conserved fields, and hence the hydrodynamics as developed in [7] does not

apply. Since energy is necessarily a constant of motion, the only possibilities are where either the

stretch r(x) or the momentum p(x) (or both) are not conserved. We claim that any of these

cases lead to normal transport of energy. The case of non-conservation of momentum has been

treated quite extensively through several models in the literature, and thus we focus primarily on

the case where stretch is not conserved. However, as we shall see later, the hydrodynamics of

the energy mode is practically identical for the two cases.

4.3 The Coupled Rotator model

To explore the case of non-conserved stretch, consider a Hamiltonian H with V (r) = V0 cos(r),

commonly known as the coupled rotator (CR) model. Convincing numerical evidence [34, 35]

exists for a finite thermodynamic conductivity in this model, based on direct molecular dynamics

simulations of the steady state as well as equilibrium current autocorrelations. Note that since

the potential is periodic, the angle variables r(x) should be taken to lie within an appropriate

finite range to ensure that the partition function is finite and therefore the canonical ensemble

is well-defined. For our analysis we restrict it within the interval (0, 2π), although any range

that is an integer multiple of 2π should be expected to have identical macroscopic properties.

The equation of motion of r(x) within the range (0, 2π) is ṙ(x) = p(x + 1) − p(x), but since

r is restricted within the cell, one should add boundary terms at 0 and 2π such that the r(x)

are reset whenever the prescribed range is exceeded. This discontinuity in r(x) is not in general

compensated by a simultaneous change in the nearest neighbors, which means that r(x) is not a

locally (or globally) conserved field.

This crucial observation implies that the thermodynamic conjugate of stretch, the pressure P̄ ,



4.3 The Coupled Rotator model 49

-2 0 2

x/t
1/2

0

0.1

0.2

0.3

0.4

0.5

t1
/2

C
p
p
(x

,t
) 

/ 
C

p
p
(0

,0
)

t=2000
t=4000
t=6000
t=8000
D=0.304

-4 -2 0 2 4

x/t
1/2

0

0.1

0.2

0.3

0.4

t1
/2

C
ee

(x
,t

) 
/ 

C
ee

(0
,0

)

t=2000
t=4000
t=6000
t=8000
D=0.627

(a) (b)
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with normal diffusion and normalized with C(0, 0), which is computed numerically from the equilibrium
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constants mentioned in the figures.
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the size-dependent behavior of the conductivity as obtained from the Green-Kubo formula and direct
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predicted from the specific heat density and the diffusivity of the heat mode.
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is necessarily zero. In the case of stretch-conserving models, a non-zero pressure is incorporated

into the equilibrium description by modifying the Gibbs weight of each microstate such that

Prob({r(x)}) ∼ Πx e
−β[V (r(x))+P̄ r(x)]. This measure remains invariant under the dynamics since∑

x r(x) is conserved. However, when the stretch is not conserved, as in the case of the CR

model, the measure is invariant only for P̄ = 0. It is important to emphasize that the equilibrium

pressure of the rotator model is identically zero, unlike the special case of zero pressure in stretch

conserving systems, where the derivatives of pressure with respect to energy and volume are finite

even at zero pressure and thus the normal modes remain coupled [7]. For the CR model, the

non-conserved field r drops out from the hydrodynamic description. Since P̄ is identically zero,

the coupling tensors A and H in Eq. (5.4) (and any higher-order terms that may be included)

vanish, and the hydrodynamic currents j are zero. The local pressure continues to fluctuate

on a microscopic scale, but these fluctuations are effectively incorporated into the noise and

dissipation terms in the net current. Thus the conserved field in this model is ~u = (p, e), and the

corresponding hydrodynamic equations are

∂tuα = −∂x [−∂xDαβuβ +Bαβξβ] . (4.3)

As in the case of stretch-conserving systems, we find numerically that the cross-correlations decay

rapidly, and then the auto-correlations Cαα(x, t) ≡ 〈uα(0, 0)uα(x, t)〉 can be shown to be

Cαα(x, t) =
1√

4πDααt
exp

[
− x2

4Dααt

]
, (4.4)

implying diffusive transport of both momentum and energy. Sound modes are absent in the

hydrodynamic limit.

We check these predictions with numerical simulations. We have performed molecular dynam-

ics simulations of the CR model in equilibrium, choosing the initial conditions from the Gibbs

distribution, and integrating the system using the fourth order Runge-Kutta as well as the velocity

Verlet algorithm. The normalized correlation functions of momentum, Cpp(x, t)/Cpp(0, 0) and

energy, Cee(x, t)/Cee(0, 0) are shown in Fig. (4.1), for V0 = 1 temperature T = 1 and a system

of size N = 400. The momentum and energy modes have been scaled diffusively and show excel-

lent collapse. In fact, the scaled correlation functions are fitted very well by Gaussian functions

(dashed curves), showing that the correlation functions are as predicted in Eq. (4.4). Note that
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the form of these correlation functions are completely different from the ones in systems with

three conserved fields, where one finds a non-Gaussian central peak in addition to traveling sound

peaks. We must mention that similar diffusive nature of momentum correlations in the rotator

model have recently been reported in [36].

Using Fourier’s law it can be shown that κ = Ds, where D is the energy diffusivity and s is

the specific heat density. For the present system with V0 = 1 it is calculated that the partition

function Z =
r∞
−∞ dp e

− 1
2
βp2

r 2π

0
dr e−β cos(r) =

√
2π
β
I0(β), where In(x) is the n-th modified

Bessel function of the first kind. From this one finds that

s ≡ 1

T 2

∂2

∂β2
lnZ =

1

2

[
1 + β2(1 +

I2(β)I0(β)− 2I1(β)2

I0(β)2
)

]
.

For our parameters, s = 0.9168, and using D as determined from the numerical fitting in Fig. (1b),

we get κ = 0.5749.

We compare this value with the conductivity obtained directly through two other independent

ways. When the conductivity is finite, then from the Green-Kubo formula it is given by

κ = lim
τ→∞

〈Q2
τ 〉

2NT 2τ
,

where Qτ =
r τ

0
J(t)dt, and the total heat current J =

N∑
x=1

p(x)∂V /∂r(x). The average is
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over the equilibrium ensemble at temperature T . A second way of determining κ is through

direct non-equilibrium simulation of the heat current. Two ends of the rotor chain are con-

nected to Langevin baths at temperatures T ± ∆T , and the resulting steady-state heat cur-

rent is calculated and the conductivity is obtained from the standard definition. In both these

cases, κ is computed from simulations performed for different of system sizes. In Fig. 4.2, we

see that the conductivity from the Green-Kubo formula converges to the value κ ≈ 0.56, in

close agreement with the value predicted from the diffusivity above. The values from the non-

equilibrium simulations are similar, but the larger error bars make a precise comparison difficult.

To understand the non-conservation of stretch more clearly, we notice that for any conserved

field u with zero mean, the following exact sum rule holds:∑
x

〈u(0, 0)u(x, t)〉 =
∑
x

〈u(0, 0)u(x, 0)〉 = 〈u2(0, 0)〉,

where the last equality is for initial conditions with a product measure. Since r(x) is not conserved

in the CR model, we expect S(t) ≡
∑

x〈r(0, 0)r(x, t)〉 to decay with time and go to zero at long

times. Since the non-conservation is a consequence of periodicity, the time-scale associated with

the decay of S(t) must be the time-scale required for the variables ri to reach the boundary of the

interval [0, 2π], or equivalently for the time required for the particle to escape the potential well

represented by one wavelength of the potential. In the limit of low temperature, this time-scale

approaches the Kramers escape time τ ∼ exp(∆E/T ). In other words, at low temperatures

we expect S(t) ∼ exp(−t/τ), with τ proportional to exp(2/T ). Fig. 4.3 shows the exponential

behavior of S(t), and the inset shows that the decay time indeed scales with T approximately

as predicted (see caption for details). It was reported in [35] that there exists a transition from

anomalous to normal diffusion in the CR model between T = 0.2 and T = 0.3. However, as

seen in Fig. 4.3, the S(t) correlation continues to decay at temperature 0.2 and below, but

the very slow rate of decay means that it is hard to numerically observe the asymptotically

converging thermal conductivity on numerically accessible scales. So the apparent anomalous

diffusion reported in [35] is possibly a finite-size effect. Similar objections to the claim was made

in [34, 37], though not from the viewpoint of conservation laws.

At low temperatures, each angle variable spends most of its time fluctuating near the potential
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minimum. Thus at short times, the hydrodynamics must be well-approximated by an anharmonic

expansion of the CR potential around the minimum at r = π, while the crossover to normal dif-

fusive behavior should occur at the time-scales indicated in Fig. (4.3). To check this, we consider

the anharmonic chain obtained after truncating the CR potential at the first stable anharmonic

term, obtaining V (r) = r2/2 − r4/24 + r6/720. This system has three conserved modes – ex-

tension, momentum and energy. For anharmonic chains at zero pressure, hydrodynamics predicts

that the heat mode scales as x ∼ t2/3 [7]. We simulate the equilibrium correlations for this model

for comparison.. The energy mode for the CR model (Fig. 4.4) satisfies an anomalous scaling

x ∼ t0.62. The dashed line gives numerical results from the truncated anharmonic potential,

which is in reasonable agreement with the CR model up to the simulation time. The inset shows

the same correlations for the anharmonic potential with the same scaling. The scaling exponent

0.62 is close to but not yet identical with the prediction in [7], and is presumably due to the slow

separation of heat and sound modes at low temperatures as seen in simulations elsewhere [32].

The results for the sound mode are shown in Fig. 4.5. The anharmonic chain (Fig 4.5a) is seen

to satisfy a t1/2 scaling as predicted from nonlinear fluctuating hydrodynamics, and at short times

a similar scaling is observed for the CR model (not shown). However at longer times, the sound
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peaks of the CR model (Fig. 4.5b) shows a very different behavior. The scaling in the figure

indicates that close to the peak the sound mode scales as Crr(x, t) ∼ exp(−t/τ) 1
t1/2

f(x/t1/2),

with τ ≈ 1880, which is considerably different from τ ≈ 700 for S(t) as shown in Fig. 4.3. This is

because the scaling form away from the sound peak at these time-scales is not given by x ∼ t1/2,

as is evident from Fig. 4.5b. The exponential term in the sound peak indicates that even at low

temperatures the sound modes are transient and disappear on a thermodynamic scale, and one

therefore expects the heat mode to show a diffusive scaling at sufficiently long times.
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4.4 Conclusions

We realize that an essentially similar scenario occurs in momentum non-conserving models - such

as pinned anharmonic chains or the harmonic chain with random velocity flips, with the roles

of stretch and momentum fields now interchanged. The hydrodynamic equations for stretch

and energy here would be linear with vanishing long-range currents, and both these fields should

diffuse normally. The velocity-flip model has already been studied in the hydrodynamic limit quite

rigorously, and it has indeed been shown that macroscopic diffusion equations for these fields exist

for this model [38].

It has so far been believed that breaking translational symmetry is crucial to normal heat

conduction, but the CR model had remained a puzzle. We show that it is not translational

invariance but the number of conserved fields that decides whether transport is normal. A generic

non-integrable Hamiltonian system has, in addition to energy, at most two conserved quantities

- stretch and momentum, and any model that does not conserve either of these exhibits normal

diffusion of energy. We believe that our hydrodynamic treatment of the rotator model (which,

as should be clear, holds for all one-dimensional systems with periodic inter-particle potentials)

establishes this beyond reasonable doubt.

To summarize the central lesson from this chapter, whenever stretch (momentum) is not

conserved in a one-dimensional model, the momentum (stretch) and energy fields exhibit normal

diffusion. The possibility of normal transport in one dimension has been a matter of long-standing

debate, and in this work we identify sufficient hydrodynamic criteria for normal transport of energy

in one-dimensional systems.





5
Landauer formula for phononic heat

conduction in quantum harmonic lattices

5.1 Introduction

We have investigated heat transport in one-dimensional classical systems in detail. The corre-

sponding class of quantum mechanical problems has been treated very rarely in the literature,

and a detailed solution of heat transport in nonintegrable quantum systems lies beyond the scope

of this thesis. Instead, we focus on a one-dimensional quantum harmonic system and present

some exact results.

The heat current across a quantum harmonic system connected to reservoirs at different tem-

peratures is given by the Landauer formula, in terms of an integral over phonon frequencies ω,

of the energy transmittance T (ω).

57
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The Landauer formula gives an exact expression for the current (energy and/or particle) in

non-interacting quantum systems coupled to reservoirs kept at different temperatures ( and/or

different chemical potentials ). The formula for phonon heat current across a harmonic crystal

connected to heat baths at temperatures TL, TR is given by

J =
1

2π

w ∞
−∞

dω ~ω T (ω) [f(ω, TL)− f(ω, TR)] , (5.1)

where the quantity T (ω), which we shall refer to as the energy transmittance, can be expressed in

terms of appropriate “nonequilibrium” phonon’s Green’s functions and f(ω, T ) = 1/(e~ω/kBT−1)

is the thermal phonon distribution function. This Landauer formula for phononic heat current was

proposed in [39] and has been derived rigorously using the quantum Langevin equation approach

[11, 40] as well as the nonequilibrium Green’s function (NEGF) approach [41, 42]. The energy

transmittance T (ω) is usually expressed in terms of nonequilibrium phonon Green’s function and

it is expected that it is related to the transmission coefficient τ(ω) of plane waves across the

system. In this chapter we demonstrate exact relationships between T (ω) and τ(ω) for harmonic

lattices with arbitrary parameters.

Section 5.2 defines the model and gives the expression for T (ω) from NEGF. Section 5.3 finds

the scattering state solutions and the transmission coefficients, and relates it to the results of 5.2.

Section 5.4 finds the energy current in each mode and gives an exact derivation of the Landauer

formula.

5.2 Definition of model and NEGF expression for energy

transmittance T

Landauer’s original idea was to think of conductance in terms of transmission or scattering of

plane waves and for the case where the reservoirs or “leads” are one dimensional, it is expected

that T (ω) is related to the transmission coefficient τ(ω) of plane waves [43]. For the case of

electron transmission, T (ω) can again be expressed in terms of nonequilibrium Green’s functions

[44] and the relation to the transmission coefficient was directly demonstrated through the work

of Todorov et al using scattering theory [45] and also by [46]. For the case of phonons we are

not aware of an explicit proof of this relation and that is the main objective of this chapter [47].
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Here we consider a general one-dimensional finite harmonic chain coupled to reservoirs which are

themselves semi-infinite ordered harmonic chains and give a fully quantum-mechanical derivation

of the relation between T and τ and show how the NEGF current formula can be obtained from

the transmission coefficient.

In our derivation we first note that in the NEGF approach the energy transmission T is expressed

in terms of a Green’s function. This Green’s function can be expressed explicitly in terms of a

product of 2 × 2 matrices. On the other hand the transmission coefficient can be computed by

constructing appropriate scattering states and this can be done in two ways — (i) a direct solution

of the discrete wave equation which again gives τ expressed in the form of a product of matrices

or (ii) by using the Lippmann-Schwinger scattering theory to evolve reservoir normal modes and

this gives τ directly in terms of the Green’s function. From the forms of these expressions we

directly obtain the required relations. We note that for the case where the reservoirs are not

one-dimensional chains, but have arbitrary geometries [48–50], the NEGF expression for T (ω)

still has the same form but it is not clear as to how one should compute τ and how exactly

it is related to T . In this case the approach using Lippmann-Schwinger scattering theory can

still be used to arrive at the required relation. A model similar to ours was studied recently

by Zhang et al [51] in the context of interfacial thermal transport in atomic junctions and the

relation between the NEGF formula for energy transmittance and the transmission coefficient was

established numerically and also exactly for the special case of a single interface.

The plan of this chapter is as follows. In sec. 5.2 we first define the model and state some

general results for the heat current given by the formalism of nonequilibrium Green’s functions.

We then give an explicit expression for the form of the Green’s function appearing in the energy

transmission formula. In sec. 5.3 we consider the transmission of plane waves across the system

and, using two different approaches, obtain the form of the transmission coefficient. The trans-

mission coefficient can also be expressed in terms of the same nonequilibrium Green’s function

and using this we write the relation between it and T (ω). This relation is then used in sec. 5.4

to derive the Landauer formula for heat current. Finally we discuss our results in sec. 5.5.

Consider the set-up in Fig. (5.1) where a one-dimenional (1D) harmonic chain with arbitrary

spring constants and masses is connected to leads which are themselves ordered harmonic chains.

Special cases of this setup have been discussed earlier by various authors [51–56] in the context of
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Figure 5.1: Schematic of the set-up considered here. The system consists of a harmonic chain
of N particles for which both the particle masses and the inter-particle spring constants take arbitrary
values. The system is sandwiched between two reservoirs which are ordered 1D harmonic chains with
different mass densities and elasticities. The coupling constant between left reservoir and system is k0

and between right reservoir and system is kN .

heat conduction. Let us assume that the system has N Cartesian positional degrees of freedom

{xl}, l = 1, 2 . . . , N with corresponding momenta {pl}. These satisfy the usual commutation

relations [xl, pm] = i~δl,m and [xl, xm] = [pl, pm] = 0. Similarly the left reservoir degrees

of freedom are denoted by {xα, pα}, α = 1, . . . , NL and the right reservoirs by {xα′ , pα′},

α′ = 1, . . . , NR. We consider our system plus reservoir to be described by the full Hamiltonian

H =
N∑
l=1

p2
l

2ml

+
N−1∑
l=1

kl(xl − xl+1)2

2

+

NL∑
α=1

p2
α

2mL

+

NL∑
α=1

kL(xα − xα+1)2

2
+
k0(xα=1 − x1)2

2

+

NR∑
α′=1

p2
α′

2mR

+

NR∑
α′=1

kR(xα′ − xα′+1)2

2
+
kN(xα′=1 − xN)2

2
, (5.2)

where we assume xα=NL+1 = xα′=NR+1 = 0. The system masses {ml} and spring constants {kl}

are assumed to be arbitrary. The left (right) reservoir particle masses are all taken to be mL

(mR) and the inter-particle spring constants are taken to be kL (kR). To ensure a unique steady

state We will always assume that the reservoirs are chosen to have sufficiently broad bandwidths

compared to the spectrum of the system [40, 57]. The above Hamiltonian can be written in the

canonical form:

H = HS +HL +HR +HLS +HRS , (5.3)



5.2 Definition of model and NEGF expression for energy transmittance T61

where

HS =
N∑
l=1

p2
l

2ml

+
N−1∑
l=1

kl(xl − xl+1)2

2
+
k0x1

2

2
+
kNxN

2

2
,

HL =

NL∑
α=1

p2
α

2mL

+
kL(xα − xα+1)2

2
+
k0x

2
α=1

2
,

HR =

NR∑
α′=1

p2
α′

2mR

+
kR(xα′ − xα′+1)2

2
+
kNx

2
α′=1

2
,

HLS = −k0xα=1x1, HRS = −kNxα′=1xN . (5.4)

Using the vector notation XT
S = (x1, x2, . . . , xN), P T

S = (p1, p2, . . . , pN) and similarly XL, XR, PL, PR,

the different parts in the above Hamiltonian can be written as

HS =
1

2
P T
S M−1

S PS +
1

2
XT
S KS XS ,

HL =
1

2
PL

T M−1
L PL +

1

2
XL

T KLXL ,

HR =
1

2
PR

T M−1
R PR +

1

2
XR

T KRXR ,

HLS = XT
S KSL XL , HRS = XT

S KSR XR ,

where MS, ML, MR and KS, KL, KR denote respectively the mass matrix and the force-

constant matrix of the system, left reservoir and right reservoir, while KSL and KSR denote

the linear coupling coefficients between the two reservoirs and the system. In our case KSL is a

N ×NL matrix whose only non-zero element is [KSL]1,1 = k0, while KSR is a N ×NR matrix

whose only non-zero element is [KSR]N,1 = kN .

Expression for steady state heat current: We now consider the situation where at some

distant past time (t < t0) the two reservoirs are uncoupled from the system and are separately

in equilibrium (and described by canonical distributions) at temperatures TL and TR respectively.

At time t0 we start evolving the system plus reservoirs with the full Hamiltonian in Eq. (5.3).

Eventually we set the reservoir sizes NL, NR → ∞ and t0 → −∞. The system reaches a

nonequilibrium steady state at finite t. Note that we have included terms involving the coupling

coefficients k0, kN in the isolated reservoir Hamiltonians. As has been discussed using various

approaches [40–42], the steady state current can be expressed using the following phonon Green’s
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function:

G± =
1

−MSω2 + KS −Σ±L −Σ±R
, (5.5)

where the self-energies Σ±L ,Σ
±
R can be expressed in terms of the isolated reservoir Green functions

g±L(ω) = [ −ML(ω ± iε)2 + KL]−1 , g±R(ω) = [−MR(ω ± iε)2 + KR]−1 and the coupling

matrices KSL, KSR. The self energies are given by Σ±L(ω) = KSL g±L (ω) KT
SL, Σ±R(ω) =

KSR g±R(ω) KT
SR . Defining ΓL(ω) = Im[ Σ+

L ] , ΓR(ω) = Im[ Σ+
R ], we find [40–42] that the

steady state current is given by the formula in Eq. (5.1) with

T (ω) = 4Tr[G+(ω)ΓL(ω)G−(ω)ΓR(ω)] . (5.6)

For our one-dimensional system, we note that G±,Σ±L ,Σ
±
R are all N × N matrices. The only

non-zero elements of Σ±L and Σ±R are respectively [Σ±L ]1,1 = k0
2[g±L ]1,1 =: Σ±L and [Σ±R]N,N =

kN
2[g±R ]1,1 =: Σ±R. Let us define ΓL = Im[Σ+

L ], ΓR = Im[Σ+
R] . Hence the expression of T

reduces to:

T = 4ΓLΓRG
+
1,NG

−
N,1 = 4ΓLΓR|G+

1,N |
2 , (5.7)

with the matrix G+ = Z−1 , where Z = −MSω
2 +KS −Σ+

L−Σ+
R is a tri-diagonal matrix. The

bandwidth of the two baths are different (2
√
kL/mL and 2

√
kR/mR for the left and right baths

respectively), so the conduction of heat across the system will have contribution only from the

overlapping part of the bandwidths. As shown in the Appendix below, for our one-dimensional

model we can obtain the following explicit forms of ΓL,ΓR and G+
1,N :

ΓL = − k2
0kLsin(q)

|k0 − kL + kL e−iq|2
, ΓR = − k2

NkRsin(q′)

|kN − kR + kR e−iq
′ |2

,

G+
1,N =

1

[
1 − k20e

iq

kL+(k0−kL)eiq

]
T̂


kN 0

0 1/kN




1

kN
2eiq

′

kR+(kN−kR)eiq′


, (5.8)



5.3 Scattering states and transmission coefficient 63

where T̂ ≡
N∏
l=1

T̂l , T̂l =


al/kl −kl

1/kl 0

 . (5.9)

al = kl + kl−1 −mlω
2, l = 1, . . . , N ,

and q,q′, the wavevectors associated with frequency ω in the left and right baths respectively, are

related to ω through the dispersion relations

ω2 = (2kL/mL) (1− cos q) = (2kR/mR)(1− cos q′) . (5.10)

5.3 Scattering states and transmission coefficient

For our model the equations of motion correspond to the discrete wave equation for which we

can construct scattering wave solutions. We will now construct solutions that correspond to

plane waves incident on the system from the reservoirs. From these solutions we will obtain the

transmission coefficient. In the following we will only consider the “right-moving states” which

correspond to waves that are incident from the left reservoir. The “left-moving states” can be

similarly obtained.

Let us consider a chain described by the Hamiltonian of Eq. (5.2) with an infinite number of

particles in both the reservoirs. The particle displacements in the chain satisfy the equations of

motion

mlẍl = −(kl−1 + kl) xl + kl−1 xl−1 + kl xl+1 , (5.11)

where l = 1, . . . , N refers to particles of the system, l ≤ 0 refers to particles of the left reservoir

(i.e α ≥ 1, as in the notation of Eq. 5.2), and l ≥ N + 1 refers to particles in the right reservoir

(i.e α′ ≥ 1). We note that these equations are valid both for the quantum representation, where

the variables are Heisenberg operators, and also for the classical case. Corresponding to the

above equations let us construct classical wave solutions ψl satisfying the equations

mlψ̈l = −(kl−1 + kl) ψl + kl−1 ψl−1 + kl ψl+1 . (5.12)
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In the left and right reservoirs these equations take the form of the discrete wave equations

ψ̈α = (kL/mL)(ψα+1 − 2ψα + ψα−1) for α > 1 ,

ψ̈α′ = (kR/mR)(ψα′+1 − 2ψα′ + ψα′−1) for α′ > 1 .

These have the following plane-wave solutions,

ψα(q) =
1

(2πmL)1/2
e−iωt ( e−iqα + r eiqα ) for α ≥ 1 ,

ψα′(q′) =
1

(2πmL)1/2
τ e−iωteiq

′α′
for α′ ≥ 1 , (5.13)

where the wave-vectors q, q′ ∈ (0, π) satisfy the dispersion relations given in Eq. (5.10) and the

normalization is chosen such that for τ = 0 (i.e no transmission) the following completeness

relations are satisfied:

w π

0
dq mLψ

∗
α(q)ψν(q) = δα,ν (5.14)

for any two points α, ν on the left bath. The solution in Eq. (5.13) corresponds to a plane wave

of wave vector q, frequency ω that is incident on the system from the left side, part of this is

then reflected with amplitude r, and a part transmitted across the system with amplitude τ .

We shall refer to τ as the transmission coefficient and will now proceed to the calculation of

this. As is well-known in quantum mechanics and wave-theory, the required scattering states

can be constructed either by direct solution of the equations of motion in Eq. (5.12) or by the

Lippmann-Schwinger scattering theory approach. We now present both these methods.

5.3.1 Transmission coefficient from direct solution of the the wave

equation

For points on the reservoirs the plane wave solution has the form in Eq. (5.13). For 0 ≤ l ≤ N+1,

let us write ψl(q) = sle
−iωt, l = 0, .., N + 1 where the amplitudes sl satisfy the equations

mlω
2sl = (kl−1 + kl) sl − kl−1 sl−1 − kl sl+1 , (5.15)
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and it is to be understood that l = 0, l = −1 refer to α = 1, α = 2 respectively while

l = N + 1, l = N + 2 refer to α′ = 1, α′ = 2. Hence we get the following recursion relation:
kl−1sl−1

sl

 = T̂l


klsl

sl+1

 , (5.16)

where T̂l is defined in Eq. (5.9). Using this recursively gives
k−1s−1

s0

 = T̂0 T̂ T̂N+1


kN+1sN+1

sN+2

 . (5.17)

We note that
k−1s−1

s0

 =
1

(2πmL)1/2


kL (e−2iq + re2iq)

(e−iq + reiq)

 ,


kN+1sN+1

sN+2

 =
1

(2πmL)1/2


kRe

iq′

e2iq′

 τ ,

T̂0 =


kL + k0 −mLω

2 −k2
0

1 0

 , T̂N+1 =


kR + kN −mRω

2 −k2
R

1 0

 ,

and hence Eq. (5.17) gives

T̂0 T̂ T̂N+1


kRe

iq′

e2iq′

 τ =


kLe

−2iq

e−iq

+


kLe

2iq

eiq

 r . (5.18)

To solve for τ we multiply the above equation by the row vector (1 − kLeiq), and this gives

τ =
−2ikL sin(q)

(eiq − kLe2iq) T̂0 T̂ T̂N+1


kRe

iq′

e2iq′


.
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After some simplifications and using the form of G+
1,N given in Eq. (5.8) we obtain:

τ = − 2ikL sin(q) k0kNe
−i(q+q′)

(k0 − kL + kLe−iq)(kN − kR + kRe−iq
′)

G+
1,N . (5.19)

Now using the expressions for ΓL,ΓR in Eq. (5.8) and comparing with the formula in Eq. (5.7)

we immediately see that the energy transmittance T (ω) and the transmission coefficient τ(ω)

are related as

T (ω) = |τ(ω)|2kR sin(q′)

kL sin(q)
. (5.20)

The relation between these coefficients for the case of junction transmittance (N = 0) was

obtained in [51], where numerical evidence for such a relationship for N > 0 was also presented.

The physical interpretation of the above relation comes from noticing that the coefficient of |τ |2

in Eq. (5.20) is the ratio of the mass times the group velocity for plane waves in the two baths

[47]. Thus the transmittance simply represents the ratio between incident and transmitted energy

currents.

5.3.2 Transmission coefficient from Lippmann-Schwinger scattering

approach

The Lippmann-Schwinger scattering theory approach in quantum mechanics starts by breaking

up the Hamiltonian of a system into an unperturbed part and a perturbation. One then writes an

exact scattering solution of the unperturbed part of the Hamiltonian and then uses this to obtain

a solution of the full problem in terms of the perturbation and appropriate Green’s functions.

Here, using the notation of Eq. (5.3), we treat HS +HL +HR as the unperturbed Hamiltonian

and HLS +HRS as the perturbation.

Lippmann-Schwinger theory: Let us use the notation |ψ(q)〉 to denote the state for the

wave-function ψl(q) satisfying the wave equation

Mω2 |ψ(q)〉 = K |ψ(q)〉 , (5.21)

where M and K are the mass matrix and force matrix respectively of the full chain (including

system and reservoirs). Using the partition of the chain into the reservoir and system parts, these
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matrices have the following block structures:

M =



MS 0 0

0 ML 0

0 0 MR


, K =



KS KSL KSR

KT
SL KL 0

KT
SR 0 KR


(5.22)

Breaking K into unperturbed and perturbed parts we have:

K = K0 + K1

where K0 =



KS 0 0

0 KL 0

0 0 KR


, K1 =



0 KSL KSR

KT
SL 0 0

KT
SR 0 0


. (5.23)

Treating K1 as a perturbation we then obtain the following scattering solution of Eq. (5.21):

|ψ〉 = |ψ0〉 − G+K1 |ψ0〉 ,

where G+ = [−M (ω + iε)2 + K]−1 (5.24)

is the Green’s function for the full chain and |ψ0〉 is a scattering solution of the unperturbed

system satisfying the equation

Mω2 |ψ0(q)〉 = K0 |ψ0(q)〉 . (5.25)

Construction of initial state: Let us first construct the right-moving scattering states. For

this we consider the particular initial state |ψ0〉 where the left reservoir is in a normal mode with

frequency ω while the system and right reservoir degrees of freedom are at rest. Thus we choose

ψ0
l (q) = 0 for l > 0 and ψ0

l (q) = ψLα for l ≤ 0, with α = 1− l and ψLα(q) satisfying the equation

mLω
2ψLα(q) =

∑
β

[KL]α,βψ
L
β (q) . (5.26)
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The form of KL can be read from Eq. (5.4), and we then get

mLω
2ψLα(q) = kL[ 2ψLα(q)− ψLα+1(q)− ψLα−1(q) ] + δα,1(k0 − kL)ψL1 (q) , α = 1, 2, . . . ,(5.27)

with the boundary condition ψL0 (q) = 0. For k0 = kL the normal modes are given by ψLα(q) =

2i sin qα/(2πmL)1/2, where the normalization is chosen such that
r π

0
dq mLψ

L∗
α(q)ψLν (q) = δα,ν .

For k0 6= kL we can find the normal modes by treating the last term in Eq. (5.27) as a perturbation.

We will require only ψLα=1(q). The Lippmann-Schwinger approach is applied again, giving

ψLα=1(q) =
2i sin(q)

(2πmL)1/2

[
1− (k0 − kL) [g+

L ]1,1
]

= − 2i sin q

(2πmL)1/2
kLe

−iq [g+
L ]1,1, (5.28)

where the result in Eq. (5.47) has been used. Note that our choice of ψL0 implies an incident

wave eiqα/(2πmL)1/2.

Scattering state: Since we want to finally find τ , it is sufficient to compute the scattering

wave function only on the right reservoir. From Eq. (5.24) we get

ψα′(q) = −G+
α′,l=1k0ψ

L
α=1(q) . (5.29)

We now express the Green’s function element −G+
α′,l=1 in terms of the Green’s function G+

defined earlier in Eq. (5.5). We first write G+ in a block-matrix form, with the different blocks

representing the system and reservoirs. This matrix satisfies the following relation:

−MS(ω + iε)2 + KS KSL KSR

KSL
T −ML (ω + iε)2 + KL 0

KSR
T 0 −MR (ω + iε)2 + KR



×



G+
S G+

SL G+
SR

G+
LS G+

L G+
LR

G+
RS G+

RL G+
R


=



I 0 0

0 I 0

0 0 I


. (5.30)
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From this equation the following relations can be shown to hold [40]:

G+
S (ω) =

1

−ω2MS + KS −Σ+
L −Σ+

R

=: G+(ω) , (5.31)

G+
RS = g+

RKSRG
+ . (5.32)

This then gives us

G+
α′,l=1 = [G+

RS]α′,l=1 = [g+
R]α′,1kNG

+
N,1 . (5.33)

Using Eqs. (5.28,5.33) in Eq. (5.29) we finally get:

ψα′(q′) = 2ik0kNkL sin qe−iq[g+
L ]1,1[g+

R]α′,1G
+
1,N/(2πmL)1/2 . (5.34)

Now taking the (α′, 1)th element of Eq. (5.46), with L replaced by R, and using Eq. (5.48) we

get

[g+
R]α′,1 =

eiq
′α′

kR + (kN − kR)eiq′
. (5.35)

Using the explicit form of [g+
L ]1,1 from Eq. (5.47) we finally arrive at the expected form of the

transmitted wave function in the right reservoir

ψα′(q′) = τeiq
′α′
/(2πmL)1/2

with τ precisely given by the same expression Eq. (5.19) obtained in the previous sub-section by

the direct solution of the wave equation.

5.4 Expression for the energy current in each mode and a

derivation of the Landauer formula

We now use the definition of the heat current operator and show how it can be used to express the

current contribution of each of the modes in terms of the transmission coefficient and hence the

energy transmittance. This will lead us to a derivation of the Landauer formula. In the steady state

the current is constant everywhere and we will evaluate it on the right reservoir. Between sites α′

and α′+1 the left-right current is given by the expectation value [11] ĵL = 〈 1
2
kR(vα′+vα′+1)(xα′−
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xα′+1) 〉 where we compute the average using the qth right-moving state obtained in the previous

section. It is easiest to obtain this using second-quantized notation. The set of right moving and

left moving states form a complete set. Denoting the left-movers by ψα′(q) with q ∈ (−π, 0)

we note that they satisfy the completeness relation
r π
−π dq(mα′)1/2(mν′)

1/2ψ∗α′(q)ψν′(q) = δα′,ν′ .

The displacement and velocity operators at the lattice sites of the right bath can be expressed in

terms of the creation and annihilation operators aq′ , a
†
q′ as

xα′ =
w π

−π
dq

(
~

2ωq

) 1
2 [
aqψα′(q) + a†qψα′

∗(q)
]
,

vα′ = −i
w π

−π
dq

(
~ωq
2

) 1
2 [

aqψα′(q)− a†qψα′
∗(q)

]
.

The operators aq1 , a
†
q2

satisfy the commutation relations [aq1 , a
†
q2

] = δ(q1 − q2) and, using the

completeness relation, it can be verified that this ensures the usual commutation relations for

the position and momentum operators. Using the above we get for the expectation value of the

current for a right moving state:

JLR(q) = i~kR(〈a†qaq〉+
1

2
)[ψα′+1

∗(q)ψα′(q)− ψα′+1(q)ψα′
∗(q)]

=
~kR sin(q′)

πmL

|τ |2 [f(ωq, TL) +
1

2
] , (5.36)

where in the last step we have used the form ψα′(q) = τeiα
′q′/(2πmL)1/2, and the initial

occupation probability of the state q is given by the left bath thermal distribution 〈a†qaq〉 =

[e~ωq/kBTL − 1]−1 = f(ω, TL). The total current transmitted from the left bath to the right

bath, is obtained by integrating over all q. After making a change of variables from q to

ω = 2(kL/mL)1/2
√

1− cos(q) we get

JLR =
w π

0
dqJLR(q)

=
1

π

w 2(kL/mL)1/2

0
dω ~ω

kR sin(q′)

kL sin q
|τ |2 [f(ω, TL) +

1

2
]

=
1

π

w 2(kL/mL)1/2

0
dω ~ωT (ω) [f(ω, TL) +

1

2
] , (5.37)

where in the last step we used Eq. (5.20) . From symmetry, the current flowing from the right

bath to the left bath will be given by

JRL =
1

π

w 2(kR/mR)1/2

0
dω ~ωT (ω) [f(ω, TR) +

1

2
] .
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Hence finally we get for the net current:

J =
1

π

w ωm

0
dω~ωT (ω)[f(ω, TL)− f(ω, TR)] , (5.38)

where ωm = min[2(kL/mL)1/2, 2(kR/mR)1/2]. Observing that T is a symmetric function of ω

and vansishes outside the range ω ∈ (0, ωm), we can see that Eq. (5.38) is equivalent to the

Landauer formula Eq. (5.1) .

5.5 Discussion

In summary we have studied heat conduction across a 1D quantum-mechanical harmonic chain,

with arbitrary distribution of masses and inter-particle spring constants, that is connected to

two other ordered 1D harmonic crystals which have different mass densities and elastic con-

stants. For this model we use two different approaches to demonstrate the relation T (ω) =

(kR sin q′) |τ(ω)|2/(kL sin q) between the energy transmittance T (ω), which occurs in the Lan-

dauer formula for heat current, and the transmission coefficient τ(ω) related to passage of plane

waves across the system. In the first approach we use the fact that the Green’s function occuring

in the expression for T has a simple representation in terms of product of 2 × 2 matrices. The

plane wave solutions are then obtained by directly solving the equations of motion and a repre-

sentation of τ is obtained, again in terms of the product of matrices. The connection between

T and τ is then directly obtained. This approach can be extended to the case of regular lattices

using, for example, the techniques used in [58] for the representation of the Green’s functions

using matrix products.

In the second approach it is not necessary to find the explicit form of the Green’s function.

One notes that the required plane wave scattering states can be obtained by using the Lippmann-

Schwinger approach to evolve initial states which are eigenmodes of either one of the reservoirs

and are initially localized within the reservoirs. The Lippmann-Schwinger approach then directly

gives τ in terms of the Green’s function. This second approach is more powerful since it can be

used for arbitrary harmonic structures where it is not possible to think of simple plane wave scat-

tering states. This approach tells us that we need to construct scattering states by evolving the

eigenmodes of the two isolated reservoirs. Indeed this is what the NEGF approach does in effect
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and our explicit calculations for a simple but representative model clarifies the picture. Our exact

calculations also illustrate some of the subtle points involved, such as the correct computation of

the self-energies Σ+
L ,Σ

+
R for inhomogeneous chains, appropriate normalizations of normal-modes

and the choice of initial states.

APPENDIX

Explicit forms for G+
1,N ,ΓL,ΓR: Using methods described in [2] we now show that the Green’s

function element occuring in Eq. (5.7) can be expressed in terms of a product of 2× 2 matrices.

We also obtain the explicit forms of ΓL,ΓR for our particular model. The matrix Z has the form

Z(ω) =



a1 − Σ+
L(ω) −k1 · · · 0 0 0

−k1 a2 −k2 · · · 0 0

...
...

...
. . .

...
...

0 0 · · · −kN−2 aN−1 −kN−1

0 0 0 · · · −kN−1 aN − Σ+
R(ω)



, (5.39)

where al = kl + kl−1 −mlω
2, l = 1, . . . , N .

Taking the inverse of this matrix, we get

G+
1,N =

N−1∏
l=1

kl

∆1,N

, (5.40)

where ∆1,N is defined as the determinant of the matrix Z(ω). Let us also define Dl,j as the

determinant of the sub-matrix starting with the l-th row and column and ending with the j-th

row and column of the matrix −MSω
2 + KS. From the tri-diagonal form of the matrices, it is
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easily shown that

∆1,N = ( a1 − Σ+
L ) [ (aN − Σ+

R) D2,N−1 − kN−1D2,N−2 ]− k1 [ (aN − Σ+
R)D3,N−1 − kN−1D3,N−2 ]

= D1,N − Σ+
RD1,N−1 − Σ+

LD2,N + Σ+
LΣ+

RD2,N−1

=

[
1 −Σ+

L

]
D1,N −D1,N−1

D2,N −D2,N−1




1

Σ+
R

 . (5.41)

The elements Dl,j satisfy the recursion relation Dl,N = alDl+1,N − k2
lDl+2,N for l = 1, ...N − 2,

and Dl,N−1 = alDl+1,N−1 − k2
lDl+2,N−1 for l = 1, ...N − 3. In matrix form these give

Dl,N −Dl,N−1

Dl+1,N −Dl+1,N−1

 = kl


al/kl −kl

1/kl 0



Dl+1,N −Dl+1,N−1

Dl+2,N −Dl+2,N−1

 , (5.42)

which holds for l = 1, ...N−3. Using the easily computed values of DN−1,N−1, DN,N−1, DN−1,N ,

and DN,N , we arrive at the result
D1,N −D1,N−1

D2,N −D2,N−1

 =
N∏
l=1

kl T̂


1 0

0 1/kN
2

 , (5.43)

(5.44)

where T̂ is defined in (5.9).

Hence using Eqs. (5.41,5.43) we get

∆1,N = (
N∏
l=1

kl)

[
1 −Σ+

L

]
T̂


1 0

0 1/k2
N




1

Σ+
R

 . (5.45)

We next find the explicit forms of Σ+
L ,Σ

+
R, for which we need to evaluate the reservoir Green’s

function elements [g+
L ]1,1 and [g+

R]1,1. Consider the left reservoir. For the case k0 = kL, it is
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simple to find all normal modes and hence compute the Green’s function corresponding to the

force matrix KL = K0
L (say). One gets

g0+
L =

1

−ML (ω + iε)2 + K0
L

Hence [g0+
L ]l,m =

2

mLπ

w π

0
dq

sin(ql) sin(qm)

−(ω + iε)2 + Ω2
q

,

where Ω2
q =

2kL
mL

[1− cos(q)] .

We need the (1, 1)th element and the above integral gives [g0+
L ]1,1 = eiq/kL, where q is to be

obtained from ω2 = (2kL/mL)(1 − cos q). For the general case k0 6= kL, the Green’s function

can be calculated as follows. We write KL = K0
L + ∆KL where ∆KL is a perturbartion matrix

whose the only non-zero element is ∆K11 = k0−kL. From the definition of the Green’s function

g+
L = [−ML(ω + iε)2 + K0

L + ∆KL]−1 we get

g+
L + g0+

L ∆KLg
+
L = g0+

L . (5.46)

Taking the (1, 1)th element of the above equation gives

[g+
L ]1,1 =

[g0+
L ]11

1 + [g0+
L ]11 [∆KL]11

=
eiq

kL + (k0 − kL)eiq
, (5.47)

and similarly

[g+
R]1,1 =

eiq
′

kR + (kN − kR)eiq′
. (5.48)

Using the definitions given earlier we derive the following expressions:

Σ+
L =

k2
0e
iq

kL + (k0 − kL)eiq
, Σ+

R =
k2
Ne

iq′

kR + (kN − kR)eiq′
,

ΓL = − k2
0kLsin(q)

|k0 − kL + kL e−iq|2
, ΓR = − k2

NkRsin(q′)

|kN − kR + kR e−iq
′|2

, (5.49)

where q, q′ are respectively obtained from the relations ω2 = (2kL/mL)(1−cos q) = (2kR/mR)(1−

cos q′) and ΓL,ΓR are non-zero only when both q, q′ are real. Plugging in the expressions of Σ+
L

and Σ+
R in Eq. (5.45), we obtain from Eq. (5.40) the final result of Eq. (5.8).
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