PAPER • OPEN ACCESS

Synthesis, Structural and Morphological Property of BaSnO₃ Nanopowder Prepared by Solid State Ceramic Method

To cite this article: Jibi John et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 195 012007

View the article online for updates and enhancements.

Related content

- Electronic Structure, Electrical and Dielectric Properties of BaSnO₃ below 300 K

Prabhakar Singh, Benjamin J. Brandenburg, C. Peter Sebastian et al.

- <u>Melt growth and properties of bulk</u> <u>BaSnO3 single crystals</u> Z Galazka, R Uecker, K Irmscher et al.
- Influence of bone morphological properties on a new expandable orthopaedic fastener M Oldakowski, I Oldakowska, T B Kirk et al.

Synthesis, Structural and Morphological Property of BaSnO₃ Nanopowder Prepared by Solid State Ceramic Method

Jibi John¹,V.P Mahadevan Pillai¹*, Anitta Rose Thomas², Reji Philip²

Jaison Joseph³, S.Muthunatesan⁴, V.Ragavendran⁵, Radhakrishna Prabhu⁶

¹Department of Optoelectronics, University of Kerala, Thiruvanthapuram, Kerala, India ²Light and Matter Physics Group, Raman Research Institute, Bangalore, India ³Department of Physics, Government College, Khandola, Goa, India

⁴ Department of Physics, Government Arts college, Kumbakonam, Tamil nadu, India ⁵ Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, Tamil nadu, India

⁶School of Engineering, Robert Gordon University, Aberdeen, United Kingdom

E-mail: vpmpillai9@gmail.com

Abstract. BaSnO₃ is a cubic perovskite-type oxide that behaves as an n-type semiconductor with a wide band gap of 3.4 eV and remains stable at temperatures up to 1000° C. It has wide applications such as thermally stable capacitors, humidity sensors, gas sensors, etc. Barium stannate has also been used in optical applications, in capacitors and ceramic boundary layers, and as a promising material to produce gas phase sensors for the detection of carbon monoxide and carbon dioxide. BaSnO₃ powder was prepared by solid state ceramic method. X-ray diffraction pattern of the prepared sample presents all the characteristic peaks of cubic phase of BaSnO₃ (JCPDScard no: 15 -0780). The lattice constant for the compound was calculated and found to be 4.101A⁰ which is in agreement with the reported value (4.112A⁰). The average size of the crystallites estimated by Debye Scherrer's formula was found to be 49 nm shows the nanostructured nature. The Raman bands observed ~ 139, 833 and 1122 cm⁻¹ can be assigned on the basis of the fundamental vibrations of SnO₆ octahedron which has Oh symmetry, in the distorted perovskite structure. The SEM image shows a porous surface morphology with grains of cuboidal structure with well-defined grain boundaries. UV-Visible spectra shows BaSnO₃ powder exhibit high reflectance in the 400-700 nm range.

1. Introduction

Alkaline earth stannates with the general formula $RSnO_3(R = Ba,Sr and Ca)$ are important material systems inview of their interesting physical properties and perovskite structures.¹ Perovskite-type oxides have a simple and flexible structure that is easy for ionic substitution, carrier doping and oxygen non-stoichiometry, which can form a vast set of technologically important materials for a wide variety of industrial applications^{2,3}. BaSnO₃ is a cubic perovskite-type oxide that behaves as an n-type semiconductor with a wide band gap of 3.4 eV and remains stable at temperatures up to 1000^oC. It has wide applications such as thermally stable capacitors, humidity sensors, gas sensors, etc⁴⁻⁵. Barium stannate has also been used in optical applications,⁶ in capacitors and ceramic boundary layers, ⁷ and as a promising material to produce gas phase sensors for the detection of carbon monoxide⁸ and carbon dioxide.⁹ Lampe et al⁸ proposed thin films of BaSnO₃ to be used as a NO sensor in the temperature

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

range of $450-550^{\circ}$ C, and as a material for CO sensor in the temperature range of $600-700^{\circ}$ C¹⁰. It is reported that BaSnO₃ doped with a few percent of La exhibits unusually high electrical mobility of $320 \text{ cm}^2(\text{Vs})^{-1}$ at room temperature and superior thermal stability at high temperatures. Various techniques have been employed to synthesize, BaSnO₃ powder such as solid state method, self heat sustained method, co-precipitation method, hydrothermal synthesis method etc. This work reports the preparation and characterization of BaSnO₃ powder by solid state method and its structural, morphological and optical properties.

2. Experimental techniques

BaSnO₃ powder was prepared by solid state ceramic method¹¹. Stoichiometric amount of commercially available high purity BaCO₃ and SnO₂ powders (Aldrich-purity 99.9%) were mixed in an agate motor for 6 hrs using acetone as the mixing medium. The homogeneous mixture thus obtained was heated in an alumina crucible up to temperature 1000°C and kept at that temperature for 8 hrs. Polyvinyl alcohol was added to the calcined powder for the fabrication of pellets, which was burnt out during high-temperature sintering. Circular disc shaped pellets were prepared by applying a load of 5 ton. These pellets were crushed and sintered in a platinum crucible at temperature 1250°C for 6 hrs. The structural, morphological and optical properties of the material were investigated in detail. The crystalline quality and crystallographic orientation were investigated using X-ray diffraction analysis (XPERT-PRO X-ray diffractometer) using Cu Kαl radiation of wavelength 1.54060A° in the 2θ range 10-100°. The vibrational spectrum was recorded using micro-Raman spectrometer (Labram HR-800) using a laser radiation of wavelength 514 nm from an argon ion laser. The spectrum was recorded with a spectral resolution of 1cm⁻¹. The morphology and elemental analysis of the compound were investigated using NOVA NANOSEM 450 (FEI,U.S.A) equipped with Quantax 200 Energy Dispersive X-ray spectrometer (Bruker). The absorbance and reflectance spectra of the material in the spectral range 200-900 nm were recorded using JASCO V-550 UV-visible double beam spectrometer. The TEM observation of the sample was carried out by using JEOL JEM -2100 electron microscope operating at 200keV.

3. Results and discussion

3.1. XRD analysis and Micro-RAMAN analysis

The XRD pattern of BaSnO₃ powder prepared by solid state reaction method and it presents a polycrystalline nature. X-ray diffraction pattern of the prepared sample presents all the characteristic peaks of cubic phase of BaSnO₃ (JCPDS card no: 15 -0780). The inter planar distance 'd' of the powder is calculated using Bragg's relation $2d\sin\theta = n\lambda$, where λ is the wavelength of the X-ray radiation and θ is the diffraction angle. The lattice constant for the compound was calculated and found to be $4.101A^0$ which is in agreement with the reported value $(4.112A^0)^1$. The average crystallite size (D_{hkl}) of the powder can be calculated using the Debye Scherrer's formula¹²,

where, λ is the wavelength of the X-ray and β is the FWHM in radians. The average size of the crystallites was found to be 49 nm. This shows the nanocrystalline nature of the powder.

Barium stannate in the cubic structure has space group Pm3m with 1 formula unit per Bravais lattice. The micro-Raman spectrum of the BaSnO₃ powder prepared in the present case by solid state reaction method presents a very intense band at 1054, intense band at 560,139and weak intense band at 686,336,1130. The band at 1054 is due toBaCO₃. The Raman bands observed ~ 139, 833 and 1130 cm⁻¹ can be assigned on the basis of the fundamental vibrations of SnO₆ octahedron which has O_h

3rd International Conference on Structural Nano Composites (NANOSTRUC2016)IOP PublishingIOP Conf. Series: Materials Science and Engineering 195 (2017) 012007doi:10.1088/1757-899X/195/1/012007

symmetry, in the distorted perovskite structure. The Raman active mode observed at 139cm⁻¹ can be assigned to $v_5 F_{2g}$ mode.¹³

3.2 SEM Analysis

Fig.1(a). shows the SEM micrograph of the $BaSnO_3$ sample. The SEM image shows a porous surface morphology with grains of cuboidal structure having well defined grain boundaries. The elemental analysis of the compound using EDS analysis supports the formation of the compound. Fig.1(b). shows the EDS spectra of the powder sample prepared by the solid state method. The EDS spectra also gives an evidence for the synthesis and formation of compound.

Fig.1(a):SEM images of BaSnO₃ prepared by solid state reaction method

Fig. 1(b): EDS images of BaSnO₃ prepared by solid state reaction method

3.3. TEM Analysis

Fig 2: TEM image of BaSnO₃ prepared by solid state reaction method

A high resolution nanostructural and morphological characterization of powder were studied by using transmission electron microscopy The particle size of the powder calculated from *TEM analysis* is 55nm which is in agreement with XRD and SEM analysis. The TEM image also shows the porous surface morphology with grains of cuboidal structure.

3.4. UV-Visible Analysis

The reflectance and absorbance spectra of $BaSnO_3$ powder samples are recorded in the wavelength range 200-900 nm. The absorption spectrum and reflectance spectrum of the powder sample is shown in fig.3(a) and 3(b) respectively. The sample exhibit high reflectance in the 400-700 nm range. The band gap energy is found to be ~ 3.1eV which is in agreement with reported values. The band gap and the electronic structure depend primarily on the bond in within the corner-sharing octahedral network $(SnO_6)^{14}$.

Fig.3(a):Absorption spectrum of $BaSnO_3$ and 3(b): Reflectance spectrum of $BaSnO_3$

4. Conclusion

The XRD and micro-Raman analysis suggest cubic crystalline structure supporting the formation of $BaSnO_3$ phase in the prepared sample. The SEM image shows a porous surface morphology with cuboidal grains with well- defined grain boundaries for the prepared sample. The sample exhibit high reflectance in the 400-700 nm range. The HRTEM image shows the nanocrystalline nature. The HRTEM image also supports the XRD and SEM analysis. The UV-visible analysis is carried out and the sample exhibit high reflectance in the 400-700 nm range. The band gap energy is found to be ~3.1eV which is in agreement with reported values.

5. References

[1] Qinzhuang Liu, et al 2010 Journal of physics D: applied physics 43 4554401

[2] Lampe U, Gerblinger J and Meixner H 1995 Sensors & Actuators B 26 97

[3] Tao S W, Gao F, Liu X Q and Sørensen O T 2000 Sensors & Actuators B-Chem. 71 223

[4].Cerda J, Arbiol J, Diaz R, Dezanneau G and Morante J R 2002 Mater. Lett. 56 131

[5]. Shimizu Y, Fukuyama Y, Narikiyo T, Arai H and Seiyama T 1985 Chem. Lett. 377

[6]. H. Mizoguchi, P. M. Woodward, C.-H. Park, and D. A. Keszler, 2004. J. Am. Chem. Soc. 126, 9796.

[7] R. Vivekanandan and T. R. N. Knutty, 1988. Ceram. Int. 14, 207.

[8] U. Lampe, J. Gerblinger, and H. Meixner, 1995 Sensors & Actuators, B24/25, 657.

[9] T. Ishihara, K. Kometani, Y. Mizuhara, and Y. Takita, 1991. Chem. Lett. 20, 1711.

[10] U. Lampe, J. Gerblinger, and H. Meixner, 1995 Sensors & Actuators, B26/27, 97

[11] S. Upadhyay, O. Parkash and D. Kumar, 1997 Journal of Mater. Science letters16 13300-1332

[12] D.B Cullity, 1956 *Elements of X-ray diffraction* (Addison-Wesley Inc., Massachusetts)

[13] K.K. James, A. Aravind and M.K. Jayaraj, 2013 Applied surface science 282,121-125

[14] Shahram Soleimanpour, FaramarzKanjouri, 2014. Physica B4 32 16-20