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S Y N O P S I S

The formalism of equilibrium statistical mechanics is established in

an elegant way where the probabilities are a priori given by the

Boltzmann-Gibbs measure with the normalization constant known as

the partition function (summation over all possible energy configura-

tions). In principle, one can then compute the thermodynamic observ-

ables within an established framework. On the other hand, though

non-equilibrium phenomena are ubiquitous in nature, there exists no

such unified approach. They are usually described by the dynam-

ics and no such Boltzmann alike formulae for the probabilities are

a priori known. One has to solve the evolution equation correspond-

ing to the dynamics, named as the master equation, to have infor-

mation about these probabilities, which is a daunting task most of

the time. As a consequence, thermodynamic observables are not also

quantified generically. Nevertheless, in the last decade, a tremendous

progress has been made in this field which aims at making a gen-

eral statement about the fluctuations of physical observables during

a non-equilibrium process. This goes under the nomenclature fluctua-

tion theorem. Within this framework, the notion of stochasticity among

the thermodynamic observables such as performed work, dissipated

heat, power flux, entropy production (unlike the standard thermo-

dynamics where every observable is defined as an average quantity)

has been introduced. One can now talk about the probabilities, cumu-

lants etc. for these observables. Moreover it allows one to apply the

theorems arbitrarily far from equilibrium and to finite size system

(extremely relevant for biomolecular, single molecular experiments,

colloidal systems, nanotubes, precision measurement etc.). It has also

been found that these results are also very useful to express sym-

metries (reminiscent of microscopic dynamics) of the so-called large
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deviation functions associated to the different observables (for instance

work, dissipated heat, injected power, entropy production etc.).

Non-equilibrium situation generically arises due to thermodynamic

affinities or forces such as temperature, density gradients or external

perturbations viz. time modulated dragging, oscillations, anisotropic

shear flow, applied fields etc. and they are usually considered to be

deterministic in nature. There have been rigorous theoretical develop-

ments in the measurement of these observables for such deterministic

protocols. High precision experiments have been able to validate these

theories. On the contrary, there have been not much anticipation on

the effects of stochastic control protocols in this observable statistics.

In principle, microscopic driving is always accompanied by random

fluctuations from the surrounding and one needs to put this fact into

consideration. The conceptual barrier lies on the very nature of the

stochastic driving: What kind of driving is feasible? Whether the stochas-

ticity is reversible or irreversible by nature? How much entropy production

is then associated with the driving? Furthermore, from an experimen-

tal point of view, a deterministic driving is never perfect and will

always be followed by uncontrolled random fluctuations (e.g. the ex-

periments done with the optical tweezers, probing AFM-s, zipping-

unzipping biomoleculars through optical trap etc.) making this issue

crucial for current research interests.

While the fluctuation theorem deals only with the symmetry prop-

erties of the probability distributions, it does not offer a detailed de-

scription of the full probability distributions. Therefore, one may be

interested in going beyond fluctuation theorem and characterize the

stochastic properties of these observables in details. This thesis has

probed to such investigations of the statistical properties of these kind

of systems both analytically and by numerical simulations. In gen-

eral, the fluctuations (Gaussian or non-Gaussian) are encoded in the

large deviation functions associated with the probability distributions
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asymptotically. The large deviation functions are said to play the role

of free energy in the equilibrium processes for the processes which

are away from equilibrium. They not only encode the typical fluctua-

tions, they also do contain the rare, giant or the atypical fluctuations.

Moreover, the typical large deviation function is quadratic around the

average (where it is maximum), a reflection of the central limit the-

orem for small fluctuations. Computing large deviation functions for

correlated systems is a difficult task, in general which has been suc-

cessfully accomplished only for a handful of oversimplified systems.

This thesis cites few such examples where such functions can be mea-

sured.

In this thesis, we have computed the large deviation functions as well

as the probability distributions for the stochastic observables of in-

terest in the asymptotic time limit for a large class of systems. It is

shown that this method also allows to provide the largest eigenvalue

and the corresponding eigenfunctions of the Fokker-Planck operator

The large deviation functions computed here possess certain symmetry

properties namely Gallavotti-Cohen symmetry, Spohn-Lebowitz sym-

metry and they might be non generic. At asymptotic time limit, the

validation of this symmetry is known as the steady state fluctuation

theorems. To be specific, for various systems, the observable entropy

production invariably satisfies this theorem. However, this is not the

case for the other observables like work, heat, power flux etc. Various

parts of the thesis will discuss a variety microscopic models which

are affected due to the thermal fluctuations. These are not only hy-

pothetical models, rather quite experimentally accessible. As a matter

of fact, one of these model systems have been investigated in a table

top experiment in Lyon, France. Moreover, in this kind of systems, a

lot analytical progress can be made and the fluctuation theorem can be

examined. The aim is not restricted to the computation of the large de-

viation functions and to verify the symmetry properties. The analysis

extends to characterizing the full probability distribution functions
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of these observables with respect to the system parameters with an

insight that they can be verified in laboratories. The thesis consists of

two parts. The first part discusses the paradigm model of a colloidal

particle in an optical trap. We investigate the observable statistics us-

ing our formalism in details. The second part contains another micro-

scopic model, where the methodology has been revised in order to

characterize the fluctuations in such an out of equilibrium system.

A colloidal particle in a harmonic trap with fluctuating locations:

A colloidal particle in a harmonic trap is a paradigm set up to study

microscopic systems since the thermal fluctuations play a major role

in the dynamics of the systems. Motivated by experiments based on

atomic force microscopy or the optical tweezers, this part of the thesis

is focused to study the work fluctuations for such a Brownian particle

in a harmonic trap with fluctuating locations. Consider the particle

diffusing in a harmonic trap where the location of the trap is mod-

ulated according to an Ornstein-Uhlenbeck process. Earlier studies

were made on similar systems where the drive was deterministic like

a constant velocity or a given time dependent modulation. Neverthe-

less, in reality deterministic drives are ideal situations while there will

be always tiny random fluctuations associated with it. One should

therefore look at the systems of practical importance where the driv-

ing is stochastic. The fluctuations of the mechanical work done by the

trap on the Brownian particle were computed in terms of the large

deviation functions using the method sketched out in this thesis. More-

over, it was realized that a complete asymptotic form of the proba-

bility density function of the work done can be obtained. In the next

part of the thesis, we studied the dissipated heat and the total entropy

production suitably defined in the context of the problem. A general

formulation was provided using the concept of boundary terms. It was

found that these terms have a crucial role while interplaying between

the observables. Full computation for all the observables was pro-

vided in terms of the relevant parameters of the system. At the end,
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the validity of the steady state fluctuation theorem in this system

was examined for all these observables. The effects of stochasticity

in such validation was also discussed. Interestingly, we find that the

validation of the fluctuation theorem is not generic. We found that the

theorem for the heat dissipation is restricted in the parameter space

so as the mechanical work and the Jarzynski work. On the contrary,

these theorems were found to be robust for the total entropy produc-

tion. This leads one to predict that the unboundedness of the phase

space or rise in energy allows the system to attain massive but rare

fluctuations and this perhaps results in the failure. Despite these be-

ing rare events, we have managed to quantify them systematically by

using the principles of large deviation.

An underdamped colloidal particle driven by a stochastic field:

The later part of the thesis extends to the earlier studies to the un-

derdamped regime where one can no more neglect the inertia terms.

Consider an underdamped Brownian particle dragged through a viscous

medium. We investigate the work statistics due to the external force

field on this system. Deploying the same technique, that was intro-

duced earlier, properties of the work done were studied. The work

distribution is accompanied by non-Gaussian fluctuations so enforces

one to ply the large deviation principle. As before, statistics for the

work was derived in terms of the large deviation functions. We also ob-

tain the validation of the fluctuation theorem in a restricted parameter

space with a different characteristic to that of the earlier. It turns out

that in certain limit this model mimics the system of a Brownian parti-

cle connected to two heat baths where the observable of interest is the

heat flown from one bath to the other. We have been able to compute

the heat distribution and the currents analytically in details. These are

very important theoretical models in the context of biological trans-

port and experiments based on matter, charge or energy conduction.

Results such as ours can therefore be easily verified in the table top
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experiments.

To summarize, using an extensive framework, we have studied the

effects of stochastic driving in the linear diffusive models. We have

derived the conditions that the stochastic driving should hold in or-

der to verify the fluctuation theorem for the total entropy production.

This method moreover allows one to compute the observables in gen-

eral and verify the fluctuation theorems making a connection with

large deviation functions. This method is found to be quite general and

thus will be applicable to a plenty of equivalent models being at an

equilibrium or a non-equilibrium steady state .

Dr. Sanjib Sabhapandit Arnab Pal

Theoretical Physics Group

Raman Research Institute

Bangalore 560 080

India
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All we have to decide is what to do with the time that is given to

us - Gandalf the Grey.



1
I N T R O D U C T I O N

An extended system at mechanical and thermal equilibrium obeys the

principles of thermodynamics [1, 2, 3, 4] that are embodied in the laws

of equilibrium statistical mechanics [5, 6, 7, 8, 9, 10, 11, 12]. The fun-

damental property is that such a system, consisting of a huge number

of microscopic degrees of freedom, can be described in equilibrium

by only a few macroscopic parameters, called the state variables. The

values of these parameters can be determined by optimizing a po-

tential function (such as the entropy, the Free energy, the Gibbs free

energy) chosen according to the external constraints imposed upon

the system. Based on these, founding principles of equilibrium sta-

tistical mechanics were laid by Boltzmann and Gibbs. On the other

hand, non-equilibrium systems are simply the systems which are not

in equilibrium. These are complex systems consisting of a large num-

ber of degrees of freedom and evolve according to rules that vio-

late detailed balance. Examples include - living organisms, transport

in mechanical and biological systems, as well as epidemic spread-

ing, pedestrian/vehicular traffic, stock markets, and social networks.

Surprisingly, we still do not hold a general conceptual framework

to characterize such systems contrary to the systems in equilibrium.

Nor there are specific answers to questions like these (i) What are the

macroscopic observables should we include to have a fair description

of the system? (ii) Do universal laws exist? Can one define univer-

sality classes for systems out of equilibrium? Are there some general

equations of state? (iii) Can the stationary state be derived by optimiz-

ing a potential? (iv) Can one postulate a general form for the micro-

scopic measure that would generalize the Gibbs-Boltzmann canonical

law? (vi) How the to quantify the statistical properties of the observ-
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2 introduction

ables under the effects of external perturbations? These are the open

questions of non-equilibrium statistical mechanics and achieving the

answers perhaps has been one very important quest in the second

half of the last century.

1.1 the principle of statistical mechanics

Statistical mechanics is concerned about the study of the special laws

which govern the behavior and the properties of macroscopic bodies.

Macroscopic bodies are formed of a large number of individual parti-

cles, such as atoms or molecules. Considerably the general character

of these laws does not rely upon the dynamics (classical or quantum)

which describes the motion of the individual particles in a body. At

first sight it might then seem that, as the number of particles increases,

so also must the complexity and intricacy of the properties of the me-

chanical system, and that no trace of regularity can be found in the

behavior of a macroscopic body. This is not true since, new types of

regularities emerge as the number of particles increases.

In principle, we can obtain complete information concerning the

motion of a mechanical system by constructing and integrating the

equations of motion of the system, which are equal in number to its

degrees of freedom. But if we are concerned with a system which,

though it obeys the laws of classical mechanics, has a very large num-

ber of degrees of freedom, the actual application of the methods of

mechanics involves the necessity of setting up and solving the same

number of differential equations, which in general is impracticable.

Since the microscopic picture is not viable we adopt a macroscopic

picture where we are more interested in the coarse grained variables.

This however waives a lot of microscopic details and thus one needs

a statistical description.

The laws of the statistical mechanics, emerging because of a large

number of particles forming the body, cannot in any way be receded
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to purely mechanical laws. One of their unique features is that they

cease to have meaning when applied to systems with a small num-

ber of constituents. Thus, although the motion of systems with a very

large number of degrees of freedom obeys the same laws of mechan-

ics as that of systems consisting of a small number of particles, the

existence of many degrees of freedom results in laws of a different

kind. Consequently, the most elementary symmetries of the motion

of the individual particles are broken by the large assemblies made

of them.

1.2 equilibrium statistical mechanics

Equilibrium statistical mechanics has a very elegant and well defined

structure and is applicable for systems which are not subjected to

any perturbations like thermodynamic affinities or external driving.

1.2.1 Microcanonical, Canonical and Grand Canonical Ensemble

Microcanonical ensemble characterizes isolated systems those cannot

exchange energy, matter with its surroundings and thus keeping the

total energy, number of molecules to be conserved. This is a collec-

tion of system for which the configurational probability is defined

consistent with the total energy. Moreover, any given member of the

ensemble is equally likely to be found in one of these configurations.

On the other hand, isolated systems are hard to realize rather they

are mostly found to interact with the environment.

For most purposes, the precise nature of the surrounding is not

very relevant; all one needs is that it should maintain its equilibrium

property all along. In addition, a natural alternative appears to quan-

tify equilibrium property in terms of certain intensive parameters of

the system such as temperature T , pressure P, chemical potential µ.
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Therefore in this case, whenever the system of interest interacts with

the surroundings or environment, they exchange energy in the form

of heat. This is called the thermal interaction. In this case equilibrium

is defined when the system and the surrounding maintain an identi-

cal temperature though energy is allowed to fluctuate. This is the ther-

mal equilibrium. In certain cases, though the systems are thermally in-

sulated, they are capable of interacting with each other mechanically.

The systems are then said to exchange energy by doing macroscopic

work on each other. In this case, the intensive parameter is pressure

and the volume of the system fluctuates. This is the notion of mechani-

cal equilibrium. Such an ensemble of systems in which macrostates are

defined through the parameters N,V , T , is characterized as the canon-

ical ensemble. Under this ensemble, since the exchanges take place

through the energy or the volume, these observables can fluctuate.

On the other hand, in many physical and chemical situations, a

given system immersed in a large reservoir can exchange both en-

ergy and particles with each other. Here, the set of intensive parame-

ters contains both temperature and chemical potential while E,N are

allowed to vary. This is the grand canonical ensemble picture , which

consists of the given system and a large number of mental copies

thereof, the members of the ensemble carry out a mutual exchange of

both energy and particles. These systems preserve such kind of chem-

ical equilibrium in each cases by maintaining constant values for the

intensive variables. In other words, the system and the surroundings

interact till the intensive variables reach a constant value respectively.

Here the fluctuating quantities of interests are the energy and the

number of particles. Henceforth this ensemble picture characterizes

these fluctuations within a suitable framework.

These possibilities were explored by J. W. Gibbs in 1901. He first

gave the explicit formulas for the probability distribution of these

fluctuating quantities when the system of interest is at thermal, me-

chanical or chemical equilibrium. These distributions are known as

the Gibbs distributions. The distribution for the translational motion of
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molecules (e.g. a polyatomic gas) in terms of the momenta was first

derived by J.C. Maxwell in 1860. This gives the measurement of the

mean kinetic energy of the molecules which is valid quite indepen-

dently of the nature of the motion of the atoms within the molecule

and the rotation of the molecule. A similar formula was derived by L.

Boltzmann earlier in 1877 to study ideal gas in the classical statistical

physics. Boltzmann derived the distribution of molecules of an ideal

gas among the various states and the mean occupancy of molecules in

a given energy state. These probabilities are usually constructed from

the Hamiltonian of the system which contains the entire microscopic

details. Following the footsteps of Boltzmann and Gibbs, these time

independent distributions take the form such as Peq(C) ∝ e−H(C),

where H(C) is the total energy in a particular configuration C derived

from the Hamiltonian of the system as a function of the extensive

variables. The proportionality constant is fixed through the normal-

ization and known as the partition function (sum over configurations).

The thermodynamical observables like average energy, specific heat,

entropy, magnetic moment, susceptibility, conductance etc. are then

easy to determine from this function. These results are the corner-

stone of the equilibrium statistical mechanics and successfully used

to determine the fundamental statistical properties of macroscopic

systems at equilibrium.

1.3 non-equilibrium statistical mechanics (nesm)

Consider a metal rod which is thermally isolated along its length but

connected to two different heat reservoirs only at the two ends. If

the temperature remains identical for both of them, then the rod is

in thermal equilibrium with the two reservoirs and observables can

be computed by the laws of equilibrium statistical mechanics. On

the other hand, if there is a temperature gradient present between

the reservoirs, then there will be a flow of heat energy between the
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reservoirs even in stationary states. This is the simplest example of a

non-equilibrium situation. The laws of equilibrium physics ceases to

exist here. Such systems are defined by the dynamics and depends on

every details present (unlike equilibrium cases) like the nature of in-

teraction of the system with the surroundings etc.. A major difficulty

is that, even if such a system is presumably known (or assumed) to

adjust in a time-independent state in due course, the appropriate sta-

tionary weights are not generally known.

1.3.1 Rudiments of NESM

Unlike equilibrium statistical mechanics, with its well-established foun-

dations, a similar overarching framework for NESM remains elusive.

They are usually tackled by the language of stochastic Markov pro-

cesses, general concepts of the configurational probabilities and their

evolution in time, as described by master equations (discrete cases) or

the Fokker Planck equations (continuous cases) [13, 14, 15, 16, 17, 18, 19,

20].

Given a set of rules of stochastic evolution determined by the ex-

ternal perturbations, it is possible to write down equations which

govern the time-dependent weights P(C, t), which yields the proba-

bility of the system being in configuration C (a configuration of the

microstates) at time t. The evolution for the configuration probability

P(C, t) can be simply realized using the master equations. Let us con-

sider a set of configurations {C1,C2, ...} which system accesses during

a given interval of time. At a given time t, the system can be found

in one this configuration. The evolution of the system is specified by

the following rule: Between t and t+ dt, the system can jump from

a configuration C to a configuration C′. It is assumed that the tran-

sition rate from C to C′ does not depend on the previous history of

the system (Markov hypothesis). The rate of transition per unit time

will be denoted by the Markov matrix M(C′,C) (or equivalently, by
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M(C→ C′)). For simplicity, we are considering the rates to be time in-

dependent. For a complex system ruled by the Markovian dynamics,

the master equation dictates

d

dt
P(C, t) =

∑
C′ 6=C

M(C,C′) P(C′, t) −
∑
C′ 6=C

M(C′,C) P(C, t) ,

(1)

where the first term is the inward probability flux from C′ → C and

the second term is the outward probabilty flux from C to C′. The

Markov matrix complies the following properties

• The diagonal terms M(C,C) is a negative number: it represents

the rate of leaving the configuration C. However, the off diago-

nal terms represent inwards/static flux and thus they are non-

negative.

• The sum of each column in M(C,C′) identically vanishes. This

is a consequence of the conservation of the total probability.

Since our interest is in the full dynamical behavior of such a statisti-

cal system, we must imagine (a) repeating the same experiment many

times, (b) forming an ensemble of trajectories through configuration

space, and (c) computing time dependent averages of macroscopic

observables from this ensemble. The results can then easily be com-

pared with the averages obtained separately from P(C, t).

It is important to realize that a complex system will have a Markov

matrix of very large order that can not be diagonalized generically.

This is just the starting point of NESM.

The first characterization between the equilibrium and the non-

equilibrium principles was first investigated by L. Onsager. Let us

rewrite the master equation Eq. (1) in the following manner

d

dt
P(C, t) =

∑
C′

{M(C,C′) P(C′, t) −M(C′,C) P(C, t)} =
∑
C′

J(C,C′),

(2)
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where J(C,C′) is the local probability current between the configura-

tions

J(C,C′) = M(C,C′) P(C′, t) −M(C′,C) P(C, t) (3)

Now, there can be two classes of stationary state for which the left

hand side in Eq. (2) vanishes. If it so happens, that each term of

Eq. (2) within the summation vanishes, then the stationary state will

be called an equilibrium state

M(C,C′) Peqm(C′) = M(C′,C) Peqm(C) , (4)

where Peqm(C, t) ≡ Peqm(C) is the equilibrium configuration. In other

words, the local currents J(C,C′) vanish for all the configurations C,C′

at thermodynamic equilibrium

J(C,C′) = 0, ∀ C, C′. (5)

These two conditions Eq. (4) and Eq. (5) are identical and constitute

the principle of detailed balance which is a fingerprint of equilibrium.

This is nothing but a consequence of the time reversal symmetry of

the microscopic dynamics of the system realized by Onsager. On the

other hand, there are situations when the systems inherently break

the principle of detailed balance and thus there exists a steady flux

both at finite and infinite time as well. This is due to the coarse grain-

ing procedure, when non-relevant degrees of freedom are integrated

out and the resulting effective dynamics appears to be irreversible for

the effective degrees of freedom we are interested in, within some lim-

ited space and time scales. These configurational states are broadly

called non-equilibrium steady (stationary) states (NESS). In this case, the

left hand side of Eq. (2) vanishes due to the collective dynamics of the

configurations however each term in the right hand side is not nec-

essarily zero. It is the dynamics which makes the right hand side to

be zero cumulatively. This is equivalent to show the presence of local

currents J(C,C′) 6= 0 in the system. We will refer to such stationary

states as PNESS(C) or the NESS.
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The following example gives us an idea about the Markovian dy-

namics and its evolution rules. Consider a three site random walk

with periodic boundary conditions. Let us denote the sites as {x −

1, x, x+1} so that the configuration matrix is C = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The dynamics is simply given according to the rule that the walker

jumps to the right and to the left with rates u and v respectively. The

evolution equation for P(x, t), the probability to be in the site x at

time t is given by Eq. (1) where the Markov matrix is given by

M =


−u− v v u

u −u− v v

v u −u− v

 . (6)

It is easy to verify the properties of the Markov matrix (like negative

diagonal terms, terms in each column adding to zero, zero eigenvalue

corresponding to the stationary state) easily. It is easy to compute the

time dependent measures P(C, t) for this problem

P(C, t) = eλ1tψ1 + eλ2tψ2 + eλ3tψ3 , (7)

where ψi-s are the respective eigenvectors for λi-s

λ1 = 0

λ2 =
1

2
(−3u− 3v−

√
3
√
2uv− u2 − v2)

λ3 =
1

2
(−3u− 3v+

√
3
√
2uv− u2 − v2) (8)

It is important to note that this system does not have an equilibrium

state because of the presence of the local currents. The large time

stationary solution is a NESS given in the following

j =
1

3
(u− v) (9)

P(C)NESS =
1

3
(1 1 1)T (10)

However, it should be emphasized that, only if the dynamics is

Markovian, then these weights can be constructed formally from the

rules of evolution Eq. (1), Eq. (2). For generic complex systems, when

the Markov hypothesis is relaxed, such kind of evolution is far too

intractable.
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1.4 fluctuations in equilibrium and non-equilibrium sys-

tems

In the equilibrium statistical physics, we are mostly concerned with

the evaluation of statistical averages of the various macroscopic ob-

servables at equilibrium. These equilibrium averages are identical

to the results expected from relevant measurements through experi-

ments within a high degree of accuracy. The mean square fluctuations

of extensive quantities (volume, energies etc.) are found to be directly

proportional to the size of the system while that of an intensive quan-

tity (pressure, chemical potential etc.) is inversely proportional to the

same. In either case, the relative fluctuations are inversely proportion-

ate to the square root of the size of the system. Thus, except for the

situations encountered in a critical region, normal fluctuations are

typically thermodynamically negligible. Nevertheless, this does not

imply that the fluctuations are altogether irrelevant to any physical

phenomena occurring around us. In fact, the very presence of fluctu-

ations at the microscopic level is of fundamental importance to char-

acterize several properties of the system displayed at the macroscopic

level. In the following, we will state few examples where fluctuations

play a very crucial role.

Firstly, in a homogeneous, isotropic systems such as liquid or gas,

density fluctuations are related to the spatial correlations of the sys-

tem. Unlike in a single phase system where the fluctuations are ther-

modynamically negligible, they can assume considerable importance

in multiphase systems, especially in the neighbourhood of a critical

point. In the latter case, we obtain a rather high degree of density

fluctuations or spatial correlation among the molecules of the system.

The spatial correlations among the molecules of a fluid extend over

macroscopic distances (order of system size) typifying the inception

of long range order in the system. Consequently, the intensity of the
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scattered waves also becomes abnormally large, which gives rise to

the spectacular phenomena of critical opalescence.

Secondly, the study of fluctuations in time, leads to the concept of

correlation functions. The correlation functions play a vital role in relat-

ing the dissipative properties of a system, such as the viscous drag

force a fluid or the electrical resistance of a conductor, with the micro-

scopic properties (such as position or velocity fluctuations) of the sys-

tem in a state of equilibrium. This relationship manifests itself in the

so-called fluctuation dissipation theorem (FDT) [21, 22, 23, 24]. The most

striking feature of the FDT is that it relates, in a fundamental manner,

the fluctuations of a physical quantity pertaining to the equilibrium

state of the given system to a dissipative property which, in practice,

is realized only when the system is away from equilibrium due to an

external force. For instance, fluctuations in the motions of electrons in

an electric resistor give rise to a spontaneous thermal e.m.f. which is

shown to be connected to the resistance via the FDT. Another exam-

ple of the FDT is the theorem of Wiener and Khintchine that relates

the time dependent correlation functions to the frequency spectrum

of fluctuations [24]. This theorem serves a considerable value in as-

sessing the noise in circuits as well as in the transmission of electro-

magnetic signals.

Thirdly, fluctuations provide a natural framework for understand-

ing a class of problems known in the literatures as random walk [25,

26, 27] and Brownian motion [28]. Brownian motion is ubiquitous in na-

ture and one of the most stepping stone in the NESM. When mobile

particles are immersed in an ambient medium, the particles undergo

an incessant and irregular motion. This is known as the Brownian

motion. The most common case of Brownian motion is the one origi-

nally observed by R. Brown, particles suspended in a fluid. However,

less commonly more exotic situations are also encountered like an

electron immersed in a black body radiation field (a gas of photon

in equilibrium). Also, the motion of the particles need not be trans-

lational; rotational motion can also partake of the irregular character.
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However, there is no hope to compute this irregularity of in detail,

but it may be true that certain averaged features vary in a regular

way, which can be described by simple laws. It is then important to

suitably reformulate these irregularities via the principles of stochas-

tic processes. The averaging processes are manifold but finally gives

a correct measure of the average quantities. We note that the Brown-

ian motion is the simplest non-equilibrium process that we encounter

in physics. Henceforth the role of fluctuations, that lead to the non-

equilibrium behavior in these processes, is of extreme importance for

a better grasping of the subject.

1.4.1 Why and When Fluctuations are Important?

System trajectories in non-equilibrium states are characterized by the

external driving source acting on the system and also due to the ther-

mal force (due to the coupling with the surrounding). The thermo-

dynamic quantities defined along these trajectories like injected and

dissipated energies, applied work etc. therefore are affected due to the

fluctuations [29]. For example, let us consider the motion of a Brown-

ian particle suspended in a fluid and subjected to a constant external

force. Because of thermal fluctuations, the work performed on the par-

ticle by this force per unit time, i.e., the injected power, fluctuates. The

power fluctuations gradually become more and more important as

the external force gets reduced. Equivalently, smaller the system size

becomes, the larger the importance of thermal fluctuations becomes

profound; though, they do not play much role in macroscopic sys-

tems or in thermodynamic limit. Nevertheless, the injected and dissi-

pated energies may fluctuate in macroscopic systems if the dynamics

is chaotic. For instance, think of a motor that stirs a fluid strongly. The

motor can be driven by imposing a constant velocity. Because of the

turbulent motion of the fluid, the power fluctuates in order to keep

a constant velocity profile. These simple examples show that fluctu-
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ations of the energies may be important not only in microscopic but

also in macroscopic systems such as hydrodynamic flows, granular

media, and opto-mechanical systems [30, 31, 32]. While dealing with

fluctuations in out-of-equilibrium systems, we usually consider two

classes: one where thermal fluctuations play a significant role (ther-

mal systems) and another where the fluctuations are athermal and

mostly due to the chaotic motion.

In this thesis I will mainly focus on the former case and briefly

discuss few perspectives of the same. We emphasize again that the

fluctuations play a major role in thermal systems since the system

energy being injected or dissipated are smaller/same order of kBT

(kB being the Boltzmann constant and T is the ambient temperature).

This limit is relevant to biological, nano, and micro systems.

1.4.2 Stochastic Thermodynamics

The viewpoint of equilibrium thermodynamics concerns with the

study of the flow of energy or the conversion of energy in equilibrium.

Linear irreversible thermodynamics extends the nineteenth-century

concepts of equilibrium thermodynamics to systems that are close to

or away from equilibrium. First out of equilibrium exact results were

developed by Green and R. Kubo known as the Green-Kubo formula

[21, 22] and the linear response theory [23]. Linear response theory al-

lows to express transport properties caused by small external fields

through equilibrium correlation functions provided that the system

resides in a small (or linear order) deviation from equilibrium. Be-

yond this linear response regime, for a long time, no universal exact

results were available.

Over the last twenty years new approaches have revealed general

laws applicable to non-equilibrium systems. Systematically, the realm

of linear response now has been extended into genuine non-equilibrium

region along with the validity of exact thermodynamics statements
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has been revisited. These exact results, which become particularly rel-

evant for small systems, generically describe the statistics of thermo-

dynamic observables such as exchanged heat, applied work, power

flux or entropy production taken from ensembles with well-specified

initial conditions. Unlike classical thermodynamical theory where fluc-

tuations are small and neglected, stochastic thermodynamics gives a

detailed description to measure the fluctuations which become im-

mensely important in the small scale systems such as colloidal par-

ticles, biopolymers (DNA, RNA, proteins), enzymes and molecular

motors [33, 34, 35]. Moreover, they systematically derive how the

macroscopic irreversibility emerges from the microscopic reversibil-

ity. These are concisely known as the fluctuation theorems (FT) [36, 37,

38, 39, 19].

1.4.3 Theoretical Investigations

Non-equilibrium situations can be realized in diverse ways. First,

the system can be prepared initially in equilibrium state and then

genuine driving, that can be caused by the action of external force

fields, flows or unbalanced chemical reactions, will lead to a non-

equilibrium state. Secondly, if the system is subjected to thermody-

namical forces or affinities such as multiple thermal or chemical reser-

voirs, it will eventually reach a NESS at large times. It has been found

that the very presence of time dependent drivings also can lead to

non-equilibrium situations asymptotically. The first case is clearly dis-

tinguished by the finite time dynamics and the FT valid at this regime

are known as the Transient Fluctuation Theorems (TFT). On the other

hand, the later cases take place in NESS at asymptotic times and the

results valid in that realm are known as Steady State Fluctuation Theo-

rems (SSFT).
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1.4.3.1 Evans-Searles Transient Fluctuation Theorems

FT due to Evans-Searles [40] shows how irreversibility naturally emerges

in macroscopic systems from reversible microscopic dynamics. These

theorems are given in terms of the the dissipation function Ωt which

is a quantitative measurement of irreversibility. Considering the dy-

namics to be ergodic and be consistent with the initial condition, the

relations are given by

p(Ωt = A)

p(Ωt = −A)
= exp [A] (11)

where p(Ωt) = A is the probability density of those trajectories which

span in the phase space upto finite time t for the functionalΩt to take

values between A and A+dA starting from suitable initial conditions.

The limit 〈Ωt〉 = 0 for all trajectories initiated anywhere in phase

space, is the manifestation of microscopic reversibility. In other words,

this condition implies that the system is in equilibrium, and the prob-

abilities of observing any trajectory and its corresponding time re-

versal trajectory are equal (detailed balance). On the other hand, when

〈Ωt〉 > 0, we have macroscopic dynamics moving in the forward di-

rection while the reversed direction indicates 〈Ωt〉 < 0. Therefore,

〈Ωt〉 6= 0 is the condition for macroscopic irreversibility. This belongs to

the TFT class.

This was first observed in simulations of two dimensional sheared

fluids by Evans and Morris [41]. Explicit expressions for the work dis-

tribution have been calculated by Mazonka et al [42] and Van Zon et al

[43, 44, 45] independently in the case of uniformly moving harmonic

traps in an ambient medium. The work distributions are found to be

accompanied by Gaussian fluctuations and they validate Eq. (11). In

contrast, the dissipated heat, generated due to the interaction of the

system with its surroundings, turned out to be non-Gaussian with

exponential tails and satisfy the transient FT with significant modifi-

cation [43, 44, 45].
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1.4.3.2 Work-Fluctuation Theorems-Jarzynski Equality

There exists a remarkable result particularly for the observable applied

work due to Jarzynski [46, 47]. He showed that the work applied to

driving the system from an initial equilibrium state, characterized by

an initial value λ0 of the driving protocol, to a final state, character-

ized by λt, via a time dependent Hamiltonian H(x, λ) for a finite time

τ : 0 6 τ 6 t, obeys the Jarzynski Equality (JE)

〈e−βW〉 =e−β∆F (12)

where the work W is given by

W =

∫t
0

λ̇
∂H(x, λ)
∂λ

dτ. (13)

β is the inverse temperature and ∆F = F(λt) − F(λ0) is the free en-

ergy difference between the equilibrium states corresponding to the

final value λt and the initial value λ0 of the control parameter. This

definition of work rather seems to be non-identical to the one that

appears in mechanics, known as the mechanical work. This definition

(which we will name as the thermodynamical work or Jarzynski work)

has been used in less familiar context compared to the former one,

used frequently in standard thermodynamics or the classical mechan-

ics. The following example will demonstrate the fundamental differ-

ences between these two definitions.

Consider a schematic depiction of a single-molecule pulling exper-

iment Fig. 1, that represents schematically a simpler version of exper-

iments carried out Liphardt et al [49] and later by Collin, Ritort et al

[50]. DNA handles tether a strand of RNA between two beads. One

of them is held by a micropipette and kept fixed, while the other one

is confined in a harmonic trap such that it is allowed to fluctuate or

be driven due to the external perturbation. The entire system is im-

mersed in a solution at room temperature. This plays the role of an

ambient medium. The work parameter λ is defined as the distance be-

tween the end of the pipette and the center (or the minimum) of the
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Figure 1: A single strand of RNA, tethered between two beads (micro-

spheres). This diagram has been taken from [48].

trap. The work parameter can be externally manipulated, by varying

the position of the trap Fig. 1. To make a connection between generic

thermodynamic processes, let us view the RNA strand, DNA han-

dles, and the two beads as the system of interest. The position of the

fluctuating bead is denoted by z. When λ is held fixed, the system

relaxes to a state of thermal equilibrium, characterized by the same.

Let us now perform the following sequence of steps: (i) prepare the

system by fixing the work parameter at λ = A, allowing the system

to relax to equilibrium, (ii) perturb the system by varying the work

parameter from its initial value λ0 = A to some final value λt = B ac-

cording to a given protocol. While changing the work parameter, we

perform external work on it. The notation λτ specifies the value of the

work parameter at a time τ during this interval, from τ = 0 to τ = t .

Finally, (iii) fixing λ at the new value B, we allow the system to relax

to a new state of equilibrium. No work is done during this last step

since the work parameter is kept fixed. Thus we have performed an

irreversible thermodynamic process, in which the system begins and
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ends in equilibrium states but passes through non-equilibrium states

at intermediate times. The amount of work W performed during a

single realization of this process depends on the protocol and on the

initial condition where the system was prepared. Since the system is

continually jostled by the solution, its response to the perturbation

will be accompanied by randomness. Upon repetition of the process

many times, W typically will vary from one realization to the next.

Thus we obtain statistical fluctuations in the amount of work per-

formed. Secondly, we have to mention the nature of the modulation

according to which we change the protocol which is stated below. Let

us imagine that we stretch the molecule by varying λ at a uniform

rate. The time-dependence of the work parameter is then described

by: λτ = A+ (B−A)τ/t. If Fτ denotes the force that the trap exerts

on the bead at time τ, then there are two natural ways to define the

work performed during this process [48]:

Wmech =

∫
F dz =

∫
Fτ żτ dτ

Wtherm =

∫
F dλ =

∫
Fτ λ̇τ dτ (14)

In both cases we integrate force versus displacement. The difference

is that in the first case the displacement refers to the position of the

bead, dz, while in the second case, the displacement of the trap, dλ

appears. In some sense, the first one is the work on the bead due

to the trap and it is referred as the mechanical work. On the other

hand, the later is the work performed by the experimentalist who

moves the trap and usually known as the thermodynamic work or the

Jarzynski work. It is worth pointing out that the Jarzynski work satisfies

Eq. (12), not the mechanical work.

The relation given by Eq. (12) was originally derived for a isolated

system governed by Hamiltonian dynamics (averaging over the ini-

tial condition). But it was shown later to hold for the stochastic dy-

namics as well when the system is kept in contact with a reservoir

(averaging over the initial condition and the noisy variables produced

due to the bath). Its validity requires that one has to start from an
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equilibrium distribution but not that the system must relax at time

t into new equilibrium. The relation has a paramount relevance of

itself since it allows to measure the free energy difference (equilib-

rium property) from a non-equilibrium nonlinear measurement of

the observable Jarzynski work. The maximum work theorem can be

recovered simply using the Jensen’s inequality 〈W〉 > ∆F . As men-

tioned earlier, this relation holds true for any time so belongs to the

TFT class.

For a charged particle in a harmonic trap, work fluctuations and

the Jarzynski equality have been studied theoretically in the presence

of a time independent and dependent magnetic [51] and an electric

field [52, 53, 54, 55, 56].

1.4.3.3 Work-Fluctuation Theorems-Crooks Identity

Crooks later provided a significant generalization to the Jarzynski

equality by considering the probability distribution of work p(W)

spent in the forward (F) process and the reversed (R) process within

a finite time window [57, 58]. Here forward process means that the

external protocol λ(τ) acts on the initial equilibrium state at time

τ = 0 and it ends at the final non-equilibrium state at time τ = t.

In the reversed process, the system evolves with the reversed proto-

col λ̃(τ) = λ(t− τ) and one prepares the system in the equilibrium

distribution corresponding to λt. This can be categorized into the TFT

class. As a consequence of the time-reversal symmetry of the micro-

scopic evolution Crooks Identity (CI) yields

pF(W)

pR(−W)
= eβ(W−∆F) (15)

where pF(W) and pR(W) indicate the distribution of work (thermo-

dynamic work or the Jarzynski work defined in the last section) in the

forward (F) and the backward/reversed (R) process respectively. Here ∆F

can be obtained by locating the crossover of the two distributions for
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biomolecular applications. Jarzynski equality appears to be a straight

forward corollary to this identity.

1.4.3.4 Entropy Production Theorems-Seifert Relation

Seifert extended the idea of Clausius inequality in microscopic sys-

tems. He derived an identity for the total entropy production along a

trajectory in finite time [59]. This is given by

〈e−∆stot〉 = 1 (16)

where

∆stot = ∆sm +∆ssys. (17)

is the total entropy production The stochastic or trajectory dependent

system entropy is defined as in the similar genre as Shannon,

∆ssys = − lnp(xt, λt) + lnp(x0, λ0) (18)

and the medium entropy change ∆sm can be identified with the heat

dissipated q[x(τ)] into the environment in the thermodynamic sense

∆sm[x(τ)] = q[x(τ)]/T . (19)

This relation holds for arbitrary initial distribution p(x, 0), arbitrary

time dependent driving λτ for a finite length of time t (TFT class).

Using Jensen’s inequality, we find 〈∆stot〉 > 0, which is as same as the

Clausius inequality or the entropy maximum theorem.

This relation has been proven for a bound particle trapped in a

harmonic potential in the presence of a time-dependent force or a

magnetic field, when the system was prepared in non-equilibrated

conditions [60].
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1.4.3.5 Gallavotti-Cohen Steady State Fluctuation Relation

In a NESS at an infinite time with fixed λ, the stochastic functionals

obey the stronger steady state fluctuation theorem (SSFT)

lim
τ→∞ 1τ ln

p(Ωτ = ωτ)

p(Ωτ = −ωτ)
= ω (20)

This relation was first proven by Gallavotti and Cohen in 1995 by

assuming the dynamics to be chaotic [61]. This was later proved by

Lebowitz, Spohn [62] and Kurchan [63] for stochastic diffusive dy-

namics. Later, this result has been proven valid for the total entropy

production even in finite times [64, 65]

p(∆stot)

p(−∆stot)
= e∆stot/kB . (21)

But still there were questions about the validity for this theorem for

other thermodynamic observables of interests such as work, heat or

power flux. This is the main result for the SSFT class.

Using path integral techniques, Farago determined the statistics

of the power injected by the thermal forces into an underdamped

particle and examined the validation of the SSFT in 2002 [66]. Van

Zon et al computed the probability distribution function (PDF) for

work and the heat in great details in a system comprising a Brownian

particle diffusing in a moving optical trap [43, 44, 45, 67, 68].

Average heat current and the distribution of exchanged heat with

the corresponding FT were studied in few models of heat transport

using the Langevin formalism. Examples include a single particle at-

tached to two heat baths, two coupled particles attached to two differ-

ent baths [69, 70, 71], heat flow through harmonic chain [72, 73, 74]

and an anharmonic crystal [75]. Using the Onsager-Machlup path

integral representation in NESS, Taniguchi and Cohen investigated

PDFs and the SSFT for work and heat on a number of systems, in-

cluding a Brownian particle in an electric field, a driven torsion pen-

dulum, electric circuits etc. [76, 77, 78, 79].
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1.4.3.6 Hatano-Sasa Equality for NESS

Hatano Sasa relation is a phenomenological derivation of steady-state

thermodynamics organized around non-equilibrium steady states [80,

81] (SSFT class). This yields fluctuation theorems for transitions be-

tween steady states from the microscopic point of view. It relates the

entropy change between the NESSs due to the transition to the excess

heat flowing into the system

〈e−(∆φ+qex/T)〉 = 1 (22)

where the steady states ps(x, λ) are represented in terms of the non-

equilibrium potential φ(x, λ)

ps(x, λ) = exp[−φ(x, λ)]. (23)

The excess heat qex is the heat associated with changing the external

control parameter and differs from the total heat dissipation q[x(τ)]

by the heat inevitably dissipated to maintain the corresponding NESSs.

We note that these relations mentioned so forth more or less fall

into two categories: one is the exponential average over the observ-

able and second is the ratio between two conjugate probability dis-

tribution functions. The first class is named as the integral fluctuation

theorem e.g. Eq. (12), Eq. (16), Eq. (22). The second class, which deals

with the full distributions, is known as the detailed fluctuation theorem

e.g. Eq. (11), Eq. (15), Eq. (20). The integral fluctuation theorems can be

derived straightway from the detailed fluctuation theorems.

1.4.4 Experimental Investigations

In this thesis, I have mostly looked into the problems addressed from

the theoretical point of view. However, these problems are either mo-

tivated by experiments or leaves a scope for experimental verification

in future days. Hence, it is important to present a brief overview of
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the experimental advancements which has lead new discoveries and

better understanding in this field till date. The simplest models sys-

tems which were studied at the early stage are moving harmonic

traps [82, 83]. They studied Eq. (11) for finite time and the Eq. (20) in

NESS. Trepagnier et al in [84] studied experimentally the transition

from one NESS to another by changing the speed of the moving trap

verifying Eq. (22). Mapping electric circuits into the dragged colloidal

particle, Ciliberto and co-workers investigated corresponding FTs and

PDFs [85]. Later Ciliberto et al verified Eq. (16) in an experimental

analysis of the energy exchanged between two conductors kept at dif-

ferent temperature and coupled by the electric thermal noise which

can be mapped to a model of two Brownian particles kept at different

temperatures and coupled by elastic force [86]. Carberry et al investi-

gated the fluctuations of a colloidal particle in a stiffness varying har-

monic trap [87]. Their results verified Eq. (11). For strongly localized

initial conditions, Eq. (11) has also been verified experimentally by

Khan and Sood [88]. Blickle et al measured the work fluctuations for

a colloidal particle between two equilibrium states and subjected to a

time dependent non-harmonic potential. They found the work distri-

bution to be non-Gaussian nevertheless the PDF satisfied the Jarzyn-

ski equality and Crooks identity [89]. In a series of experiments, Cilib-

erto et al reported various energy fluctuations (heat, work, entropy) in

a harmonic oscillator driven out of equilibrium by an external force.

The oscillator is modelled as an underdamped driven torsional pen-

dulum and they aimed to check the Jarzynski equality and the Crooks

identity. They also determined the free energy difference using this

model in case of a linear (equilibrium) and sinusoidal (NESS) forcing

[90, 91, 92]. Speck et al analyzed the entropy production fluctuations

and Eq. (21) in a NESS originated in a system of a single particle

driven by a constant force in a periodic potential [93].
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1.4.5 How to measure the Fluctuations

It is well understood from the preceding sections that symmetry prop-

erties emerge in non-equilibrium systems through the given configu-

rational probability distribution. But the more fundamental question

is how to compute these distributions. In the absence of a general

rule, one uses various schemes to solve the stationary states far from

equilibrium. Gaussian fluctuations are amenable and easy to measure.

But in certain scenarios the stationary states generate nontrivial non-

Gaussian fluctuations, thus can not be framed using general methods

of stochastic processes. In the following, we will present a simple ex-

ample of non-equilibrium system which generate non-Gaussian fluc-

tuations inherently.

1D Biased Random Walk:

Consider a biased random walk on 1D N-site infinite lattice of unity

lattice basis Fig. 2, where the walker takes a right step with a proba-

bility p and takes a left step with probability q = 1− p. We ask the

question: what is the probability P(m,N) that the walker is at site m

after N steps. The dynamics is simple to describe

xn = xn−1 + ζn (24)

where

ζn =


−1 with probability q ,

1 with probability p

(25)

The answer is given by the binomial distribution

P(m,N) = p
N+m
2 q

N−m
2

N!
(N+m

2 )! (N−m
2 )!

(26)

The mean displacement or the drift term is simple to compute and

given by 〈m〉 = N(p − q). The mean square displacement of the

walker is σ2 = 〈m2〉 − 〈m〉2 = 4Npq. Even though the expression
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Figure 2: A schematic diagram of a 1D N-site biased random walk. We ask:

what is the probability P(m,N) that the walker is at m-th site after

N-steps ?

Eq. (26) is complete and we know perfectly well how to calculate

each term in it, we will make use of Stirling’s formula for the facto-

rial to produce an expression more amenable especially when N (the

number of steps) is large. Stirling’s formula is given by

N! ≈
√
2πN exp[N(lnN− 1)] (27)

Using this and making a very crucial assumption that m fluctuates

within
√
N, we find that the combinatorial factor has the form

P(m,N) ∼ e−
[m−N(p−q)]2

8Npq (28)

So, in other words, the walker more or less stays within the span of
√
N. This is the typical behavior of the walker. This result can also

be proved from the so called central limit theorem [27, 26]. But what

happens, when we have to consider beyond the typical Gaussian fluc-

tuations i.e. we ask the following: what is the probability that the

walker does not stay within the square root distance, rather explores

beyond it. In other words, how do we quantify the probability when

m ∼ O(N) ? This answer can be addressed within the framework of

large deviation principles and the probabilities are usually represented

by the large deviation functions (LDF) These functions encode the non-

Gaussian, atypical or rare fluctuations which are beyond the Gaussian

regime. For instance, in the above example one can show that

P(m,N) ∼ exp[ N Φ(
m

N
) ] (29)
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where Φ(mN ) is known as the large deviation function and given by

Φ(z) = −
1+ z

2
log

(
1+ z

2p

)
−
1− z

2
log

(
1− z

2q

)
, (30)

where z = m/N. This is the most general large-N result and valid

for any range of m. It is easy to reproduce the Gaussian fluctuations

from the large deviation functional form if one expands it around the

mean value upto O(
√
N) and exactly at the mean z̄ = p− q, the LDF

vanishes (See Fig. 3). Gaussian fluctuations are generically denoted as

typical fluctuations and the atypical or rare or large fluctuations are

characterized by non-universal and non-Gaussian fluctuations. This

envisages one to investigate this complex nature of the randomness

beyond the law of large numbers or the central limit theorem in dif-

ferent systems.
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Figure 3: The large deviation function Eq. (30) corresponding to the biased

random walk with p = 2/3, q = 1/3. The LDF vanishes at z̄ =

p− q, as indicated by the dashed line in the figure.

The theory of large deviations [94, 95, 96, 97] is concerned with the

exponential decay of probabilities of rare but nonzero fluctuations

in stochastic systems. The large deviation theory generally appears

as an extension of Cramer’s theorem in the context of sample means

of random variables. One can say that this theory is a refinement

of the law of large numbers and central limit theorem, which is majorly

applicable to small fluctuations. There are several correspondences

between statistical mechanics and large deviation theory. As a matter
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of fact, in every sense the mathematics of statistical mechanics can be

elegantly explained within the framework of large deviation principle.

The equilibrium properties of many-particle systems are described

at a probabilistic level by statistical mechanical ensembles, such as the

microcanonical, canonical or the grand canonical ensembles. By defin-

ing these ensembles explicitly focusing on large deviation theory, the

study of equilibrium states and their fluctuations in a given ensem-

ble can eventually be reduced to the study of properly defined large

deviation functions. Naturally, connections between equilibrium sta-

tistical mechanics and large deviation theory become tremendously

overlapped. For example, the entropy function and the free energy

function become equivalent to the LDFs on the basis of microcanoni-

cal and canonical ensemble respectively. Variational principles, such as

the entropy maximization or the minimum free energy principle, fol-

low straight-way from the contraction principle in the large deviation

theory [94]. The analogy with the extremum principle often motivates

one to consider the large deviation functions as the non-equilibrium

free energy [95, 98]. In fact, large deviation theory not only justifies

these principles, but also provides a prescription for generalizing

them to arbitrary macrostates and arbitrary many-particle systems.

So, it appears to be intuitive to extend these principles in the realm

of non-equilibrium physics. So it appears that the study of large de-

viations arising in out-of-equilibrium physical systems has been the

most successful venture in the field of Non-equilibrium statistical me-

chanics in recent times.

The dynamical nature of non-equilibrium systems follows a frame-

work similar to the equilibrium one. At equilibrium, thermodynamic

limits are considered in terms of the extensive variables such as the

number of particles or the volume element. To extend the idea in non-

equilibrium case including the large deviation analysis, one would

generically require such extensive variable. Being out of equilibrium,

one naturally includes time possibly as the extensive parameter con-

trolling a large deviation principle. The idea is to define the system
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precisely, calculate the states from the first principles (microscopic

or coarse-grained), and proceed from there to derive large deviation

principles for observables that are functions of the system’s state as-

sociating the concept of large to the control variable such as time or

the system size.

The knowledge of the rate function usually provides a complete

description of the fluctuations present in the system. It is often found

that most of the non-equilibrium systems are characterized by atyp-

ical fluctuations taking place either with an exponentially decaying

probability or at an infinite time scale. Thus, the large deviation prin-

ciple systematically can behold these certain features and characteriz-

ing these states no longer remain elusive. The 1D random walk, de-

scribed above is a typical example of non-equilibrium system where

the steady states are characterized completely using the large devi-

ation functions. In this thesis, we will discuss stochastic diffusive

models where the systems will be driven away from equilibrium by

applying time constrained driving. The steady states and the useful

observables such as the entropy production, work flux, dissipated

heat can generate non Gaussian fluctuations and the measurement of

these fluctuations will be quantified via the large deviation functions.

It is important to clarify that the computation of LDFs is a daunting

task generically with a countable number of examples existing. Yet,

it will turn out that we can compute them exactly for the systems of

our interests which is certainly a great endeavour per se.

1.5 prologue of the thesis

Over the last two decades or so, several attempts are made to under-

stand out of equilibrium systems and measure the observable fluc-

tuations and their distributions in details by probing various class

of external but deterministic driving. This includes constant dragging,

linear and nonlinear time dependent forcing, sinusoidal oscillations,
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non-conserving driving, anisotropic shear flow and etc. The realm of

deterministic driving thus is well understood and poses no further

conceptual challenge. Surprisingly, though there are plenty of exam-

ples of deterministic driving which triggers the system out of equilib-

rium, only a few attempts have been made on the issue of stochastic

driving.

This thesis is aimed at the thorough investigation of the fluctua-

tions of the relevant thermodynamic observables under stochastic driv-

ing. Stochastic driving is an issue of both conceptual as well as practi-

cal interest. The conceptual barrier lies on the nature of the stochastic

driving: whether it is a reversible or an irreversible process? One may

then wonder whether the energy transferred to the system can be

treated as work, otherwise one has to incorporate the work source

of the driving in addition. Furthermore, the question is how much

entropy exchange is involved in this process ? On the other hand,

from the experimental point of view, a deterministic driving/proto-

col is never perfect and always accompanied by uncontrollable small

random fluctuations. The following experiment performed in Lyon is

the first of this league to raise this issue. The authors have studied

the work fluctuations in a system of a colloidal particle in a harmonic

trap where the trap is being modulated by stochastic force in a ta-

ble top experiment [99]. This group has also studied the dynamics of

the tip of an AFM (Atomic Force Microscope) subjected to random

Gaussian driving and measured the work fluctuations in NESS [99].

This problem was analytically tackled in [100] where the author has

computed the full probability distributions of the work and then ver-

ified the SSFT Eq. (20) at large time. Recently, Gatien et al considered

a stationary Markovian dynamics on a bipartite joint system made of

a system with two states and an independent energy source which

is also modelled as a two level Markov process. They measured the

the work statistics of the system driven by a stochastic (reversible)

energy source in terms of the large deviation functions [101, 102].

Furthermore, they showed that the work statistics satisfy the Crooks
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Identity Eq. (15). This has put the condition that a system subjected to

a stochastic driving can be seen thermodynamically as a system sub-

jected to a work source, only when the stochastic driving protocol is

statistically reversible. Under this assumption, the authors found that

the total entropy production indeed satisfies the Eq. (15) or Eq. (20).

In this thesis, I will try to address the questions regarding the

stochastic driving by looking into diffusive Langevin models which

have not been anticipated before. The models studied here are paradigm

examples of non-equilibrium systems where the large deviation func-

tions can be estimated exactly and verified through computer simula-

tions and perhaps from the table top experiments [103, 104].

1.6 outline of the thesis

In this section, we briefly outline the main contents of the thesis. Our

aim is primarily two fold. Firstly, we are interested in computing

the full probability distribution functions of these observables, rep-

resented by the LDFs. It is important to analyze the role of driving

parameter in the dynamics and the distributions will reflect this issue.

Secondly, we intend to study the symmetry properties of the PDFs in

the context of the FT in the steady state. We will try to see whether

there lies any common feature which emerges due to the stochastic

driving.

In the preceding chapter, we study the paradigm problem of an

overdamped Brownian particle inside a harmonic trap. In the earlier

studies, the source of non-equilibrium was induced by the modula-

tion of the trap by a constant velocity or a linear and sinusoidal time

dependent dragging. Instead, we drive the trap with stochastic mod-

ulation. This investigation thus indeed gives a more realistic way to

treat the dragged Brownian particle confined in a potential. To be spe-

cific, the dynamics of the trap is modelled as the Ornstein-Uhlenbeck

process, which is a linear process. We study the work fluctuations
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on the particle due to the driving for a finite time in the NESS. We

derive the full distribution of the applied work in terms of the sys-

tem parameters. We then study the validation of the FT in the case of

stochastic driving by looking into the symmetry properties of the PDFs

[103].

The third chapter presents a brief summary of the stochastic driv-

ing on the other observables such as the heat dissipation, the total

entropy production in the NESS for the paradigm model introduced

in the previous chapter. We derive the corresponding PDFs in terms

of the system parameters and discuss the symmetry properties of the

PDFs. Subsequently, we briefly chalk out the boundary effects on the

various observables which lead to a non universal domain of the val-

idation of the FT in the parameter space. At the end, we present a

simple probabilistic model and explain the typical and atypical (due

to the boundary terms) behavior of the observables reproducing a qual-

itative behavior of the work, heat and entropy fluctuations found al-

ready in the Langevin systems [45, 68, 105].

In the final chapter, we incorporate the inertial effects on the sys-

tem. We consider an underdamped Brownian particle which is being

dragged through the medium by a stochastic force. This mimics the

situation of a colloidal particle which is in a bath consisting of many

particles where they have equilibrated faster than the mesoscopic

heavy Brownian particle. The bath, maintained at a constant temper-

ature, serves as a source of the friction and the noise. Relating them

via the fluctuation-dissipation theorem, the stochastic motion of the

Brownian particle can be framed suitably in a Langevin setup. In the

absence of any external drive, the system reaches a stationary state.

However any non-zero external drive will lead the system away from

equilibrium and we have studied the effects of this drive to the sys-

tem. Later, we have analyzed the observable statistics in great details.

This model can be of very importance from the viewpoint of transport

phenomena as, in suitable limits, it mimics the system of a Brownian

particle connected with two different thermal baths at the two ends.
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The difference in the temperature leads to a non-equilibrium situation

and it is important to characterize the heat current or the work on the

particle due to the thermal baths. Though in reality, measuring the

mean or the fluctuations of these observables are quite complicated,

nevertheless, we have derived few exact results which can be tested

in the conduction experiments. At the very end of this chapter, we

investigate the symmetry properties of the corresponding distribu-

tion functions and make a comment on the FT suited in the current

context [104]. We add general comments and a brief overview in the

conclusion.



2
W O R K F L U C T U AT I O N S O F A B R O W N I A N

PA RT I C L E I N A M O V I N G H A R M O N I C T R A P

2.1 abstract

In this chapter, we have studied the motion of a Brownian particle

in a harmonic trap. The location of the trap is modulated according

to an Ornstein-Uhlenbeck process. We investigate the fluctuation of

the work done by the modulated trap on the Brownian particle in

a given time interval in the steady state. We compute the large de-

viation as well as the complete asymptotic form of the probability

density function of the work done. The theoretical asymptotic forms

of the probability density function are in very good agreement with

the numerics. We also discuss the validity of the fluctuation theorem

for this system.

2.2 introduction

A Brownian particle confined in a harmonic trap in one spatial di-

mension serves as the paradigm problem to introduce the basic con-

cepts of stochastic thermodynamics and compute the average observ-

ables systematically. Let us first consider a situation when the trap is

kept static. In that case, the particle will diffuse around the minimum

of the trap and will eventually reach to an equilibrium distribution,

peaked at the minimum of the potential and given by Boltzmann dis-

tribution. But a generic non-equilibrium situation arises if the trap is

not static, rather it acquires motion. The simplest way to perturb the

system would be to drag the trap with a constant velocity. In that case,

33
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the system will certainly be out of equilibrium, however at long times

it will reach an effective equilibrium state provided that the motion

is observed in a co-moving frame (i.e. in the reference frame of the

moving well). Let us illustrate this model in the following. Consider

the Brownian particle in a harmonic trap, in contact with a thermal

bath at temperature T = β−1, is pulled through the medium by a

constant velocity. Considering the overdamped motion, let x denote

the location of the particle, and let

U(x, t) =
k

2
(x− y)2 (31)

where U(x, t) is the moving potential well and y is the minimum

of the trap. Let v be the velocity at which the trap is being pulled.

Assume furthermore that the thermal forces can be modeled as the

sum of linear friction and white noise, then the equation of motion is

simply given by

ẋ = −
1

γ

∂U

∂x
+ η (32)

ẏ = v

where γ is the viscosity and η is the thermal noise with the correla-

tions 〈η(τ)〉 = 0, 〈η(τ)η(τ ′)〉 = 2Dδ(τ− τ ′). The diffusion constant is

denoted by D and satisfies the Stokes-Einstein relation Dγ = kBT .

The observables of interests are (i) the work done due to the modula-

tion of the trap

Wτ =

∫τ
0

∂U

∂y
ẏ dt = −

∫τ
0

k(x− vt)v dt (33)

and (ii) the entropy production of the medium given by ∆smed = −βQ

where the heat part is defined as

Qτ =

∫τ
0

[−γẋ+ η] ẋ dt (34)

Brownian particle in

a harmonic trap

driven with a

constant velocity

In a series of paper, this problem has been studied extensively both

theoretically [43, 44, 45, 42, 106, 68] and experimentally [82, 83]. The

authors have computed the work and the heat distributions in finite

time and in the NESS. The results have also been verified through
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the experiments. Moreover, it has been shown that though the work

distribution always satisfies the TFT and SSFT, indeed that is not true

for the heat distributions. They provided an extended fluctuation the-

orem that differs from the typical SSFT. It was found that the ratio of

the probability for absorption of heat (by the particle from the fluid)

to the probability to supply heat (by the particle to the fluid) is much

larger here than in the conventional fluctuation theorem. Later, the au-

thors extended the theory in the case of small electrical circuits. They

measured the power and the heat fluctuations in the following set

ups. This was initially done for a parallel resistor and capacitor with

a constant current source and the analogy with a Brownian particle

dragged through a fluid was referred. The connection was made un-

der the name Brownian-Nyquist analogy [85, 86]. In the following, we

provide the analogy for a quick reference. Consider an electric circuit

in which a resistor with resistance R and a capacitor with capacitance

C are arranged in parallel. The circuit is subject to a constant, nonfluc-

tuating current source I. Energy is being dissipated in the resistor as

the form of heat. The fluctuations are controlled by a voltage gener-

ator and can be modelled as Gaussian white noise δVt, often known

as the Nyquist noise. In addition, let’s define qt as the charge that

has gone through the resistor, it as the current that is going through

it (so it = dqt/dt). Therefore standard calculations yield

R
dqt

dt
= −

qt − I t

C
− δVt (35)

Brownian-Nyquist

Analogy with an

Electric Circuit

The heat developed in the resistor is given by

Qτ =

∫τ
0

[itR+ δVt] q̇t dt , (36)

which is nothing but the time integrated voltage times the current.

Using a suitable analogy, it can be shown that the heat fluctuations

in the parallel RC circuit behaves completely analogous to the heat

for the Brownian particle, and thus satisfies the extended FT. On the
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other hand, the work fluctuations in this circuit is the time integrated

power flux and given by

Wτ = −

∫τ
0

[qt − I t]
I

C
dt (37)

This happens to be precisely the same form of work as for a Brownian

particle and satisfies the TFT and the SSFT at large times. A similar

behavior can also be observed in the case of a serial RC circuit with

Nyquist noise and imposed voltage. But all this class of problems are

treated with a family of deterministic driving. Alternatively, we want

to model similar systems with experimentally more feasible driving

protocols like the stochastic driving.

Recently, in reference [99] reported experiments on the fluctuations

of the work done by an external Gaussian random force on two differ-

ent stochastic systems coupled to a thermal bath: (i) a colloidal par-

ticle in an optical trap and (ii) an atomic-force microscopy cantilever.

Analytical results have been obtained for the second system in [100].

In the first experiment, a colloidal particle immersed in water (which

acts as thermal bath) is confined in an optical trap. The position of

the trap is modulated according to a Gaussian Ornstein-Uhlenbeck

process. The authors have experimentally determined the probability

density function of the work done on the colloidal particle by the

random force exerted by the modulating trap. I will present here the

analytical treatment of this problem in details which is the first most

attempt of this paradigm problem under stochastic driving [103].

In Sec. 2.3, we define the model. Sec. 2.4 contains the derivation of

the moment generating function of work done Wτ in a given time τ,

which has the form
〈
e−λWτ

〉
≈ g(λ) eτµ(λ) for large τ. In this chapter,

the focus will be on the mechanical work Eq. (40) and its distribution

functions. Sec. 2.5 contains the details of the method to evaluate the

moment generating function. The results are explicitly given in Sec-

tion 2.6. In Sec. 2.7, we analyze the function g(λ) in terms of θ and δ.

We invert the moment generating function to obtain the asymptotic

form (for large τ) of the PDF of Wτ in Sec. 2.8. We have found in
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Sec. 2.7 that g(λ) can either be analytic, or can have either one branch

point or three or four branch points, depending on the values of the

tuning parameters of the problem. The case when g(λ) is analytic, is

simpler and the asymptotic PDF can be obtained by the usual sad-

dle point approximation, which is given by Eq. (118) in Sec. 2.8.1. In

Sec. 2.8.2, we deal with case when g(λ) has one branch point. The

cases when g(λ) has three and four branch points are discussed in

Secs. 2.8.3 and 2.8.4, respectively. The analytical results obtained in

each section are supported by numerical simulation performed on

the system. Sec. 2.9 contains a discussion on large deviation function

and validity of the fluctuation theorem in the context of the problem

at hand. Finally, we summarize the chapter in Sec. 2.10.

2.3 the model

Consider a Brownian particle suspended in a fluid at temperature

T , with the viscous drag coefficient γ. The particle is confined in a

quadratic potential (harmonic trap) around the position y and hav-

ing a stiffness k. The position x(t) of the particle is described by the

overdamped Langevin equation

dx

dt
= −

x− y

τγ
+ ξ(t), (38)

where τγ = γ/k is the relaxation time of the harmonic trap. The

thermal noise ξ(t) is taken to be Gaussian with mean 〈ξ(t)〉 = 0 and

covariance 〈ξ(t)ξ(s)〉 = 2Dδ(t − s), where the diffusion coefficient

D = γ−1kBT with kB being the Boltzmann constant. An external

time-varying random force is exerted by the trap on the Brownian

particle by externally modulating the position of the trap according

to an Ornstein-Uhlenbeck process

dy

dt
= −

y

τ0
+ ζ(t), (39)

where ζ(t) is an externally generated Gaussian white (non-thermal)

noise with mean 〈ζ(t)〉 = 0 and covariance 〈ζ(t)ζ(s)〉 = 2Aδ(t− s).
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There is no correlation between the externally applied noise and the

thermal noise, 〈ζ(t)ξ(s)〉 = 0. The system eventually reaches steady

state, and in the steady state the trap exerts a correlated random force

ky(t) on the Brownian particle with mean 〈y(t)〉 = 0 and covariance

〈y(t)y(s)〉 = Aτ0 exp(−|t− s|/τ0). The quantity of our interest is the

work done in the steady state, by the random force exerted by the trap

on the Brownian particle in a given time duration τ. This is given (in

units of kBT ) by

Wmech
τ =

1

kBT

∫τ
0

ky(t) ẋ dt, (40)

with the initial condition (at τ = 0) drawn from the steady state distri-

bution. We notice that this is the definition of the mechanical work (i.e

force times displacement of the particle) and clearly different from

that due to Jarzynski, which can be given in this context as

WJ
τ =

1

kBT

∫τ
0

dt k(y− x) ẏ. (41)

We will denote Wmech
τ as Wτ throughout this chapter and any other

usage of same notation, if any, will be explained in the context.

It will prove convenient to use the following dimensionless param-

eters (which characterizes the stochastic modulation) for future context

θ = A/D, and δ = τ0/τγ. (42)

Here, θ characterizes the ratio between the thermal and the external

probed noise respectively. The time scale separation between the sys-

tem’s own relaxation and the external driving has been denoted by δ.

From an experimental perspective [99], it is natural to use another pa-

rameter that measures the deviation of the system from equilibrium:

α =
〈x2〉
〈x2〉eq

− 1, (43)

where 〈x2〉 is the variance of x in the steady state in the presence of

trap modulation, whereas 〈x2〉eq = Dτγ is the corresponding variance
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at equilibrium, i.e., without the presence of the trap modulation (y =

0). It should be noted that, the three parameters introduced above are

not independent of each others and are related by

α = θδ2(1+ δ)−1. (44)

The mean work can be computed easily using the above equations

and one finds 〈Wτ〉 ≈ ατ/τ0 for large τ. Although the mean work

is positive (and large for large τ), there can be negative fluctuations

(with small probabilities) and the fluctuation theorem quantifies the

ratio of the probabilities of the positive and the negative fluctuations.

2.4 moment generating function

To compute the distribution of Wτ, we first consider the moment

generating function restricting to fixed initial and final configurations

(x0,y0) and (x,y) respectively:

Z(λ, x,y, τ|x0,y0) =
〈
e−λWτ δ[x− x(τ)]δ[y− y(τ)]

〉
(x0,y0)

, (45)

where 〈· · · 〉(x0,y0) denotes an average over the histories of the thermal

noises starting from the initial condition (x0,y0). It can be shown that

Z(λ, x,y, τ|x0,y0) satisfies the Fokker-Planck equation

∂Z

∂τ
= LλZ (46)

with the initial condition Z(λ, x,y, 0|x0,y0) = δ(x− x0) δ(y− y0), and

the Fokker-Planck operator is given by

Lλ = D
∂2

∂x2
+ θD

∂2

∂y2
+
δ

τ0

∂

∂x
(x− y) +

1

τ0

∂

∂y
y

+
2λδ

τ0
y
∂

∂x
+
λδ2

τ20D
y(x− y) +

λ2δ2

τ20D
y2. (47)

We do not know whether the above partial differential equation can

be solved to obtain Z. Fortunately, however, one does not require

the complete solution of the above equation to determine the large-τ

behavior of the distribution of Wτ.
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The solution of the Fokker-Planck equation can be formally ex-

pressed in the eigenbases of the operator Lλ and the large τ behavior

is dominated by the term having the largest eigenvalue. Thus, for

large-τ,

Z(λ, x,y, τ|x0,y0) = χ(x0,y0, λ)Ψ(x,y, λ) eτµ(λ) + · · · , (48)

where Ψ(x,y, λ) is the eigenfunction corresponding to the largest eigen-

value µ(λ) and χ(x0,y0, λ) is the projection of the initial state onto

the eigenstate corresponding to the eigenvalue µ(λ). While we can-

not solve the Fokker-Planck equation, the functions in Eq. (48) can be

obtained using a method sketched in the following.

2.5 complete derivation of the moment generating func-

tion

The evolution equations (38) and (39) can be presented in the matrix

form

dU

dt
= −

1

τ0
AU+ η(t), (49)

where U = (x,y)T and η = (ξ, ζ)T are column vectors and A is a 2× 2

matrix given by

A =

δ −δ

0 1

 . (50)

Using the integral representation of δ-function such as

δ(U−U(τ)) =

∫
d2Nσ

(2π)2N
eiσ

T (U−U(τ)) , (51)

where σT = (σ1,σ2, ...σ2N) , we find the restricted moment generating

function, defined by Eq. (45), to be

Z(λ,U, τ|U0) =
∫
d2σ

(2π)2
eiσ

TU
〈
e−λWτ−iσ

TU(τ)
〉
U0

, (52)

where σT = (σ1,σ2).
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Substituting dx/dt form Eq. (38) in Eq. (40) we get

Wτ =

∫τ
0

dt

[
−
δ2

τ20D
y(x− y) +

δ

τ0D
yξ

]
, (53)

which is useful to rewrite as

Wτ =
1

2

∫τ
0

dt

[
1

τ20
UTA1U+

1

τ0

(
UTAT2η+ η

TA2U
)]

, (54)

where

A1 =
δ2

D

 0 −1

−1 2

 and A2 =
δ

D

0 1

0 0

 . (55)

Now, we proceed by defining the finite-time Fourier transforms

and their inverses as follows:

[Ũ(ωn), η̃(ωn)] =
1

τ

∫τ
0

dt[U(t),η(t)] exp(−iωnt), (56)

[U(t),η(t)] =
∞∑

n=−∞[Ũ(ωn), η̃(ωn)] exp(iωnt), (57)

with ωn = 2πn/τ. In the frequency domain, the Gaussian noise con-

figurations denoted by [η(t) : 0 < t < τ] is described by the infinite

sequence [η̃(ωn) : n = −∞, ...,−1, 0,+1, ...,∞] of Gaussian random

variables with the correlation

〈η̃(ω)η̃T (ω′)〉 = 2D

τ
δ(ω+ω′)diag(1, θ). (58)

In terms of the Fourier transform Eq. (54) can be written as

Wτ =
τ

2

∞∑
n=−∞

[
1

τ20
ŨT (ωn)A1Ũ(−ωn)

+
1

τ0

{
ŨT (ωn)A

T
2 η̃(−ωn) + η̃

T (ωn)A2Ũ(−ωn)
}]

. (59)

Equation (49) gives

Ũ(ωn) = τ0Gη̃(ωn) −
τ0
τ
G∆U, (60)

where G = [iuI + A]−1 with u = ωnτ0, ∆U = U(τ) −U(0), and I

being the identity matrix. The elements of G are: G11 = (δ+ iu)−1,

G22 = (1+ iu)−1, G12 = δG11G22, and G21 = 0. Note that G(−u) =
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G∗(u), η̃(−ω) = η̃∗(ω), and Ũ(−ω) = Ũ∗(ω). Substituting Ũ in

Eq. (54), and grouping the negative n indices together with their pos-

itive counterparts in the summation, we get

Wτ =
[1
2
τη̃T0

(
GT0A1G0 +A2G0 +G

T
0A

T
2

)
η̃0 −∆U

T
(
GT0A1G0 +G

T
0A

T
2

)
η̃0

+
1

2τ
∆UT

(
GT0A1G0

)
∆U
]

+

∞∑
n=1

[
τη̃T

(
GTA1G

∗ +A2G
∗ +GTAT2

)
η̃∗ − η̃T

(
GTA1G

∗ +A2G
∗)∆U

−∆UT
(
GTA1G

∗ +GTAT2
)
η̃∗ +

1

τ
∆UT

(
GTA1G

∗)∆U],
in which G0 = G(u = 0) = A−1 and η̃0 = η̃(0).

Next, we we express U(τ) in terms of the Fourier series

U(τ) = lim
ε→0

∞∑
n=−∞ Ũ(ωn)e

−iωnε. (61)

While inserting Ũ from Eq. (60) into the above equation, we observe

that (1/τ)
∑
nGe

−iωnε → 0 as τ → ∞. This is because in the large-τ

limit, the summation can be converted to an integral which can be

closed via the lower half plane, and the G is analytic there. Thus,

using only the first term of Eq. (60), we get

σTU(τ) = τ0σ
TG0η̃0

+ τ0

∞∑
n=1

[
e−iωnεη̃TGTσ+ eiωnεσTG∗η̃∗

]
. (62)

Using this expression as well as Wτ from above in Eq. (52), we get

Z(λ,U, τ|U0) =
∫
d2σ

(2π)2
eiσ

TU
∞∏
n=0

〈
esn
〉
, (63)

where sn is quadratic in η̃, given by

s0 = −
λτ

2
η̃T0B0η̃0 +α

T
0 η̃0 −

λ

2τ
∆UTGT0A1G0∆U, (64)

and

sn =− λτη̃TBnη̃
∗ + η̃Tαn +αT−nη̃

∗

−
λ

τ
∆UTGTA1G

∗∆U for n > 1, (65)
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in which we have used the following definitions:

Bn = GTA1G
∗ +A2G

∗ +GTAT2 , (66)

B0 = G
T
0A1G0 +A2G0 +G

T
0A

T
2 , (67)

αn = λ
[
GTA1G

∗ +A2G
∗]∆U− iτ0e

−iωnεGTσ, (68)

αT−n = λ∆UT
[
GTA1G

∗ +GTAT2
]
− iτ0e

iωnεσTG∗. (69)

Therefore, calculating the average 〈esn〉 independently for each n > 1

with respect to the Gaussian PDF P(η̃) = π−2(detΛ)−1 exp(−η̃TΛ−1η̃∗)

with Λ = (2D/τ)diag(1, θ) we get

〈
esn
〉
=

exp
(
αT−nΩ

−1
n αn − λ

τ∆U
TGTA1G

∗∆U
)

det(ΛΩn)
, (70)

whereΩn = τ(λBn+ τ−1Λ−1). For the n = 0 term, calculating the av-

erage 〈es0〉with respect to the Gaussian PDF P(η̃0) = (2π)−1(detΛ)−1/2

exp(−12 η̃
T
0Λ

−1η̃0), we get

〈
es0
〉
=

exp
(
1
2α
T
0Ω

−1
0 α0 −

λ
2τ∆U

TGT0A1G0∆U
)√

det(ΛΩ0)
. (71)

Since, 〈esn〉 = 〈es−n〉, the product in Eq. (63) yields

∞∏
n=0

〈
esn
〉
= exp

(
−
1

2

∞∑
n=−∞ ln

[
det(ΛΩn)

])

× exp
(
1

2τ

∞∑
n=−∞

[
αT−nτΩ

−1
n αn − λ∆UTGTA1G

∗∆U
])

. (72)

The determinant in the above expression is found to be

det(ΛΩn) = [1+ 4θλ(1− λ)δ2u2|G11|
2|G22|

2]. (73)

Now, taking the large τ limit, we replace the summations over n by

integrals over ω, i.e.,
∑
n → τ

∫
dω
2π . After, evaluating the integral, the

argument of the exponential in first line of Eq. (72) yields

−
τ/τ0
4π

∫∞
−∞ du ln

[
det(ΛΩn)

]
= τµ(λ), (74)

where µ(λ) will be given by Eq. (86). Similarly, converting the argu-

ment of the exponential in the second line of Eq. (72) in the integral

forms, after some manipulation we get
∞∏
n=0

〈
esn
〉
≈ eτµ(λ) exp

[
−
1

2
σTH1σ+ i∆U

TH2σ+
1

2
∆UTH3∆U

]
, (75)
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in which H1, H2, and H3 are given by

H1 =
Dτ0
2π

∫∞
−∞ duG∗Ω̃−1GT , (76)

H2 = − lim
ε→0

λ

2π

∫∞
−∞ dueiuε/τ0 (G†Ã1G+G†ÃT2 )(Ω̃

−1)∗G†,

(77)

H3 =
λ2

2π

1

Dτ0

∫∞
−∞ du (GT Ã1G∗ +GT ÃT2 )Ω̃−1

× (GT Ã1G
∗ + Ã2G

∗) −
λ

2π

1

Dτ0

∫∞
−∞ du [GT Ã1G

∗], (78)

where we have used where Ω̃n = τ−1DΩn and Ã1,2 = DA1,2 so

that the integrands remain dimensionless and dimensions are carried

outside to the integrals. We then evaluate the integrals performing

the method of contours in the complex u plane, and using G∗(u) +

G(u) = 2GAG∗ and G∗(u) −G(u) = 2iuGG∗, which yields

H1(λ) =
Dτ0

δ(1+ δ)ν(λ)

1+ δ+ θδ2 θδ2

θδ2 θδ+ θδ2

 , (79)

H2(λ) = −
ν(λ) − 1

2ν(λ)

1 0

0 1

−
λδ

(1+ δ)ν(λ)

θδ θδ

1 0

 , (80)

H3(λ) =
λδ2

Dτ0(1+ δ)ν(λ)

λθδ 1

1 λ− 1

 . (81)

Finally, inserting Eq. (75) in Eq. (63), and performing the Gaussian

integral over σ while using the facts that H1 and H3 are symmetric

and H3 = H−1
1 HT2 +H2H

−1
1 HT2 we get

Z(λ,U, τ|U0) ≈ eτµ(λ) exp
(
−
1

2
UT0L2(λ)U0

)
× 1

2π
√

detH1(λ)
exp

(
−
1

2
UTL1(λ)U

)
, (82)

with L1(λ) = H−1
1 +H−1

1 HT2 and L2(λ) = −H−1
1 HT2 . From the above

equation, it is trivial to identify χ(U0, λ) and Ψ(U, λ) used in Eq. (48).

Since, L1 + L2 = H−1
1 , it is evident that

∫
χ(U, λ)Ψ(U, λ)dU = 1.
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Application of the Langevin operator given by Eq. (47) on Ψ(U, λ)

yields

Lλψ(U, λ) =
[
D
(
L1,1
1

)2
+αD

(
L1,2
1

)2
−
δ

τ0
L1,1
1

]
x2ψ(U, λ)

+

[
D
(
L1,2
1

)2
+αD

(
L2,2
1

)2
+
δ

τ0
(1− 2λ)L1,2

1

−
1

τ0
L2,2
1 −

δ2

Dτ20
λ(1− λ)

]
y2ψ(U, λ)

+

[
2DL1,1

1 L1,2
1 + 2DαL1,2

1 L2,2
1 +

δ

τ0
(1− 2λ)L1,1

1

−
1+ δ

τ0
L1,2
1 +

δ2

Dτ20
λ

]
xyψ(U, λ)

+

[
−DL1,1

1 −αDL2,2
1 +

1+ δ

τ0

]
ψ(U, λ), (83)

where Li,j1 denotes the (i, j)-th element of the matrix L1. Using the

explicit expressions on the right-hand side of the above equation,

after simplification, we find the coefficients of x2Ψ(U, λ), y2Ψ(U, λ),

and xyΨ(U, λ) to be zero. The last term in square brackets in front

of Ψ(U, λ) yields µ(λ) given by Eq. (86). This verifies the eigenvalue

equation LλΨ(U, λ) = µ(λ)Ψ(U, λ).

The steady-state of the system is given by

PSS(U) = Ψ(U, 0) =
exp

(
−12U

TH−1
1 (0)U

)
2π
√

detH1(0)
. (84)

Integrating Eq. (52) over U and then averaging over the initial con-

dition U0 with respect to the steady state distribution PSS(U0), we

obtain Z(λ), given by Eq. (91), with

g(λ) =
(
detH1(λ)detH1(0)detL1(λ)det[H−1

1 (0) + L2(λ)]
)−1/2

=
(
det[1− ν(λ)HT2 (λ)]det[1+HT2 (λ)]

)−1/2, (85)

where to obtain the second expression, we have substituted the ex-

pressions of L1, L2 and H1(0) = ν(λ)H1(λ). To evaluate g(λ), we then

need to insert the matrix H2 and evaluate the determinants. The de-

tailed results are given in the following section.
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2.6 explicit results for µ(λ) and g(λ)

Using the method developed in the last section, we obtain

µ(λ) =
1

2τc
[1− ν(λ)], τc = τ0(1+ δ)

−1, (86)

in which ν(λ) is given by,

ν(λ) =
√
1+ 4aλ(1− λ), a = α(1+ δ)−1. (87)

We observe that the eigenvalue satisfies the Gallavotti-Cohen symme-

try µ(λ) = µ(1− λ). In terms of the column vector U = (x,y)T , the

eigenfunctions are

Ψ(x,y, λ) =
1

2π
√

detH1(λ)
exp

[
−
1

2
UTL1(λ)U

]
, (88)

χ(x0,y0, λ) = exp
[
−
1

2
UT0L2(λ)U0

]
, (89)

where the matrices H1, L1, and L2 are given in Section 2.5.

Using the explicit forms one can verify the eigenvalue equation

LλΨ(x,y, λ) = µ(λ)Ψ(x,y, λ)∫∞
−∞
∫∞
−∞ χ(x,y, λ)Ψ(x,y, λ)dxdy = 1 (90)

From the above expressions, we also find that µ(0) = 0 and χ(x0,y0, 0) =

1. Since the λ = 0 case of Eq. (45) gives the PDF of the variables

(x,y) and µ(0) is the largest eigenvalue, it follows from Eq. (48) that

Ψ(x,y, 0) is the steady-state PDF of (x,y). Therefore, averaging over

the initial variables (x0,y0) with respect to the steady-state PDF Ψ(x0,y0, 0)

and integrating over the final variables (x,y), we find the moment

generating function of the work in the steady state as

Z(λ, τ) =
〈
e−λWτ

〉
= g(λ) eτµ(λ) + · · · , (91)

where

g(λ) =
2√

ν(λ) + 1− 2b+λ
√
ν(λ) + 1− 2b−λ

× 2ν(λ)√
ν(λ) + 1+ 2b+λ

√
ν(λ) + 1+ 2b−λ

, (92)
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with

b± =
α

2

[
1±

√
1+

4

θδ

]
. (93)

The first factor in the above expression of g(λ) is due to the averaging

over the initial conditions with respect to the steady-state distribution

and the second factor is due to the integrating out of the final degrees

of freedom.

2.7 analysis of g(λ)

From Eq. (87) and Eq. (114) we recall that ν(λ±) = 0 and ν(λ) > 0 (is a

semicircle) for λ ∈ (λ−, λ+). Moreover, all the four functions 1± 2b±λ

are linear in λ with slopes ±2b± (where all four combinations of the

two ± signs are considered). Therefore, for example, if (1− 2b+λ) has

opposite signs at the two end points λ±, then the function [ν(λ)+ (1−

2b+λ)] must cross zero at some intermediate λ. This is also true for

the other three cases. From Eqs. (93) and (113) respectively, we note

that b+ > 0, b− < 0 and λ+ > 0, λ− < 0. One can therefore determine

whether g(λ) has a singularity as follows (see Fig. 4):

1. Evidently, 1 − 2b+λ− > 0. Thus, ν(λa) + 1 − 2b+λa = 0 for a

specific λa ∈ (λ−, λ+) if and only if 1− 2b+λ+ < 0. When this

happens [see Fig. 4 (a)], the position of the singularity can be

found as

λa = (a+ b+)/(a+ b
2
+). (94)

It is evident that λa > 0.

2. Evidently, 1 − 2b−λ+ > 0. Thus, ν(λb) + 1 − 2b−λb = 0 for a

specific λb ∈ (λ−, λ+) if and only if 1− 2b−λ− < 0. When this

happens [see Fig. 4 (b)], the position of the singularity can be

found as

λb = (a+ b−)/(a+ b
2
−) (95)

and it can be shown that λb < 0.
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3. Evidently, 1 + 2b+λ+ > 0. Thus, ν(λc) + 1 + 2b+λc = 0 for a

specific λc ∈ (λ−, λ+) if and only if 1+ 2b+λ− < 0. When this

happens [see Fig. 4 (c)], the position of the singularity can be

found as

λc = (a− b+)/(a+ b
2
+) (96)

and it can be shown that λc < 0.

4. Evidently, 1 + 2b−λ− > 0. Thus, ν(λd) + 1 + 2b−λd = 0 for a

specific λd ∈ (λ−, λ+) if and only if 1+ 2b−λ+ < 0. When this

happens [see Fig. 4 (d)], the position of the singularity can be

found as

λd = (a− b−)/(a+ b
2
−). (97)

It is evident that λd > 0. Moreover, it can be shown that λc +

λd = 1.

It is easily seen that the singularities of g(λ) are branch points (square

root singularities) and the function fw(λ) at these singularities is

given by

hi(w) := fw(λi) =
1

2

[
1− ν(λi)

]
+ λiw, (98)

where the index i stands for one of the indices from the set {a, b, c, d}.

Substituting ν(λi) at the singularities using the conditions from above,

we get

ha(w) = (1− b+λa) + λaw, (99)

hb(w) = (1− b−λb) + λbw, (100)

hc(w) = (1+ b+λc) + λcw, (101)

hd(w) = (1+ b−λd) + λdw. (102)

It is also useful to define the non-singular part of g(λ) at a singularity

as

g̃(λi) = lim
λ→λi

∣∣(λ− λi)1/2g(λ)∣∣. (103)
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Figure 4: In the shaded regions of the (θ, δ) plane in the figures (a), (b),

(c) and (d), the respective mathematical conditions given there are

satisfied and consequently g(λ) possesses singularities at λa, λb, λc,

and λd respectively, given by Eqs. (94)–(97).

We note that the for a given set of parameters θ (or α) and δ, the

position of the singularities (whenever they exist) are fixed within

the interval (λ−, λ+). The specific values of w at which the saddle

point coincides with one of the singularities is obtained by solving

λ∗(w∗i ) = λi as

w∗i =
(1− 2λi)

√
a√

(1+ 1/a) − (2λi − 1)2
. (104)

Since, (1+ 1/a) = (2λ± − 1)2 and λ− < λi < λ+, the term under the

square root in the above equation is always positive.
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2.7.1 The case: δ < 1

For any δ < 1, there exists a θc1 given by the solution of 1− 2b+λ+ =

0 as

θc1(δ) =

(
1− δ2

)2
δ2 (3+ 10δ+ 3δ2)

, (105)

and for θ < θc1 the function g(λ) has no singularities whereas it has

one singularity for θ > θc1 . As δ → 0 we get θc1 ' 1/(3δ2) whereas

θc1 ' (1− δ)2/4 as δ→ 1−.

The θ = θc1(δ) line corresponds to the α = αc1(δ) line in the (α, δ)

plane, where

αc1(δ) =
(1+ δ) (1− δ)2

3+ 10δ+ 3δ2
. (106)

2.7.2 The case: δ > 1

For δ > 1, there again exists a θc2 given by the solution of 1 −

2b−λ− = 0 as

θc2(δ) =

(
δ2 − 1

)2
δ2 (3+ 10δ+ 3δ2)

, (107)

and g(λ) has either three or four singularities depending on whether

θ > θc2 or θ < θc2 . In the limit δ→∞ we get θc2 = 1/3 and θc2 → 0

as δ → 1. More precisely, θc2 ' 1/3 − 10/(9δ) as δ → ∞, whereas

θc2 ' (δ− 1)2/4 as δ→ 1+.

The θ = θc2(δ) line corresponds to the α = αc2(δ) line in the (α, δ)

plane, where

αc2(δ) =
(1+ δ) (δ− 1)2

3+ 10δ+ 3δ2
. (108)
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2.7.3 The case: δ = 1

It is instructive to illustrate the particular case of δ = 1, for which

we have α = θ/2 and a = θ/4. Here from Eqs. (93) and (113) we get

2b± = θλ± and θλ+λ− = −1. It follows that:

1. 1− 2b+λ− = 2 and 1− 2b+λ+ = −θλ+ < 0 for θ > 0. This im-

plies g(λ) has a singularity at λ = λa. We get λa = (1+ 2λ+)/(2+

θλ+) and λa ∈ (0, λ+).

2. 1 − 2b−λ+ = 2 and 1 − 2b−λ− = −θλ− > 0 for θ > 0. This

implies g(λ) does not have any singularity at λ = λb.

3. 1+ 2b+λ+ = 2+ θλ+ > 0 and 1+ 2b+λ− = 0. However, since

ν(λ−) = 0, g(λ) has a singularity at λ = λc = λ−.

4. 1 + 2b−λ+ = 2 + θλ− > 0 as θλ− ∈ (−1, 0). Moreover, 1 +

2b−λ+ = 0 and ν(λ+) = 0. Therefore, g(λ) has a singularity

at λ = λd = λ+.

However, we have already seen that λ∗ → λ± only when w → ∓∞.

Therefore, for all practical purposes (any finite w) the singularities at

λ± are not relevant and hence we treat this case together with the

case δ < 1, θ > θc1 where g(λ) has only one singularity. However,

for the δ = 1 case, in principle, one can use the results of Sec. 2.8.3,

where the case of the three singularities is discussed.

2.8 probability density function

The probability density function (PDF) of the work done Wτ can be

obtained from the moment generating function Z(λ, τ), by taking the

inverse “Fourier” (two-sided Laplace) transform

P(Wτ) =
1

2πi

∫+i∞
−i∞ Z(λ, τ) eλWτ dλ, (109)
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where the integration is done along the imaginary axis in the complex

λ plane. Using the large-τ form of Z(λ, τ) given by Eq. (91) we write

P(Wτ = wτ) ≈ 1

2πi

∫+i∞
−i∞ g(λ)eτfw(λ)dλ, (110)

where

fw(λ) =
1

2

[
1− ν(λ)

]
+ λw. (111)

and we have set τc = 1 for convenience. This is completely equivalent

to measuring the time in the unit of τc, that is, τ/τc → τ.

The large-τ form of P(Wτ) can be obtained from Eq. (110) by using

the method of steepest descent. The saddle-point λ∗ is obtained from

the solution of the condition f ′w(λ∗) = 0 as

λ∗(w) =
1

2

[
1−

w√
w2 + a

√
1+

1

a

]
. (112)

From the above expression one finds that λ∗(w) is a monotonically

decreasing function of w and λ∗(w→ ∓∞)→ λ±, where

λ± =
1

2

[
1±

√
1+

1

a

]
. (113)

Therefore, λ∗ ∈ (λ−, λ+). It is also useful to note that ν(λ) can be

written in terms of λ± as

ν(λ) =
√
4a(λ+ − λ)(λ− λ−). (114)

This clearly shows that ν(λ) has two branch points on the real-λ

line at λ±. However, ν(λ) is real and positive in the (real) interval

λ ∈ (λ−, λ+). As a consequence, fw(λ) remains real in the interval

(λ−, λ+). At λ = λ∗ we find

ν(λ∗) =

√
a(1+ a)√
w2 + a

, (115)

and

hs(w) := fw(λ
∗) =

1

2

[
1+w−

√
w2 + a

√
1+

1

a

]
. (116)

One also finds that

f ′′w(λ
∗) =

2(w2 + a)3/2√
a(1+ a)

> 0. (117)
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Figure 5: The regions in the (a) θ, δ and (b) α, δ spaces, where g(λ) has the

number of singularities mentioned in the figure. The equations of

the boundary lines separating different regions are given in Sec-

tion 2.7. αc1 = 1/3 for δ = 0 and θc2 → 1/3 as δ→∞. Each of the

phase boundaries meet at θ = 0 (α = 0), δ = 1.

This means that fw(λ) has a minimum at λ∗ along real-λ, and hence

the path of steepest descent is perpendicular to the real-λ axis at λ =

λ∗.

Now, if g(λ) is analytic for λ ∈ (0, λ∗), one can deform the contour

along the path of the steepest descent through the saddle-point, and

obtain P(Wτ) using the usual saddle-point approximation method.

However, if g(λ) has any singularities, then the straightforward saddle-

point method cannot be used, and one would require more sophisti-

cated methods to obtain the asymptotic form of P(Wτ). Therefore,

it is essential to analyze g(λ) for possible singularities. In Section 2.7,

we examine the terms under the four square roots in the denominator

of g(λ) in Eq. (92).

In Fig. 5, we show the regions in the (θ, δ) and (α, δ) planes, where

g(λ) possesses singularities.
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2.8.1 The case of no singularities

In the singularity free region δ < 1, θ < θc1 (α < αc1), the asymptotic

PDF of the work done is obtained by following the usual saddle-point

approximation method. We get

P(Wτ = wτ) ≈ g(λ
∗)eτhs(w)√
2πτf ′′w(λ

∗)
, (118)

where hs(w) and f ′′w(λ
∗) are given by Eqs. (116) and (117), respec-

tively, and g(λ∗) can be obtained from Eq. (92) while using λ∗ from

Eq. (112). Figure 6 shows very good agreement between the form

given by Eq. (118) and numerical simulation results for θ < θc1 .
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Figure 6: P(Wτ) against the scaled variable w = Wτ/τ for τ = 10, τc = 1.

The points (blue) are obtained from numerical simulation, and the

dashed solid lines (red) plot the analytical asymptotic forms given

by Eq. (118). θc1 = 9/35 = 0.257 . . . for δ = 1/2.
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2.8.2 The case of one singularity

In the case δ < 1, θ > θc1 where g(λ) has only one singularity, or

the case δ = 1 where only one singularity of g(λ) is relevant, we can

write

g(λ) =
g1(λ)√
λa − λ

, (119)

where g1(λ) is the analytical factor of g(λ).

It is evident that for a given value of δ and θ, the position of the

branch point λa is fixed somewhere between the origin and λ+. On the

other hand, according to Eq. (112), even for a fixed θ, the saddle-point

λ∗(w) moves unidirectionally along the real-λ line from λ− to λ+ as

one decreases w from +∞ to −∞ in a monotonic manner. Therefore,

for sufficiently large w, the saddle-point lies in the interval (λ−, λa),

and therefore, the contour of integration in Eq. (110) can be deformed

into the steepest descent path (that passes through λ∗) without touch-

ing λa (see Fig. 18). However, as one decreases w, the saddle-point

hits the branch-point, λ∗(w∗a) = λa, at some specific value w = w∗a

given by Eq. (104). For w < w∗a , since λ∗ > λa, the steepest descent

contour wraps around the branch-cut between λa and λ∗ as shown

in Fig. 19. Leaving the details of the calculation to Appendix A.1,

here we present the main results.

2.8.2.1 w > w∗a

For w > w∗a , following Appendix A.1.1, we get

P(Wτ = wτ) ≈ g(λ
∗)eτhs(w)√
2πτf ′′w(λ

∗)
R1

(√
τ
[
ha(w) − hs(w)

])
, (120)

where the function R1(z) is given by

R1(z) =
z√
π
ez
2/2 K1/4(z

2/2), (121)

with K1/4(z) being the modified Bessel function of the second kind.

It follows from the asymptotic form of K1/4(z) that R1(z → ∞) → 1.
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Therefore, for w � w∗a , Eq. (120) approaches the form of the usual

saddle-point approximation given by Eq. (118). On the other hand,

using K1/4(z) ' (1/2)Γ(1/4)(z/2)−1/4 for small z, we get R1(z) '

Γ(1/4)
√
z/2π. As w → w∗a from above, i.e., when the saddle point

approaches the branch point from below, ha(w) − hs(w) ≡ fw(λa) −

fw(λ
∗) ' (λa −λ

∗)2f ′′(λ∗)/2. Therefore, the expression given by Eq. (120)

remains finite, even when the saddle point approaches the singularity,

i.e.,

P(Wτ = wτ) ≈ Γ(1/4)
2π

g1(λ
∗)eτhs(w)

[2τf ′′w(λ
∗)]1/4

as w→ w∗a . (122)

2.8.2.2 w < w∗a

For w < w∗a , following Appendix A.1.2, we write

P(Wτ = wτ) ≈ PB(w, τ) + PS(w, τ), (123)

where PB(w, τ) is the contribution coming from the integrations along

the branch cut and PS(w, τ) is the saddle point contribution. Follow-

ing Appendix A.1.2.1 we get,

PB(w, τ) ≈ g̃(λa) e
τha(w)√

πτ|f ′w(λa)|
R3

(√
τ
[
ha(w) − hs(w)

])
, (124)

where

R3(z) =

√
2z

π
R2(z), (125)

with R2(z) being given by Eq. (407). Using the asymptotic forms of

R2(z) given in Appendix A.1.2.1, we get R3(z)→ 1 in the limit z→∞.

Therefore,

PB(w, τ) ∼
g̃(λa)e

τha(w)√
πτ|f ′w(λa)|

for w� w∗a . (126)

As w→ w∗a (from below), PB(w, τ)→ 0.

The contribution coming from the saddle point is given by (see

Appendix A.1.2.2),

PS(w, τ) ≈ |g(λ∗)|eτhs(w)√
2πτf ′′w(λ

∗)
R4

(√
τ
[
ha(w) − hs(w)

])
, (127)
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Figure 7: P(Wτ) against the scaled variable w = Wτ/τ for τ = 10, τc = 1.

The points (blue) are obtained from numerical simulation, and the

dashed solid lines (red) plot the analytical asymptotic forms given

by Eq. (120) for w > w∗a and Eqs. (123)–(127) for w < w∗a , where

w∗a = 0 for δ = 1, θ = 4, and w∗a = −0.0135 . . . for δ = 0.5, θ = 13.5.

where the function R4(z) is given by

R4(z) =

√
π

2
z ez

2/2
[
I−1/4(z

2/2) + I1/4(z
2/2)

]
−
4z√
π
2F2

(
1/2, 1; 3/4, 5/4; z2

)
, (128)

where I±1/4(z) are modified Bessel functions of the first kind and

2F2(a1,a2;b1,b2; z) is the generalized hypergeometric function, de-

fined by Eq. (416). The small and large z behaviors of R4(z) are given

in Appendix A.1.2.2.

Forw� w∗a we get PS(w, τ)� PB(w, τ). On the other hand PS(w, τ)

acquires the same limiting form as in Eq. (122), when w→ w∗a (from

below).
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2.8.2.3 Numerical Simulation

We now compare the asymptotic forms presented in this subsection

with numerical simulation. In one case, we choose δ = 1 and θ = 4,

for which we get λ± = (1±
√
2)/2, λ∗(w) =

(
1−
√
2w/
√
1+w2

)
/2,

λa = 1/2, and w∗a = 0. In an another case, we choose δ = 1/2 and

θ = 13.5, for which w∗a = −0.0135 . . . . Figure 7 shows very good

agreement between the analytical and and simulation results.

2.8.3 The case of three singularities

Now we consider the case, δ > 1 and θ > θc2 , in which case g(λ) has

three singularities (see Fig. 5) at λa, λc and λd given by Eqs. (94), (96)

and (97) respectively; where λ− < λc < 0 < λa < λd < λ+. Therefore,

g(λ) can be written as

g(λ) =
g3(λ)√

λ− λc
√
λa − λ

√
λd − λ

, (129)

where g3(λ) is the analytical factor of g(λ). We notice from Eq. (112)

that λ∗ → λ− as w→ +∞ and λ∗ increases monotonically towards λ+

with decreasing w. Therefore, there are specific values +∞ > w∗c >

w∗a > w
∗
d > −∞ of w given by Eq. (104) at which the saddle point hits

the corresponding branch point, i.e., λ∗(w∗c ) = λc, λ∗(w∗a) = λa and

λ∗(w∗d) = λd.

2.8.3.1 w > w∗c

For w > w∗c , the saddle point lies between λ− and λc. Therefore,

as in the case of one singularity discussed above in Sec. 2.8.2, the

contributions comes from the branch point as well as from the saddle
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Figure 8: Schematic steepest descent contours for the case when there are

three branch points at λa, λc and λd, where λ− < λc < 0 < λa <

λd < λ+; and the saddle point λ∗ lies between (a) λ− and λc, (b) λc

and λa, (c) λa and λd, and (d) λd and λ+ respectively.

point, as shown in Fig. 8 (a). Following the procedure similar to that

in the one singularity case (see Appendix A.1.2), we get

P(Wτ = wτ) ≈ g̃(λc) e
τhc(w)√

πτ|f ′w(λc)|
R3

(√
τ
[
hc(w) − hs(w)

])
+
|g(λ∗)|eτhs(w)√
2πτf ′′w(λ

∗)

R5

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,

(130)

where R3(z) is given by Eq. (125), and

R5(z1, z2, z3) =
√
z1z2z3
π

∫∞
0

due−u
2

[
1√

z1 + iu
√
z2 + iu

√
z3 + iu

−
1√

z1 − iu
√
z2 − iu

√
z3 − iu

]
i .

(131)

2.8.3.2 w∗a < w < w
∗
c

For w∗a < w < w∗c , the saddle point lies between λc and λa. There-

fore, the contour of integration can be deformed through the saddle
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point without crossing any singularity, as shown in Fig. 8 (b). Now,

to compute the saddle point contribution one can follow the methods

of Appendix A.1.1, while taking into account of both the singularities

λa and λc. The calculation yields

P(Wτ = wτ) ≈ g(λ
∗)eτhs(w)√
2πτf ′′w(λ

∗)

R6

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,(132)

where

R6(z1, z2, z3) =
√
z1z2z3
π

∫∞
−∞

e−u
2
du√

z1 + iu
√
z2 − iu

√
z3 − iu

. (133)

As w→ w∗c , the first term of Eq. (130), coming from the integral along

the branch cut, goes to zero. On the other hand, it can be shown that

R5(z1 → 0, z2, z3) = R6(z1 → 0, z2, z3). Therefore, Eqs. (130) and (132)

approach the same limiting form as w→ w∗c from the two sides.

2.8.3.3 w∗d < w < w
∗
a

For w∗d < w < w∗a , the saddle point lies between λa and λd. There-

fore, the deformed contour is as shown in Fig. 8 (c). Combining the

contributions from the branch point λa and the saddle point, we get

P(Wτ = wτ) ≈ g̃(λa) e
τha(w)√

πτ|f ′w(λa)|
R7

(√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
+
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)

R8

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
, (134)

where

R7(z1, z2) =

√
2z1(z1 + z2)

π

∫z1
0

e−2z1u+u
2

√
u
√
z1 + z2 − u

du, (135)

and

R8(z1, z2, z3) =
√
z1z2z3
π

∫∞
0

due−u
2

[
1√

z1 + iu
√
z2 + iu

√
z3 − iu

−
1√

z1 − iu
√
z2 − iu

√
z3 + iu

]
i.(136)
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As w→ w∗a , the first term of Eq. (134), coming from the integral along

the branch cut, goes to zero. On the other hand, it can be shown that

R6(z1, z2 → 0, z3) = R8(z1, z2 → 0, z3). Therefore, Eqs. (132) and (134)

approach the same limiting form as w→ w∗a from the two sides.

2.8.3.4 w < w∗d

Finally, for w < w∗d, the saddle point lies between λd and λ+. In this

case, the integral along the branch cut can be divided into two parts:

one, from λa to λd and another from λd to λ∗. Between λd and λ∗, the

the integral above the branch cut exactly cancels the integral below

the branch cut. Therefore, the net contribution is the sum of the con-

tributions coming from the integral around the branch cut between

λa and λd, and the contribution of the integral along the contour (C1

and C4) through the saddle point, for which the calculation is similar

to the one given in Appendix A.1.1. Therefore, we get

P(Wτ = wτ) ≈ g̃(λa) e
τha(w)√

πτ|f ′w(λa)|
R9

(√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
−
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)

R10

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,(137)

where

R9(z1, z2) =

√
2z1(z1 − z2)

π

∫z1−z2
0

e−2z1u+u
2
du√

u
√
z1 − z2 − u

, (138)

R10(z1, z2, z3) =
√
z1z2z3
π

∫∞
−∞

e−u
2
du√

z1 + iu
√
z2 + iu

√
z3 + iu

.

(139)

It is evident from the above equations that R7(z1, 0) = R9(z1, 0). More-

over, it can be shown that R10(z1, z2, z3 → 0) = −R8(z1, z2, z3 → 0).

Therefore, Eqs. (134) and (137) approach the same limiting form as

w→ w∗d from the two sides.
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2.8.4 The case of four singularities

Finally, we consider the case δ > 1 and θ < θc2 , in which case g(λ)

has four singularities (see Fig. 5) at λa, λb, λc and λd given by Eqs.

(94)–(97) respectively; where λ− < λb < λc < 0 < λa < λd < λ+.

Therefore, and g(λ) can be written as

g(λ) =
g4(λ)√

λ− λb
√
λ− λc

√
λa − λ

√
λd − λ

, (140)

where g4(λ) is the analytical factor of g(λ).

Now as w varies from +∞ to −∞, the saddle point hits the branch

points, λ∗(w∗i ) = λi with i ∈ {b, c, a, d}, at specific values of w given

by Eq. (104) and +∞ > w∗b > w
∗
c > w

∗
a > w

∗
d > −∞. It is straightfor-

ward to generalize the above results to this case of four singularities.

Therefore, we only give the results below, without repeating the de-

tails.

2.8.4.1 w > w∗b

For w > w∗b, the saddle point lies between λ− and λb, and

P(Wτ = wτ) ≈ g̃(λc) e
τhc(w)√

πτ|f ′w(λc)|
R9

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
hb(w) − hs(w)

])
−
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)
R11

(√
τ
[
hb(w) − hs(w)

]
,
√
τ
[
hc(w) − hs(w)

]
,√

τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,(141)

where R9(z1, z2) is given by Eq. (138) and

R11(z1, z2, z3, z4) =
√
z1z2z3z4

π

∫∞
−∞

e−u
2
du√

z1 − iu
√
z2 − iu

√
z3 − iu

√
z4 − iu

=

√
z1z2z3z4

π

∫∞
−∞

e−u
2
du√

z1 + iu
√
z2 + iu

√
z3 + iu

√
z4 + iu

.

(142)
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2.8.4.2 w∗c < w < w
∗
b

For w∗c < w < w∗b, the saddle point lies between λb and λc, and

P(Wτ = wτ) ≈ g̃(λc) e
τhc(w)√

πτ|f ′w(λc)|
R7

(√
τ
[
hc(w) − hs(w)

]
,
√
τ
[
hb(w) − hs(w)

])
+
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)
R12

(√
τ
[
hb(w) − hs(w)

]
,
√
τ
[
hc(w) − hs(w)

]
,√

τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,(143)

where R7(z1, z2) is given by Eq. (135) and

R12(z1, z2, z3, z4) =
√
z1z2z3z4

π

∫∞
0

due−u
2

[
1√

z1 − iu
√
z2 + iu

√
z3 + iu

√
z4 + iu

−
1√

z1 + iu
√
z2 − iu

√
z3 − iu

√
z4 − iu

]
i.

(144)

2.8.4.3 w∗a < w < w
∗
c

For w∗a < w < w∗c , the saddle point lies between λc and λa, and the

PDF is given by

P(Wτ = wτ) ≈ g(λ
∗) eτhs(w)√
2πτf ′′w(λ

∗)
R13

(√
τ
[
hb(w) − hs(w)

]
,
√
τ
[
hc(w) − hs(w)

]
,√

τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
,

(145)

where

R13(z1, z2, z3, z4) =
√
z1z2z3z4

π

∫∞
−∞

e−u
2
du√

z1 + iu
√
z2 + iu

√
z3 − iu

√
z4 − iu

.

(146)
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2.8.4.4 w∗d < w < w
∗
a

For w∗d < w < w
∗
a , the saddle point lies between λa and λd, and

P(Wτ = wτ) ≈ g̃(λa) e
τha(w)√

πτ|f ′w(λa)|
R7

(√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
+
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)
R14

(√
τ
[
hb(w) − hs(w)

]
,
√
τ
[
hc(w) − hs(w)

]
,√

τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
, (147)

where R7(z1, z2) is given by Eq. (135) and

R14(z1, z2, z3, z4) =
√
z1z2z3z4

π

∫∞
0

due−u
2

[
1√

z1 + iu
√
z2 + iu

√
z3 + iu

√
z4 − iu

−
1√

z1 − iu
√
z2 − iu

√
z3 − iu

√
z4 + iu

]
i.

(148)

2.8.4.5 w < w∗d

Finally, for w < w∗d, the saddle point lies between λd and λ+, and

P(Wτ = wτ) ≈ g̃(λa) e
τha(w)√

πτ|f ′w(λa)|
R9

(√
τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
−
|g(λ∗)| eτhs(w)√
2πτf ′′w(λ

∗)
R11

(√
τ
[
hb(w) − hs(w)

]
,
√
τ
[
hc(w) − hs(w)

]
,√

τ
[
ha(w) − hs(w)

]
,
√
τ
[
hd(w) − hs(w)

])
.(149)

where R9(z1, z2) and R11(z1, z2, z3, z4) are given by Eqs. (138) and

(142), respectively.

It can be shown that, when w → w∗i with i ∈ {a, b, c, d} from the

two sides of w∗i , the respective expressions of the PDFs, i.e, Eqs. (141)

and (143), Eqs. (143) and (145), Eqs. (145) and (147), and Eqs. (147)

and (149), respectively, approach the same limiting form.

2.8.4.6 Numerical simulation

We now compare the analytical results obtained in this section with

numerical simulation. We consider δ = 5, for which we have θc2 =
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0.18. Therefore, g(λ) has three singularities for θ > θc2 , whereas for

θ < θc2 it has four singularities.

For θ = 0.5 the three singularities are located at λc = −0.3062 . . . ,

λa = 0.3958 . . . and λd = 1.3062 . . . , whereas λ− = −0.4848 . . . and

λ+ = 1.4848 . . . . Figure 9 compares numerical simulation for this case

with analytical results obtained above for the case of the three singu-

larities.

On the other hand, for θ = 0.1, the four singularities of g(λ) are

located at at λb = −10/7, λc = −1, λa = 13/11, and λd = 2. Moreover,

λ− = −1.4621 . . . and λ+ = 2.4621 . . . . Figure 10 compares numerical

simulation for this case with analytical results obtained above for the

case of the four singularities.
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Figure 9: P(Wτ) against the scaled variable w = Wτ/τ for τ = 10, τc = 1,

δ = 5, and θ = 0.5. The points (blue) are obtained from nu-

merical simulation, and the dashed solid line (red) plots the an-

alytical asymptotic forms given in the text. The vertical dashed

lines mark the positions w∗c = 0.8398 . . . , w∗a = 0.06269 . . . and

w∗d = −0.8398 . . . .
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Figure 10: P(Wτ) against the scaled variable w = Wτ/τ for τ = 10, τc = 1,

δ = 5 and θ = 0.1. The points (blue) are obtained from numerical

simulation, and the dashed solid line (red) plots the analytical

asymptotic forms given in the text. The vertical dashed lines mark

the positions w∗b = 1.4062 . . . , w∗c = 0.3125, w∗a = −0.0976 . . . and

w∗d = −0.3125.

2.9 large deviation function and fluctuation theorem

The large deviation function is defined by

h(w) = lim
τ→∞ 1τ lnP(Wτ = wτ). (150)

In other words, the large deviation form of the PDF refers to the ul-

timate asymptotic form P(Wτ = wτ) ∼ eτh(w) while ignoring the

subleading corrections. Apart from being an interesting quantity on

its own, the large deviation functions have found importance recently

in the context of the fluctuation theorem. The latter refers to the rela-

tion

lim
τ→∞ 1τ ln

[
P(Wτ = +wτ)

P(Wτ = −wτ)

]
= w. (151)
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When the above relation is valid, the large deviation function evi-

dently satisfies the symmetry relation

h(w) − h(−w) = w. (152)

Now, as we have seen in the above sections, when g(λ) is analytic

between the origin and the saddle point, the dominant contribution

to P(Wτ) comes from the saddle point as given by Eq. (118). On the

other hand, when there are singularities between the origin and the

saddle point, the most dominant contribution to P(Wτ) comes from

the singularity closest to the origin (farthest from the saddle point)

and lies between the origin and the saddle point. This is because, evi-

dently −ν(λ), and hence the function fw(λ), is convex on the interval

[λ−, λ+] and fw(λ) is minimum at the saddle point λ∗ along the real-λ

line.

Consequently, for the case δ < 1 and θ < θc1 , where g(λ) is analytic

on the interval (λ−, λ+), the large deviation function is h(w) = hs(w),

given by Eq. (116). In this case, h(w) satisfies the above symmetry

relation (152), and therefore, the fluctuation theorem is valid. On the

other hand, for δ < 1 and θ > θc1 , where g(λ) has one singularity at

λa, (also for δ = 1 and all values of θ, where only the singularity at λa

is relevant), one has

h(w) =


hs(w) for w > w∗a ,

ha(w) for w < w∗a .

(153)

Therefore, it is only when w∗a < 0 (e.g., when θ < 4 for the δ = 1 case),

the symmetry relation Eq. (152) (and hence the fluctuation theorem)

is satisfied only in the specific range w∗a < w < −w∗a . Otherwise it is

not satisfied.

For the case δ > 1, although there are either three or four singu-

larities depending on whether θ > θc2 or θ < θc2 , the singularities

closest to the origin (one on each side), namely λc and λa are common
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in both cases. Therefore, for both cases, the large deviation function

is given by

h(w) =



hc(w) for w > w∗c ,

hs(w) for w∗a < w < w∗c ,

ha(w) for w < w∗a .

(154)

Since λc < 0, it is evident from Eq. (104) that w∗c > 0. Therefore

again, it is only when w∗a < 0 (e.g., when θ < 0.365 . . . for the δ =

5 case), the symmetry relation Eq. (152) (and hence the fluctuation

theorem) is satisfied only in the specific range max(w∗a ,−w∗c ) < w <

min(−w∗a ,w∗c ).

Therefore, for any δ, there exists a θc, given byw∗a = 0 (equivalently

λa = 1/2) as

θc(δ) =
3+ 2δ+ 3δ2 + (1− δ)

√
9+ 14δ+ 9δ2

2δ2
, (155)

and the fluctuation theorem is not valid for θ > θc. The θ = θc(δ)

line corresponds to the α = αc(δ) line in the (α, δ) plane where

αc(δ) =
3+ 2δ+ 3δ2 + (1− δ)

√
9+ 14δ+ 9δ2

2(1+ δ)
. (156)

Figure 11 summarizes the state of validity of the fluctuation theo-

rem in the δ, θ and α, δ parameter spaces.

It is useful to discuss the analytical properties of the probability

distribution functions or the large deviation functions of the thermo-

dynamical observables near the singularities. We shall elaborate one

case and the others will follow directly. Identifying the structures of

hs(w) and ha(w), we immediately observe that,

hs(w
∗
a) = ha(w

∗
a)

h ′s(w
∗
a) = h ′a(w

∗
a)

but h ′′s (w
∗
a) 6= h ′′a (w

∗
a) . (157)

Therefore, we find the PDFs to be continuous and analytic in the

singular points, however the second derivatives are discontinuous at
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these singular points. Nevertheless, one has to identify this case to

be non-identical to the one where LDFs themselves exhibit singular

behavior. A detailed discussion on this has been made in Sec. 3.7.

2.10 conclusion

Let us now summarize the main contents of this chapter. We have ob-

tained analytical results for a system studied recently experimentally

in [99]. The experimental system consists of a colloidal particle in wa-

ter and confined in an optical trap which is modulated according to

an Ornstein-Uhlenbeck process. This system is described by a set of
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Figure 11: The phase diagrams in the parameters space showing the state

of the validity of the fluctuation theorem. Apart from the θ = θc

and α = αc (orange) lines, the other lines are the same as in Fig. 5.

In the (light orange) regions above the (orange) lines θ = θc in

(a) and α = αc in (b), the fluctuation theorem is not valid at

all, whereas it is always valid in the white regions below the

(blue) lines θ = θc1 in (a) and α = αc1 in (b). In the intermediate

(light blue) region, the fluctuation theorem is valid only within

a limited range of w given by w∗a < w < −w∗a for δ < 1 and

max(w∗a ,−w∗c ) < w < min(−w∗a ,w∗c ) for δ > 1. For δ = 0, we

have αc1 = 1/3 and αc = 3.
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coupled Langevin equations. We have computed the PDF of the work

done by the modulating trap on the Brownian particle in a given time

τ, for large τ. The moment generating function of the work has the

form
〈
e−λWτ

〉
≈ g(λ) eτµ(λ) for large τ. Inverting this, we obtain the

PDF of the work within the saddle point approximation.

The results can be described in terms of two independent param-

eters: (1) the parameter θ that quantifies the relative strength of the

external noise that generates the Ornstein-Uhlenbeck process for the

trap modulation, with respect to the thermal fluctuations, and (2) the

ratio δ of the correlation time of the trap modulation to the viscous

relaxation time of the particle in the trap without any modulation. We

find that the cumulant generating function µ(λ) is analytic in a (real)

interval (λ−, λ+) and the saddle point lies within this interval. Here

λ± depends on the values of θ, δ. On the other hand, depending on

the values of the pair (θ, δ), the function g(λ) behaves differently. For

δ < 1, there exists a value θc1(δ) such that g(λ) is analytic in the in-

terval (λ−, λ+) for θ < θc1 whereas it has a branch point for θ > θc1 .

For δ > 1, there again exists a θc2(δ), and g(λ) has either three or four

branch points depending on whether θ > θc2 or θ < θc2 . For δ = 1,

there are three branch points of which two coincide with λ±. We have

done the analysis in each of these regions and obtained the asymp-

totic form of the PDF accordingly. We have compared our analytical

results with simulation results on this system and found very good

agreement between the two.

The calculation also gives the large deviation function as a by-

product, using which we check the validity of the so-called fluctua-

tion theorem for this context. We find that in the region δ < 1, θ < θc1 ,

it is always valid. Outside this parameter region, there exists a θc(δ)

and the fluctuation theorem is valid for a limited range of w around

zero when θ < θc. For θ > θc, the fluctuation theorem is not valid at

all (see Fig. 11).

This chapter therefore summarizes the effects of stochastic driving

in a simple linear diffusive system namely the colloidal particle in
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a driven harmonic trap. We have managed to compute the complete

distribution functions of the observable which is, in this context, the

mechanical work. In the next chapter, we shall extend our studies to

other observables in the given set up. We will see the relations among

the observables and the effects of stochastic modulation in the ob-

servable statistics. It is worth mentioning that the effects of stochastic

driving is found to be more generic in the case of LC or RC circuit

with Nyquist white noise. Usually, the voltage fluctuations due to the

voltage generator is considered as the white noise (with an analogy

to the noise due to the ambient medium for the colloidal system)

while the electric circuit is considered to be connected with a nonfluc-

tuating current source I (similar to the velocity v at which the trap

is being pulled), when in parallel. But in practice, no current source

is completely ideal i.e. eliminated from the small fluctuations due to

the internal resistance and its compliance voltage. Thus, one indeed

needs to model the current source with a stochastic term added to

it. This should fit in perfectly within our framework and thus heat

generated across the circuit and the power flux can also be measured.

The results can be verified easily by table top experiments.





3
H E AT A N D E N T R O P Y F L U C T U AT I O N S O F A

G E N E R A L L A N G E V I N S Y S T E M

3.1 abstract

We study the heat and the entropy fluctuations in a general Langevin

setup. We find that the construction of the total entropy production

inherently allows it to be a suitable candidate for SSFT; however this

is not generically true for the other relevant observables in a given

system. If the observables of our interests are connected to each other

through boundary terms, we provide a general framework which al-

lows us to compute the PDFs of these observables by knowing only

one among this family of observables. We also explicitly show the ef-

fects of the boundary terms while computing the PDFs and their role

towards the validation of the SSFT. We verify our results in the fol-

lowing application: a Brownian particle diffusing in a stochastically

modulated optical trap. Earlier we have studied work fluctuations in

this set up [103]. We extend our studies to the heat and entropy fluc-

tuations which are connected to work by the boundary terms. We show

that our framework perfectly suits for such physical systems. We con-

clude with the fact that the observables such as work and heat are

extensive in time while the energy difference (or boundary terms) is

not, plays a crucial role in this derivation [66, 68, 94]. In pursuit of this,

we add a simple derivation at the end of this chapter based on the

probability theory and then show how the boundary terms play crucial

role in the computation of the LDFs and eventually to the SSFT.

73
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3.2 introduction

We consider a system of 2n number of state variables in one dimen-

sion: positions (x1, x2, ..., xn) and momenta (p1,p2, ...,pn), which is

always kept in contact with the surrounding at certain temperature T .

At t = 0, we switch on the external driving (which can be of deter-

ministic or stochastic nature) and thus the system is driven away from

its equilibrium or the steady state where it was initially prepared. We

consider the driving to be a stationary process and therefore acting

as a reversible source. The system trajectories fluctuate from one re-

alization to the other because of three reasons: interactions with the

surroundings, the presence of stochastic driving and the choice of

initial condition.

In the foregoing chapter, we aimed to compute the mechanical

work Eq. (40) for an overdamped model system of a Brownian par-

ticle diffusing in an optical trap. We will show that the heat dissipa-

tion and the total entropy production in this problem are differed to

the mechanical work Eq. (40) defined in the last chapter by boundary

terms (within the work and the heat, it is just the potential energy

difference due to the second law constraint). Using this fact, we will

compute the generating functions of the heat dissipation and the en-

tropy production in a much efficient way. It will be shown that the

moment generating function for the entropy will remain analytic in

the entire phase space spanned by the system parameters while that

of heat will not. The heat generating function, as we will see, are ac-

companied by singularities originating due to the exponential nature

of the energy terms. The very presence of such singularities will lead

to non identical distributions of these observables and shed light on

the FT.

The entire chapter has been arranged in the following way. We de-

velop the general formalism in the following section. Application to

our model system and computation of the heat and the entropy has
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been derived in the consecutive section. We have discussed the sym-

metry properties and the details of the fluctuation theorem in the last

section.

3.3 a general formalism

Consider a general set up of Langevin kind diffusive system

dU

dt
= F(U) + η(t), (158)

where the column matrix U = (xi, pi, fi)T contains all relevant state

variables namely ({xi : i = 1, ...,n}, {pi : i = 1, ...,n}) of the sys-

tem of interest and the external time dependent stochastic driving

{fi : i = 1, ...,n}. We denote the initial condition as U(t = 0) = U0 and

this is not a fixed initial condition but chosen from a steady state dis-

tribution PSS(U0). We will often denote the end time state variable

as U(t = τ) = Uτ. The force matrix F(U) takes into account of the

internal interaction within the system of interest and that of with the

external driving. Interaction with the bath has been modelled as a

random noise added to the system. Both this noise and the stochastic-

ity in the driving have been incorporated in the column matrix η(t).

Let us consider the observables of our interests as the following:

Ωτ =

∫τ
0

dt h[U(t), η(t)] (159)

Θτ = Ωτ + bint[U(0)] + bfin[U(τ)], (160)

where the observables depend on the state variables as a functional

form h[U(t)] and are measured for the duration [0, τ]. The boundary

terms in Ωτ are denoted by bint[U(0)] and bfin[U(τ)] respectively. It is

worth to note that the observables Eq. (160) are stochastic in nature

due to the randomness present in U0 and the noise history {ηi}. This

leads one to have a statistical description of these observables such as:

the mean, fluctuations or rather the full distribution. We compute the

full density functions P(Ωτ), P(Θτ) using the methods developed in

the preceding chapter.
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To compute the distribution of Ωτ, we need to know the full his-

tory of the system trajectories {Ut : t ∈ [0, τ]}. To this purpose, it is

instructive to write the full evolution equation of the joint distribution

P(Ωt,U, t|U0, 0) using the Fokker-Planck operator such as

∂tP(Ωt,U, t|U0, 0) = LΩP(Ωt,U, t|U0, 0), (161)

with the initial condition

P(Ωt,U, t = 0) = δ[U−U0] δ[Ωt], (162)

since at t = 0, the observable is strictly zero. The corresponding

Fokker-Planck operator can be derived by calculating the moments

using Eq. (184):

LΩ = −

3n∑
l=1

∂

∂Ul

〈∆Ul〉
∆t

−
∂

∂Ω

〈∆Ω〉
∆t

+
1

2

3n∑
m=1

3n∑
m=1

∂2

∂Ul∂Um

〈∆Ul∆Um〉
∆t

+

3n∑
l=1

∂2

∂Ul∂Ω

〈∆Ul∆Ω〉
∆t

+
1

2

∂2

∂Ω2
〈∆Ω2〉
∆t

, with ∆t→ 0.

(163)

The marginal distribution of the observableΩ is then simply obtained

by integrating out the initial and final conditions such as

P(Ωt) =

∫
dU

∫
dU0 PSS(U0)P(Ωt,U, t|U0, 0) (164)

We now define the restricted moment generating function, constrained

to fixed initial and final configurations U0 and Uτ respectively, in the

following way

Z(λ,U, τ|U0, 0) =
〈
e−λΩτ δ[U−U(τ)]

〉
η

, (165)

where the average is over the histories of the thermal noises starting

from the fixed initial condition (U0) and λ is the conjugate variable. It

is then simple to show that Z(λ,U, τ|U0, 0) satisfies the Fokker-Planck

equation

∂Z

∂τ
= LλZ, (166)
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with the initial condition Z(λ,U, 0|U0) = δ(U−U0) and the Fokker-

Planck operator in the λ space is given by

Lλ = −

3n∑
l=1

∂

∂Ul

〈∆Ul〉
∆t

− λ
〈∆Ω〉
∆t

+
1

2

3n∑
m=1

3n∑
m=1

∂2

∂Ul∂Um

〈∆Ul∆Um〉
∆t

+

3n∑
l=1

λ
∂

∂Ul

〈∆Ul∆Ω〉
∆t

+
1

2
λ2
〈∆Ω2〉
∆t

, with ∆t→ 0.

(167)

Eq. (166) is a simple eigenvalue equation and the solution can be

expanded in terms of the bi-orthogonal eigenstates

Z(λ,U, τ|U0, 0) =
∞∑
k=1

χk(U0, λ) ψk(U, λ) eτµk(λ) (168)

where ψk(U, λ) and χk(U0, λ) are the right and left eigenfunctions

respectively and they satisfy

Lλ ψk(U, λ) = µk(λ) ψk(U, λ) (169)

L+
λ χk(U0, λ) = µk(λ) χk(U0, λ) (170)

where L+
λ is the adjoint operator and µk(λ) are the eigenvalues. The

orthonormality condition of the eigenfunctions is easy to state∫
dU χk(U, λ)ψk(U, λ) = 1. It is important to note the following points

• Lλ and L+
λ share the same eigenvalue.

• The stationary state corresponds to λ = 0 such that LλPSS = 0.

• The ground state eigenvalue which corresponds to k = 1 i.e.

µ1(0) is zero and the largest among all the other eigenvalues.

Thus all other eigenvalues are strictly negative and they main-

tain the order µ2(0) > µ3(0) > µ4(0)....

• For λ 6= 0, one can still show that the ground state is the largest

eigenvalue which is strictly positive and non degenerate as a

consequence of the Perron-Frobenius theorem, but no order can

be set for the rest eigenvalues.
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However, we are interested in the large τ behavior which will be dom-

inated by the the term containing the largest eigenvalue µ(λ) (for

simplicity we will denote µ1(λ) as µ(λ) now onwards). Thus, one can

write

Z(λ,U, τ|U0) = χ(U0, λ)Ψ(U, λ)eτµ(λ) + · · · , (171)

where ψ(U, λ) and χ(U0, λ) are the right and left eigenfunctions re-

spectively corresponding to the largest eigenvalue µ(λ).

That said, the moment generating function can be obtained by aver-

aging the restricted generating function over the initial variables U0

with respect to the steady state distribution PSS(U0) and also relaxing

the the final degrees of freedom U,

Z(λ, τ) =
∫
dU

∫
dU0PSS(U0)Z(λ,U, τ|U0) , (172)

where PSS(U0) = Ψ(U0, 0). This yields

Z(λ, τ) = 〈e−λΩτ〉 = g(λ)eτµ(λ) + · · · , (173)

where

g(λ) =

∫
dU Ψ(U, λ)

∫
dU0Ψ(U0, 0)χ(U0, λ) , (174)

is the prefactor which does not depend on time though depends on

the choice of the initial condition (i.c.) explicitly. Therefore we can

write

Z(Ω)(λ) = 〈e−λΩτ〉i.c.+noise ∼ g(λ)eτµ(λ) (175)

where the superscript in Z(Ω)(λ) stands for the generating function

particular to the observable Ωτ. The full probability distribution can

now simply be obtained as

P(Ωτ = ωτ) =
1

2πi

∫ i∞
−i∞ dλ Z(Ω)(λ) eλΩ (176)

≈ 1

2πi

∫ i∞
−i∞ dλ g(λ) eτ[µ(λ)+λω] , (177)

where µ(λ) is the largest eigenvalue and g(λ) is the prefactor obtained

from Eq. (174). Having said that, our aim is now to provide a detailed
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statistical description of the other observable Θτ which is connected

to Ωτ by boundary terms Eq. (160)

Θτ = Ωτ + bint[U0] + bfin[Uτ] . (178)

We note two important points at this moment which are the follow-

ing:

• LΩ and LΘ are completely identical due to the fact that Ω and

Θ are related by the boundary terms and they do not contribute

to the moments. As a result, the eigenvalue spectrum remains

identical for both of them so as the largest eigenvalue µ(λ).

• The restricted moment generating function Z(λ,U, τ|U0), con-

strained to fixed initial and final boundary conditions, for both

the observables will now differ from each other. However, path

average will remain same, changes will be on the boundaries.

We therefore find

ZΘ(λ,U, τ|U0) = ZΩ(λ,U, τ|U0) e−λ bint[U0] e−λ bfin[Uτ] (179)

Since the eigenbases and the eigenspecrtum remain identical for both

the observables, the asymptotic analysis of the restricted generating

function remains same

ZΘ(λ,U, τ|U0) ∼ χ(U0, λ)Ψ(U, λ) eτµ(λ) e−λ bint[U0] e−λ bfin[Uτ]. (180)

We can now relax the initial and final boundary conditions to obtain

the moment generating function corresponding to the observable Θτ

Z(Θ)(λ) = 〈e−λΘτ〉i.c.+noise ∼ gΘ(λ)e
τµ(λ) (181)

where the prefactor has been modified as

gΘ(λ) =

∫
dU Ψ(U, λ) e−λ bfin[U]

∫
dU0Ψ(U0, 0)χ(U0, λ) e−λ bint[U0] .

(182)

Therefore the distribution function of Θ can be obtained as sketched

in Eq. (177)

P(Θτ = θτ) ≈ 1

2πi

∫ i∞
−i∞ dλ gΘ(λ) eτ[µ(λ)+λθ] , (183)
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where the prefactor is given by Eq. (182). The take home message

from this section would be: given a stochastic dynamical system pre-

pared from a well defined initial condition, if one constructs a set of

observables of interests which differ by boundary terms, then the cor-

responding evolution operators will share the same eigenspectrum.

However, the distributions will certainly differ and the method out-

lined here suggests an efficient way to connect these distribution func-

tions. In the following section, we investigate a model system of a

Brownian particle in an optical trap to make a connection with the

theory developed in this section.

3.4 model

For the sake of simplicity, we mostly focus on the linear systems

where the force has been considered to be linear i.e. F(U) = −AU

so that the dynamics Eq. (158) is modified to

dU

dt
= −AU+ η(t), (184)

where the square matrix A is independent of U and contains all the

constant parameters of the dynamics. Such a system can be realized a

set up which was introduced in the last chapter. Consider a Brownian

particle suspended in an ambient medium at temperature T , with

a viscosity γ. The particle is diffusing in an harmonic trap, with a

stiffness k, around the mean position y of the trap. The position x(t)

of the particle is described by the overdamped Langevin equation

dx

dt
= −

x− y

τγ
+ ξ(t), (185)

where τγ = γ/k is the relaxation time of the harmonic trap. The

thermal noise ξ(t) is taken to be Gaussian with mean 〈ξ(t)〉 = 0 and

covariance 〈ξ(t)ξ(s)〉 = 2Dδ(t − s), where the diffusion coefficient

D = γ−1kBT with kB being the Boltzmann constant. An external

time-varying random force is exerted by the trap on the Brownian
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particle by externally modulating the position of the trap according

to an Ornstein-Uhlenbeck process

dy

dt
= −

y

τ0
+ ζ(t), (186)

where ζ(t) is an externally generated Gaussian white (non-thermal)

noise with mean 〈ζ(t)〉 = 0 and covariance 〈ζ(t)ζ(s)〉 = 2Aδ(t− s).

There is no correlation between the externally applied noise and the

thermal noise, 〈ζ(t)ξ(s)〉 = 0. The system eventually reaches steady

state, and in the steady state the trap exerts a correlated random force

ky(t) on the Brownian particle with mean 〈y(t)〉 = 0 and covariance

〈y(t)y(s)〉 = Aτ0 exp(−|t − s|/τ0). In the last chapter, we were in-

terested in investigating the statistical description of the mechanical

work Wτ Eq. (40) by the random force on the Brownian particle

Wτ =
1

kBT

∫τ
0

ky(t) ẋ dt, (187)

with the initial condition (at τ = 0) drawn from the steady state

distribution. Some relevant parameters were introduced in Eq. (42),

Eq. (43). A thorough investigation was made to compute the full dis-

tribution of the mechanical work in the last chapter. We recall few of

the results derived in the last chapter for the sake of convenience

ZWτ
(λ,U, τ|U0) =

〈
e−λWτ δ[U−U(τ)]

〉
η

∼ χ(U0, λ) ψ(U, λ) eτµ(λ), (188)

where we have

µ(λ) =
1

2τc
[1− ν(λ)], τc = τ0(1+ δ)

−1, (189)

in which ν(λ) is given by,

ν(λ) =
√
1+ 4aλ(1− λ), a = α(1+ δ)−1 , (190)

where the parameters are defined in Eq. (42), Eq. (43). The eigenfunc-

tions were given by

Ψ(U, λ) =
1

2π
√

detH1(λ)
exp

[
−
1

2
UTL1(λ)U

]
, (191)

χ(U0, λ) = exp
[
−
1

2
UT0L2(λ)U0

]
, (192)
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where the matrices L1, and L2 are given in Section 2.5. Finally, the

moment generating function of the mechanical workWτ in the steady

was found to be

ZW(λ, τ) =
〈
e−λWτ

〉
= gW(λ) eτµ(λ) + · · · , (193)

where

gW(λ) =
2√

ν(λ) + 1− 2b+λ
√
ν(λ) + 1− 2b−λ

× 2ν(λ)√
ν(λ) + 1+ 2b+λ

√
ν(λ) + 1+ 2b−λ

, (194)

with

b± =
α

2

[
1±

√
1+

4

θδ

]
. (195)

The first factor in the above expression of gW(λ) is due to the averag-

ing over the initial conditions with respect to the steady-state distri-

bution and the second factor is due to the integrating out of the final

degrees of freedom. In this forthcoming section, we investigate the

statistical properties of the heat dissipation into the medium Qτ and

the total entropy production ∆Stot in the steady state for the duration

[0, τ].

3.5 characterizing the heat dissipation : a systematic

study

3.5.1 Definition of the heat dissipation

Following Sekimoto [107, 29], we can define the energy exchange of

the system of interest with the surrounding reservoir as the heat dis-

sipation like

Qτ = −
1

kBT

∫τ
0

k(x− y) ẋ dt. (196)
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We want to compute the distribution function P(Qτ) for Qτ. Before

going into details, we notice that Qτ will be connected to Wτ earlier

by the second law of thermodynamics so that

Qτ =Wτ +
1

2Dτγ
[x2(0) − x2(τ)]

=Wτ +
1

2
UT0R1U0 −

1

2
UTτR1Uτ , (197)

where the new matrix R1 has been defined as

R1 =
1

Dτγ

1 0

0 0

 . (198)

It is worth to note that Eq. (197) has an identical structure as Eq. (178)

when the following quantities are suitably identified: Ωτ ≡Wτ, Θτ ≡

Qτ, and the boundary terms are identified as

bint[U0] ≡
1

2
UT0R1U0, bfin[Uτ] ≡ −

1

2
UTτR1Uτ . (199)

Therefore, the restricted generating function corresponding to Qτ is

simply given by

ZQτ(λ,U, τ|U0) =
〈
e−λQτ δ[U−U(τ)]

〉
η

= ZWτ
(λ,U, τ|U0) e−

λ
2 U

T
0R1U0 e

λ
2 U

T
τR1Uτ ,

(200)

where ZWτ
(λ,U, τ|U0) is given by Eq. (188). Using the asymptotic

expansion of the restricted generating function Eq. (188) of Wτ, we

find

ZQτ(λ,U, τ|U0) ∼ eτµ(λ) ψ(U, λ) e
λ
2 U

TR1U χ(U0, λ) e−
λ
2 U

T
0R1U0

(201)

where the eigenfunctions and the corresponding eigenvalue remain

same Eq. (192), Eq. (86). The moment generating function is obtained

by taking average over the initial and final conditions

ZQ(λ, τ) =
〈
e−λQτ

〉
= gQ(λ) e

τµ(λ) + · · · , (202)
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where

gQ(λ) = det[H1(λ)L1(λ) − λH1(λ)R1]−1/2

× det[1+H1(0)L2(λ) + λH1(0)R1]−1/2

=
1

ν(λ) + 1

2√
ν(λ) + 1+ 2λ

2ν(λ)√
ν(λ) + 1− 2λ

. (203)

Therefore, probability distribution can be obtained by taking the in-

verse Fourier transform of ZQ(λ, τ) Eq. (202).

3.5.2 Probability distribution

We can obtain the probability distribution function for the heat dissi-

pation by taking the inverse Fourier transform of ZQτ(λ, τ) in Eq. (202)

P(Qτ = qτ) =
1

2πi

∫ i∞
−i∞ ZQ(λ, τ) eλqτ dλ

≈ 1

2πi

∫ i∞
−i∞ gQ(λ) e

τfq(λ) dλ (204)

where

fq(λ) =
1

2
[1− ν(λ)] + λq (205)

where gQ(λ) is given by Eq. (203) and also we have set τc = 1 for

convenience. But an important point to notice that gQ(λ) contains

singularities in the real λ-line similar to the one discussed in Sec. 2.7.

Now, if gQ(λ) is analytic for λ ∈ (0, λ∗), one can deform the contour

along the path of the steepest descent through the saddle-point, and

obtain P(Qτ) using the usual saddle-point approximation method.

However, if gQ(λ) has any singularities, then the straightforward

saddle-point method cannot be used, and one would require more

sophisticated methods to obtain the asymptotic form of P(Qτ). There-

fore, it is essential to analyze gQ(λ) for possible singularities. We ex-

amine the terms under the square roots in the denominator of gQ(λ)

in Eq. (203) in Section 3.5.2.1.
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3.5.2.1 singularities in gQ(λ)

As discussed in Sec. 2.7, we follow up the similar structure to identify

the singularities in gQ(λ). Using Eq. (114) we recall that ν(λ±) = 0

and ν(λ) > 0 (is a semicircle) for λ ∈ (λ−, λ+). From Eq. (203), we

find that gQ(λ) contains two functions, which are of our particular

interests that can give rise to the singularities

f1(λ) = ν(λ) + 1+ 2λ

f2(λ) = ν(λ) + 1− 2λ . (206)

Now, if f1(λ), f2(λ) have opposite signs at the two end points λ±, then

the functions f1(λ), f2(λ) must have crossed zero at some intermedi-

ate λ and those are the so-called singularities. It is easy to see that

f1(λ+) = 2+

√
1+

(1+ δ)2

θδ2
> 0 ,

f1(λ−) = 2−

√
1+

(1+ δ)2

θδ2
, (207)

where f1(λ−) can be both positive or negative in the phase space

spanned by (θ, δ). So, the singularities lie on that region of the phase

space where f1(λ−) changes sign or precisely, it becomes negative.

This has been depicted in Fig. 12. This term gives rise to one singular-

ity given by

λa =
a− 1

a+ 1
=
θδ2 − (1+ δ)2

θδ2 + (1+ δ)2
. (208)

Now, we investigate the second term f2(λ) which has the following

properties

f2(λ+) = −

√
1+

(1+ δ)2

θδ2
< 0 ,

f2(λ−) =

√
1+

(1+ δ)2

θδ2
> 0 , (209)

which means that the function f2(λ) has always two opposite signs

in the whole phase space meaning that the singularities emerging in

this case lie in the whole phase space and not constrained to any

condition. In this case, we find the singularity to be

λb = 1 , (210)
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Figure 12: This plot summarizes the analytic properties of gQ(λ). The left

panel depicts the properties of f1(λ) while the right one is for

f2(λ). Left panel: In the shaded region of the (θ, δ) plane, f1(λ)

possesses a singularity λa, where f1(λ−) < 0. On the other hand,

in the unshaded region f1(λ) does not have any singularities,

where f1(λ−) > 0. These two domains are separated by the

boundary given by the equation f1(λ−) = 0. Right panel: f2(λ)

possesses a singularity λb in the entire phase space spanned by

(θ, δ)-plane.

which is independent of θ, δ and that means the singularity λb will

be always present in gQ(λ) irrespective of any values of θ, δ.

To summarize this part, we note the following points:

• We have found that gQ(λ) indeed contains branch point singu-

larities in the (θ, δ)-plane. The singularity given by λb will be

always present for any values of θ, δ.

• The other singularity λa is parameter dependent and it will ap-

pear according to the condition in Eq. (207) and as given by

Fig. 12. First we will deal with the case, when f1(λ) is non sin-

gular and thus gQ(λ) contains only one singularity. We will deal

with the two singularities later.
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3.5.2.2 case of one singularity

In this section, we will handle the case where gQ(λ) has only one sin-

gularity present namely λb. This case is identical to the one described

in Sec. 2.8.2. Following Sec. 2.8.2, we can write gQ(λ) as

gQ(λ) =
gb(λ)√
λb − λ

(211)

where gb(λ) is the analytical factor of gQ(λ)

gb(λ) =
1√
a+ 1

1√
λ

√
ν(λ) − 1+ 2λ√
ν(λ) + 1+ 2λ

2ν(λ)

ν(λ) + 1
(212)

Since λb > 0, it is fixed between the origin and λ+. In the absence

of a singularity, one can do this integral using the standard steepest

descent method for large τ, where the contour of integration can be

deformed into the steepest descent path through the saddle point

given by f′q(λ∗) = 0 which results in

λ∗(q) =
1

2

[
1−

q√
q2 + a

√
1+

1

a

]
. (213)

However, in this case, we know that there is a branch point present in

the real λ-line and therefore, the contour has to be deformed without

touching the branch point. The saddle-point λ∗(q) moves unidirec-

tionally along the real-λ line from λ− to λ+ as one decreases q from

+∞ to −∞ in a monotonic manner. However, as one decreases q,

the saddle-point hits the branch-point, λ∗(q∗b) = λb, at some specific

value q = q∗b given by

q∗b = −a . (214)

Incorporating this fact, we now present the main results.

• When q > q∗b, the PDF is given by

P(Qτ = qτ) ≈
gQ(λ

∗)eτhs(q)√
2πτf ′′q(λ

∗)
R1

(√
τ
[
hb(q) − hs(q)

])
,

(215)
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where R1(z) is given by Eq. (121) and the large deviation func-

tions hs(q), hb(q) are given by

hs(q) :=fq(λ
∗) =

1

2

[
1+ q−

√
q2 + a

√
1+

1

a

]
,

hb(q) :=fq(λb) = q , (216)

since ν(λb) = 1. We also find that

f′′q(λ
∗) =

2(q2 + a)3/2√
a(1+ a)

, (217)

and the prefactor gQ(λ∗) can be calculated by putting Eq. (213)

in Eq. (203).

• When q > q∗b, the PDF is given by

P(Qτ = qτ) ≈ PB(q, τ) + PS(q, τ), (218)

where the branch point contribution can be obtained following

Appendix A.1.2.1

PB(q, τ) ≈ g̃(λb) e
τhb(q)√

πτ|f ′q(λb)|
R3

(√
τ
[
hb(q) − hs(q)

])
, (219)

where R3(z) is given by Eq. (125) and Eq. (407). The nonsingular

prefactor g̃(λb) is simply given by

g̃(λb) = lim
λ→λb

|(λ− λb)
1/2gQ(λ)|. (220)

Similarly, following Appendix A.1.2.2 the contribution coming

from the saddle point is given by

PS(q, τ) ≈
|gQ(λ

∗)|eτhs(q)√
2πτf ′′q(λ

∗)
R4

(√
τ
[
hb(q) − hs(q)

])
, (221)

where R4(z) is given by Eq. (373) and f ′′q(λ∗) is given by Eq. (217).

3.5.2.3 case of two singularities

In this subsection, we consider the fact that there are two singularities

in the real λ-line. It is however important to note that the singularity
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λa can be either positive or negative. We first consider the case when

λa is positive. Moreover, we shall note that λa < λb such that the

ordering can be made in the following way: λ− < 0 < λa < λb < λ+.

In this case, we can rewrite gQ(λ) in the following way

gQ(λ) =
g2(λ)√

λa − λ
√
λb − λ

, (222)

where g2(λ) is given by

g2(λ) =

√
ν(λ) − 1+ 2λ

√
ν(λ) − 1− 2λ

(a+ 1)λ[ν(λ) + 1]
. (223)

The q-value corresponding to the branch point λa is given by λ∗(q∗a) =

λa, from which we obtain

q∗a =
(1− 2λa)

√
a√

(1+ 1/a) − (1− 2λa)2
(224)

We now proceed to evaluate the integrals to obtain the heat PDF fol-

lowing the method developed in Sec. 2.8.2 and in Sec. 2.8.3.

• When q > q∗a, the PDF is given by

P(Qτ = qτ) ≈
gQ(λ

∗)eτhs(q)√
2πτf ′′q(λ

∗)
R1

(√
τ
[
ha(q) − hs(q)

])
.

(225)

• When q∗a > q > q∗b, the heat PDF has contributions both from

the branch point and the saddle point similar to Eq. (218). The

branch point contribution can be written as

PB(q, τ) ≈ g̃(λa) e
τha(q)√

πτ|f ′q(λa)|
R7

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(226)

where R7(z1, z2) is given by Eq. (135) and the large deviation

function corresponding to λa is given by

ha(q) :=fq(λa) . (227)

The saddle point contribution will be

PS(q, τ) ≈
|gQ(λ

∗)|eτhs(q)√
2πτf ′′q(λ

∗)
R′8

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(228)
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where R′8(z1, z2) is given by

R′8(z1, z2) =
√
z1z2
π

∫∞
0

du e−u
2

[
1√

z1 + iu
√
z2 − iu

−
1√

z1 − iu
√
z2 + iu

]
i.

(229)

• When q∗b > q, the heat PDF is obtained as a cumulative of both

the branch point and the saddle point; the branch point contri-

bution is given by

PB(q, τ) ≈ g̃(λa) e
τha(q)√

πτ|f ′q(λa)|
R9

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(230)

where R9(z1, z2) is given by Eq. (138). The saddle contribution

is

PS(q, τ) ≈
|gQ(λ

∗)|eτhs(q)√
2πτf ′′q(λ

∗)
R′10

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(231)

where R′10(z1, z2) is given by

R′10(z1, z2) =
√
z1z2
π

∫∞
−∞ du

e−u
2

√
z1 + iu

√
z2 + iu

(232)

Next, we consider the case when λa is negative and it lies between

λ− and the origin. The ordering goes as: λ− < λa < 0 < λb < λ+ In

this case, we rewrite gQ(λ) in the following way

gQ(λ) =
g2(λ)√

λ− λa
√
λb − λ

. (233)

Following the same prescription, we summarize the results for the

heat PDF.

• When q > q∗a, the heat PDF constitutes of both the branch point

and the saddle point. The branch point contribution is the fol-

lowing

PB(q, τ) ≈ g̃(λa) e
τha(q)√

πτ|f ′q(λa)|
R3

(√
τ
[
ha(q) − hs(q)

])
, (234)
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and the saddle contribution can be found as

PS(q, τ) ≈
|gQ(λ

∗)|eτhs(q)√
2πτf ′′q(λ

∗)
R′5

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(235)

where R′5(z1, z2) is given by

R′5(z1, z2) =
√
z1z2
π

∫∞
0

du e−u
2

[
1√

z1 + iu
√
z2 + iu

−
1√

z1 − iu
√
z2 − iu

]
i.

(236)

• When q∗a > q > q∗b, the heat PDF has a contribution only from

the saddle point:

PS(q, τ) ≈
gQ(λ

∗)eτhs(q)√
2πτf ′′q(λ

∗)
R′6

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(237)

where R′6(z1, z2) is given by

R′6(z1, z2) =
√
z1z2
π

∫∞
−∞ du

e−u
2

√
z1 + iu

√
z2 − iu

. (238)

• When q∗b > q, the heat PDF again gets contributions from the

branch point and the saddle point as well

PB(q, τ) ≈ g̃(λb) e
τhb(q)√

πτ|f ′q(λb)|
R3

(√
τ
[
hb(q) − hs(q)

])
, (239)

where R3(z) is given by Eq. (125) and Eq. (407). The saddle con-

tribution has the form

PS(q, τ) ≈
|gQ(λ

∗)|eτhs(q)√
2πτf ′′q(λ

∗)
R′5

(√
τ
[
ha(q) − hs(q)

]
,
√
τ
[
hb(q) − hs(q)

])
,

(240)

where R′5(z1, z2) is given by Eq. (236).

3.5.3 Symmetry properties and the Fluctuation theorem

It was already observed in recent literatures that the heat PDF gener-

ically does not satisfy the SSFT [43, 44, 45, 108, 109, 110]. Our result
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will turn out to be very consistent with this fact. From the detailed

computation of the PDF of the heat dissipation, we note that the heat

PDF has contributions both from the saddle point and the correspond-

ing singularities. We have found the following

hs(q) − hs(−q) =q

hb(q) − hb(−q) =2q

ha(q) − ha(−q) =2λaq (241)

It is therefore clear from this discussion that if the heat PDF takes

support from the singular points, it will fail to satisfy the SSFT while

in the absence of singular points, the contributions will come solely

from the saddle point and in that case, the heat PDF will satisfy the

SSFT. A tentative argument on the origin of the singularities has been

discussed in the last section. It is quite often found that the systems

with a bounded configuration space (such as energy or particle ex-

changing lattice exclusion models, multilevel systems with finite en-

ergy states) usually do not face such criticality [101, 102]. The finite-

ness of the phase space delimits the wave functions faster than expo-

nentials and which results in the convergence of the integrals over the

initial and the final configurations. This always results in an analytic

g(λ) and thus SSFT is always satisfied [101, 102].

3.6 characterizing the total entropy production : a sys-

tematic study

3.6.1 Definition of the total entropy production

We define the total entropy production as a cumulative of the entropy

increase in the medium due to the heat dissipation plus the change in

entropy of the system along with the entropy production in the driv-

ing source. To elaborate, we have considered the trapped Brownian

particle as the system, the ambient surrounding kept at fixed temper-
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ature T works as the medium. The motion of the trap (modelled as the

Ornstein-Uhlenbeck process) is stochastic and this mechanism is the

driving source. Therefore, the total entropy production of the universe

is given by

∆Stot = ∆Smed +∆Ssys +∆S
tot
sd , (242)

where change in the medium entropy is given by

∆Smed = βQτ (243)

whereQτ is given by Eq. (196). Change in system entropy in the steady

state is given by

∆Ssys =− ln pss[xτ|yτ] + ln pss[x0|y0]

= ln
pss[x0|y0]

pss[xτ|yτ]

= ln
Pss[x0,y0]
peq[y0]

peq[yτ]

Pss[xτ,yτ]

= ln
Pss[U0]

Pss[Uτ]
+ ln

peq[yτ]

peq[y0]
, (244)

where pss[xτ|yτ] is the conditional steady state configuration of the

system (denoted by xτ) trajectories for a given realization of the driving

source (denoted by yτ). Each trajectory of the driving source complies

with the initial peq[y0] and the final equilibrium distributions peq[yτ].

This definition of system entropy, introduced by Seifert, is in uni-

son with that of Shannon. The total entropy production due to the

stochastic driving (sd) source ∆Stot
sd is considered to be zero as it is a

reversible source and a Gaussian process thus effectively relaxing to

equilibrium,

∆Stot
sd = ∆Smed

sd +∆S
sys
sd

= β ∆qsd + ln
peq(y0)

peq(yτ)

= β ∆Esd −β ∆Esd, since peq(y) ∝ e
− y2

2Aτ0

= 0 . (245)

No additional perturbation is acting on the driving source (with inter-

nal energy ∆Esd), which implies that the driving source will reach an
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effective equilibrium through dissipation such that ∆qsd = ∆Esd, as

t > τ0, where τ0 is its own relaxation time.

Combining Eq. (243), Eq. (244) and Eq. (245), we obtain

∆Stot = βQτ −
1

2
UT0
[
H−1
1 (0) − R2

]
U0 +

1

2
UTτ
[
H−1
1 (0) − R2

]
Uτ ,

(246)

where the new matrix R2 has been defined as

R2 =
1

Dθτ0

0 0

0 1

 . (247)

It is worth to note that Eq. (246) also follows an identical structure as

Eq. (178) and as Qτ when the following quantities are suitably iden-

tified: Ωτ ≡ Qτ, Θτ ≡ ∆Stot, and the boundary terms are identified

as

bint[U0] ≡
1

2
UT0
[
R2−H

−1
1 (0)

]
U0, bfin[Uτ] ≡ −

1

2
UTτ
[
R2−H

−1
1 (0)

]
Uτ .

(248)

Therefore, the restricted generating function corresponding to ∆Stot

is simply given by

Z∆Stot(λ,U, τ|U0) =
〈
e−λ∆Stot δ[U−U(τ)]

〉
η

= ZQτ(λ,U, τ|U0)

× e−
λ
2 U

T
0

[
R2−H

−1
1 (0)

]
U0 e

λ
2 U

T
τ

[
R2−H

−1
1 (0)

]
Uτ ,

(249)

where ZQτ(λ,U, τ|U0) is given by Eq. (201). Using the asymptotic ex-

pansion of the restricted generating function Eq. (201) of Qτ, we find

Z∆Stot(λ,U, τ|U0) ∼ eτµ(λ) ψ(U, λ) e
λ
2 U

T
[
R1+R2−H

−1
1 (0)

]
U

× χ(U0, λ) e−
λ
2 U

T
0

[
R1+R2−H

−1
1 (0)

]
U0 (250)

where the eigenfunctions and the corresponding eigenvalue remain

same as Eq. (192), Eq. (86) respectively. We are now ready to obtain
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the moment generating function by taking average over the initial

and final conditions

Z∆Stot(λ, τ) =
〈
e−λ∆Stot

〉
= g∆Stot(λ) e

τµ(λ) + · · · , (251)

where the prefactor is

g∆Stot(λ) = det[H1(λ)L1(λ) − λH1(λ)R1 − λH1(λ)R2 + λν(λ)−1]−1/2

× det[1+H1(0)L2(λ) + λH1(0)R1 + λH1(0)R2 − λ]−1/2

=
4ν(λ)

[ν(λ) + 1]2
. (252)

3.6.2 Probability distribution

We are now ready to compute the probability distribution function

for the total entropy production. The PDF can be obtained by taking

the inverse Fourier transform of Z∆Stot(λ, τ) in Eq. (251)

P(∆Stot = sτ) =
1

2πi

∫ i∞
−i∞ Z∆Stot(λ, τ) eλsτ dλ

≈ 1

2πi

∫ i∞
−i∞ g∆Stot(λ) e

τfs(λ) dλ (253)

where

fs(λ) =
1

2
[1− ν(λ)] + λs (254)

and we have set τc = 1 for convenience. The large τ form of the

PDF can be obtained using the method of steepest descent. Before

proceeding further, we notice that g∆Stot(λ) is analytic in the inter-

val λ ∈ (λ−, λ+) so that we can deform the contour along the path

of steepest descent through the saddle point given by Eq. (112) as

obtained from the solution of the condition f′s(λ∗) = 0

λ∗(s) =
1

2

[
1−

s√
s2 + a

√
1+

1

a

]
. (255)

Using the saddle point approximation, the asymptotic form of the

PDF can be written as

P(∆Stot = sτ) ≈
g∆Stot(λ

∗)eτh(s)√
2πτf′′s(λ

∗)
, (256)
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where the large deviation function corresponding to the total entropy

production is given by

h(s) := fs(λ
∗) =

1

2

[
1+ s−

√
s2 + a

√
1+

1

a

]
. (257)

We also find that

f′′s(λ
∗) =

2(s2 + a)3/2√
a(1+ a)

, (258)

and the prefactor to be

g∆Stot(λ
∗) =

4
√
a(1+ a)

√
s2 + a

[
√
a(1+ a) +

√
s2 + a]2

. (259)

3.6.3 Symmetry properties and the Fluctuation theorem

We have shown that the PDF of the total entropy can be expressed

completely in terms of the large deviation function as obtained in

Eq. (256) with Eq. (257). As mentioned in Sec. 1.4.3, it is well under-

stood that an observable is said to satisfy the steady state fluctuation

theorem if

lim
τ→∞ 1

τ
ln
[ P(Ωτ = ωτ)

P(Ωτ = −ωτ)

]
= ω (260)

as also referred in Eq. (151). This translates to the large deviation

function in the following form

h(ω) − h(−ω) = ω. (261)

Within the current context, using Eq. (256) and Eq. (257), we infer that

h(s) − h(−s) = s , (262)

which means that the total entropy production if properly defined as

that of the system plus its surroundings will satisfy the SSFT at all

times. This differs from the actual version of the steady state fluctua-

tion theorem as derived by Evans-Searles in dynamical systems and

Gallavotti-Cohen for Ansov systems and later extended to stochas-

tic dynamics by Kurchan and Lebowitz-Spohn. In these early works,
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only the entropy of the medium was considered while the system entropy

was neglected since at large times, the former dominates (for it is ex-

tensive) over the later one. However, incorporating the system entropy

part, Crooks, Maes, Seifert and others have shown that the total en-

tropy production satisfies the FT for any finite length of time, which is

indeed a stronger statement than the earlier one [57, 59, 64].

Though it was indeed shown before that the total entropy produc-

tion in such kind of driven and dissipative systems should always

follow the SSFT, its validation in stochastically driven system was not

anticipated till recently. We extended the study to such stochastically

driven systems and found that indeed the fluctuation theorem for

total entropy production remains intact to any generic systems.

3.7 a simple description of the heat and the total en-

tropy fluctuations

In this section, we describe a simple probabilistic model that mimics

the case of heat and total entropy production fluctuations for the lin-

ear Langevin stochastic models as described in the framework of an

example in the preceding sections [105]. Let us recall Eq. (160) in a

general framework in the following way

Ωn = Θn −∆Un , (263)

where let us say that Θn is like the total entropy production which

satisfies the SSFT while Ωn is the heat part which does not satisfy

SSFT in general but in a restricted phase space. Let us consider all

the boundary terms (difference in kinetic energy or the quadratic po-

tential energy) cumulatively as ∆Un and the suffix index ‘n ′ refers

to the random variable index. Here I simply present a probabilistic

description to depict these features. Let us consider Θn = nθ has the

following form

ZΘ(λ,n) = 〈 e−λΘ 〉 = 〈 e−λnθ 〉 ∼ gθ(λ) e
nµθ(λ) (264)
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where gθ(λ) is the prefactor. Let us assume that gθ(λ) is analytic and

the PDF for Θ satisfies the symmetry of the FT. Consider the energy

term defined in terms of random variables in the following way

∆Un =X2n −X21 . (265)

Here we shall assume that the {Xi}’s are independent and identically dis-

tributed (IID) random variables. For simplicity, we choose them from

a Gaussian distribution with unit mean and unit variance

P(X = x) =
1√
2π

e−
(x−1)2

2 . (266)

It is important to note that in real Langevin models, entropy pro-

duction or the heat dissipation is not a simple sum or an integrated

function of IID random variables but they are rather Markovian (expo-

nentially correlated) or non-Markovian (long range correlation) ran-

dom variables. However, these differences will turn out to be irrele-

vant to our discussions and inclusion of correlated random variables

in this context are not going to differ the basic results. In general, we

are interested in computing the probability distribution of the mean

or the scaled observables such as ωn = Ωn/n, or θn = Θn/n, so that

ωn = θn −
∆Un

n

= θn −
X2n
n

+
X21
n

. (267)

As described in the earlier chapters, we define the moment generating

function (MGF) Z(λ) and the cumulant generating function (CGF)

µ(λ) corresponding to these observables in the following way

Z(λ) =〈e−λnωn〉 ∼ g(λ)enµ(λ) ,

µ(λ) = lim
n→∞ 1n ln 〈e−λnωn〉 . (268)

This allows us to represent the PDF of these observables P(ω) in

terms of the large deviation functions (LDF) h(ω) as prescribed in

the following

P(ωn = ω) ≈ enh(ω) ,

h(ω) = sup
λ∈R

[µ(λ) + λω] . (269)
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In the current context, we then write the moment generating function

as

〈e−λnωn〉 =〈e−λn[θ−
X2n
n +

X2
1
n ]〉

=〈e−λnθ〉 〈eλX2n〉 〈e−λX21〉

=gθ(λ) e
nµθ(λ) 〈eλX2〉 〈e−λX2〉 , (270)

since X’s are IID variables and the indices are dropped since all the

random variables are identically distributed. Using the definition in

Eq. (268), we write the corresponding CGF as

µ(λ) = µθ(λ) + lim
n→∞ 1

n

[
ln〈eλX2〉+ ln〈e−λX2〉

]
= µθ(λ) + lim

n→∞ 1

n

[
µX(−λ) + µX(λ)

]
, (271)

where we have defined the CGFs respectively

µX(λ) = ln〈e−λX2〉 ,µX(−λ) = ln〈eλX2〉 . (272)

A simple calculation yields the following results for the CGFs

µX(λ) =


− λ
1+2λ − 1

2 ln(1+ 2λ) if λ > −12

∞ otherwise

(273)

and

µX(−λ) =


λ

1−2λ − 1
2 ln(1− 2λ) if λ < 1

2

∞ otherwise .

(274)

Therefore, we can infer that

µX(λ) + µX(−λ) =


finite if λ ∈ (−12 , 12)

∞ otherwise .

(275)

Since, within this range, the above function stays finite and also does

not depend on n, the following condition holds

lim
n→∞ 1

n

[
µX(λ) + µX(−λ)

]
= 0 . (276)
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This allows us to write the CGF corresponding to ωn as in Eq. (271)

µ(λ) =


µθ(λ) if λ ∈ (−12 , 12)

∞ otherwise .

(277)

We now discuss the above result in details.

• CGF µ(λ) corresponding to ωn gets most of the contribution

from µθ(λ) corresponding to the observable θn within certain

allowed domain of λ. This means that within this domain, the

boundary terms consisting of {X}’s do not play any role and

they cancel as we take the limit n→∞.

• In order to set up this rule, we note that one does not need

an exact expression for µX(λ) which is a salient feature of this

problem. This is because we need to know only where µX(λ) is

finite or infinite and then within that finite domain of µX(λ), the

CGF µθ(λ) contributes to µ(λ).

We now move to compute the LDF, h(ω) corresponding to the observ-

able ω in the full domain. We recall that the LDF is given by

h(ω) = sup
λ∈R

[µ(λ) + λω] . (278)

Within the domain λ ∈ (−12 , 12), we have found that µ(λ) = µθ(λ) and

the method of supremum allows us to compute the supremum in λ

given by

λ∗ : µ′(λ∗) +ω = 0, (279)

which results in the LDF

hs(ω) = µθ(λ
∗) + λ∗ω , (280)

where the corresponding range ofω follows straightforward from the

condition

λ∗ ∈ (−
1

2
,
1

2
) =⇒ ω ∈ (

1

2
,
3

2
) . (281)
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However, this method breaks down once we are interested outside

the domain λ ∈ (−12 , 12). First, we concentrate when λ < −12 . This

corresponds toω > 3
2 . In this case, the LDF will not be determined by

the supremum. It is decided by the end point where the CGF, µX(λ)

diverges and thus one can not neglect its contribution any more. As

a matter of fact, in this case, the end point is given by λa = −12 and

LDF will be determined by λa which implies

ha(ω) = µθ(λa) + λaω . (282)

Now we consider the other range out of the allowed domain which

is λ > 1
2 . As before, this corresponds to the domain of ω : ω < 1

2 . In

this case, we notice that the CGF, µX(−λ) diverges because of the end

point defined by λb = 1
2 . This singular point results in a modification

in the LDF in this certain domain as the following

hb(ω) = µθ(λb) + λbω . (283)

To summarize, the rate functions are then given by

h(ω) =



ha(ω) ω > 3
2

hs(ω) 1
2 6 ω 6 3

2

hb(ω) ω < 1
2 .

(284)

Since the PDF is associated with the LDF as the following P(Ωn =

nω) ∼ enh(ω), we note that the PDF is determined by µθ(λ) within

the allowed analytical range 12 6 ω 6 3
2 . However, this is not the case

when one computes the PDF outside this domain. We note that the

PDF picks up the exponential tails corresponding to the singularities

present in the CGF. Moreover, it is also to note that these exponential

tails are only a product of the boundary terms appearing in Eq. (263)

and in Eq. (264), Eq. (265) . Therefore, we conclude that

P(Ωn = nω) ≈ P(Θn = nω) as ω ∈ (
1

2
,
3

2
)

≈ P(∆Un = ω) otherwise . (285)
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From the physical point of view, we notice that in a Langevin kind

set up, the observables Θ,Ω s are usually the family of applied work,

Jarzynski work, dissipated heat, power flux, total entropy generated

etc. An important point to note is that the these observables are usu-

ally extensive with time (analogous to n) but the boundary terms

are not. For example, the second law of thermodynamics relates the

change in heat energy ∆Q to the work difference ∆W by the energy

difference ∆U. Though both work and heat are extensive in time, en-

ergy difference is not and thus the fluctuations order of ∆U is smaller

than that of the order of ∆Q, ∆W which are linear in time (or n). We

thus will have

∆Q ∼ ∆W ∼ n , (286)

so that the statistics of Q, W will be identical. Nevertheless this rela-

tion might break down if ∆U ∼ O(n) and then

∆Q ∼ ∆U (287)

which results in an exponential tail in the PDF similar to the case as

shown above. The effects of these tails arising from the decay con-

stants or the singularities in the prefactor result in a major difference

in the validation of SSFT which is in this case will be depicted in

terms of the CGF from Eq. (277)

µ(λ) = µ(2− λ) , (288)

which is sometimes known as the Gallavotti-Cohen eigenvalue sym-

metry. This translates to the symmetry of the LDF as

h(ω) − h(−ω) = 2ω . (289)

As we note from Eq. (284), only within the restricted domain of

ω ∈ (12 , 32), the LDF of the dissipated heat satisfies the symmetry

or the SSFT, but outside this domain, it fails to satisfy the SSFT. So,

the boundary terms (or the energy terms, initial conditions etc. in the

Langevin setup) have a major role to play in the failure of the SSFT. In
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a series of examples both theoretical and experimental, these effects

have been observed. Consider the example of a Brownian particle

confined in an optical trap with the trap being moved with a uniform

velocity studied by Van Zon et al. It was shown that the work PDF al-

ways has a Gaussian form and always satisfies the SSFT. But the heat

(differed by the energy difference) satisfies the SSFT in a restricted

regime [43, 44, 45, 85, 68] which is exactly the case here. The failure

of SSFT in the case of heat fluctuations was also observed in several

other cases like the heat transport between two reservoirs along a car-

rier or a harmonic chain [111, 69, 70, 75, 73], cantilever fluctuations,

trapped particle system etc. [71, 72, 109, 104]. Extending the paradigm

problem of a colloidal particle in a trap with a stochastic driving was

carefully considered in an experiment and within a theoretical frame-

work in this thesis. It was found that the total entropy production

invariantly satisfies the SSFT while the heat or the mechanical work

fails to satisfy the SSFT [99, 103]. We should emphasize again that this

failure is a straightforward consequence of the singularities appear-

ing in the MGF due to the unboundedness of the phase space iden-

tical to the cases discussed in the thesis. An apparent resemblance

might be the the singularities appeared in the LDFs for current in the

periodic asymmetric exclusion process [62] , or the weakly asymmet-

ric simple exclusion process with open boundaries, the periodic total

asymmetric exclusion process, in the boundary driven diffusive mod-

els such as the Ising model driven in the boundaries, the Quadratic-σ

(QS) model [112]. Also there are models such as the weakly driven

asymmetric simple exclusion process in the limit of large bulk driv-

ing field and the partially asymmetric simple exclusion process in the

hydrodynamic limit. In such systems, the LDFs are a direct analogue

of free energies in equilibrium systems and perhaps the presence of

long range correlations lead to the non-differentiable LDFs [112] and

phenomenas such as non-equilibrium phase transitions. On the other

hand, we have obtained complete analytic LDFs which are continu-

ous and differentiable (first derivatives are continuous) at the singular
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points though the second derivatives are found to be discontinuous at

the singularities. It is worth pointing out that our systems of interest

typically span unbounded phase space resulting in the singularities

setting up the energy scale. On the contrary, the systems discussed

above show singular behavior even in a finite dimensional space (e.g.

exclusion processes in a finite lattice). This underlying difference is a

major one giving rise to two entirely different scenarios. Henceforth,

we should emphasize that our cases are not identical to the ones dis-

cussed just above since the singularities we obtain are determined by

the generating functions (a consequence of an infinite-dimensional

configuration space) resulting in the LDFs determined by the singu-

larities (as the cases discussed in the thesis, cases studied by Van Zon

et al, Baesi et al ) in contrast to the LDFs determining the singularities

(as discussed above) themselves.

3.8 summary

Let us now summarize the main contents of this chapter. Using the

model introduced in the preceding chapter, we have studied the heat

and the entropy fluctuations in the NESS. We have computed the full

PDFs of these observables in terms of the LDFs. We have also derived

a simple method to incorporate the boundary effects while operating

within a set of observables like mechanical work, heat and the total en-

tropy production. We have shown that if the observables are related

to each other by boundary terms, then the corresponding operator

and the eigensystem (eigenvalues and the eigenvectors) remain indif-

ferent. However, while computing the moment generating function,

the sub dominant prefactor g(λ) differs resulting in different statis-

tics. We observe that this leads to non universal symmetry properties

among the class of PDFs and so the validation of the SSFT is restricted.

Finally, we illustrate a simple model based on the probability theory

which can capture the general behavior such as symmetries in the
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LDFs, singularities in the prefactor, exponential tails in the PDFs of

the observables usually observed within the Langevin set up.





4
W O R K F L U C T U AT I O N S O F A B R O W N I A N

PA RT I C L E D R A G G E D T H R O U G H A M E D I U M

4.1 abstract

This chapter depicts the situation of an underdamped Brownian par-

ticle diffusing through an ambient medium. We have further consid-

ered its motion in the presence of a correlated external random force.

The force is modelled by an Ornstein-Uhlenbeck process. We inves-

tigate the fluctuations of the work done by the external force on the

Brownian particle in a given time interval in the steady state. We

calculate the large deviation functions as well as the complete asymp-

totic form of the probability density function of the performed work.

At certain limit, this model mimics a very simple system of a Brown-

ian particle coupled to two thermostats and there one is more inter-

ested in computing the full distribution of the heat flowing from one

end to the other. We give a full description of this observable in terms

of the large deviation functions same as before. Moreover, we discuss

the symmetry properties of the large deviation functions for these

systems. Finally we perform numerical simulations and they are in a

very good agreement with the analytic results.

4.2 introduction

Transport of any kind being energy or matter or charges is an impor-

tant phenomena to understand how two physical systems react when

kept in contact to each other. In recent times, successful experiments

conducted in micro-sized systems have gained a lot of attention. The

107
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reason being it has vast applications towards numerous disciplines

and their commercial usage. This includes automotive engineering,

thermal management of electronic devices and systems, climate con-

trol, insulation, materials processing, and power station engineering.

It is therefore of immense importance to understand these phenom-

ena from microscopic scale. In microscopic scale, transport can be

of various forms: electron transport through quantum dots or wires;

heat transport in (electrically) insulating nanotubes, nanowires; bal-

listic thermal conductance using single wall or multi-walled carbon

nanotubes; heat current measurements in a boron-nitride nanotube

based on thermal rectifier models. One can ask a whole set of ques-

tions in this kind of model: properties of the currents (heat, phonon,

charge), universality of the steady state measure of the energies, vari-

ation of temperature or the the energy profile with the system size,

the average flow of energy being transmitted, a complete information

about the distribution of the particle or heat energy.

In this chapter, we will address few questions raised in the pre-

ceding paragraph using a model system. Consider a simplified ver-

sion of a metal rod being implemented as a ordered (disordered)

harmonic (anharmonic) chain [73] or take simply a Brownian parti-

cle [111] attached with the reservoirs kept at different temperatures

at the extreme two ends. The aim is to calculate the full description

of the heat energy being transported from one end to the other one.

Though a few attempts have been made to compute the average heat

current [69] or the fluctuations [70], the full distribution of the heat

current is not known yet. Since, the heat energy is accompanied by

non-Gaussian fluctuations, it is not sufficient to know about the mean

and variance to get the detailed distribution. So, one has to go beyond

the linear probability theory to incorporate these non-Gaussian fluc-

tuations. We answer to this question using the formalism developed

in the last two chapters and in unison with the theory of large devia-

tions. We restrict ourselves within the single particle model; however,

an extension to the harmonic chain should not offer more insights.
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To this quest, we initially study a more general model and the prob-

lem of a bound particle connected with two thermostats appears as a

subclass of this illustrated model. This correspondence will be made

later as we go along. Our model system is described as following:

consider an underdamped Brownian particle diffusing in an ambient

medium at certain temperature. We apply a random external field to

the system thus driving it away from equilibrium. In such way, the ex-

ternal random field does a work on the system and we are interested

to quantify this quantity. We note that this observable is a trajectory

dependent stochastic quantity and varies from one realization to the

other one. The origin of its stochasticity is the following: initial condi-

tions are chosen from a distribution and the observable depends on

the noise history. So, one has to look into its distribution for the com-

plete information. We compute the distribution of this work done in a

given duration using the method developed in the preceding chapters.

We find that the distribution function can be completely represented

in terms of the large deviation functions at large time. By taking a

suitable limit, we show that this model represents the system of the

Brownian particle connected with two reservoirs and it is therefore

simple hereafter to find the detailed description of the corresponding

observable we were interested in. As a corollary, we can also explore

the validity of the so called steady state fluctuation theorem in the

context of this problem.

The chapter is organized as follows. In the following section, we

define the model. In Sec. 4.4 we compute the moment generating

function (MGF) of work Wτ performed in a given time τ in steady

state. Some details of this calculation has been relegated to Sec. 4.5.

Explicit results of µ(λ) and g(λ) are given in the subsequent section

Sec. 4.6. In Sec. 4.7, we invert the MGF to obtain the asymptotic form

(for large τ) of the PDF of the work. In Sec. 4.8, we have considered

the case of a Brownian particle connected to two heat baths, which

appears to be a corollary set up of the general problem in certain

limits. We have analyzed the heat PDF using the method developed
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in the section in great details. We discuss the symmetry properties

of the large deviation functions, obtained in this chapter, and theirs

connection with the FT in Sec. 4.9. Finally we conclude in Sec. 4.10.

4.3 model

Consider a Brownian particle of mass m, in the presence of an exter-

nal fluctuating time dependent field, at a temperature T . The velocity

v(t) of the particle evolves according to the underdamped Langevin

equation, given by,

m
dv

dt
+ γv = f(t) + η1 , (290)

where γ is the friction coefficient. The viscous relaxation time scale

for the particle is τγ = m/γ. The thermal noise η1 is taken to be a

Gaussian white noise with mean zero and correlation〈η1(t)η1(s)〉 =

2Dδ(t− s), where diffusion constant D = γkBT and kB is the Boltz-

mann constant. The external stochastic field f is modelled by an

Ornstein-Uhlenbeck process,

df

dt
= −

f

τ0
+ η2 , (291)

where η2 is another Gaussian white noise with mean zero and correla-

tion 〈η2(t)η2(s)〉 = 2Aδ(t− s). This system reaches a steady state and

in the steady state the external force has zero mean and covariance

〈f(t)f(s)〉 = Aτ0 exp(−|t− s|/τ0).

The heat current flowing from the bath to the particle is the force

exerted by the bath times the velocity of the particle [107, 29]. There-

fore, in a given time τ, the total amount of heat flow (in the unit of

KBT ) is given by,

Qτ =
1

kBT

∫τ
0

(−γv+ η1)v(t)dt . (292)

On the other hand, the change in the internal energy of the particle

in this finite interval τ is given by

∆U(τ) =
1

kBT

[
1

2
mv2(τ) −

1

2
mv2(0)

]
. (293)
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Then the first law of the thermodynamics (conservation of energy)

gives ∆U(τ) = Wτ +Qτ, where Wτ is the work done on the particle

by the external force, which is given by

Wτ =
1

kBT

∫τ
0

f(t)v(t)dt . (294)

This work is a stochastic quantity and our goal is to compute its PDF

P(Wτ).

For later convenience, we will introduce two dimensionless param-

eters in the following:

θ =
τ20A

D
, and δ =

τ0
τγ

. (295)

4.4 moment generating function

We begin by writing Eqs. (290) and (291) in the matrix form

dU

dt
= −AU+Bη , (296)

where U = (v, f)T and η = (η1,η2)T are column vectors, and A and B

are 2× 2 matrices given by

A =

1/τγ −1/m

0 1/τ0

 , B =

1/m 0

0 1

 . (297)

To compute the PDF of Wτ , we first consider its moment generating

function, constrained to fixed initial and final configurations U0 and

U respectively:

Z(λ,U, τ|U0) = 〈e−λWτδ[U−U(τ)]〉U0 , (298)

where the averaging is over the histories of the thermal noises starting

from the initial condition U0. It is easy to show that this restricted

moment generating function satisfies the Fokker-Planck equation

∂Z

∂τ
= LλZ , (299)
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with the initial condition Z(λ,U, 0|U0) = δ(U−U0). The Fokker-Planck

operator is given by

Lλ =
D

m2
∂2

∂v2
+
Dθ

τ20

∂2

∂f2
+
1

τγ

∂

∂v
v+

1

τ0

∂

∂f
f

−
f

m

∂

∂v
−
λγ

D
fv . (300)

The solution of this equation can be formally expressed in the eigen-

bases of the operator Lλ and the large-τ behavior is dominated by

the term containing the largest eigenvalue. Thus, for large τ , one can

write,

Z(λ,U, τ|U0) = χ(U0, λ)Ψ(U, λ)eτµ(λ) + · · · , (301)

where µ(λ) is the largest eigenvalue, LλΨ(U, λ) = µ(λ)Ψ(U, λ) and∫
dUχ(U, λ)Ψ(U, λ) = 1.

The moment generating function can be obtained by averaging the

restricted generating function over the initial variables U0 with re-

spect to the steady state distribution PSS(U0) and integrating out the

the final variables U,

Z(λ, τ) =
∫
dU

∫
dU0PSS(U0)Z(λ,U, τ|U0) , (302)

where PSS(U0) = Ψ(U0, 0). This yields

Z(λ, τ) = 〈e−λWτ〉 = g(λ)eτµ(λ) + · · · , (303)

where

g(λ) =

∫
dU

∫
dU0Ψ(U0, 0)χ(U0, λ)Ψ(U, λ) . (304)

The full forms of Ψ(U, λ) and χ(U0, λ) are given by Eq. (335) com-

puted in the next section in details. The explicit results for µ(λ) and

g(λ) are given in Sec. 4.6 following Sec. 4.5.

4.5 detailed calculation of the mgf

We recall Eq. (296) and Eq. (297)

dU

dt
= −AU+Bη , (305)
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where U = (v, f)T and η = (η1,η2)T are column vectors and A, B are

2× 2 matrices given by

A =

1/τγ −1/m

0 1/τ0

 , B =

1/m 0

0 1

 . (306)

The expression for Wτ can then be expressed in terms of these matri-

ces

Wτ =
γ

2D

∫τ
0

dt UTA1U , (307)

where A1 is a real symmetric matrix

A1 =

0 1

1 0

 . (308)

Using the integral representation of the delta-function Eq. (51), we

rewrite the moment generating function

Z(λ,U, τ|U0) =
∫
d2σ

(2π)2
eiσ

TU 〈e−λWτ−iσ
TU(τ)〉U,U0 . (309)

Now, we proceed by defining the finite time Fourier transforms and

inverses as follows:

[Ũ(ωn), η̃(ωn)] =
1

τ

∫τ
0

dt[U(t),η(t)] exp(−iωnt), (310a)

[U(t),η(t)] =
∞∑

n=−∞[Ũ(ωn), η̃(ωn)] exp(iωnt), (310b)

with ωn = 2πn/τ.

In the frequency domain, the Gaussian noise configurations de-

noted by {η(t) : 0 < t < τ} can be well described by the infinite

sequence {η̃(ωn) : n = −∞, ...,−1, 0,+1, ...,∞} of Gaussian random

variables having the following correlations

〈η̃(ω)η̃T (ω′)〉 = 2D

τ
δ(ω+ω′) diag(1, θ/τ20) . (311)

The Fourier transform of U(t) is then straightforward and henceforth

the expression for Wτ becomes

Ũ = GBη̃−
1

τ
G∆U Wτ =

γτ

2D

∞∑
n=−∞ Ũ

T (ωn)A1Ũ
∗(ωn) , (312)
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where G(ω) = (iωI+A)−1 and ∆U = U(τ) −U(0), with I being the

identity matrix. The elements of G are G11 = τγ(iωτγ + 1)−1, G22 =

τ0(iωτ0 + 1)
−1, G12 = G11G22/m, G21 = 0. Substituting Ũ from the

above expression in Wτ and grouping the negative indices into their

positive counterparts, we obtain

Wτ =
γτ

2D

[
η̃T0 (BG

T
0A1G0B)η̃0 −

2

τ
∆UT (GT0A1G0B)η̃0

+
1

τ2
∆UT (GT0A1G0)∆U

]
+
γτ

D

∞∑
n=1

[
η̃T (BGTA1G

∗B)η̃∗ −
1

τ
∆UT (GTA1G

∗B)η̃∗

−
1

τ
η̃T (BGTA1G

∗)∆U+
1

τ2
∆UT (GTA1G

∗)∆U

]
, (313)

where G0 = G(ω = 0) = A−1, η̃0 = η̃(0). The finite time Fourier

series can be written for U(τ) as well

U(τ) = lim
ε→0

∞∑
n=−∞ Ũ(ωn)e

−iωnε

= lim
ε→0

∞∑
n=−∞(GBη̃−

1

τ
G∆U)e−iωnε

= lim
ε→0

∞∑
n=−∞(GBη̃)e

−iωnε , (314)

where we observe that τ−1
∑
nG(ωn)e

−iωnε = 0 for large τ. This

is because while converting the summation into an integral we note

that all the poles of G(ω) lie in the upper half plane. In other words,

the function G(ω) is analytic in the lower half. Using this expression

we obtain

σTU(τ) = σTG0Bη̃0

+

∞∑
n=1

[
e−iωnεη̃T (BGTσ) + eiωnε(σTG∗B)η̃∗

]
. (315)

The average quantity then can be rewritten as

〈e−λWτ−iσ
TU(τ)〉 =

∞∏
n=0

〈esn〉 , (316)
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where

sn =− λτη̃Tcnη̃
∗ + η̃Tαn +αT−nη̃

∗

−
λ

τ

γ

D
∆UT (GTA1G

∗)∆U for n > 1 , (317)

and

s0 = −
λτ

2
η̃T0c0η̃0 +α

T
0 η̃0 −

λ

2τ

γ

D
∆UT (GT0A1G0)∆U, (318)

in which we have used the following definitions

cn =
γ

D
BGTA1G

∗B , (319)

αn = λ
γ

D
(BGTA1G

∗)∆U− ie−iωnεBGTσ . (320)

We can now calculate the average 〈esn〉 independently for each n > 1

with respect to the Gaussian PDF P(η̃) = π−2(detΛ)−1 exp(−η̃TΛ−1η̃∗)

with Λ−1 = 2D
τ diag(1, θ/τ20), which gives,

〈esn〉 =
exp[αT−nΩ−1

n αn − λ
τ
γ
D∆U

T (GTA1G
∗)∆U]

det(ΛΩn)
, (321)

where Ωn = λτcn +Λ−1. Similarly, calculating the average of n = 0

term with respect to the Gaussian PDF P(η̃0) = (2π)−1(detΛ)−1/2 exp(−12 η̃
T
0Λ

−1η̃0),

we get

〈es0〉 =
exp[12α

T
0Ω

−1
0 α0 −

λ
2τ
γ
D∆U

T (GT0A1G
∗
0)∆U]√

det(ΛΩ0)
. (322)

The restricted moment generating function can now be rewritten as

Z(λ,U, τ|U0) =
∫
d2σ

(2π)2
eiσ

TU
∞∏
n=0

〈esn〉 , (323)

where using the fact 〈esn〉 = 〈es−n〉, we can write

∞∏
n=0

〈esn〉 = exp

(
−
1

2

∞∑
n=−∞ ln[det(ΛΩn)]

)

× exp

(
1

2τ

∞∑
n=−∞[α

T
−nτΩ

−1
n αn − λ

γ

D
∆UTGTA1G

∗∆U]

)
.

(324)

The determinant in Eq. (324) is found to be

det(ΛΩn) = 1+
4θλ(1− λ)

τ20τ
2
γ

|G11|
2|G22|

2 . (325)
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Now in large-τ limit, we can replace the summations over n into an

integral over ω i.e.
∑
n → τ

∫
dω
2π . The first part of the summation is

then

τµ(λ) = −
τ

2

∫
dω

2π
ln
[
det
(
ΛΩ(ω)

)]
, (326)

where µ(λ) is given by Eq. (339a). Similarly, the second part of the

summation can be converted into an integral. Finally, after doing

some manipulations, we obtain
∞∏
n=0

〈esn〉 ≈ eτµ(λ) exp
[
−
1

2
σTH1σ+ i∆U

TH2σ+
1

2
∆UTH3∆U

]
, (327)

in which we have defined the following matrices

H1 =

∫∞
−∞

dω

2π
G∗B(τΩ−1)BGT , (328)

H2 = − lim
ε→0

λ

2π

γ

D

∫∞
−∞ dωeiwεG+A1GB(τΩ

−1)∗BG+, (329)

and

H3 = −
λ

2π

γ

D

∫∞
−∞ dω GTA1G

∗

+
λ2

2π

γ2

D2

∫∞
−∞ dω GTA1G

∗B(τΩ−1)BGTA1G
∗ . (330)

We then evaluate the matrices by performing the integral by the method

of contours. For convenience, we write down the elements of the ma-

trices respectively.

H111 =
Dτγ

m2
1

1+ δν̄

(
δ+

1+ θ

ν

)
, (331a)

H121 = H211 =
Dθ

m

1− 2λ

ν(1+ δν̄)
, (331b)

H221 =
Dθ

τ0

1

1+ δν̄

(
1+

δ

ν

)
. (331c)

The elements of H2 matrix are

H112 =
1

ν(1+ δν̄)

[
λθ+

1

2
(1− ν) +

1

2
δν(1− ν̄)

]
, (332a)

H122 = −
λγθ

ν(1+ δν̄)
, (332b)

H212 = −
λδ

γν(1+ δν̄)
+

δ(1− ν)

2γν(1+ δν̄)
, (332c)

H222 =
δ(1− νν̄)

2ν(1+ δν̄)
. (332d)
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The elements of H3 matrix are given by

H113 =
λ2θγ2τγ

Dν(1+ δν̄)
, (333a)

H123 = H213 =

4λ2(1− λ)γθ

Dτ0τγ

1+ ν+ (1+ δν̄)(1− ν̄− 2
δ)

[1+ (1+ δν̄) + δν]× [1− 1
δ(1+ δν̄) +

ν
δ ]

, (333b)

H223 = −
λ(1− λ)δτ0
Dν(1+ δν̄)

. (333c)

We note that the matricesH1 andH3 are symmetric and they satisfy

the relation H3 = (I+H2)H
−1
1 HT2 . Inserting Eq. (327) into Eq. (323)

and performing the Gaussian integral over σ, we obtain

Z(λ,U, τ|U0) ≈
eτµ(λ)

2π
√

det(H1(λ))

× e−
1
2U

TL1(λ)U e−
1
2U

T
0L2(λ)U0 , (334)

where L1(λ) = H−1
1 (I+HT2 ) and L2(λ) = −H−1

1 HT2 . We immediately

identify the right and left eigenfunctions respectively as

Ψ(U, λ) =
1

2π
√

det(H1(λ))
exp

[
−
1

2
UTL1(λ)U

]
, (335a)

χ(U0, λ) = exp
[
−
1

2
UT0L2(λ)U0

]
. (335b)

It is then straightforward to verify LλΨ(U, λ) = µ(λ)Ψ(U, λ) and∫
dUχ(U, λ)Ψ(U, λ) = 1. The steady state distribution is given by

PSS(U) = Z(λ = 0,U, τ→∞|U0) = Ψ(U, λ = 0)

=
1

2π
√

det(H1(0))
exp

[
−
1

2
UTL1(0)U

]
, (336)

where L1(0) and given by

L1(0) = 1
detH1(0)

D
1+δ

 θ
τ0
(1+ δ) − θ

m

− θ
m

τγ
m2 (1+ δ+ θ)

 . (337)

It is worth noting that the deviation of the system from equilibrium

can also be measured using Eq. (336)

α =
〈v2〉ss

〈v2〉eq
− 1 , (338)
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where 〈v2〉ss is the velocity variance in the steady state which can

be found from Eq. (337) and 〈v2〉eq is that of in equilibrium in the

absence of the external driving. Hence, one finds, α = θ/(1+ δ).

4.6 explicit results for µ(λ) and g(λ)

Following the detail calculation given in Sec. 4.5, we find that

µ(λ) =
1

2τγ
[1 − ν̄(λ)] , (339a)

where

ν̄(λ) =
1

δ

[√
1 + δ2 + 2δν(λ) − 1

]
, (339b)

with

ν(λ) =
√
1 + 4θλ(1 − λ) . (339c)

We note that µ(λ) obeys the so-called Gallavotti-Cohen symmetry,

µ(λ) = µ(1 − λ) .

Using Eq. (304), we find

g(λ) =
[
det(I + HT2 )

]−1/2[det(I − H1(0)H−1
1 (λ)HT2 (λ))

]−1/2 ,

=
[
f1(λ , θ , δ)

]−1/2 [
f2(λ , θ , δ)

]−1/2 (340)

where the first and second terms are due to tracing out the final and

initial variables respectively. Using the forms of the matrices given by

Eq. (331) and Eq. (332), we obtain

f1(λ , θ , δ) : = det(I + HT2 )

=
1

4ν(1 + δν̄)2

[
p(λ) + 2θλq(λ)

]
, (341a)

f2(λ , θ , δ) : = det[I − H1(0)H−1
1 (λ)HT2 (λ)]

=
1

4(1 + δ)2
1

θ + (1 + δν̄)2

[
r(λ) + 2θλs(λ)

]
.

(341b)

where

p(λ) =2 + 2ν + δ (1 + ν̄) (1 + δ + 3ν + δνν̄) , (342a)

q(λ) =2 + δ(ν̄ − 1) = 1 +
√
1 + δ2 + 2δν − δ . (342b)
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and

r(λ) = 2θ(1 + ν) + 2(1 + ν)(1 + δ)2

+
[
θ + (1 + δ)2

][
δ(1 + ν̄)2 + δ(1 + ν̄)(1 + δν̄)(ν + ν̄)

]
,

(343a)

s(λ) = −
[
2 + 2θ + 3θδ + δν̄ + θδν̄

]
+
[
δ + 2δ2(2 + ν̄) + δ3(1 + 3ν̄)

]
. (343b)

Let us now analyze the functions f1(λ, θ, δ) and f2(λ, θ, δ) in details.

We note that the pre-factors outside the square bracket of f1(λ, θ, δ)

and f2(λ, θ, δ) are always positive. Moreover, p(λ) and q(λ) are again

clearly positive in the region λ ∈ [λ−, λ+]. In particular, they take

the minimum values at λ±, given by p(λ±) = 2 + a1 and q(λ±) =

1+ a2 = 2− a3, where a1 = (1+ δ)(δ+
√
1+ δ2 − 1) > 0, 1 > a2 =

√
1+ δ2 − δ > 0, and 1 > a3 = (1 + δ) −

√
1+ δ2 > 0. Therefore,

f1(λ+, θ, δ) > 0 as λ+ > 0. On the other hand, at λ = λ− we get

p(λ−) + 2θλ− q(λ−) = (2+ a1) + 2θλ−(2− a3)

= a1 + (−2a3θλ−) + 2(1+ 2θλ−).

The first two summands in the last line of the above expression is

clearly positive (note that λ− < 0). Moreover, it can be shown that

1+ 2θλ− =
√
1+ θ

[√
1+ θ−

√
θ
]
> 0. (344)

This also implies that

1+ 2θλ > 0 for λ ∈ [λ−, λ+]. (345)

Therefore, f1(λ−, θ, δ) > 0, which implies that f1(λ, θ, δ) stays positive

in the region λ ∈ [λ−, λ+].

Similarly, we can analyze the second term f2(λ, θ, δ). Clearly, r(λ) is

always positive in the region λ ∈ [λ−, λ+]. On the other hand, the first

line in the expression of s(λ) given by Eq. (343b) is negative whereas

the second line is positive; s(λ) can take both positive and negative
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values in the (θ, δ, λ) space. Writing Eq. (343b) as s(λ) = −b1 + b2

with both b1 > 0 and b2 > 0, we get

r(λ) + 2θλs(λ) =
[
r(λ) − b2

]
+ (1+ 2θλ)b2 + (−2b1θλ).

By explicitly expanding r(λ), it can be seen that all the terms appear-

ing in b2 completely cancel with some of the terms of r(λ). Therefore,

r(λ) − b2 > 0 for λ ∈ [λ−, λ+]. Similarly, according to Eq. (345), the

second summand is positive. Finally, the last summand is clearly pos-

itive for λ < 0. Therefore, f2(λ, θ, δ) > 0 for λ− 6 λ 6 0.

At λ = λ+, we find that r(λ+) + 2θλ+s(λ+) changes sign in the

parameter space of (θ, δ). The phase boundary that separates the two

regions where this function stays positive and negative respectively

is given by

f2(λ+, θ, δ) = 0 , (346)

which is shown in the phase diagram Fig. 13.

4.7 probability distribution function

The PDF P(Wτ) is related to the moment generating function Z(λ, τ)

as

P(Wτ) =
1

2πi

∫+i∞
−i∞ Z(λ, τ)eλWτdλ , (347)

where the integration is done in the complex λ plane. Inserting the

large τ form of Z(λ, τ) given by Eq. (303), we obtain

P(Wτ = wτ/τγ) ≈
1

2πi

∫+i∞
−i∞ g(λ)e(τ/τγ) fw(λ)dλ , (348)

where

fw(λ) =
1

2
[1− ν̄(λ)] + λw . (349)

In the large τ limit, we can use the saddle point approximation, in

which one chooses the contour of integration along the steepest de-

scent path through the saddle point λ∗. The saddle point can be ob-

tained solving the equation,

f′w(λ
∗) = 0 , (350)
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Figure 13: This plot depicts the analytic properties of g(λ). In the shaded

region of the (θ, δ) plane, g(λ) possesses a singularity, where

f2(λ+, θ, δ) < 0. On the other hand, in the unshaded region g(λ)

does not have any singularities, where f2(λ+, θ, δ) > 0. These two

domains are separated by the boundary given by the equation

f2(λ+, θ, δ) = 0.

or equivalently,

ν̄′(λ∗) = 2w . (351)

The above equation yields

θ(1− 2λ∗) = wν(λ∗)
√
1+ δ2 + 2δν(λ∗) . (352)

Since θ, δ and ν(λ) are always positive, it is clear that sign(1−2λ∗)=sign(w).

The above equation can be simplified to the cubic form

ν3(λ∗) + aν2(λ∗) − b = 0 , (353)

where

a =
θ+ (1+ δ2)w2

2δw2
, (354a)

b =
θ+ θ2

2δw2
. (354b)
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We observe that one of the roots of the cubic equation for ν(λ∗) is real

while the other two are complex. Equation (352) suggests the root to

be real, and it is given by

ν(λ∗) = −
a

3

[
1−

(
1+ 2 k+ 3

√
3 l k

)−1/3
−
(
1+ 2 k+ 3

√
3 l k

)1/3], (355a)

where l = b/a3 and k = (27/4) l− 1. Note that l > 0. Therefore, ν(λ∗)

is evidently real for k > 0. On the other hand, when k < 0, it can be

simplified to the evidently real form

ν(λ∗) =−
a

3

[
1− 2 cos (φ/3)

]
, (355b)

where φ = tan−1
[
3
√
3l|k|

/
(1+ 2k)

]
∈ [0,π].

In the limit w → ±∞, from Eq. (354) we have, a → (1+ δ2)/(2δ)

and b → 0. Therefore, l → 0 and k → −1, giving φ → π. This yields,

ν(λ∗) → 0. On the other hand, for w → 0, we have, a ∼ θ/(2δw2).

Using this we find that ν(λ∗)→
√
1+ θ. It is also evident as Eq. (352)

gives λ∗ = 1/2 for w = 0, and then, from Eq. (339c) we get ν(1/2) =
√
1+ θ.

Now using Eq. (352), the saddle point λ∗(w) can be expressed in

terms of ν(λ∗). Therefore, the function fw(λ) at the saddle-point λ∗,

can be expressed in terms of ν(λ∗), and is given by

hs(w) := fw(λ
∗)

=
1

2

[
1

δ
+ 1+w

]
−
1

2

[
1

δ
+
w2

θ
ν(λ∗)

]√
1+ δ2 + 2δν(λ∗) . (356)

To find the region in which λ∗ lies, it is useful to express ν(λ) in the

form

ν(λ) =
√
4θ(λ+ − λ)(λ− λ−) , (357)

where

λ± =
1

2

[
1±

√
1+ θ−1

]
. (358)

Clearly, ν(λ) has two branch points on the real-λ line at λ±. Moreover,

it is real and positive in the (real) interval λ ∈ (λ−, λ+). Since, λ+ −
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Figure 14: The behavior of λ∗ is shown (solid line) as a function of w, for

a set of parameters θ = 4, δ = 2, which merges to λ± (dashed

lines) as w→ ∓∞.

λ− =
√
1+ θ−1, as λ→ λ±, we have ν(λ)→ 2[θ(1+ θ)]1/4|λ− λ±|

1/2.

Therefore, from Eq. (352) we get

w→ ∓ [θ(1+ θ)]1/4

2
√
1+ δ2

|λ∗ − λ±|
−1/2, as λ∗ → λ± . (359)

In other words, λ∗(w) merges to λ± as one takes the limit w → ∓∞.

This also agrees with the observation that ν(λ∗)→ 0 as |w|→∞. For

any finite w the saddle point λ∗ ∈ (λ−, λ+). In Fig. 14 we plot the

saddle point λ∗ as a function of w using Eq. (352).

Now, if g(λ) is analytic in the range λ ∈ (0, λ∗), we can deform

the contour along the path of the steepest descent through the saddle

point, and obtain P(Wτ) using the usual saddle point method . How-

ever, more sophistication is needed when g(λ) contains singularities.

Therefore it is essential to analyze g(λ) for possible singularities.

We first recall g(λ) from Eq. (340) and Eq. (341),

g(λ) =
[
f1(λ, θ, δ)

]−1/2[
f2(λ, θ, δ)

]−1/2 . (360)

Following Sec. 4.5, we also recall that f1(λ, θ, δ) does not change its

sign and always stays positive in the region [λ−, λ+]. This is not the
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case for f2(λ, θ, δ). While f2(λ, θ, δ) > 0 for λ− 6 λ 6 0, in some

region in the (θ, δ) space, f2(λ+, θ, δ) < 0. Therefore, in that (θ, δ)

region, f2(λ, θ, δ) must have a zero at some intermediate λ = λ0 > 0,

which gives rise to a branch-point singularity in g(λ). Figure 13 shows

parameter region in which g(λ) possesses a singularity. The phase

boundary between the region which g(λ) has a singularity and the

singularity-free region is given by the equation f2(λ+, θ, δ) = 0. In the

limit δ→ 0 we get θ→ 1/3.

4.7.1 Case of no singularities

In the singularity free region (Fig. 13), the asymptotic PDF of the work

done is obtained using the standard saddle point method, which

gives

P(Wτ = wτ/τγ) ≈
g(λ∗)e

τ
τγ
hs(w)√

2π ττγ f
′′
w(λ

∗)
, (361)

where hs(w) is given by Eq. (356) and

f′′w(λ
∗) = −

ν̄′′(λ∗)

2
=

2

ν(λ∗)

θ+w2[1+ δ2 + 3δν(λ∗)]

[1+ δ2 + 2δν(λ∗)]1/2
, (362)

which is expressed in terms of w and ν(λ∗) given by Eq. (355). Fig. 15

shows a very good agreement between the analytic result given by

Eq. (361) and numerical simulations.

4.7.2 Case of a singularity

For a given value of δ and θ, the location of the branch point λ0 is

fixed between the origin and λ+. On the other hand, the saddle point

λ∗ increases monotonically along the real-λ line from λ− to λ+ as w

decreases from +∞ to −∞. For sufficiently large w, the saddle point

lies in the interval (λ−, λ0) and therefore, the contour of integration

can be deformed into the steepest descent path, which passes through
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Figure 15: The (red) dashed line plots the analytical result of P(Wτ) against

the scaled variable w = Wτ/(τ/τγ), while the (blue) points are

numerical simulation results.

the saddle point, without touching λ0. However, as w decreases, the

saddle point hits the branch point at some specific value w = w∗

given by

λ∗(w∗) = λ0 . (363)

For w < w∗, the steepest descent contour wraps around the branch

cut between λ0 and λ∗. We here present the results for both regimes

w < w∗ and w > w∗ respectively, applying the method developed in

[103].

4.7.2.1 w > w∗

For w > w∗, the contour is deformed through the saddle point with-

out touching the singularity and we obtain

P(Wτ = wτ/τγ) ≈
g(λ∗)e

τ
τγ
hs(w)√

2π ττγ f
′′
w(λ

∗)
R1

(√
τ

τγ
[h0(w) − hs(w)]

)
,

(364)
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where f′′w(λ∗) is given by Eq. (362) and the function R1(z) is given by

R1(z) :=
z√
π
ez
2/2K1/4(z

2/2) , (365)

with K1/4(z) being the modified Bessel function of the second kind.

4.7.2.2 w < w∗

For w < w∗, the contribution comes from both the branch point and

the saddle point i.e.

P(Wτ) ≈ PB(Wτ) + PS(Wτ) , (366)

where the branch point contribution is

PB(Wτ = wτ/τγ) ≈
g̃(λ0)e

τ
τγ
h0(w)√

π ττγ |f
′
w(λ0)|

R2

(√
τ

τγ
[h0(w) − hs(w)]

)
, (367)

where

h0(w) := fw(λ0) =
1

2
[1− ν̄(λ0)] + λ0w , (368)

f′w(λ0) = −
ν̄′(λ0)

2
+w, (369)

g̃(λ0) = lim
λ→λ0

|
√
λ− λ0 g(λ)| , (370)

and

R2(z) =

√
2z

π

∫z
0

1√
u
e−2zu+u

2

du . (371)

The contribution coming from the saddle point is given by

PS(Wτ = wτ/τγ) ≈
|g(λ∗)|e

τ
τγ
hs(w)√

2π ττγ |f
′′
w(λ

∗)|
R4

(√
τ

τγ
[h0(w) − hs(w)]

)
,

(372)

where the function R4(z) is given by

R4(z) =

√
π

2
zez

2/2

[
I−1/4(z

2/2) + I1/4(z
2/2)

]
−
4z

π
2F2(1/2, 1; 3/4, 5/4; z2) , (373)

and I±1/4(z) are modified Bessel functions of the first kind and 2F2(a1,a2;b1,b2; z)

is the generalized hypergeometric function. We again find a very

good agreement between the analytical results and numerical sim-

ulations Fig. 16.
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Figure 16: The (red) dashed line plots the analytical result for P(Wτ),

while the (blue) points are numerical simulation results. The

vertical dashed line marks the position of the singularity w∗ =

−0.801661... for the values of θ = 7, δ = 1.

4.8 the case of a brownian particle connected to two

thermostats

We now move to analyze the δ = 0 case, which becomes a special case

of the problem of a single Brownian particle connected with two heat

baths at different temperatures. This model was introduced by intro-

duced by Derrida and Brunet [111] and later studied by Visco [69]

and Imparato [70] in great details. However, these authors computed

the current profile and the incomplete LDFs in this problem. Here,

we obtain the full statistics.

We first note that, g(λ) takes a simple form in the limit δ→ 0, given

by,

g(λ) =

√
2ν√

ν+ 1+ 2λθ

√
2√

ν+ 1− 2λθ
. (374)
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It is easy to show [100, 71] that g(λ) is completely analytic for θ 6 1/3,

and the PDF is obtained using the saddle point method as,

P(Wτ = wτ/τγ) ≈
g(λ∗)e

τ
τγ
hs(w)√

2π ττγ f
′′
w(λ

∗)
, (375)

where the second derivative of fw(λ) along the real-λ axis at λ∗ is

given by [100, 71],

f′′w(λ
∗) =

2(w2 + θ)3/2√
θ(1+ θ)

, (376)

and

hs(w) := fw(λ
∗) =

1

2

[
1+w−

√
w2 + θ

√
1+

1

θ

]
. (377)

On the other hand, if θ > 1/3, it is easy to show that g(λ) picks up

a branch point singularity at λ = λ0 = 2/(1+ θ), which corresponds

to [100, 71],

w∗ =
θ(θ− 3)

3θ− 1
. (378)

Then one needs to perform a contour integration avoiding the branch

cut as mentioned in the last section. For w > w∗, using the same

prescription [103], we find the PDF as

P(Wτ = wτ/τγ) ≈
g(λ∗)e

τ
τγ
hs(w)√

2π ττγ f
′′
w(λ

∗)
R1

(√
τ

τγ
[h0(w) − hs(w)]

)
, (379)

where

h0(w) := fw(λ0) =
1− θ

1+ θ
+
2 w

1+ θ
. (380)

For w < w∗, the contribution to the PDF comes both from the saddle

and the branch point.

P(Wτ) ≈ PB(Wτ) + PS(Wτ) , (381)

where the branch point contribution is

PB(Wτ = wτ/τγ) ≈
g̃(λ0)e

τ
τγ
h0(w)√

π ττγ |f
′
w(λ0)|

R2

(√
τ

τγ
[h0(w) − hs(w)]

)
,

(382)
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where

g̃(λ0) =
3θ− 1

2θ
√
2(1+ θ)

,

f′w(λ0) = w−w∗ , (383)

and the function R2(z) is given by Eq. (407). The contribution coming

from the saddle point is given by

PS(Wτ = wτ/τγ) ≈
|g(λ∗)|e

τ
τγ
hs(w)√

2π ττγ |f
′′
w(λ

∗)|
R4

(√
τ

τγ
[h0(w) − hs(w)]

)
,

(384)

where the function R4(z) is given by Eq. (373). Figure 17 compares

the analytical results with the numerical simulations.

4.9 large deviation function and the fluctuation the-

orems

The LDF, associated with the PDF, is defined as

h(w) = lim
(τ/τγ)→∞

1

(τ/τγ)
ln P(Wτ = wτ/τγ) . (385)

Due to the large deviation form of the PDF, P(Wτ = wτ/τγ) ∼ e
(τ/τγ)h(w),

the FT given by Eq. (151), is equivalent to the following symmetry re-

lation of the LDF:

h(w) − h(−w) = w . (386)

Now, in the parameter region where g(λ) is analytic [see Fig. 13],

the LDF is given by h(w) = hs(w). In this case, it is clear from

Eq. (356) that the above symmetry relation (386) holds, as ν(λ∗) is

an even function in w.

On the other hand, in the parameter region where g(λ) has a sin-

gularity, the LDF is given by

h(w) =


hs(w) for w > w∗ ,

h0(w) for w < w∗ .

(387)
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Figure 17: The (red) dashed lines plot analytical results for P(Wτ), while

the (blue) points are numerical simulation results, for the δ = 0

case. The vertical dashed line in (b) marks the position of the

singularity which is w∗ = 0.037... in this case.

Therefore, it is evident that if w∗ < 0, the symmetry relation (386)

holds only in the specific range w∗ < w < −w∗. Otherwise, it fails to

satisfy. Nevertheless, even for w > w∗, one still gets a linear relation

h(w) − h(−w) = 2λ0w, in the range w ∈ (−w∗,w∗).
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4.10 summary

In this chapter, we have discussed an underdamped Brownian parti-

cle driven by an external correlated stochastic force, modelled by an

Ornstein-Uhlenbeck process. We have studied the probability density

function of the work done Wτ on the particle by the external random

force, in a given time τ. The behavior can be characterized, as before,

in terms of two dimensionless parameters, namely, (i) θ, that gives the

relative strength between the external random force and the thermal

noise, and (ii) δ, that characterizes the ratio between the the viscous

relaxation time and the correlation time of the external force. In the

large τ limit, we obtain the moment generating function (MGF) and

then analyze the sub-dominant prefactor. We then compute the PDF

by carefully inverting the MGF considering the analytic and singular

properties of the prefactor. The entire analytical results have been sup-

ported by numerical simulations. We find that in the limit δ→ 0, our

model becomes a special case of a problem of a single Brownian par-

ticle coupled to two distinct reservoirs, first proposed by Derrida and

Brunet and later studied by Visco. We have computed the full distri-

bution function of the heat flowing from one end to the other which is

of very importance in the context of heat transport. Further, we have

looked at the validity of the FT for these observables, in terms of the

symmetry properties of the large deviation function. We have found

that in the (θ, δ) region where g(λ) is analytic, the FT is satisfied. On

the other hand, in the non-analytic region, the symmetry of the large

deviation function breaks down. In particular, the PDF picks up an

exponential tail characterized by the singularity and this leads to the

violation of the steady state fluctuation theorems.

Along with this work, the issue of a detailed description of the

heat flow within two reservoirs connected to a system modelled as

a Brownian particle, which was lacking, is now resolved. Perhaps it

does not depict the real situation completely, it is of particular impor-
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tance since a few exact results are achievable and also few predictions

made earlier by the linear response theory can be reverified. Further-

more, we are able to give the full distribution functions for these ob-

servables from which any average quantity, specifically the average

current, can be computed and verified through experiments. Finally,

we provide a nontrivial example where one can compute a whole set

of large deviation functions exactly.



A
A S Y M P T O T I C E X PA N S I O N S O F T H E I N T E G R A L S

A R O U N D T H E B R A N C H P O I N T

a.1 steepest descent method with a branch point

Let us consider the integral

I =
1

2πi

∫ i∞
−i∞ g1(λ)

eτfw(λ)

√
λa − λ

dλ, (388)

where λa > 0. The position of the saddle point λ∗ depends on the

value of w, and depending on whether w > w∗a or w < w∗a we have

λ∗ < λa or λ∗ > λa respectively. In the following, we consider the two

cases one by one.

a.1.1 The branch point is not between the origin and the saddle point:

λa 6∈ (0, λ∗)

In this case, since λa lies outside the interval (0, λ∗), one can deform

the contour of integration in Eq. (388) into the steepest descent path

through λ∗ without hitting λa (see Fig. 18). Along the steepest descent

contour we define

fw(λ) − fw(λ
∗) = −u2. (389)

Therefore, λa is mapped to a branch point at u = −ib with

b =
√
fw(λa) − fw(λ∗) (390)

and Eq. (388) becomes

I =
eτfw(λ∗)

2πi

∫∞
−∞ q1(u)

e−τu
2

√
b− iu

du (391)

133
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λ*

Re λλa

Im λ

0

Figure 18: (Color online) Schematic steepest descent contour (in red) for the

case when the branch point λa is not between the origin and the

saddle point λ∗. Here, it is shown for λ∗ < 0, however, one can

also have λ∗ ∈ (0, λa). The direction towards which the contour

bends, depends on the value of w. Here, it is shown for w < 0.

For w > 0 the contour bends towards the positive Re(λ) axis,

whereas for w = 0, the steepest descent contour is parallel to the

Im(λ) axis. The thick solid (orange) line along the Re(λ) axis from

λa represents the branch cut.

with

q1(u) = g1(λ)

√
b− iu√
λa − λ

dλ

du
. (392)

Now, making a change of variable
√
τu → u and taking the large-τ

limit we get

I ≈ e
τfw(λ∗)

2πi
q1(0)τ

−1/4

∫∞
−∞

e−u
2√

b
√
τ− iu

du, (393)

where

q1(0) = g1(λ
∗)

√
b√

λa − λ∗
dλ

du

∣∣∣∣
λ→λ∗

. (394)

Using −u2 = 1
2f
′′(λ∗)(λ− λ∗)2 + · · · as λ→ λ∗, it can be found that

dλ

du

∣∣∣∣
λ→λ∗

=
i
√
2√

f ′′(λ∗)
. (395)

Therefore, we get

I ≈ g1(λ
∗)√

λa − λ∗
eτfw(λ∗)√
2πτf ′′w(λ

∗)
R1(
√
τ b), (396)
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Figure 19: (Color online) Schematic steepest descent contour for the case

when the branch point λa is between the origin and the saddle

point λ∗. The thick solid (orange) line along the Re(λ) axis from

λa represents the branch cut. The steepest descent contour goes

around the branch cut as shown by C2 and C3 (in blue). The

contribution coming from the circular contour (in magenta) Cε

around the branch point becomes zero in the the limit of the

radius ε → 0. The direction towards which the contours C1 and

C4 (shown in red) bend, depends on the value of w. Here, it is

shown for w > 0. For w < 0 the C1 and C4 bend towards the

negative Re(λ) axis, whereas for w = 0, they are parallel to the

Im(λ) axis.

where

R1(z) =

√
z

π

∫∞
−∞

e−u
2

√
z− iu

du. (397)

We perform this integral in the Mathematica to get Eq. (121).

a.1.2 The branch point is between the origin and the saddle point: λa ∈

(0, λ∗)

In this case, since λa lies in the interval (0, λ∗), the deformed contour

the through λ∗ wraps around the branch cut. The contour of integra-

tion C = C1 +C2 +C3 +C4 +Cε is shown in Fig. 19. The contour Cε
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represents the circular contour of radius ε going around the branch

point, and its contribution becomes zero in the limit ε → 0. The inte-

gral in Eq. (388) can be written as I = PB + PS, where PB(w, τ) is the

contribution coming from the integrations along the contours C2 and

C3, whereas PS is the saddle point contribution coming from the inte-

grations along the contours C1 and C4. In the following we evaluate

PB and PS.

a.1.2.1 Branch cut contribution

We consider,

PB =
1

2πi

∫
C2+C3

g1(λ)
eτfw(λ)

√
λa − λ

dλ. (398)

We note that
√
λa − λ changes when one goes from C2 to C3. More

precisely, λa − λ = |λa − λ|e
iφ, where φ = +π on C2 and φ = −π

on C3 (as φ = 0 for λ < λa on the real-λ line). Therefore,
√
λa − λ =

+i|λa − λ|
1/2 on C2 and

√
λa − λ = −i|λa − λ|

1/2 on C3, using which

from Eq. (398) we get

PB =
1

π

∫λ∗
λa

g1(λ)
eτfw(λ)

|λ− λa|1/2
dλ. (399)

Since fw(λ) is real, fw(λa) > fw(λ) > fw(λ
∗) for λa < λ < λ

∗, and

fw(λ) is minimum at λ∗ along the real λ line, we set

fw(λ) − fw(λa) = −2bu+ u2. (400)

The branch point λa is mapped to u = 0. Using f ′w(λ∗) = 0, we find

that the saddle point is mapped to u = b, and b can be found by

putting λ = λ∗ and u = b in the above equation, which gives Eq. (390).

With the above mapping from λ to u, Eq. (398) becomes

PB =
eτfw(λa)

π

∫b
0

q2(u)
e−τ(2bu−u

2)

√
u

du, (401)

where

q2(u) = g1(λ)

√
u

|λ− λa|1/2
dλ

du
. (402)
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From Eq. (400), we get

dλ

du
=
2(u− b)

f ′w(λ)
, (403)

which is finite and nonzero everywhere between u = 0 and u = b.

Near u = 0 we get

dλ

du

∣∣∣∣
u=0

=
2b

−f ′w(λa)
. (404)

On the other hand, near u = b, by applying L’Hospital rule to Eq. (403)

we get

dλ

du

∣∣∣∣
u=b

=

√
2√

f ′′w(λ
∗)

. (405)

Now, making a change of variable
√
τu → u in Eq. (401) and then

taking the large-τ limit we get

PB ≈
eτfw(λa)

π

q2(0)

τ1/4
R2(
√
τb), (406)

where

R2(z) =

∫z
0

1√
u
e−2zu+u

2

du. (407)

The asymptotic forms of R2(z) can be easily determined from the

above integral, which gives R2(z) ∼
√
π/
√
2z as z→∞.

It can be shown that

√
u

|λ− λa|1/2
dλ

du

u→0−−−−→
λ→λa

[
dλ

du

∣∣∣∣
u=0

]1/2
. (408)

Therefore,

q2(0) = g1(λa)

[
dλ

du

∣∣∣∣
u=0

]1/2
. (409)

a.1.2.2 Saddle point contribution

We consider,

PS =
1

2πi

∫
C1+C4

g1(λ)
eτfw(λ)

√
λa − λ

dλ. (410)
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We make a transform from λ to u as defined by Eq. (389). In this case,

the branch point λa is mapped to a branch point at u = ib where b is

given by Eq. (390), and Eq. (410) becomes

PS =
eτfw(λ∗)

2πi

∫∞
−∞ q3(u)

e−τu
2

√
b+ iu

du (411)

with

q3(u) = g1(λ)

√
b+ iu√
λa − λ

dλ

du
. (412)

We found in the preceding sub-subsection that
√
λa − λ∗ = ±i|λa −

λ∗|1/2 below (+) and above (−) the branch cut respectively. Therefore,

q3(u) approaches two different limits as u → 0 form above (0+) and

below (0−) respectively:

q3(0
±) = ∓ g1(λ

∗)
√
b

|λa − λ∗|1/2

√
2√

f ′′(λ∗)
, (413)

where we have used Eq. (395) for the Jacobian. Thus, upon changing
√
τu→ u and taking the large-τ limit yields

PS ≈
g1(λ

∗)

|λa − λ∗|1/2
eτfw(λ∗)√
2πτf ′′(λ∗)

R4(
√
τ b), (414)

where

R4(z) =

√
z

π

[∫∞
0

e−u
2
du√

z+ iu
−

∫0
−∞

e−u
2
du√

z+ iu

]
i

=

√
z

π

∫∞
0

due−u
2

[
1√
z+ iu

−
1√
z− iu

]
i. (415)

We evaluate this integral in Mathematica to get Eq. (373), where the

generalized hypergeometric function has the series expansion

2F2(a1,a2;b1,b2; z) =
∞∑
n=0

(a1)n (a2)k
(b1)k (b2)n

zn

n!
(416)

with (a)n = a(a + 1)(a + 2) · · · (a + n − 1), (a)0 = 1 being the the

Pochhammer symbol.

The large z behavior of R4(z) can be found by expanding the term

inside the square bracket in Eq. (415) in powers of 1/z and integrating

term by term. This gives R4(z) ' 1/(2
√
π z) for large z.
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On the other hand, R4(z) ' Γ(1/4)
√
z/2π for small z. Using this

together with limλ∗→λa

√
b/|λa − λ

∗|1/2 = [f ′′(λ∗)/2]1/4 in Eq. (414)

we get

PS ≈
Γ(1/4)

2π

g1(λ
∗)eτfw(λ∗)

[2τf ′′w(λ
∗)]1/4

as λ∗ → λa. (417)
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