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Critical features of nonlinear optical isolators for improved nonreciprocity
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Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity.
We examine the physical mechanism and properties of such nonreciprocity (NR). For this, we calculate the
transmission of light through two models of a nonlinear optical isolator consisting of (a) a two-level atom and
(b) a driven �-type three-level atom coupled asymmetrically to light inside open waveguides. We find a higher
NR in the model (b) than in the model (a) due to a stronger optical nonlinearity in the former. We determine the
critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in
the coupling. Surprisingly, we find that it is mainly coherent elastic scattering compared to incoherent scattering
of incident light which causes maximum NR near the critical intensity. We also show a higher NR of an incident
light in the presence of an additional weak light at the opposite port.
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I. INTRODUCTION

Light propagation is nonreciprocal when the transmission
of light is different under reversal of the incoming light’s
direction. Nonreciprocity (NR) in light propagation can
be achieved using various physical mechanisms including
magneto-optical Faraday rotation [1,2], parametric modu-
lations [3–6], optical nonlinearity plus spatially asymmet-
ric linear permittivity [7–12], and spin-orbit interaction of
light [13–15]. Optical NR without magnetic materials and
fields has attracted a lot of interest in recent years for its
suitability in an on-chip integration of an optical isolator
[3–22].

A few years ago, we proposed an all-optical diode or
isolator [7] in a simple system consisting of a two-level
atom (2LA) being asymmetrically coupled to light inside
one-dimensional (1D) waveguides, such as superconducting
transmission lines [23,24] and line defects in photonic crystals
[25]. A propagating light inside such open waveguides can
be tightly confined to deeply subwavelength sizes in the
transverse dimensions. It leads to an effective photon-photon
correlation (optical nonlinearity) through strong atom-photon
coupling even at a lower light power [26]. The NR in the
transmission of light in the proposed diode is achieved via
(i) optical nonlinearity which results in an incoming light’s
power-dependent dielectric response of the system and (ii)
asymmetric coupling which creates a spatially asymmetric
linear permittivity across the atom. Asymmetric permittivity
causes a spatially asymmetric dielectric response. We have
shown that while single-photon transmission is the same under
reversal of the incoming light’s direction, the two-photon
transmission is not [7]. This mechanism has been inves-
tigated in many recent studies [8–10,12] for nonreciprocal
transmission.

The proposed all-optical diode can be implemented in
experiments with superconducting transmission lines coupled
to an artificial atom, such as superconducting qubits [23,24],
or line defects in photonic crystals coupled to quantum dots
[25]. However, some significant modifications in the original
calculation are required for an adequate description of these
experimental systems. These are (i) incident light in coherent

states instead of in Fock states and (ii) incorporation of
pure dephasing and nonradiative decay of the atom, either
of which is inevitable in such physical systems. In this
paper, we address these tasks for two prototypical models
of nonlinear optical isolators [7] using quantum Langevin
equations and Green’s function method [27,28] which is a bit
similar [29] to the popular input-output theory or Heisenberg-
Langevin equations approach [30–38]. The studied models
are (a) a 2LA being asymmetrically coupled to light inside
1D waveguides and (b) a driven �-type three-level atom
(3LA) asymmetrically coupled to light inside 1D waveguides
(see Fig. 1).

Optical nonlinearity in model (b) is much higher than in
model (a) [39]. Here we show that the NR in transmission
of light is greater in model (b) than model (a) due to
stronger optical nonlinearity. The NR in transmission depends
nonmonotonically on the intensity of incoming light and
asymmetry in the coupling. We calculate the critical intensity
for which NR is maximum and also find a dependence of this
maximum NR on asymmetry in the coupling in model (a). To
our surprise, we find that while incoherent scattering has a
larger contribution in NR at a higher intensity, it is mainly due
to coherent elastic scattering of the incident light at a lower
power. Finally, we show that NR of an incident light can be
improved in the presence of an additional weak light at the
opposite port.

The rest of this paper is organized as follows. In Sec. II, we
present the theoretical model of an asymmetrically coupled
2LA and derive analytical formulas for the NR and power
spectrum of the transmitted light in this model. We compare the
NR in transmitted light through a driven 3LA to that through
a 2LA in Sec. III. Section IV provides some conclusions and
perspectives of our study.

II. ASYMMETRICALLY COUPLED TWO-LEVEL ATOM

We first consider a 2LA with a transition frequency ωe

between the ground level |g〉 and excited level |e〉. The 2LA is
direct coupled to light inside open waveguides at the left and
right side of it with coupling strength gL and gR , respectively.
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FIG. 1. Models of nonlinear optical isolator. (a) A two-level atom
and (b) a driven �-type three-level atom are coupled asymmetrically
(gL �= gR) to light inside open waveguides. A real-space description
of the propagating photons is shown by dashed lines where the
photons at x < 0 and x > 0 represent, respectively, incoming and
scattered parts on each side of the atoms and the photons at x = 0 are
coupled to the atomic transition between |g〉 and |e〉.
The Hamiltonian of the full system is

H2LA

h̄

= ωeσ
†σ +

∫ ∞

−∞
dk{vgk(a†

kak + b
†
kbk + c

†
kck + d

†
kdk)

+ [σ †(gLak + gRbk + γ dk) + H.c.] + λσ †σ (c†k + ck)},
(1)

where we assume a linear energy-momentum dispersion for
different photon modes with a group velocity vg and write
light-matter interactions in linear form within the rotating-
wave approximation. Here, σ †(≡ |e〉〈g|) and σ (≡ |g〉〈e|) are,
respectively, the raising and lowering operator of the 2LA, and
a
†
k,b

†
k create a photon with wave number k, respectively, at the

left and right side of the 2LA. The operators c
†
k,d

†
k , respectively,

denote the creation of excitations related to pure dephasing
(dominant in superconducting circuits) and nonradiative decay.
The couplings λ and γ control the strength of pure dephasing
and nonradiative decay. All the couplings are taken to be
constant over photon frequency near ωe; this is known as the
Markov approximation causing the photon fields to behave as
memoryless baths. We also consider here that the couplings
are turned on at t = t0 when light beams are shined on the
2LA.

We start the calculation by writing the Heisenberg equations
of motion for operators ak,bk,ck,dk,σ , and σ †σ appearing in
the Hamiltonian in Eq. (1). These equations for the photon
operators ak,bk,ck,dk are first-order linear inhomogeneous
differential equations, which we solve formally for some
initial condition at t0. The initial condition of photon operators
indicates a direction of incoming photons. We get time
evolution of the photon operators, for example, ak(t) with an
initial condition ak(t0) as

ak(t) = Gk(t − t0)ak(t0) − igL

∫ t

t0

dt ′Gk(t − t ′)σ (t ′), (2)

with Gk(τ ) = e−ivgkτ , and similarly for bk(t), ck(t), and
dk(t). Plugging these solutions of the photon operators in the
Heisenberg equations of the atomic operators σ and σ †σ , we
find the following equations:

dσ

dt
= −i(ωe − i�t )σ − i(1 − 2σ †σ )ηd (t)

−iλ[σηc(t) + η†
c(t)σ ], (3)

dσ †σ

dt
= −2�dσ

†σ + iη
†
d (t)σ − iσ †ηd (t), (4)

where we identify ηd (t) = ∫ ∞
−∞ dkGk(t − t0)[gLak(t0) +

gRbk(t0) + γ dk(t0)] and ηc(t) = ∫ ∞
−∞ dkGk(t − t0)ck(t0) as

noises whose properties are determined by the initial condition
of the photon fields at t = t0. The rates �d = �L + �R + �γ

and �t = �d + �λ with �L = πg2
L/vg, �R = πg2

R/vg, �γ =
πγ 2/vg, �λ = πλ2/vg denote dissipation and dephasing of
the 2LA. Equations (3) and (4) are in the form of quantum
Langevin equations, being nonlinear differential equations of
operators with multiplicative noises.

The transmission and reflection coefficients of photons are
calculated using a continuity equation [27,28],

dσ †σ

dt
+ ∇ · jp = 0, (5)

where jp is an operator for the photon current. For an
incident light from the left of the 2LA, we write ∇ · jp =
jpb + jpd − jpa , where jpa and jpb are the photon current,
respectively, at the left and right side of the 2LA, and jpd is the
current of nonradiative decay. We find these current operators
by plugging the Heisenberg equation for σ †σ in Eq. (5):

jpa(t) = igL

∫ ∞

−∞
dk[a†

k(t)σ (t) − σ †(t)ak(t)], (6)

jpb(t) = −igR

∫ ∞

−∞
dk[b†k(t)σ (t) − σ †(t)bk(t)], (7)

jpd (t) = −iγ

∫ ∞

−∞
dk[d†

k (t)σ (t) − σ †(t)dk(t)]. (8)

At the steady state, dσ †σ
dt

= 0, which results in jpa = jpb +
jpd . The transmission and reflection coefficients of light are
calculated from jpb/(vgIin) and 1 − jpa/(vgIin), respectively,
where Iin is the intensity (total number of photons) of the
incident light per unit quantization length.

Here we consider two different initial conditions of incom-
ing light: (i) a single light beam from one side of the 2LA in
Sec. II A and (ii) two light beams from opposite sides of the
2LA in Sec. II B.

A. Single light beam

First, we consider a single input light in a coherent
state |Ep,ωp〉 with a frequency ωp and an amplitude Ep.
We take everywhere the amplitude of light to be real
for simplicity. For an input light from the left of the
2LA, we have ak(t0)|Ep,ωp〉 = Epδ(vgk − ωp)|Ep,ωp〉 and
bk(t0)|Ep,ωp〉 = ck(t0)|Ep,ωp〉 = dk(t0)|Ep,ωp〉 = 0. Thus,
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we get

Iin = 〈Ep,ωp|
∫

dka
†
k(t0)ak(t0)|Ep,ωp〉/L = E2

p

2πv2
g

, (9)

where we use δ(k = 0) = L/(2π ) and L is the quantization
length.

We apply the above properties of the coherent state to solve
the nonlinear operator given by Eqs. (3) and (4). By performing
the expectation of these operators given by Eqs. (3) and (4) in
the initial state |Ep,ωp〉, we convert the noise operators into c
numbers. We define [33]

S1(t) = 〈Ep,ωp|σ (t)|Ep,ωp〉eiωp(t−t0), (10)

S2(t) = 〈Ep,ωp|σ †(t)σ (t)|Ep,ωp〉, (11)

and S∗
1 (t) = [S1(t)]∗ which satisfy a closed set of linear

coupled differential equations obtained from Eqs. (3) and (4).
We write these equations in a compact manner by introducing
vectors S = [S1(t),S∗

1 (t),S2(t)]T and � = (−i�L,i�L,0)T ,

dS
dt

=
⎛
⎝iδωp − �t 0 2i�L

0 −iδωp − �t −2i�L

i�L −i�L −2�d

⎞
⎠S + �,

(12)

with detuning δωp = ωp − ωe and Rabi frequency �L =
gLEp/vg for an incident light from the left of the 2LA.
Equation (12) for such nonoperator variables can be solved
for an initial condition, e.g.,S1(t = t0) = S∗

1 (t = t0) = S2(t =
t0) = 0, which indicates the 2LA in the ground state before
shining a light on it. The long-time steady-state behavior of
the system is independent of the initial condition for the 2LA.
The steady-state solutions are obtained by setting dS

dt
= 0.

These are

S1(t → ∞) = S1(∞) = −i�L(iδωp + �t )�d

�L

, (13)

S2(t → ∞) = S2(∞) = �t�
2
L

�L

, (14)

where �L =  + 2�t�
2
L with  = �d (�2

t + δω2
p).

Using the above solution of S1(∞) and S2(∞), we
evaluate the expectation value of the steady-state current
operators jpa,jpb,jpd in the initial state |Ep,ωp〉. We denote
〈Ep,ωp|jpa|Ep,ωp〉 by 〈jpa〉, and so forth,

〈jpa〉 = −2{�LIm[S1(∞)] + �LS2(∞)}

= 2�2
L�t (�R + �γ )

�L

, (15)

〈jpb〉 = 2�RS2(∞) = 2�2
L�t�R

�L

, (16)

〈jpd〉 = 2�γS2(∞) = 2�2
L�t�γ

�L

. (17)

Indeed, 〈jpa〉 = 〈jpb〉 + 〈jpd〉 in the steady state. The trans-
mission coefficient of light from the left to right side of the
2LA is TLR = 〈jpb〉/(vgIin) = 4�t�L�R/�L. TLR depends
asymmetrically on �L and �R due to the term 2�t�

2
L in the

denominator �L. The term 2�t�
2
L is related to the intensity of

incident light from the left. Transmission coefficient TRL from
right to left of the 2LA is found by exchanging �L and �R in
TLR . Thus, a difference in light transmission under reversal of
the incident light’s direction is

�T = TLR − TRL = 4�t�L�R

(
1

�L

− 1

�R

)
, (18)

with �R =  + 2�t�
2
R . The transmission difference �T is a

measure of NR in this system. It vanishes when gL = gR . It
also vanishes in the single-photon limit of the incident light [7]
for Ep → 0 when the terms 2�t�

2
L in �L and 2�t�

2
R in �R

are dropped. Therefore, both the asymmetry in coupling and
optical nonlinearity at higher light intensity are essential for
the nonreciprocal transmission of light in the current system.

We plot the line shape of TLR, TRL, and �T with a scaled
intensity of incident light in Fig. 2(a) for �L/ωe = 0.03
and �R/ωe = 0.1. Both TLR,TRL fall monotonically with
increasing Iin due to the photon blockade in a direct-coupled
system. A 2LA is saturated by a single photon; therefore
it acts as a nonlinear medium for two or multiple photons.
However, the strength of such optical nonlinearity by a single
2LA is expected to fall above a critical photon number as
multiple photons cannot simultaneously interact with a 2LA.
Consequently, nonreciprocity in light transmission through a
2LA would decrease above a critical intensity of the incident
light. Indeed, we find from Eq. (18) that �T increases with
Iin up to a critical value I cr

in = /(4vg�t

√
�L�R) before

falling monotonically with a further increase in Iin [12].
The nonmonotonic nature of �T with increasing Iin is
shown in Figs. 2(a) and 2(b) for �R/ωe = 0.1 and different
�L/ωe = 0.01,0.03,0.05. In Fig. 2(a), we also plot a scaled
transmission difference �T /T̄ ≡ 2�T /(TLR + TRL) which
increases monotonically with increasing Iin before saturating
at large Iin. Interestingly, �T /T̄ at high Iin shows a large value
where light transmission through the 2LA itself is a bit small.

For fixed �L and �R , the maximum NR, �T cr, is achieved
at Iin = I cr

in ,

�T cr = 4�t�L�R(�R − �L)

(�R + �L + 2
√

�L�R)
. (19)

The dependence of �T cr on asymmetry in the coupling is
nontrivial, which can be seen by plotting �T cr with �L

and �R . We plot �T cr with �R/ωe in Fig. 2(c) for a fixed
�L/ωe(= 0.03). �T cr changes nonmonotonically with �R

and its sign switches across �R = �L. For a fixed �L, �T cr

becomes extreme at two values of �R—one value is smaller
than �L and another is larger than �L. In Fig. 2(c), we also show
how detuning δωp, pure dephasing �λ, and nonradiative decay
�γ affect NR. We find while the magnitude �T cr decreases
with an increasing value of �γ , �λ, or δωp, �γ has a relatively
higher influence on NR than those due to δωp or �λ. Here we
point out that higher ratios of �L/�γ ,�R/�γ ,�L/�λ,�R/�λ

can create a higher NR even for smaller values of �L and �R .
We also notice that the maximum value of �T cr for our studied
parameters in this model is around 0.2, which is somewhat
small for practical applications.

To have a better understanding of the underlying physical
mechanism of this NR, we now investigate a role of coherent
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FIG. 2. Features of nonreciprocal light propagation through an asymmetrically coupled two-level atom. (a) Transmission coefficients
TLR,TRL, a difference in transmission �T , and a normalized difference in transmission �T /T̄ with scaled intensity Iin/I

cr
in of incident light.

(b) �T vs Iin/I
cr
in at �R = 0.1 and three different �L. The black dash-dotted curve is for �L = 0.03 and �R = 0.1 in the presence of an

additional backward light of intensity Ib with ζ = Ib/I
cr
in = 0.018. (c) A difference in transmission �T cr at the critical intensity I cr

in with �R

for a fixed �L = 0.03 and different values of �γ ,�λ, and δωp . In all the plots, �L = 0.03, �R = 0.1, �γ = �λ = 0.003, and δωp = 0 if they
are not explicitly mentioned. The rates �L,�R,�γ ,�λ, and δωp are in units of ωe and vg = 1.

and incoherent scattering of light in NR. Coherently scattered
light has a constant phase relation with the incident light and
can be detected using phase-sensitive homodyne-type mea-
surements. We evaluate the power spectrum of the transmitted
light to find coherent and incoherent parts in it. For this, we
introduce a real-space description of the photon operators at
position x ∈ [−∞,∞] of both sides of the 2LA (see Fig. 1). We
define the photon operator as ax(t) = ∫ ∞

−∞ dkeikxak(t)/
√

2π

and bx(t) = ∫ ∞
−∞ dkeikxbk(t)/

√
2π where the operators at

x < 0 and x > 0 represent, respectively, incident and scattered
photons on each side of the 2LA and the photons at x = 0 are
coupled to the 2LA.

For an incident light from left of the 2LA, the power
spectrum of transmitted light at the long-time steady state
is defined as

Ptr(ω) = Re
∫ ∞

0

dτ

π
eiωτ 〈b†x(t)bx(t + τ )〉, (20)

where we take x > 0,t � t0 and the expectation 〈·〉 is again
performed in the initial state |Ep,ωp〉. An expression such as
Eq. (20) for ax(t) at x < 0,t < t0 would give a power spectrum
of the incident light, Pin(ω) = E2

pδ(ω − ωp)/(2πv2
g). Thus,

total incident power
∫

dωPin(ω) = Iin. To calculate Ptr(ω), we
first apply a formal solution of the Heisenberg equation for
bk(t) such as that of Eq. (2), and rewrite Ptr(ω) using input
fields and atomic operators. Applying bk(t0)|Ep,ωp〉 = 0, we
find

Ptr(ω) = 2�R

πvg

Re
∫ ∞

0
dτeiωτ 〈σ †(t)σ (t + τ )〉.

Thus, we now need to calculate a two-time correlation of
atomic operators 〈σ †(t)σ (t + τ )〉 to proceed further. So
we define three new correlators [33]: S3(τ ) = 〈σ †(t)σ (t +
τ )〉eiωpτ , S4(τ ) = 〈σ †(t)σ †(t + τ )〉e−iωp(2(t−t0)+τ ), and
S5(τ ) = 〈σ †(t)σ †(t + τ )σ (t + τ )〉e−iωp(t−t0), which are t

independent at the long-time steady state. Notice here that∫
dωPtr(ω)/Iin = 2�R〈σ †(t)σ (t)〉/(vgIin) = TLR .

It can be shown after some algebra that S3(τ ),S4(τ ),
and S5(τ ) satisfy a set of inhomogeneous differential
equations similar to those in Eq. (12) when S and �

are replaced, respectively, by S̃ = [S3(t),S4(t),S5(t)]T and
�̃ = [−i�LS∗

1 (∞),i�LS∗
1 (∞),0]T . The initial condition and

asymptotic behavior in the limit τ → ∞ of these cor-
relations are S3(τ = 0) = S2(∞),S4(τ = 0) = S4(τ = 0) =
0, and S3(τ → ∞) = |S1(∞)|2, S4(τ → ∞) = (S∗

1 (∞))2,
S5(τ → ∞) = S∗

1 (∞)S2(∞). Using these long-τ limit, we
now define δSj (τ ) = Sj (τ ) − Sj (τ → ∞) with j = 3,4,5,
which satisfy a set of homogeneous differential equations
similar to the homogeneous part of Eq. (12). We solve these
coupled differential equations to evaluate the power spectrum
Ptr(ω) = P coh

tr (ω) + P inc
tr (ω) where P coh

tr (ω) and P inc
tr (ω) rep-

resent, respectively, the coherent and incoherent parts of the
transmitted power. The coherent part of the transmitted power
is P coh

tr (ω) = (2�R/vg)|S1(∞)|2δ(ω − ωp), and the incoherent
part of the transmitted power is a ω-dependent long expression
which we do not show here.

For an incoming light from the left of the 2LA, we
calculate the coherent and incoherent parts of the total
transmitted power by taking integration over ω of P coh

tr (ω) and
P inc

tr (ω), respectively. We define
∫

dωP coh
tr (ω)/Iin = T coh

LR and∫
dωP inc

tr (ω)/Iin = T inc
LR for an incoming light from the left. By

switching �L and �R , we find coherent and incoherent parts of
the total transmitted power for an incoming light from the right
of the 2LA. Figure 3(a) depicts the contribution of coherent
and incoherent scattering in the transmission coefficient of
light from the left or the right side of the 2LA. It shows that the
transmission of light through a 2LA is entirely due to coherent
scattering at low light power (at the single-photon limit). The
incoherent scattering has a larger contribution in transmission
at higher light power. One important feature in Fig. 3(a)
is that not only the incoherent scattering but the coherent
scattering is also sensitive to the asymmetry in the coupling at
a finite intensity. It can be understood following nonlinear
optical processes in light propagation through a nonlinear
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FIG. 3. Contributions of coherent and incoherent scattering and additional backward light in nonreciprocal light propagation through
an asymmetrically coupled two-level atom. (a) A contribution of coherent and incoherent scattering in transmission coefficients TLR,TRL
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0
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the plots, �L = 0.03,�R = 0.1,�γ = �λ = 0.003, and δωp = 0. The rates �L,�R,�γ ,�λ, and δωp are in units of ωe and vg = 1.

medium. The third-order nonlinear optical processes lead to
an intensity-dependent nonlinear contribution to the refractive
index experienced by a light at incident frequency ωp [40]. This
nonlinear refractive index is also spatially asymmetric due to
the asymmetric coupling and is responsible for nonreciprocity
in the coherently scattered light.

A difference in the total coherent and incoherent transmitted
power under reversal of the incident light’s direction and after
scaling by total incoming power Iin are

�T coh ≡ T coh
LR − T coh

RL = 4�L�R�d
(
�−2

L − �−2
R

)
, (21)

�T inc ≡ T inc
LR − T inc

RL = 4�L�R

[
�λ

(
�−2

L − �−2
R

)
+ 2�2

t

(
�2

L�−2
L − �2

R�−2
R

)]
. (22)

As expected, we get �T coh + �T inc = �T of Eq. (18). �T inc

goes through zero at a finite incident intensity I 0
in, where

I 0
in = 1

2vg

( − ρ1 +
√

ρ2
1 − ρ2

)
with

ρ1 = �λ(�R + �L)

4�2
t �R�L

, ρ2 = 2
(
�2

λ − �2
d

)
4�4

t �R�L

. (23)

We plot �T coh,�T inc, and �T with a scaled intensity Iin/I
0
in

in Fig. 3(b). Figure 3(b) shows that �T coh and �T inc have
opposite sign for Iin < I 0

in where they act against each other
to reduce �T . Interestingly, the main contribution to NR
at lower light power comes from the coherently scattered
light at an incident frequency. It indicates that the mixing
of incident photon modes is not essential for NR [7]. NR at
a higher light power is mainly due to incoherent scattering.
As we have discussed above, both the coherent and incoherent
scattering of incident light experience an intensity-dependent
and spatially asymmetric refractive index in this system.
While the coherent scattering has a larger contribution in light
propagation at a lower intensity, the incoherent scattering has
a significant contribution to a higher power. However, the total

light transmission, as well as NR, fall rapidly with increasing
intensity due to photon blockade in this system. Therefore, the
critical intensity I cr

in with the maximum nonreciprocity occurs
at a relatively lower power when the coherent scattering has
the main contribution to NR.

B. Two light beams

Next, we consider the presence of an additional small-
amplitude backward light along with a large-amplitude for-
ward light. Shi et al. [11] have recently studied this situation
to show a decline in NR due to dynamic reciprocity in a
nonlinear optical isolator for an additional backward light
whose spectral band does not overlap with the forward light.
Here we investigate the other case when the spectral band
of backward light overlaps with the forward light. In this
case, we have initial condition ak(t0)|φ〉 = Epδ(vgk − ωp)|φ〉,
bk(t0)|φ〉 = Ebδ(vgk − ωb)|φ〉 and ck(t0)|φ〉 = dk(t0)|φ〉 = 0
for an initial state |φ〉 = |Ep,ωp〉 ⊗ |Eb,ωb〉. |φ〉 is a product
of the states of forward and backward light at the left and
right side of the atom with respective frequency ωp,ωb and
amplitude Ep,Eb. We are mostly interested in the regime when
Eb < Ep and we take ωb = ωp for an overlap of the spectrum
of monochromatic lights. We next find steady-state variables
S1(t) and S2(t) in Eqs. (10) and (11) for the initial state |φ〉
and use them to calculate the corresponding 〈jpa〉 and 〈jpb〉.

The total transmission coefficient TLR of light from left
to right side of the 2LA is found by dividing 〈jpb〉/vg by
total intensity (Iin + Ib) of forward and backward light, where
Ib = E2

b/(2πv2
g) is an intensity of backward light. As before,

we get transmission coefficient TRL for a forward light from
right to left of the 2LA by exchanging �L and �R in the above
TLR . In Fig. 3(c), we show TLR and TRL with Iin/I

cr
in of a

forward light in the presence of an additional backward light
of intensity Ib with ζ = Ib/I

cr
in = 0.018. At high intensities

of the forward light when Iin � Ib, both TLR and TRL in
Fig. 3(c) in the presence of an additional backward light fall
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with increasing Iin as the case in Fig. 2(a) in the absence of
an additional backward light. However, the line shapes of TLR

and TRL in Fig. 3(c) differ significantly from those in Fig. 2(a)
for lower intensities of the forward light. These differences in
transmission are due to nonlinear optical processes between
the two lights at the atom acting as a nonlinear medium. These
nonlinear processes are sensitive to intensities, frequencies,
and phases of the forward and backward lights. The nonlinear
processes are significant when the power of the two lights are
comparable, i.e., Iin ≈ Ib. Therefore, we find some drastic
changes both in TLR and TRL due to the presence of an
additional backward light when Iin is comparable to Ib.

We also add the NR, �T = TLR − TRL, of the forward
light in both Fig. 2(b) and Fig. 3(c). We observe a substantial
enhancement in �T at Iin < I cr

in in the presence of an
additional backward light [see Fig. 2(b)], and �T has a peak
around Iin ≈ Ib. It is due to the amplification of nonlinear
optical processes by the additional backward light when Iin ≈
Ib. Thus, we have an overall improvement in �T whenever
Iin ∼ Ib. However, a practical regime of light powers is Ib < Iin

when the increase NR of a large-amplitude forward light due
to a small-amplitude backward light may have some potential
application.

III. ASYMMETRICALLY COUPLED AND DRIVEN
�-TYPE THREE-LEVEL ATOM

In this section, we calculate NR in the transmission of a
probe light through a direct-coupled and driven 3LA. The
�-type 3LA has two lower energy levels |g〉 and |s〉, and
an excited level |e〉. A monochromatic laser of frequency ωc

strongly drives the transition between levels |e〉 and |s〉. The
frequency ωc is close to the transition frequency ωes between
|e〉 and |s〉. The probe light is asymmetrically coupled to the
optical transition between |g〉 to |e〉 [see Fig. 1(b)] as in the
previous section. The Hamiltonian of the full system becomes
static in a frame rotating at the drive frequency ωc. Then,

H3LA

h̄
= H2LA

h̄
+ (ωe + �c)μ†μ + �c(μ + μ†)

+
∫ ∞

−∞
dk[vgkf

†
k fk + λ′μ†μ(f †

k + fk)], (24)

where the detuning �c = ωc − ωes , the raising operator μ† =
|s〉〈e|, and �c is the Rabi frequency of driving. The coupling
λ′ controls the strength of pure dephasing of the level |s〉 to a
bath of excitations created by f

†
k .

Here we consider that a single probe light in a coherent state
|Ep,ωp〉 is shined on the driven 3LA at t = t0. Following the
steps in the previous section, we then derive quantum Langevin
equations for the operators σ,σ †σ, μ,μ†μ and ν(≡ |s〉〈g|) of
the driven 3LA by integrating out the photon fields. These are

dσ

dt
= −i(ωe − i�t )σ − i�cν

† − i(1 − 2σ †σ − μ†μ)ηd (t)

− iλ[σηc(t) + η†
c(t)σ ], (25)

dσ †σ

dt
= −2�dσ

†σ − i�c(μ − μ†) + iη
†
d (t)σ − iσ †ηd (t),

(26)

dμ

dt
= −i(�c − i�s)μ + i�c(μ†μ − σ †σ ) + iη

†
d (t)ν†

+ iλ[μηc(t) + η†
c(t)μ] − iλ′[μηf (t) + η

†
f (t)μ], (27)

dμ†μ

dt
= i�c(μ − μ†), (28)

dν

dt
= i(ωe + �c + i�λ′)ν + i�cσ

† − iη
†
d (t)μ†

− iλ′[νηf (t) + η
†
f (t)ν], (29)

where ηd (t),ηc(t) and ηf (t) = ∫ ∞
−∞ dkGk(t − t0)fk(t0) are

noises due to photon fields, and dissipation and dephasing
of the driven 3LA are �d,�t ,�λ′ , and �s = �t + �λ′ , with
�λ′ = πλ′2/vg . Apart from those relations for |Ep,ωp〉 in
Sec. II A before Eq. (9), we also have fk(t0)|Ep,ωp〉 = 0.

Next we take the expectation of the above quantum
Langevin equations of atomic operators in the initial state
|Ep,ωp〉 and rewrite them using nonoperator variables. For
this, we introduce

M1(t) = 〈Ep,ωp|μ(t)|Ep,ωp〉, (30)

M2(t) = 〈Ep,ωp|μ†(t)μ(t)|Ep,ωp〉, (31)

N (t) = 〈Ep,ωp|ν†(t)|Ep,ωp〉eiωp(t−t0). (32)

The nonoperator variables S1(t),S∗
1 (t),S2(t),M1(t),

M∗
1(t),M2(t),N (t), and N ∗(t) obey a closed set of

linear coupled differential equations which are obtained from
Eqs. (25)–(29). These equations for the input probe light from
the left of the driven 3LA are

dM
dt

= RM + �M,

where R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ1 0 2i�L 0 0 i�L −i�c 0
0 κ∗

1 −2i�L 0 0 −i�L 0 i�c

i�L −i�L −2�d −i�c i�c 0 0 0
0 0 −i�c κ∗

2 0 i�c i�L 0
0 0 i�c 0 κ2 −i�c 0 −i�L

0 0 0 i�c −i�c 0 0 0
−i�c 0 0 i�L 0 0 κ3 0

0 i�c 0 0 −i�L 0 0 κ∗
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)
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M(t) = (S1,S∗
1 ,S2,M1,M∗

1,M2,N ,N ∗)T , and �M = (−i�L,i�L,0,0,0,0,0,0)T , with κ1 = iδωp − �t ,κ2 = i�c − �s,κ3 =
i(δωp − �c) − �λ′ . As before, we are mainly interested in the long-time steady-state solution of Eq. (34); therefore, we set
dM
dt

= 0. Thus, we get M(t → ∞) = −R−1�M .
The transmission coefficient T d

LR of a probe beam from the left to right side of the driven 3LA can be found from the ratio of
total transmitted and incident power. We get T d

LR = 2�RS2(∞)/(vgIin). The expression of S2(∞) is very long in the presence of
losses in the driven atom. Therefore, we first consider the lossless case and write T d

LR ( called T d0
LR) for λ = γ = λ′ = 0. Thus

we find

T d0
LR = 4�L�R�2

(�L + �R)2�2 + (
�2

c − δωp�
)2 + 2

(
�2

c + �2
)
�2

L + �4
L

, (34)

with � = δωp − �c. The transmission T d0
LR vanishes at zero �

(i.e., δωp = �c) and the corresponding reflection coefficient
reaches unity. This is reminiscent of the electromagnetically
induced transparency (EIT) observed in a side-coupled driven
3LA [24,39]. The transmission and reflection coefficients
in a side-coupled atom alter the reflection and transmission
coefficients in a direct-coupled atom [26]. However, a more
important feature in T d0

LR is the emergence of a higher-order
optical nonlinearity compared to the direct-coupled 2LA. It
is due to the �4

L term in the denominator of T d0
LR which is

absent in the transmission through a lossless 2LA, T 0
LR =

4�L�R/[(�L + �R)2 + δω2
p + 2�2

L].
The higher nonlinearity in the driven 3LA is expected to

create a higher optical NR. Indeed, we find a greater optical
NR in the driven 3LA than in a 2LA for the same asymmetry
in the atom-photon coupling. We plot the NR in transmission
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FIG. 4. A comparison between nonreciprocity in the transmission
coefficient through a driven �-type three-level atom (�T d0,�T d )
and that through a two-level atom (�T 0,�T ) with a scaled intensity
Iin/I

cr
in of an incident probe light. �T d0,�T 0 are for lossless

atoms, and the rates of loss for �T d ,�T are �γ = �λ = 0.003 and
�λ′ = 0.001. Here, �L = 0.03,�R = 0.1,δωp = 0,�c = 0.02, and
�c = 0.01. The rates �L,�R,�γ ,�λ,�λ′ ,�c, and δωp,�c are in units
of ωe and vg = 1.

coefficient �T d0 through the driven 3LA in the absence of
losses in Fig. 4 and compare it to the NR (�T 0) in the 2LA
for a similar set of parameters. The maximum NR for the
driven 3LA is 60% larger than that for the 2LA in Fig. 4.
The horizontal axis in Fig. 4 is a scaled intensity Iin/I

cr
in of

an incident probe light where I cr
in is the critical intensity for

the 2LA. We also observe that the NR in transmission occurs
for a narrow intensity range in the driven 3LA, while it can
occur for a wide intensity range in the 2LA. This is because
the high optical nonlinearity in the driven 3LA is achieved
in a narrow window controlled by δωp, �c, and �c. We also
present a comparison in the NR between the driven 3LA and
2LA after the inclusion of losses in Fig. 4, which shows that
the NR (�T d ) is still higher in the driven 3LA. However, the
NR is more sensitive to different losses in the driven 3LA than
the 2LA.

Following the previous calculation for the 2LA, we next
derive the contribution of coherent and incoherent scattering
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cr
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ΔT d0,inc

ΔT d0

FIG. 5. A contribution of coherent (�T d0,coh) and incoherent
(�T d0,inc) scattering in nonreciprocity in total transmission (�T d0)
through the driven �-type three-level atom without loss. Here,
�L = 0.03,�R = 0.1,δωp = 0,�c = 0.02, �c = 0.01, and �γ =
�λ = �λ′ = 0. The rates �L,�R,�γ ,�λ,�λ′ ,�c, and δωp,�c are in
units of ωe and vg = 1.
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in the NR in transmission through the driven 3LA. In Fig. 5,
we show these contributions along with the total NR in
transmission through the driven 3LA without any loss. Similar
to the 2LA, we find here that while incoherent scattering has a
larger contribution in NR at a higher intensity, the maximum
NR at a lower intensity is mainly due to coherent elastic
scattering of the incident light.

IV. CONCLUSIONS AND PERSPECTIVES

Based on an exact microscopic analysis, we have shown
several exciting features of nonreciprocal light transmission
through two models of the nonlinear optical isolator. In
particular, we have discussed some mechanisms to improve the
NR in a nonlinear optical isolator. For a constant asymmetry
in the coupling, the higher NR in a 3LA than a 2LA is directly

related to the higher optical nonlinearity in the 3LA. Therefore,
the NR can be treated as a measure of optical nonlinearity in
these systems. Our theoretical analysis can be readily extended
to more complex microscopic models of a nonlinear optical
isolator such as in Refs. [8–10,12,41]. It would also be inter-
esting to check the effect of ultrastrong atom-light coupling on
the NR for which we need to consider these systems beyond
the Markov and rotating-wave approximations.
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