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We consider a one-dimensional classical Coulomb gas of N-like charges in a harmonic potential—
also known as the one-dimensional one-component plasma. We compute, analytically, the probability
distribution of the position xmax of the rightmost charge in the limit of large N. We show that the typical
fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails.
This distribution is different from the Tracy-Widom distribution of xmax for Dyson’s log gas. We also
compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order
phase transition, as in the log gas. Our theoretical predictions are verified numerically.
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The Tracy-Widom (TW) distribution has emerged
ubiquitously in diverse systems in the recent past [1,2].
It was originally discovered as the limiting distribution of
the top eigenvalue xmax of an N × N Gaussian random
matrix [3]. Since then, it has appeared in various areas of
physics [4,5], mathematics [6,7], and information theory
[8]. For example, in physics it has appeared in stochastic
growth models and related directed polymer in 1þ 1
dimensional random media belonging to the Kardar-
Parisi-Zhang (KPZ) universality class [9–15], nonintersect-
ing Brownian motions [16], noninteracting fermions in a
one-dimensional trapping potential [17–19], disordered
mesoscopic systems [20] and even in the Yang-Mills gauge
theory in two dimensions [16]. It has also been measured
experimentally in several systems including liquid crystals
[21], coupled fiber lasers [22], or disordered superconduc-
tors [23]. The TW distribution describes the probability of
typical fluctuations of xmax around its mean. In contrast, the
atypical fluctuations of xmax to the left and right, far from its
mean, are described, respectively, by the left and right large
deviation tails. These tails have been computed explicitly
[24–28] and are shown to correspond to two different
thermodynamic phases separated by a third-order phase
transition [29,30]. Similar third-order phase transitions
have also been found in a variety of other systems [30–36].
For Gaussian ensembles in random matrix theory

(RMT), the joint probability distribution function (PDF)
of the N real eigenvalues fx1;…; xNg is known explicitly
[37,38]

PðfxigÞ ¼ BNe
−ðβ=2ÞðN

P
N
i¼1

x2i−
P

i≠j
logðjxi−xjjÞÞ; ð1Þ

where BN is a normalization constant and β ¼ 1, 2, and 4
depending on the symmetries of the matrices [37,38]. This
joint PDF can be interpreted as the equilibrium Gibbs
distribution of a gas ofN charges with positions xi’s that are

confined on a line in the presence of an external harmonic
potential and repelling each other via two-dimensional
logarithmic Coulomb interactions. This system is known as
Dyson’s log gas [39]. In this picture the largest eigenvalue
xmax ¼ maxfx1;…; xNg corresponds to the position of the
rightmost particle. The average density of eigenvalues
ρNðxÞ converges for large N to the Wigner semicircular
law, ρ∞ðxÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − x2

p
=π which has a finite support

½− ffiffiffi
2

p
;þ ffiffiffi

2
p �. Hence, the average hxmaxi ∼

ffiffiffi
2

p
for large

N. The typical fluctuations of xmax around its mean
ffiffiffi
2

p
are

of OðN−2=3Þ. On this scale the cumulative distribution
Qðw;NÞ ¼ Probðxmax ≤ w;NÞ, takes the scaling form

Qðw;NÞ ≈ F β(
ffiffiffi
2

p
N2=3ðw −

ffiffiffi
2

p
Þ); ð2Þ

where F βðxÞ is the Tracy-Widom distribution. This scaling
function can be written in terms of the solution of a
Painlevé II equation [3] and has non-Gaussian tails.
Interestingly, even though the TW distribution was derived

FIG. 1. Schematic plot of the PDF of xmax with a peak around
the right edge 2α of the average density profile. The typical
fluctuations (black) of Oð1=NÞ are described by F0

αðxÞ [see
Eq. (7)], while the large deviations of Oð1Þ to the left and right of
the mean are described by the left (red) and right (blue) large
deviation tails.
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originally for a harmonic confining potential, it has been
shown to be universal with respect to the shape of the
confining potential, as long as the average density vanishes
at the upper edge as a square root (as in the case of the
Wigner semicircular law). A natural question then arises
whether the TW distribution for xmax is robust when one
changes, instead of the confining potential, the nature of the
repulsive interaction between the charges.
A natural candidate model to address this question is the

system of one-dimensional charges in a harmonic potential
but interacting pairwise via the true 1D Coulomb potential.
The energy of this system is given by

EðfxigÞ ¼
N2

2

XN
i¼1

x2i − αN
X
i≠j

jxi − xjj; ð3Þ

where α ≥ 0 denotes the strength of the Coulomb repul-
sion. The choice of the powers of N in the coupling
constants is such that for large N (i) both terms in the
energy are of same order and (ii) the charges are confined in
a region whose span is Oð1Þ. Indeed this is also the one-
dimensional one-component plasma (1DOCP) or “jellium”
model, where N charges of the same sign interact in the
presence of a uniform background of opposite charges,
assuring charge neutrality. This model is a paradigm for 1D
charged plasma [40] as several observables can be calcu-
lated analytically [41–45].
In this Letter, we show that the statistics of the position

of the rightmost charge xmax can also be computed exactly
in this 1DOCP model. Our main result is to show that the
limiting distribution of the typical fluctuations of xmax in
this model is indeed different from the TW distribution,
found in Dyson’s log gas. Moreover, by computing the left
and the right large deviation functions explicitly, we find
that the third-order phase transition between a pushed gas
(left large deviation) and a pulled gas (right large deviation)
is still present in the 1DOCP model, as in the case of the log
gas. Interestingly, a similar third-order phase transition
between the pushed and the pulled phase was recently
found [46] by analyzing large deviation functions associ-
ated with the position of the farthest charge in a d-
dimensional jellium model, though the limiting distribution
of the position of the farthest charge is still open for this
d-dimensional problem. In d ¼ 1 this corresponds to the
distribution of the maximum of jxij’s of the charges.
We start with the joint PDF of the positions xi ∈

ð−∞;∞Þ in the 1DOCP, given by the Boltzmann weight

PðfxigÞ ¼
1

ZN
exp½−EðfxigÞ�; ð4Þ

where ZN is the partition function and the energy EðfxigÞ is
given in Eq. (3). In the large N limit, the average density
can be obtained by minimizing the energy EðfxigÞ. It is
easy to show that the minimum energy configuration is

given by x�j ¼ ð2α=NÞð2j − N − 1Þ (j ¼ 1;…; N). Hence,
the particles are equispaced and the rightmost (leftmost)
particle is at x�N ¼ 2αð1 − 1=NÞ [respectively, at x�1 ¼
−2αð1 − 1=NÞ]. This implies that in the N → ∞ limit,
the average density profile ρ∞ðxÞ is flat: ρ∞ðxÞ ¼ ð1=4αÞ
for −2α ≤ x ≤ 2α (see Fig. 1), in contrast to the Wigner
semicircle in the log gas. Our focus here is on the large N
behavior of the cumulative distribution of the rightmost
particle,

Qðw;NÞ ¼ Prob½xmax ≤ w;N�: ð5Þ

To anticipate the scaling behavior of Qðw;NÞ, we first
make the following observations. It follows from the above
analysis of the average density that the mean position of the
rightmost particle is at hxmaxi ¼ x�N ¼ 2αð1 − 1=NÞ. Given
that the average density is uniform, the typical separation
between two adjacent particles is of Oð1=NÞ everywhere.
Hence, the scale of typical fluctuations of xmax around its
average is also of Oð1=NÞ. This suggests that the cumu-
lative probability distribution Qðw;NÞ, in the region of
typical fluctuations where jw − 2αj ∼Oð1=NÞ, should have
the scaling form for large N, Qðw;NÞ ≈ Fα½Nðw − x�NÞ� ¼
Fα½Nðw − 2αÞ þ 2α� where FαðxÞ is a nontrivial scaling
function (the analogue of the TW distribution for the log
gas). In this Letter, we compute this scaling function FαðxÞ.
In addition, for atypical fluctuations where xmax − hxmaxi∼
Oð1Þ, both to the left and to the right of the mean, Qðw;NÞ
has large deviation tails that are also computed explicitly.
More precisely, we find

Qðw;NÞ ≈
8<
:

e−N
3Φ−ðwÞþOðN2Þ 0 < 2α − w ∼Oð1Þ

Fα½Nðw − 2αÞ þ 2α� j2α − wj ∼Oð1=NÞ
1 − e−N

2ΦþðwÞþOðNÞ 0 < w − 2α ∼Oð1Þ;
ð6Þ

where Φ−ðwÞ and ΦþðwÞ are the left and right rate
functions. We show that the scaling function FαðxÞ in
the central regime satisfies a nonlocal eigenvalue equation

dFαðxÞ
dx

¼ AðαÞe−x2=2Fαðxþ 4αÞ; ð7Þ

with the boundary conditions Fαð−∞Þ¼0 and Fαð∞Þ¼1.
These boundary conditions, along with the fact that
FαðxÞ ≥ 0 for all x, uniquely fix the eigenvalue AðαÞ.
Clearly, the scaling function FαðxÞ is different from the TW
distribution. While it is hard to compute AðαÞ explicitly for
all α ≥ 0 [for a numerical plot of AðαÞ, see Fig. 2], we can
determine its small and large α behaviors: AðαÞ → 1=ð4eαÞ
as α → 0 and AðαÞ → 1=

ffiffiffiffiffiffi
2π

p
as α → ∞. From Eq. (7),

we can derive the leading asymptotic tails of the PDF F0
αðxÞ

for all α
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F0
αðxÞ ≈

�
exp½−jxj3=24αþOðx2Þ� as x → −∞
exp½−x2=2þOðxÞ� as x → ∞:

ð8Þ

We note that the leading x → −∞ behavior of F0
αðxÞ is

identical to that of the TW distributionF 0
β¼1=αðxÞ, while the

right tail of F0
αðxÞ decays faster than the TW right tail [47].

This is indeed our main result. In addition, we also compute
exactly the large deviation rate functions. For the left tail
we find

Φ−ðwÞ ¼
( ð2α−wÞ3

24α ; −2α ≤ w ≤ 2α

w2

2
þ 2

3
α2; w ≤ −2α:

ð9Þ

For the right tail, we find

ΦþðwÞ ¼
ðw − 2αÞ2

2
; w > 2α: ð10Þ

It is easy to check, using the asymptotic behavior of F0
αðxÞ

for large jxj in Eq. (8), that the central part of the
distribution of xmax matches smoothly with the two large
deviation regimes flanking this central part. Indeed, as
discussed later, the vanishing of Φ−ðwÞ when w → 2α as a
cubic power is responsible for a third-order phase transition
at the critical point w ¼ 2α, in very much the same way as
in the log gas [30].
We start from the joint PDF of fxig’s in Eq. (4). We note

that Qðw;NÞ¼ Prob½xmax ≤w� ¼Probðx1 ≤w;…;xN ≤wÞ.
Hence it can be expressed as the ratio of two partition
functions

Qðw;NÞ ¼ ZNðwÞ
ZNð∞Þ ; where ; ð11Þ

ZNðwÞ ¼
Z

w

−∞
dx1 � � �

Z
w

−∞
dxNe−EðfxigÞ; ð12Þ

with EðfxigÞ given in Eq. (3) and we have suppressed the α
dependence in ZNðwÞ for simplicity. Note that ZNðwÞ can be

interpreted as the partition function of the 1DOCP in the
presence of a hard wall at w. Below, we analyze Qðw;NÞ
in the central regime first, followed by the two large
deviation tails.
Central regime.—Noting that the energy function

EðfxigÞ in Eq. (3) is symmetric under permutations over
the positions ðx1; x2;…; xNÞ, we write

ZNðwÞ ¼ N!
YN
k¼1

Z
w

−∞
dxk e−EðfxkgÞ

YN
j¼2

Θðxj − xj−1Þ; ð13Þ

where ΘðxÞ is the Heaviside theta function. For an
ordered configuration ðx1 < x2 < � � � < xNÞ, one can
eliminate the absolute values jxi − xjj and rewrite the
energy function EðfxigÞ in Eq. (3) as EðfxigÞ ¼
ðN2=2ÞPN

i¼1 ½xi − ð2α=NÞð2i − N − 1Þ�2 þ CNðαÞ, where
CNðαÞ ¼ 2α2

P
N
i¼1 ð2i − N − 1Þ2 is just a constant.

This trick of eliminating the absolute values via ordering
has been used before for 1DOCP in numerous contexts
[41,43–45]. Performing a change of variables ξk ¼
½Nxk − 2αð2k − N − 1Þ� for all k ¼ 1; 2;…; N in Eq. (13),
we can rewrite ZNðwÞ ¼ N!DαðN½w − ð2α=NÞðN − 1Þ�; NÞ
where

Dαðx; NÞ ¼
Z

x

−∞
dξN

Z
ξNþ4α

−∞
dξN−1…

Z
ξ2þ4α

−∞
dξ1

× e−
1
2

P
N
i¼1

ξ2i : ð14Þ
Therefore setting x ¼ N½w − ð2α=NÞðN − 1Þ�, Qðw;NÞ in
Eq. (11) can be written as

Qðw;NÞ ¼ Dαðx; NÞ
Dαð∞; NÞ≡ Fαðx; NÞ: ð15Þ

Taking the derivative with respect to x in Eq. (15), and using
Eq. (14), we obtain

dFαðx; NÞ
dx

¼ Dαð∞; N − 1Þ
Dαð∞; NÞ e−ðx2=2ÞFαðxþ 4α; N − 1Þ:

ð16Þ
To estimate the ratio Dαð∞; N − 1Þ=Dαð∞; NÞ for large N,
we note from Eq. (14) that Dαð∞; NÞ can be interpreted as
the partition function of an auxiliary gas of particles with
positions ξ1, ξ2, …; ξN confined in an external harmonic
potential and with the one-sided constraint ξk−1 < ξk þ 4α
for all k ¼ 2; 3;…; N. Indeed this constraint provides a short-
range interaction between the particles. Thus our original
problem of the 1DOCP which has long-range interaction is
mapped onto a problem of short-ranged interacting particles.
For such a short-ranged system, it is natural to expect that the
free energy is extensive inN. Thus onewould expect that, for
large N, the partition function must scale as Dαð∞; NÞ ∼
½AðαÞ�−N where lnAðαÞ is the free energy per particle. Thus

FIG. 2. (Left) Plot of AðαÞ and numerical verification of its
α → 0 and α → ∞ asymptotic. (Right) Comparison of the
theoretical F0

αðxÞ obtained by solving numerically Eq. (7) by a
shooting method and F0

αðxÞ obtained from direct Monte Carlo
simulation of the 1DOCP (with N ¼ 50) for two different values
of the coupling parameter, α ¼ 1 and α ¼ 0.5. Inset shows the
distribution in the normal scale.
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the ratioDαð∞; N − 1Þ=Dαð∞; NÞ → AðαÞ asN → ∞. This
suggests that Fαðx; NÞ should converge to a limiting form
FαðxÞ for large N, which then satisfies the nonlocal eigen-
value Eq. (7). Thus the eigenvalue AðαÞ has a physical
interpretation: lnAðαÞ is the free energy per particle of
a short-ranged interacting gas. However, computing analyti-
cally AðαÞ for all α seems hard. Interestingly, Baxter [43]
encountered a similar nonlocal eigenvalue equation while
computing the partition function of the 1DOCP in a finite
box ½−L;þL� and analyzed the eigenvalue AðαÞ in the two
limits α → 0 and α → ∞. Translating his results to our
problem, following a simple rescaling of the parameters,
we obtain the asymptotic results for AðαÞ announced before.
It is straightforward to derive the asymptotic tails of

F0
αðxÞ in Eq. (8). We consider first the limit x → ∞ where

Fαðxþ 4αÞ → 1 on the right-hand side (rhs) of Eq. (8).
Hence, to leading order, F0

αðxÞ ≈ AðαÞe−x2=2, providing the
Gaussian right tail in Eq. (8). To compute the left tail, we
make a simple ansatz that FαðxÞ≈e−a0jxjδ as x→−∞, where
a0 and δ are to be determined. Substituting this ansatz in the
rhs of Eq. (7) yields ≈AðαÞe−x2=2−a0ðjxj−4αÞδ . For large jxj,
ðjxj−4αÞδ∼jxjδð1−4αδ=jxjÞ to leading orders. Hence the
rhs behaves as AðαÞe−a0jxjδ−x2=2þ4αδjxjδ−1 . The left-hand
side (lhs) of Eq. (7) behaves as ≈e−a0jxjδ to leading order.
Comparing both sides, we see that the term x2=2 and jxjδ−1
on the rhs must cancel each other implying δ ¼ 3 and
a0 ¼ 1=ð8αδÞ ¼ 1=ð24αÞ. This provides the leading left
tail of F0

αðxÞ in Eq. (8).
For general α > 0, determining explicitly the eigenvalue

AðαÞ and the full scaling function FαðxÞ is difficult.
However, they can be obtained by solving Eq. (7) numeri-
cally by tuning the value of AðαÞ using the standard
shooting method. This gives FαðxÞ and AðαÞ simultane-
ously. In Fig. 2 (left panel), we plot AðαÞ vs α and compare
with its predicted asymptotics. In Fig. 2 (right panel), we
compare F0

αðxÞ evaluated numerically from this shooting
method, with the one obtained from direct Monte Carlo
simulation of the 1DOCP. The agreement is excellent.
Left large deviation function.—We consider Qðw;NÞ in

Eqs. (11) and (12) with 0 < 2α − w ∼Oð1Þ. Since w
represents the position of the hard wall, w < 2α corre-
sponds to “pushing” the charges to the left of the right edge
at 2α. This disturbs the originally flat density and leads to a
collective reorganization of all the charges, as in the case
of the log gas [25,26]. We get instead a new equilibrium
density that minimizes the energy, i.e., a new saddle point
of the integral in Eq. (12). It is well known that in the
jellium model, the bulk density is insensitive to the location
of a wall [48]. This implies that in the bulk, the density is
still given by the original equilibrium value 1=ð4αÞ, for
−2α < w ≤ 2α. Hence, when the wall moves to the left of
2α, all the charges that get pushed by the wall must get
absorbed at the wall. This observation leads us to look for a
saddle point density of the form

ρwðxÞ ¼
1

4α
þ Cδðx − wÞ; −B ≤ x ≤ w; ð17Þ

where the constant bulk density is supported over the
interval ½−B;w�. We then minimize the energy with respect
to the two variational parameters B and C. Skipping details
(see Ref. [49]), we find that

C ¼ 1=2 − w=ð4αÞ; B ¼ 2α; ð18Þ

as long as −2α ≤ w ≤ 2α. When w hits −2α from the right,
all the charges get absorbed at the wall w and the saddle
point density is just ρwðxÞ ¼ δðx − wÞ, for all w ≤ −2α.
Substituting ρwðxÞ in the energy [49], we find the results for
Φ−ðwÞ given in Eq. (9).
Right large deviations.—For fluctuations ðxmax − 2αÞ ∼

Oð1Þ to the right of the edge 2α, we consider the PDF
∂wQðw;NÞ in Eqs. (11) and (12) with w > 2α. It turns out
that the configuration that dominates this integral is one
where the rightmost charge is atw > 2α, while the rest of the
N − 1 charges stay in the equilibrium configuration with a
flat profile over the interval ½−2α;þ2α�. This is analogous to
the “pulled” phase in the log gas [27]. Thus, for large N, the
PDF can be approximated as ∂wQðw;NÞ ≈ e−ΔEpulled , where
ΔEpulled is the energy cost of pulling the rightmost particle
from the “sea” of N − 1 particles in the equilibrium flat
configuration. This energy cost can be estimated from
Eq. (3): a first contribution from the change in the external
potential energy of the rightmost charge and a second due to
the interaction of the rightmost chargewith the (N − 1) other
particles. One gets (see Ref. [49] for details) ΔEpulled ≈
N2½ðw2=2Þ − 1

2

R
2α
−2αðw − xÞdx� up to a constant. This gives

∂wQNðwÞ ≈ e−N
2ΦþðwÞ where ΦþðwÞ is given in Eq. (10).

Since Qðw;NÞ is the ratio of two partition functions
[Eq. (11)], − lnQðw;NÞ is the free energy difference
between the pushed (left) and the pulled (right) phase.
From Eq. (6), this free energy ∝ Φ−ðwÞ has a singular
behavior at the critical point w ¼ 2α. Indeed it vanishes as a
cubic power as w → 2α from the left [see Eq. (9)], leading
to a discontinuity of the third derivative of Φ−ðwÞ at
w ¼ 2α. This third-order phase transition at w ¼ 2α is
similar to the one in the log gas. Unlike in the log gas, there
is an additional third-order phase transition in this 1DOCP
whenw → −2α [see Eq. (9)]. However, this transition is not
of the “pushed-pulled” type like the one at w ¼ 2α, but
rather a condensation-type transition as all charges accu-
mulate at the wall for w ≤ −2α.
Conclusion.—In this Letter we have studied analytically

the distribution of the position of the rightmost particle xmax
of a 1D Coulomb gas confined in an external harmonic
potential (1DOCP), in the limit of a large number of
particles N. We have obtained the limiting large N
distribution describing the typical fluctuations of xmax
around its mean, and shown that it is different from the
Tracy-Widom distribution of the log gas. We also computed
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the rate functions associated with atypically large fluctua-
tions around the mean and found a third-order phase
transition between a pushed and a pulled phase, as in
the log gas. Our work raises several interesting questions.
For instance, how universal is the limiting distribution of
xmax if one changes the confining potential or the pairwise
repulsive interaction? It would be challenging to study xmax

with a repulsive interaction of the form jxi − xjj−k (where
k → 0 corresponds to log gas, while k ¼ −1 corresponds to
the 1DOCP). Unlike the log gas, the 1DOCP does not have
a determinantal structure and computing its n-point corre-
lations would be interesting.
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