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Chained inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed
based on the positivity of a sequence of moment matrices. When a jointly measurable set of positive-operator-
valued measures (POVMs) is employed in the first measurement of every pair of sequential measurements, the
chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We
find that incompatibility of the set of POVMs employed in first measurements is only necessary, but not sufficient,
in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between
the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit POVMs and the
optimal violation of a nonlocal steering inequality, proposed by Jones and Wiseman [S. J. Jones and H. M.
Wiseman, Phys. Rev. A 84, 012110 (2011)]. To this end, we construct a local analog of this steering inequality in
a single-qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial
qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.
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I. INTRODUCTION

Conceptual foundations of quantum theory deviate drasti-
cally from the classical world view. The prominent counterin-
tuitive features pointing towards the quantum-classical divide
are a subject of incessant debate ever since the birth of quantum
theory. Pioneering works by Bell [1], Kochen and Specker
[2], and Leggett and Garg [3] are significant in bringing
forth the perplexing features arising within the quantum
scenario, in terms of correlation inequalities, constrained to
obey classical bounds. Violation of the inequalities sheds light
on the the nonexistence of a joint probability distribution for
the measurement outcomes of all the associated observables
[4–6].

In fact, noncommutativity of the observables forbids assign-
ment of joint sharp realities to their outcomes in projective-
valued (PV) measurements. Subsequently, it is not possible
to envisage a bona fide joint probability distribution for the
outcomes of PV measurements of noncommuting observables.
However, the generalized measurement framework [7] goes
beyond the conventional PV measurement scenario, where
positive-operator-valued measures (POVMs) are employed.
Joint measurability (or compatibility) of a set of POVMs is
possible even when they do not commute. To declare that
a set of POVMs is jointly measurable there should exist a
global POVM, the measurement statistics of which enables
one to retrieve that of the set of compatible POVMs. Within
the purview of generalized measurements, it is possible to
assign fuzzy joint realities (and in turn a valid joint probability
distribution) to the statistical outcomes of noncommuting
observables when the corresponding POVMs are compatible.

*arutth@rediffmail.com

In recent years there has been a surge of research activity
dedicated to exploring the notion of measurement incompat-
ibility and its connection with counterintuitive quantum no-
tions such as nonlocality, contextuality, and nonmacrorealism
[8–23]. In particular, it is known that measurement incompat-
ibility plays a key role in bringing to the surface the violations
of the so-called no-go theorems in the quantum world. Wolf
et al. [11] proved that a set of two incompatible dichotomic
POVMs is necessary and sufficient to violate the Clauser-
Horne-Shimony-Holt (CHSH) Bell inequality [24]. However,
this result may not hold, in general, for Bell nonlocality tests
where more than two incompatible POVMs with any number
of outcomes are employed, i.e., it is possible to identify a
set of nonjointly measurable POVMs, which fail to reveal
Bell-type nonlocality, in general [25]. Interestingly, there
exists a one-to-one equivalence [16–18] between measurement
incompatibility and quantum steerability (i.e., Alice’s ability
to nonlocally alter Bob’s states by performing local measure-
ments on her part of the quantum state [26]). More specifically,
a set of fuzzy POVMs is said to be incompatible if and only if
it can be used to show steering in a quantum state.

From the point of view of an entirely different mathemat-
ical perspective, the classical moment problem [22,27–31]
addresses the issue of the existence of a probability distribution
corresponding to a given a sequence of statistical moments.
Essentially, the classical moment problem points out that a
given sequence of real numbers qualifies to be the moment
sequence of a legitimate probability distribution if and only
if the corresponding moment matrix is positive. In other
words, the existence of a valid joint probability distribution,
consistent with the given sequence of moments, necessitates
positivity of the associated moment matrix. A moment matrix
constructed in terms of pairwise correlations of observables in
the quantum scenario is not necessarily positive [22,30,31]
and thus one witnesses violation of Bell, Leggett-Garg,
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and noncontextual inequalities (which can be realized to be
the positivity constraints on the eigenvalues of the moment
matrix). In turn, violation of these inequalities points towards
the nonexistence of joint probabilities corresponding to the
measurements of all the observables employed. Moments
extracted from measurements of a set of POVMs result in
a positive moment matrix if the degree of incompatibility is
restricted to lie within the range specified by the compatibility
of the set of POVMs employed [22].

In this paper we construct N -term chained correlation
inequalities involving pairwise correlations of N dichotomic
random variables based on the positivity of a sequence of
4 × 4 moment matrices. The bound on the linear combination
of pairwise correlations (recognized through the positivity of
moment matrices) ensures the existence of joint probabilities
for the statistical outcomes. When the dichotomic classical
random variables are replaced by qubit observables, one
witnesses a violation of the chained correlation inequali-
ties [32,33]. The maximum violation of the inequalities in
the quantum scenario (i.e., the corresponding Tsirelson-like
bound) has been established in Refs. [32,33]. The dichotomic
observables, which result in the maximum quantum violation,
correspond to the qubit observables in a plane. Here we
investigate the degree of incompatibility necessary for the joint
measurability of the equatorial plane noisy qubit POVMs (i.e.,
a mixture of qubit observables in the equatorial plane and the
identity matrix). Based on this, we determine that the chained
inequalities are always satisfied when the equatorial noisy
qubit POVMs, employed in first measurements of sequential
pairwise measurements, are all jointly measurable; however,
incompatible POVMs are in general not sufficient for violation
of the chained inequalities for N > 3. On the other hand,
we show that there is a one-to-one correspondence between
the joint measurability of a set of equatorial plane noisy
qubit POVMs and the optimal violation of the linear nonlocal
steering inequality proposed by Jones and Wiseman [34]. This
leads us towards the construction of a local analog of this
steering inequality in a single-qubit system, the violation of
which gives evidence for the nonjoint measurability of the
set of equatorial plane qubit POVMs, employed in the first of
every sequential pair of measurements.

We organize the contents of the paper as follows. In Sec. II
we outline the notion of compatible POVMs. As a specific case,
we discuss the compatibility of qubit POVMs in the equatorial
plane of the Bloch sphere and obtain the necessary condition
for the unsharpness parameter quantifying the degree of
incompatibility. Section III is devoted to (i) the formulation of
chained N -term pairwise correlation inequalities constructed
from the positivity of moment matrices and (ii) the optimal
violation of the inequalities in the quantum scenario when
qubit observables in the equatorial plane are employed and the
connection between the degree of incompatibility of POVMs,
used in the first of every sequential pair measurements, and the
strength of violation of the correlation inequalities. In Sec. IV
we show that the steering inequality proposed by Jones and
Wiseman [34] has a one-to-one correspondence with the joint
measurability of equatorial qubit POVMs. A local analog of
this steering inequality for a single-qubit system, involving N

settings of sequential unsharp-sharp pairwise correlations, is

constructed. Section V contains a summary of our results and
concluding remarks.

II. JOINT MEASURABILITY OF POVMS

In the conventional quantum framework, measurements are
described in terms of the spectral projection operators of the
corresponding self-adjoint observables. Joint measurability of
two commuting observables is ensured because the results of
a single PV measurement are comprised of those of both ob-
servables. However, noncommuting observables are declared
as incompatible under the regime of PV measurements. The
introduction of POVMs by Ludwig [35] and subsequent in-
vestigations of their applicability [36] led to a mathematically
rigorous generalization of measurement theory. It is the notion
of compatibility (the notion of compatibility of a set of POVMs
will be defined in the following), rather than commutativity,
that gains importance so as to recognize if a given set of
POVMs is jointly measurable or not [37].

A POVM is a set Ex = {Ex(a) = M
†
x(a)Mx(a)} compris-

ing positive self-adjoint operators 0 � Ex(a) � 1, satisfying∑
a Ex(a) = ∑

a M
†
x(a)Mx(a) = 1, where a denotes the out-

come of measurement and 1 is the identity operator. Under
measurement {Mx(a)} a quantum system, prepared in the state
ρ, undergoes a positive trace-preserving generalized Lüder
transformation, i.e.,

ρ �→
∑

a

Mx(a)ρM†
x(a), (1)

and an outcome a occurs with probability p(a|x) =
Tr[ρM

†
x(a)Mx(a)] = Tr[ρEx(a)]. Results of PV measure-

ments can be retrieved as a special case, when the POVM
{Ex(a)} consists of complete orthogonal projectors.

A finite collection {Ex1 ,Ex2 , . . . ,ExN
} of N POVMs is said

to be jointly measurable (or compatible) if there exists a grand
POVM G = {G(λ); 0 � G(λ) � 1,

∑
λ G(λ) = 1}, with out-

comes denoted by a collective index λ ≡ {a1,a2, . . . ,aN },
such that the individual POVMs Exi

can be expressed as its
marginals [10]

Exk
(ak) =

∑
a1,a2, . . . ,ak−1,

ak+1, . . . ,aN

G(λ = {a1,a2, . . . ,aN }) (2)

for all k = 1,2, . . . ,N . From now on, we denote the collective
index λ = {a1,a2, . . . ,aN } characterizing measurement out-
comes of the global POVM G by a = (a1,a2, . . . ,aN ) for
brevity.

When a measurement of the global POVM G ≡ {G(a)}
is carried out in an arbitrary quantum state ρ, an outcome
a occurs with probability Tr[ρG(a)] = p(a). Then the corre-
sponding results [p(ak|xk),ak] (viz., the outcomes ak and the
probabilities p(ak|xk) = Tr[ρExk

(ak)]) for all the compatible
POVMs Exk

can be deduced by postprocessing the collective
measurement data [37] (p(a),{a}) of the global POVM G:

p(ak|xk) =
∑

a1,a2, . . . ,ak−1,

ak+1, . . . ,aN

p(a). (3)
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A set of POVMs {Exk
}, k = 1,2, . . . ,N , is declared to be

compatible if and only if it consists of marginals of a global
POVM G [as expressed in (2)].

A. Example of noisy qubit POVMs

Consider a pair of qubit observables σx =∑
ax=±1 ax�x(ax) and σz = ∑

az=±1 az�z(az). Sharp PV
measurements of these self-adjoint observables σx and σz are
incorporated in terms of their spectral projectors

�x(ax) = 1
2 (1 + axσx),

�z(az) = 1
2 (1 + azσz).

(4)

Within the conventional framework of PV measurements,
the noncommuting qubit observables σx and σz are not
jointly measurable. However, it is possible to consider a
particular choice of jointly measurable noisy qubit POVMs
Ex = {Ex(ax)} andEz = {Ex(ax)} by mixing white noise with
the respective projection operators, i.e.,

Ex(ax) = η �x(ax) + (1 − η)12 = 1
2 (1 + ηaxσx),

(5)
Ez(az) = η �z(az) + (1 − η)12 = 1

2 (1 + ηazσz),

where 0 � η � 1 denotes the unsharpness parameter. When
η = 1, the noisy qubit POVMs (5) reduce to their correspond-
ing sharp PV counterparts. Throughout this paper we will be
focusing on the joint measurability (compatibility) of noisy
qubit observables of the form given by (5).

The dichotomic POVMs Ex and Ez are jointly mea-
surable if there exists a four-outcome global POVM G =
{G(ax,az); ax = ±1, az = ±1} such that∑

az=±1

G(ax,az) = Ex(ax),

∑
ax=±1

G(ax,az) = Ez(az), (6)

∑
ax ,az=±1

G(ax,az) = 1, G(ax,az) � 0.

It has been shown [7,10] that the POVMs Ex and Ez are jointly
measurable in the range 0 � η � 1/

√
2, i.e., it is possible to

construct a global POVM G comprised of the elements

G(ax,az) = 1
4 (1 + ηaxσx + ηazσz), 0 � η � 1/

√
2, (7)

which obey (6). Similarly, triplewise joint measurements of
the qubit observables σx , σy , and σz could be envisaged by
considering the fuzzy POVMs Ex , Ey , and Ez, elements of
which are given, respectively, by

Ex(ax) = 1
2 (1 + ηaxσx), ax = ±1

Ey(ay) = 1
2 (1 + ηayσy), ay = ±1

Eσz
(z) = 1

2 (1 + ηazσz), az = ±1

in the range 0 � η � 1/
√

3 of the unsharpness parameter
[10,13].

In general, the necessary condition on the unsharpness
parameter such that the qubit POVMs {Exk

(ak = ±1) = 1
2 [1 +

ηak �σ · n̂k], k = 1,2, . . . ,N} are jointly measurable is derived

TABLE I. Optimal value ηopt of the unsharpness parameter
[evaluated using the necessary and sufficient conditions (8) and (10)],
below which the joint measurability of the qubit POVMs {Exk

(ak) =
1
2 (1 + ηak �σ · n̂k)} for different orientations n̂k are compatible.

Number of Orientation
POVMs of n̂k ηopt

Orthogonal axes
N = 3 n̂k · n̂l = 0, k �= l = 1,2,3 1√

3

N = 2 n̂1 · n̂2 = 0 1√
2

Trine axes
N = 3 n̂k · n̂l = − 1

2 , k �= l = 1,2,3 2
3

N = 2 n̂1 · n̂2 = − 1
2 0.732

in Refs. [13,38]:

η � 1

N
max

a
| �ma|, (8)

where �ma is defined by

�ma =
N∑

k=1

n̂kak, ak = ±1. (9)

The maximization is carried out over all 2N outcomes [39] {a =
(a1 = ±1, a2 = ±1, . . . ,aN = ±1)}. A sufficient condition
places the following constraint on the unsharpness parameter
(derived in Ref. [13]):

η � 2N∑
a | �ma| . (10)

In Table I we list the optimal value ηopt of the unsharp-
ness parameter [evaluated using (8) and (10)], below which
the qubit POVMs {Exk

(ak) = 1
2 (I + ηak �σ · n̂k); ak = ±1} are

jointly measurable, in the specific cases [40] of n̂k , k = 1,2,3,
constituting (i) orthogonal axes and (ii) trine axes [13,38], i.e.,
three coplanar unit vectors with n̂k · n̂l = − 1

2 , k �= l = 1,2,3.

B. Joint measurability of equatorial qubit observables

Here we consider joint measurability of N equatorial qubit
observables σθk

= σx cos(θk) + σy sin(θk), where θk = kπ/N

and k = 1,2, . . . ,N , which correspond geometrically to the
points on the circumference of the circle in the equatorial half
plane (z = 0) of the Bloch sphere, separated successively by
an angle θ = π/N . Consider equatorial qubit POVMs Eθk

,
elements of which are given by

Eθk
(ak = ±1) = M

†
θk

(ak)Mθk
(ak) = 1

2 (1 + ηakσθk
). (11)

When the set {Eθk
} of POVMs is compatible, there exists a

global qubit POVM G comprised of 2N elements

G(a) = 1

2N

(
1 + η

N∑
k=1

akσθk

)
,

with 0 � η � ηopt. Using (8) and (10), we have evaluated the
range of unsharpness parameter 0 � η � ηopt such that the
POVMsEθk

, k = 1,2, . . . ,N , are jointly measurable. Based on
our computations of ηopt, for small values of N , we recognize

052105-3



H. S. KARTHIK et al. PHYSICAL REVIEW A 95, 052105 (2017)

TABLE II. Optimal value ηopt of the unsharpness
parameter [see (12)] specifying the joint measur-
ability of the equatorial qubit observables σθk

=
σx cos(kπ/N ) + σy sin(kπ/N ), k = 1,2, . . . ,N .

Number of
POVMs ηopt

3 0.6666
4 0.6532
5 0.6472
6 0.6439
10 0.6392
20 0.6372
50 0.6367
100 0.6366

the following cutoff η � ηopt for any N :

ηopt = 1

N

√√√√N + 2
[N/2]∑
k=1

(N − 2k) cos

(
kπ

N

)
. (12)

The values of ηopt are listed in Table II. In the large-N limit,
the degree of incompatibility (i.e., the cutoff value of the
unsharpness parameter) approaches ηopt → 0.6366 and thus
the POVMs associated with the set of all qubit observables
σθ , 0 � θ � π , in the equatorial plane of the Bloch sphere are
jointly measurable in the range 0 � η

(∞)
opt � 0.6366.

Recently, Uola et al. [41] investigated the incompatibility
of some noisy observables in finite-dimensional Hilbert spaces
by developing a technique that they referred to as an adaptive
strategy. In particular, they independently identified the fol-
lowing sufficient condition for the simultaneous measurements
of qubit observables in a plane σθk

= σx cos(θk) + σy sin(θk),
where θk = kπ/N and k = 1,2, . . . ,N , based on their ap-
proach [41]:

η � 2

N

[N/2]∑
k=1

cos

(
(2k − 1)π

2N

)
= 1

N sin(π/2N )
, (13)

which too agrees perfectly with the optimal value (12) of the
unsharpness parameter (see Table II).

III. CHAINED N-TERM CORRELATION INEQUALITIES
AND JOINT MEASURABILITY

The local realistic framework places bounds on correlations
between the outcomes of measurements, carried out by
spatially separated parties, and Bell inequalities formulated
in terms of these correlations get violated in the framework
of quantum theory. On the other hand, quantum theory too
places a strict limit on the strength of these correlations. The
maximum violation of CHSH inequality [24], by nonlocal
quantum correlations, is constrained by the Tsirelson bound
[42] 2

√
2. The CHSH inequality involves measurements of two

pairs of dichotomic observables on a bipartite system [denoted
by (A1,A2) and (B1,B2), which are local observables measured
by Alice and Bob, respectively] and four correlation terms

〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 � 2. (14)

An interesting connection between joint measurability and
violation of the CHSH inequalities, within the framework
of quantum theory, has been revealed recently by Banik
et al. [43]. In general, they showed that, in a no-signaling
probabilistic theory, the maximum strength of violation of the
inequality (14) by any pair of (Aη

1,A
η

2) of quantum dichotomic
observables [unsharp counterparts of (A1,A2)] is essentially
determined by the optimal degree of incompatibility ηopt,
which, in quantum theory, is identified as 1√

2
, i.e.,

〈Aη

1B1〉 + 〈Aη

1B2〉 + 〈Aη

2B1〉 − 〈Aη

2B2〉 � 2

ηopt
= 2

√
2.

(15)

In other words, the degree of incompatibility ηopt = 1√
2

of
measurements in the quantum framework is shown to place
limitations on the maximum strength of violations of the four-
term CHSH inequality, by retrieving the quantum Tsirelson
bound 2

√
2.

Does this connection between the degree of incompatibility
and the Tsirelson-like bound (maximum strength of violation)
hold in general when more than two incompatible measure-
ments are involved? We explore this question through N -term
correlation inequalities, which we formulate from positivity of
a sequence of moment matrices.

Consider N classical random variables Xk , k = 1,2, . . . ,N ,
with outcomes ak = ±1. Let ξT

k = (1,a1ak,akak+1,a1ak+1),
k = 2,3, . . . ,N − 1, denote row vectors. We construct a
sequence of 4 × 4 moment matrices Mk = 〈ξkξ

T
k 〉, expressed

explicitly as

Mk =

⎛
⎜⎝

1 〈X1Xk〉 〈XkXk+1〉 〈X1Xk+1〉
〈X1Xk〉 1 〈X1Xk+1〉 〈XkXk+1〉

〈XkXk+1〉 〈X1Xk+1〉 1 〈X1Xk〉
〈X1Xk+1〉 〈XkXk+1〉 〈X1Xk〉 1

⎞
⎟⎠,

(16)

where 〈XkXl〉, k �= l, denote pairwise correlations of the
variables Xk and Xl (here 〈·〉 denotes the expectation value).

In the classical probability setting, the moment matrix is,
by construction, real symmetric and positive semidefinite. The
eigenvalues λ

(k)
i , i = 1,2,3,4, of the moment matrix are given

by

λ
(k)
1 = 1 + 〈X1Xk〉 − 〈XkXk+1〉 − 〈X1Xk+1〉,

λ
(k)
2 = 1 − 〈X1Xk〉 + 〈XkXk+1〉 − 〈X1Xk+1〉,

(17)
λ

(k)
3 = 1 − 〈X1Xk〉 − 〈XkXk+1〉 + 〈X1Xk+1〉,

λ
(k)
4 = 1 + 〈X1Xk〉 + 〈XkXk+1〉 + 〈X1Xk+1〉.

Replacing classical random variables Xk by quantum di-
chotomic observables Xk = �σ · n̂k , k = 1,2, . . . ,N , with
eigenvalues ±1 and the classical probability distribution by
a density matrix, the moment matrix positivity results in
linear constraints on pairwise correlations of the observables
measured sequentially.

Based on the positivity of a sequence of N − 1 mo-
ment matrices M2,M3, . . . ,MN−1 one obtains the inequal-
ities

∑
k=2,3,...,N−1 λ

(k)
i � 0 for the sum of the eigenvalues

052105-4



N -TERM PAIRWISE-CORRELATION INEQUALITIES, . . . PHYSICAL REVIEW A 95, 052105 (2017)

[see (17)], which correspond to the following chained inequal-
ities involving pairwise correlations:

N−1∑
k=2

〈XkXk+1〉 + 〈X1XN 〉 − 〈X1X2〉 � N − 2, (18)

2
N∑

k=2

[〈X1Xk〉 − 〈XkXk+1〉] + 〈X1XN 〉 � N − 2, (19)

N−1∑
k=1

〈XkXk+1〉 − 〈X1XN 〉 � N − 2, (20)

N−1∑
k=2

〈XkXk+1〉 + 2
N−2∑
k=2

〈X1Xk+1〉 + 〈X1XN 〉 � N − 2. (21)

Violation of these inequalities implies at least one of the
moment matrices M (k) is not positive, which in turn highlights
the nonexistence of a valid joint probability distribution for the
outcomes of all the observables employed. However, it may
be realized that by employing unsharp measurements of the
observables, within their joint measurability region, one can
retrieve positivity of the sequence of moment matrices and
consequently the chained inequalities (18)–(21) are satisfied.

In particular, (20) is analogous to the N -term temporal
correlation inequality investigated by Budroni et al. [33].
The pairwise correlations 〈XkXk+l〉 arise from the sequential
measurements of the observables Xk and Xk+l in a single
quantum system. Such inequalities involving sequential pair-
wise correlations of observables in a single quantum system [in
contrast to correlations of the outcomes of local measurements
at different ends of a spatially separated bipartite system
as in (14)] have been well explored to highlight quantum
contextuality [44] and nonmacrorealism [3,5,45].

Budroni et al. [33] computed the maximal achievable value
(Tsirelson-like bound) of the left-hand side of the chained
N -term temporal correlation inequality (20) and obtained

SQ
N =

N−1∑
k=1

〈XkXk+1〉seq − 〈X1XN 〉seq � N cos
( π

N

)
. (22)

The classical bound N − 2 on the chained N -term inequality
(20) can get violated in the quantum framework and a
maximum value of N cos( π

N
) could be achieved by choos-

ing sequential measurements of appropriate observables. In
particular, when a single qubit is prepared in a maximally
mixed state ρ = 1/2, sequential PV measurements of the
observables σθk

= σx cos(θk) + σy sin(θk), where θk = kπ/N

and k = 1,2, . . . ,N , lead to pairwise correlations

〈XkXk+l〉seq = 〈σθk
σθk+l

〉seq = cos(θk+l − θk) = cos

(
lπ

N

)
.

(23)

Substituting (23) in (22), we obtain the quantum Tsirelsen-like
bound SQ

N = N cos( π
N

).
It is pertinent to point out that the observables

{σθk
= σx cos(θk) + σy sin(θk), θk = kπ/N, k = 1,2, . . . ,N}

need not, in general, be associated with any particular time
evolution; they are considered to be any ordered set of
observables. Moreover, the pairs of sequential measurements

are performed in independent statistical trials, i.e., the input
state in every first measurement of the pair is ρ = 1/2.

A. Degree of incompatibility and violation of the
chained correlation inequality (20)

It is seen that the average pairwise correlations 〈XkXk+l〉seq

of qubit observables Xk ≡ σθk
, k = 1,2, . . . ,N , evaluated

based on the results of sequential sharp PV measurements,
lead to maximal violation of the chained correlation inequality
(20). Instead of sharp PV measurements of the observables,
we consider here an alternate sequential measurement scheme.
We separate the set of observables {Xk ≡ σθk

, k = 1,2, . . . ,N}
of first measurements of every sequential pair. We ask if the
chained inequality (20) is violated, when measurement of first
observables of every pair correlation 〈XkXk+l〉seq is done using
noisy POVMs, while sharp PV measurements are employed for
second observables in the sequence. Interestingly, we identify
that the chained inequality (20) is not violated, whenever a
compatible set of POVMs {Eθk

, k = 1,2, . . . ,N} [see (11)]
is employed to carry out measurements of first observables
of every sequential pair, irrespective of the fact that second
measurements are all sharp (and hence incompatible). In
other words, incompatibility of the set of POVMs employed
in carrying out first measurements in the sequential scheme
is sufficient to witness violation of the chained inequality
(20). We now proceed to describe the sequential measurement
scheme explicitly in the following.

Consider N noisy qubit observables Eθk
with elements

{Eθk
(ak = ±1) = M

†
θk

(ak)Mθk
(ak)} given by (11). From our

discussion in Sec. II B, it is seen that there exists a global qubit
POVM G, when η lies in the range 0 � η � ηopt [see (12) for
the values of the parameter ηopt], such that the POVMs Eθk

,
k = 1,2, . . . ,N , are all jointly measurable.

As before, we consider the initial state of the qubit to be
ρ = 1/2, a maximally mixed state. Carrying out an unsharp
measurement Mθk

(ak), yielding an outcome ak , the initial state
gets transformed to

ρ → ρak
= Mθk

(ak)ρM
†
θk

(ak)

p(ak|θk)
= 1

2
(1 + ηakσθk

), (24)

where we have defined Tr[ρM
†
θk

(ak)Mθk
(ak)] =

Tr[ρEθk
(ak)] = p(ak|θk). Following this with a second

PV measurement of σθk+l
on the state ρak

results in the
pairwise correlations

〈X(η)
k Xk+l〉seq =

∑
ak

p(ak|θk)Tr
[
ρak

σθk+l

] = η cos(θk+l − θk)

= η cos(πl/N ). (25)

So the left-hand side of chained correlation inequality (20)
assumes the value

SQ
N (η) =

N−1∑
k=1

〈X(η)
k Xk+1〉seq − 〈X(η)

1 XN 〉seq

= ηN cos
( π

N

)
, (26)

when pairwise unsharp-sharp measurements of equato-
rial qubit observables are carried out. Within the joint
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TABLE III. Maximum attainable value SQ

N (ηopt) = ηoptN cos( π

N
)

of the left-hand side of the N -term temporal correlation inequality
(22) when the qubit POVMs employed are jointly measurable [see
(27)].

No. of Classical Quantum Maximum
POVMs bound bound achievable value
employed N − 2 N cos( π

N
) SQ

N (ηopt)

3 1 1.5 1
4 2 2.83 1.85
5 3 4.05 2.62
6 4 5.20 3.35
10 8 9.51 6.08
20 18 19.75 12.59
50 48 49.90 31.77
100 98 99.95 63.62

measurability domain of the set {Eθk
, k = 1,2, . . . ,N} of first

unsharp measurements in this sequential scheme, the sum of
pairwise correlations obeys

SQ
N (η) =

N−1∑
k=2

〈X(η)
k Xk+1〉seq − 〈X(η)

1 XN 〉seq

� ηoptN cos
( π

N

)
. (27)

Using the optimal values ηopt specifying the degree of
incompatibility of the equatorial qubit observables [see (12)
and the values listed in Table II], we evaluated the maximum
value SQ

N (ηopt) = ηoptN cos( π
N

) attainable by the left-hand
side of the inequality (27) for different values of N ; these
values are listed together with the corresponding classical and
quantum bounds in Table III. It is evident that as the number
of measurements N increases, the quantum Tsirelson-like
bound approaches the algebraic maximum value N , while the
maximum achievable value of (27) approaches SQ

N (ηopt) →
0.6366N . More specifically, the classical bound is always
satisfied when the first measurements in the sequential scheme
are carried out by compatible POVMs. However, unlike the
situation in the CHSH Bell inequality [11,43,46] (14), the
maximum achievable value SQ

N (ηopt) is not identically equal to
the classical bound of N − 2, except in the case of N = 3
[22]. So it is evident that the incompatible set {Eθk

; η >

ηopt, k = 1,2, . . . ,N} of POVMs is necessary but not sufficient
to violate the chained N -term correlation inequality (20). Is it
possible to find a steering protocol for which incompatibility
of equatorial qubit measurements is both necessary and
sufficient? In the next section we discuss a linear steering
inequality involving equatorial qubit observables [34] and
unravel how violation of the inequality gets intertwined with
measurement incompatibility.

IV. LINEAR STEERING INEQUALITY
AND JOINT MEASURABILITY

Quantum steering (introduced by Schrödinger [47]) has
gained much impetus in recent years. Reid [48] proposed an
experimentally testable steering criterion, which revealed that,
apart from Bell-type nonlocality, steering is yet another distinct

manifestation of Einstein-Podolsky-Rosen (EPR) nonlocality
in spatially separated composite quantum systems. A con-
ceptually clear formalism of EPR steering [in terms of local
hidden state (LHS) model] has been formulated by Wiseman
et al. [49]. They elucidated that steering constitutes a different
kind of nonlocality, which lies between entanglement and
Bell-type nonlocality. Several steering inequalities, suitable
for the experimental demonstration of this form of EPR spooky
action at a distance, have been derived in Ref. [26]. Moreover,
it has been realized that putting steering phenomena to
experimental test is much easier compared to demonstrations
of Bell-type nonlocality [49,50]. Interestingly, the steering
framework is useful to investigate the joint measurability
problem and vice versa [16–22]. In this section we discuss
a linear steering inequality, derived by Jones and Wiseman
[34], where measurements of equatorial qubit observables
are employed. We show that this steering inequality exhibits
a striking equivalence with the joint measurability of the
equatorial qubit observables, discussed in Sec. II.

Suppose Alice prepares a bipartite quantum state ρAB

and sends a subsystem to Bob. If the state is entangled and
Alice chooses suitable local measurements on her part of
the state, she can affect Bob’s quantum state remotely. How
would Bob convince himself that his state is indeed steered
by Alice’s local measurements? In order to verify that his
(conditional) states are steered, Bob asks Alice to perform local
measurements of the observables Xk = ∑

ak
ak�xk

(ak) on her
part of the state and communicate the outcomes ak in each
experimental trial. If Bob’s conditional reduced states (unnor-
malized) 
B

ak |xk
= TrA[�xk

(ak) ⊗ 1BρAB] admit a LHS decom-
position [49], viz., 
ak |xk

= ∑
λ p(λ)p(ak|xk,λ)ρB

λ [where 0 �
p(λ) � 1, with

∑
λ p(λ) = 1, and 0 � p(ak|xk,λ) � 1, with∑

ak
p(ak|xk,λ) = 1; (pλ,ρ

B
λ ) denote Bob’s LHS ensemble],

then Bob can declare that Alice is not able to steer his
state through local measurements at her end. In addition
to entanglement being a necessary (but not sufficient [49])
ingredient, incompatibility of Alice’s local measurements too
plays a crucial role to reveal steering [16–18]. In the following
section we unfold the intrinsic link between steering and
measurement compatibility in a specific two-qubit protocol.

A. Linear steering inequality for a two-qubit system

Consider a qubit observable [34]

Splane = 1

π

∫ π

0
dθ αθσθ , (28)

where σθ = σx cos(θ ) + σy sin(θ ) denotes an equatorial qubit
observable and −1 � αθ � 1. The expectation value of the
observable Splane is upper bounded by

〈Splane〉� 1

π

∫ π

0
dθ〈σθ 〉 = 1

π

∫ π

0
dθ [〈σx〉 cos(θ )+〈σy〉 sin(θ )]

= 2

π
〈σy〉 ⇒ 〈Splane〉 � 2

π
. (29)

Suppose Alice and Bob share a two-qubit state ρAB ; Bob
asks Alice to perform measurements of σA

θ and commu-
nicate the outcome aθ = ±1 of her measurements. After
Alice’s measurements, Bob will be left with an ensemble
{p(aθ |θ ),ρB

aθ
} where ρB

aθ |θ = TrA[�θ (aθ ) ⊗ 1BρAB]/p(aθ |θ );
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p(aθ |θ ) = Tr[�θ (aθ ) ⊗ 1BρAB] denotes Bob’s conditional
states [here {�θ (aθ = ±1)} denote PV measurements of the
observable σθ ]. At his end, Bob would then measure the
observable σB

θ . Suppose he gets an outcome bθ = ±1 with
probability p(bθ |aθ ; θ ) = Tr[�θ (bθ )ρB

aθ |θ ]. He evaluates the
conditional expectation value of the observable σB

θ , based on
the statistical data he obtains, as follows:

〈σB
θ 〉aθ

=
∑

bθ =±1

bθp(bθ |aθ ; θ ). (30)

If the conditional probabilities p(bθ |aθ ; θ ) originate from a
LHS model, i.e., if

p(bθ |aθ ; θ ) =
∑

λ

p(λ)p(aθ |θ,λ)Tr[�θB
(bθ )ρB

λ ]

=
∑

λ

p(λ)p(aθ |θ,λ)〈�θ (bθ )〉λ (31)

[where we have defined
∑

bθ=±1 bθ 〈�θ (bθ )〉λ = 〈σB
θ 〉λ], one

gets the conditional expectation value in the LHS model as
follows:

〈σB
θ 〉aθ |θ =

∑
λ

p(λ)p(aθ |θ,λ)

⎧⎨
⎩
∑

bθ =±1

bθ 〈�θ (bθ )〉λ

⎫⎬
⎭

=
∑

λ

p(λ)p(aθ |θ,λ)〈σθ 〉λ. (32)

Whenever the LHS model holds, the inequality

1

π

∫ π

0
dθ αθ 〈σB

θ 〉aθ |θ � 2

π
(33)

is obeyed for any −1 � αθ � 1 in the LHS framework. Now,
defining

∑
aθ =±1 aθp(aθ |θ )〈σB

θ 〉aθ |θ = 〈σA
θ σB

θ 〉, one obtains
the linear steering inequality [34]

1

π

∫ π

0
dθ〈σA

θ σB
θ 〉 � 2

π
. (34)

Violation of the inequality (34) in any bipartite quantum
state ρAB demonstrates nonlocal EPR steering phenomena
(more specifically, violation implies falsification of the LHS
model, which confirms that Alice can indeed steer Bob’s state
remotely via her local measurements).

Note that implementing an infinite number of measure-
ments (i.e., measurement of σB

θ by Bob conditioned by
the outcomes of Alice’s measurement of σA

θ , in the entire
equatorial half plane 0 � θ � π ) is a tough task in a realistic
experimental scenario. So it would be suitable to consider a
finite setting of N evenly spaced equatorial measurements of
σθk

(such that the successive angular separation is given by
π/N , i.e., θk+1 − θk = π/N ) by Bob, conditioned by the ±1
valued outcomes ak of Alice’s measurements σA

θk
. This leads

to the following linear steering inequality in the finite setting
[34]:

1

N

N∑
k=1

〈
σA

θk
σB

θk

〉
� f (N ), (35)

where

f (N ) = 1

N

[∣∣∣∣sin

(
Nπ

2

)∣∣∣∣+ 2
[N/2]∑
k=1

sin

(
(2k − 1)

π

2N

)]

(36)

corresponds to the maximum eigenvalue of the observable
1
N

∑N
k=1 σθk

.

One obtains f (2) = 1/
√

2, f (3) ≈ 0.6666, f (4) = 0.6533,
and f (10) ≈ 0.6392 for smaller values of N . [Note that there
is a striking match between the degree of incompatibility ηopt

listed in Table II and the upper bound f (N ) of the inequality
(35).] The factor f (N ) → 2/π ≈ 0.6366 in the limit N → ∞.
We discuss the violation of the steering inequality (35) when
Alice and Bob share a maximally entangled two-qubit state.

B. Violation of the linear steering inequality by a two-qubit
maximally entangled state

Let Alice and Bob share a maximally entangled Bell
state |ψ−〉 = (1/

√
2)[|0A,1B〉 − |1A,0B〉]. Alice performs a

PV measurement {�θk
(ak) = 1

2 (1 + akσθk
)} of one of the

equatorial qubit observables σθk
, which results in an outcome

ak = ±1, leaving Bob’s conditional state in the form

ρB
ak |θk

= TrA[�θk
(ak) ⊗ 1B |ψ−〉〈ψ−|]/p(ak|θk) = �θk

(ak).

(37)

[Alice’s outcomes ak = ±1 are totally random and occur with
probability p(ak|θk) = 1/2 for any measurement setting θk .]

Bob then performs sharp measurements {�θk
(bk)} on his

state and computes the conditional average value of the
observable σB

θk
to obtain

〈σB
θk

〉ak |θk
=

∑
bk=±1

bkTr[�θk
(ak)�θk

(bk)] = ak. (38)

Further, evaluating the average of 〈σB
θk

〉ak |θk
together with

Alice’s outcomes ak , one obtains〈
σA

θk
σB

θk

〉 = ∑
ak=±1

akp(ak)
〈
σB

θk

〉
ak |θk

= 1. (39)

Thus, the left-hand side of the linear steering inequality (35)
may be readily evaluated and it is given by 1

N

∑N
k=1〈σA

θk
σB

θk
〉 =

1, which is clearly larger than the upper bound f (N ) of the
steering inequality [note that f (N ) varies from its largest
f (2) ≈ 0.7071 for N = 2 measurement settings to its limiting
value f (∞) = 0.6366 when N → ∞]. In the next section we
show that the violation of the steering inequality reduces to
an inequality η > ηopt (i.e., the unsharpness parameter η of
Alice’s local equatorial qubit POVMs exceeds the cutoff value
ηopt specifying their compatibility), which in turn implies that
the set of Alice’s measurements is incompatible.

It is pertinent to point out a modification of the finite setting
linear steering inequality (35), a violation of which has been
tested experimentally [51]: Including a single nonequatorial
measurement of σz by Bob, the linear steering inequality (35),
constructed for a finite set of equatorial observables, gets
modified into a nonlinear steering inequality [34], the violation
of which is shown to be more feasible for experimental
detection than that of its linear counterpart [34]. In an ingenious
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experimental setup [51] where a single photon is split into two
ports by a beam splitter, it has been rigorously demonstrated
that a set of six different equatorial measurements in one port
(i.e., Alice’s end) can indeed steer the state of the photon in
the other port (Bob’s end).

C. Joint measurability condition from linear steering inequality

Now we proceed to discuss the implications of joint measur-
ability on the linear steering inequality (35). If Alice performs
an unsharp measurement of one of the equatorial qubit POVMs
Eθk

= {Eθk
(ak) = 1

2 (1 + ηakσθk
)} with an outcome ak = ±1,

Bob is left with the conditional state

ρB
ak |θk

= TrA{[Eθk
(ak) ⊗ 1B]|ψ−〉〈ψ−|}/p(ak|θk)

= 1
4 (1 − ηakσθk

)/p(ak|θk) = Ēθk
(ak), (40)

the probability of Alice’s obtaining the outcome ak being
p(ak|θk) = 1/2. Here we have denoted the spin-flipped version
of the POVM {Eθk

(ak) = (1 + ηakσθk
)/2} by {Ēθk

(ak) = (1 −
ηakσθk

)/2}. Following Alice’s measurement, Bob carries out
sharp measurements {�̄θk

(bk) = (1 − bkσθk
)/2} on his state

and computes the conditional average value of the observable
σB

θk
to obtain〈

σB
θk

〉
ak |θk

=
∑

bk=±1

bkTr
[
ρB

ak |θk
�̄θk

(bk)
]

=
∑

bk=±1

bkTr[Ēθk
(ak)(bk)] = ηak. (41)

Averaging the conditional expectation value 〈σB
θk

〉ak |θk
with

Alice’s outcomes ak , we obtain〈
σA

θk
σB

θk

〉 = ∑
ak=±1

akp(ak|θk)
〈
σB

θk

〉
ak |θk

= η. (42)

Thus the finite setting linear steering inequality (35) reduces
to

η � f (N ). (43)

This reduces to the joint measurability condition η � ηopt

for Alice’s local unsharp measurements, as one can identify
the striking agreement between the degree of incompatibility
ηopt [given by (12) and listed in Table II] and the upper
bound f (N ) [given in (36)] of the finite setting linear
steering inequality (35). This is a clear example of the
intrinsic connection (established in Refs. [16–18]) between
steering and measurement incompatibility. Moreover, the
equivalence between the degree of incompatibility [as given
in (12)] and the linear steering inequality in the finite setting
[see (43)] highlights the relation between a local quantum
feature, i.e., nonjoint measurability, and a nonlocal one, viz.,
steerability. Would it be possible to demonstrate measurement
incompatibility without employing a nonlocal resource (i.e.,
an entangled state)? In this direction, it is pertinent to point
out that timelike analogs of steering have been formulated
recently [19,52] and there has been ongoing research interest in
developing resource theories of measurement incompatibility
and nonlocal steerability [20,21,23]. This leads us to formulate
(in the next section) a local analog of the linear steering
inequality (35) in a single-qubit system, the violation of which

implies incompatibility of the qubit POVMs employed in first
measurements of the sequential pair.

D. Local analog of the linear steering inequality

As has been discussed in previous sections, the expectation
value of the qubit observable Splane = (1/π )

∫ π

0 dθ αθσθ ,
−1 � αθ � 1, is bounded by 2/π [see (29)]. This bound
is not obeyed, in general, if the expectation value of the
observable 〈σθ 〉 is replaced by its conditional expectation
value 〈σθ 〉aθ |θ , evaluated in a sequential measurement, with the
first measurement resulting in an outcome aθ . In particular,
in the setting where a finite number of pairwise sequential
measurements of the equatorial qubit observable σθk

, with the
same angle θk , are carried out [53], the analog of the steering
inequality (35)

1

N

〈
σ

(1)
θk

σ
(2)
θk

〉
� f (N ) (44)

could get violated in the single-qubit system. Here we have
defined 〈σ (1)

θk
σ

(2)
θk

〉 = ∑
ak

akp(ak|θk)〈σ (2)
θk

〉ak |θk
; 〈σ (2)

θk
〉ak |θk

=∑
bk

bkp(bk|ak,θk) defines the conditional expectation value
of σθk

, given that the first measurement has resulted in an
outcome ak with probability p(ak|θk). Now we proceed to
identify explicitly that violation of the inequality (44) is merely
a consequence of measurement incompatibility.

Consider sequential measurements of equatorial qubit
observables σθk

in a single-qubit state ρ = 1
21. Suppose an

unsharp measurement {Eθk
(ak) = (1/2)[1 + ηakσθk

]} results
in an outcome ak , with probability p(ak|θk) = Tr[ρEθk

(ak)] =
1/2. Correspondingly, the state undergoes a transformation

ρ → ρak |θk
= Eθk

(ak) (45)

after the first measurement. Following this with another sharp
PV measurement {�θk

(bk) = (1/2)[1 + bkσθk
]}, the resulting

postmeasured state takes the form

ρbk |ak ;θk
= [�θk

(bk)ρak |θk
�θk

(bk)]/p(bk|ak), (46)

where

p(bk|ak) = Tr[ρak |θk
�θk

(bk)] = 1
2 [1 + ηakbk] (47)

is the conditional probability of obtaining the outcome bk in
the second measurement. The conditional expectation value of
the observable σθk

in the second measurement is then evaluated
to obtain 〈

σ
(2)
θk

〉
ak |θk

=
∑
bk

bkp(bk|ak,θk) = ηak. (48)

The average value 〈σ (1)
θk

σ
(2)
θk

〉, evaluated using the statistical
data of the first measurement, results in〈

σ
(1)
θk

σ
(2)
θk

〉 = ∑
ak=±1

akp(ak|θk)
〈
σ

(2)
θk

〉
ak |θk

= η. (49)

Thus, the inequality (35) reduces to η � f (N ) when N pairs
of unsharp-sharp measurements are carried out sequentially
in a single-qubit system. Clearly, the inequality is violated
when only sharp PV measurements (with η = 1) are carried
out. On the other hand, the inequality is always obeyed when
the set {Eθk

(ak), k = 1,2, . . . ,N} of all POVMs, employed in
the first measurements of every sequential pair measurements,
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is jointly measurable. In other words, we have shown that
violation of the local analog of the steering inequality (44)
in a single-qubit system is a consequence of incompatibility
of measurements of the qubit POVMs employed in first
measurements of the sequential scheme.

V. CONCLUSION

Discerning the intrinsic connection between quantum non-
locality and measurement incompatibility is significant in that
it leads to conceptual clarity in understanding different man-
ifestations of nonclassicality. An interesting result by Banik
et al. [43] revealed that the degree of measurement incom-
patibility (quantifying joint measurability of two dichotomic
observables) places restrictions on the maximum strength of
violation of the CHSH Bell inequality. A natural question then
is whether such a quantitative connection exists in general,
when more than two measurement settings are involved. In
this paper we have explored the connection between the
maximum achievable bound (Tsirelson-like quantum bound)
on the violation of N -term pairwise correlation inequality
[33] and the degree of measurement incompatibility of N

dichotomic qubit POVMs, employed in carrying out the first
measurement of sequential pairs measurements. To this end,
we have constructed N -term chained correlation inequalities
based on the positivity of a sequence of 4 × 4 moment matrices
in the classical probability setting. Replacing the classical
dichotomic random variables by qubit observables and the
classical probability distribution by a quantum state, we obtain
the analog of chained N -term correlation inequalities in the
quantum scenario; in general the correlations do not obey the
classical bound, resulting in the violation of the inequalities.
The maximum achievable quantum bound (Tsirelson-like
bound) on one of these chained inequalities, involving pairwise
correlations of statistical outcomes of dichotomic observables
measured sequentially in a single quantum system, is known
[33] and the dichotomic observables, which result in the
maximum quantum violation of the inequality, correspond to
qubit observables, having equal successive angular separations
of π/N in a plane. We have shown in this work that the
N -term chained inequality (20) is always obeyed when the
set of all POVMs employed in first measurements of every
pairwise correlation term is compatible. However, measure-
ment incompatibility of equatorial qubit POVMs serves, in
general, as a necessary condition. For N > 3, incompatibility
is not sufficient to result in violation of (20). To be specific,
a tight relation between the degree of incompatibility and the
maximum strength of quantum violation of the correlation
inequality holds mainly in two special cases. (i) Measurements
of a pair of dichotomic observables on one part of a bipartite
quantum system are considered. In this case, the degree
of incompatibility ηopt = 1/

√
2 (for the pair of dichotomic

observables to be jointly measurable) places an upper bound
2/ηopt = 2

√
2 on the maximum achievable quantum bound of

the CHSH Bell inequality [43]. (ii) In a three-term correlation
inequality (20), with a classical upper bound 1, sequential
pairwise measurements of N = 3 dichotomic observables
were carried out in a single-qubit system prepared initially
in a maximally mixed state. The inequality is known to be
violated maximally (the quantum upper bound being 3/2)
when the three dichotomic observables correspond to qubit
orientations, forming a trine axis (three axes with equal
successive angular separations of π/3 in a plane). In this
case, the degree of measurement incompatibility of the three
POVMs is given by ηopt = 2/3. When these POVMs are used
in first measurements of the sequential pair measurements, the
degree of incompatibility places restrictions on the maximum
achievable quantum bound [22], i.e., 1/ηopt = 3/2. In view
of the focus of recent research on the equivalence between
joint measurability and nonlocal steering [16–18], we have
explored a linear steering inequality, introduced by Jones and
Wiseman [34], which involves measurements of N equatorial
plane qubit POVMs. We have shown that this indeed reveals
a striking connection between the optimal violation of the
N -term steering inequality and the degree of incompatibility
of equatorial qubit POVMs.

Within the perspective of our study, it appears natural to
ask if one can devise a local test (by carrying out a set
of sequential measurements on a single quantum system) to
infer information about measurement incompatibility, rather
than employing a nonlocal steering protocol (which requires
an entangled state)? We have addressed this question (by
restricting the discussion to the specific example pertaining
to N equatorial qubit observables) and have shown that a
local analog of the linear steering inequality of Ref. [34]
can be formulated in a single quantum system, involving
a linear combination of pairwise conditional correlations,
resulting from N sequentially ordered unsharp-sharp pairwise
measurements (performed in independent statistical trials for
each pair, with the input state for every first measurement
being ρ = 1/2) of equatorial qubit observables. Violation of
this local steering inequality is shown to be a reflection of
measurement incompatibility of POVMs employed in the first
of the sequential pairwise measurements.
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