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Abstract

Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low
frequencies (<300MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are
setting increasingly stringent limits on the transient surface density on various timescales. Although many of these
instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in
principle detect transients below the classical confusion limit to the extent that the classical confusion noise is
independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters
applied directly to time series of images, rather than relying on source-finding algorithms applied to individual
images. This technique has well-defined statistical properties and is applicable to variable and transient searches for
both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an
example, we demonstrate that the technique works well on real data despite the presence of classical confusion
noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes
and 3 months. We found no transients and set improved upper limits on the transient surface density at 182MHz
for flux densities between ∼20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

Key words: methods: data analysis – radiation mechanisms: non-thermal – radio continuum: general –
stars: variables: general – techniques: interferometric

1. Introduction

Many astrophysical systems and physical processes give rise
to radio variability and transient phenomena. These range from
propagation effects, e.g., extreme scattering events seen in
active galactic nuclei (Fiedler et al. 1987), to magnetic activity
in ultracool dwarfs (Hallinan et al. 2007) and magnetars
(Gaensler et al. 2005), to explosive events such as supernovae
(Soderberg et al. 2010) and gamma-ray bursts (Frail
et al. 1997). In addition, there are transient sources of the
unknown nature, such as the Galactic center radio transients
(Hyman et al. 2005), fast radio bursts (Thornton et al. 2013),
and sources with no known counterparts at other wavelengths
(Thyagarajan et al. 2011), as well as hypothesized sources of

radio emission, such as exoplanets (Lazio et al. 2004), orphan
afterglows (Levinson et al. 2002), and gravitational-wave
counterparts from compact binary coalescence (Nakar &
Piran 2011).
Despite the numerous observed and predicted radio transient

sources, few transients have been detected at radio frequencies
<300 MHz. However, recent blind surveys with new wide-
field radio interferometers, such as the Murchison Widefield
Array21 (MWA; Lonsdale et al. 2009; Tingay et al. 2013)
and the Low-Frequency Array22 (LOFAR; van Haarlem
et al. 2013), are setting increasingly stringent limits on the
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surface density of radio transients at different sensitivities and
over a wide range of timescales. In particular, Bell et al. (2014)
reported a limit of < ´ -7.5 10 5 deg−2 above 5.5 Jy at
154MHz for minute-to-hour transients, Carbone et al. (2016)
reported a limit of < ´ -1.0 10 3 deg−2 above 500 mJy at
152MHz for minute-to-hour transients, Cendes et al. (2014)
reported a limit of < ´ -2.2 10 2 deg−2 above 500 mJy at
149MHz for 11-minute transients, Rowlinson et al. (2016)
reported a limit of < ´ -6.4 10 7 deg−2 above 210 mJy at
182MHz for 30 s transients up to< ´ -6.6 10 3 deg−2 for 1 yr
transients, Polisensky et al. (2016) reported a range of limits
(~ -10 4 deg−2 above 100 mJy) for 10-minute and 6 hr
transients at 340MHz, and Murphy et al. (2017) reported a
limit of < ´ -1.8 10 4 deg−2 above 100 mJy between 150 and
200MHz for transients that lasted 1–3 yr. Jaeger et al. (2012)
reported a transient detection that corresponded to a surface
density of 0.12 deg−2 above 2.1 mJy over 12 hr at 325MHz,
while Stewart et al. (2016) reported a transient detection that
implied a surface density of ´ -1.5 10 5 deg−2 above 7.9 Jy for
∼10-minute transients at 60MHz.

These surveys, searching for slow transients that are on the
timescale of a snapshot or longer (generally1minute), are
usually limited by the image rms noise and the detection
threshold of a source-finding algorithm. One component of the
rms noise is the classical confusion noise sc, which arises from
a background of faint, unresolved sources (Condon 1974). This
is a spatial noise in the image that depends on the source
distribution in the sky and the instrument resolution:

òs = W S
dn

dS
dS, 1c b

S
2

0

2
c

( )

where Wb is the solid angle of the synthesized beam, S is the
source flux density, and dn dS is the differential number
density of sources (Thyagarajan et al. 2013). The upper limit of
integration Sc is the flux density of a source detected at a
particular signal-to-noise ratio s=q S ;c c usually Sc, referred
to as the confusion limit, is determined iteratively until q=5.

As the instrument resolution improves and more sources are
resolved, the classical confusion noise decreases. For a modest
angular resolution like that of the MWA at ~ ¢2 , however, the
classical confusion noise can become a limiting factor in the
image rms noise because the classical confusion noise does not
decrease with longer integration times. This, in turn, limits the
ability of source-finding algorithms to identify faint sources in
an image. The theoretical estimate of the confusion limit for the
MWA is ∼6 mJy at 150MHz and ¢5 angular resolution (Tingay
et al. 2013), while P(D) analysis, using different source count
estimates, suggests that the classical confusion noise for the
MWA at 154MHz is ∼1.7 mJy beam−1 at 2 3 angular
resolution (Franzen et al. 2016).

The classical confusion noise is largely independent of time,
however, so it is, in principle, not a limit for detecting fainter
but varying brightness (Condon 1974). A simple method for
detecting brightness variations below the classical confusion
noise is image subtraction. For example, one can subtract
images taken at the same local sidereal time to remove both
classical confusion noise and sidelobe confusion noise, the
latter of which is due to residual synthesized beam sidelobes.
For many surveys, however, the images are taken at different
local sidereal times, and sidelobe confusion noise can
dominate. In this case, image subtraction can be prone to
artifacts. Even without image subtraction, CLEAN artifacts

impact radio transient searches. For instance, Frail et al. (2012)
found that many transient candidates reported by Bower et al.
(2007) were in fact artifacts or the result of calibration errors,
and those that were not identified as such were detections at
lower significance. A technique that could measure or account
for the distribution of artifacts would be able to identify
astrophysical transient candidates more reliably.
As many radio transients are expected to be faint (1 mJy;

see Metzger et al. 2015), we seek a method that not only takes
advantage of the time-independent nature of the classical
confusion noise to detect transients without relying on source-
finding algorithms that could otherwise limit the sensitivity of
the search, but also has well-defined statistical properties that
take into account the distribution of artifacts.
We adapted the well-known matched filter technique

(Helmstrom 1968) to detect radio transients in the presence
of classical confusion noise by drawing on the experience of
the LIGO community (Laser Interferometer Gravitational-
Wave Observatory), which developed techniques to detect
gravitational-wave signals in the presence of non-Gaussian
noise (e.g., Allen et al. 2012; Biswas et al. 2012). This
technique operates on the image pixel level, has well-defined
statistical properties, and is applicable to variable and transient
searches for both confusion-limited and non-confusion-limited
instruments. We applied this technique to search for slow
transients in the MWA data. In Section 2, we describe the
mathematical framework for our radio transient detection
technique and derive its statistical properties. In Section 3,
we describe the MWA data reduction procedure. In Section 4,
we discuss the performance of this technique on real MWA
data to demonstrate its potential for sensitive transient searches.
In Section 5, we describe the transient search analysis using
this technique, discuss the results of our search, and set an
improved upper limit on the transient surface density at
182MHz, the best to date for hour- and month-long transients.
In Section 6, we conclude that our technique is capable of
detecting faint transients and discuss areas of improvement, as
well as future work.

2. Theory

The presence of classical confusion noise limits the ability of
source-finding algorithms to identify sources with flux densities
near or below the confusion limit, but the source population
that contributes to the classical confusion noise is independent
of time unless they are genuine transient or variable events.
Thus, a transient detection technique that searches for bright-
ness variations on top of a constant signal without relying on a
source-finding algorithm is needed to detect transient signals
approaching the confusion limit. In this section we describe a
technique that identifies transients in individual image pixels
despite the classical confusion noise.
Adapted from matched filter techniques, which have been

used in engineering applications (Helmstrom 1968) and
gravitational-wave astronomy (Allen et al. 2012; Biswas
et al. 2012), this technique searches for brightness variations
on top of a constant signal in individual pixels without using
source-finding algorithms. We derive a new transient detection
statistic from this technique, discuss its statistical properties,
and relate it to the sensitivity of a radio transient search.
Although our formalism is derived for transient detection in the
image domain, it is similar to the formalism for source
detection in the visibility domain (Trott et al. 2011).

2

The Astronomical Journal, 153:98 (19pp), 2017 March Feng et al.



To determine whether or not there is a transient signal in a
particular image pixel, we compare two hypotheses: the
transient is absent (the null hypothesis H0), and the transient
is present (the alternative hypothesis H1). Usually, H0 only
includes random noise, but in this case, we add a constant
background23 to H0 to represent the time-independent bright-
ness contribution from confusion sources (or other steady
sources) because we are only interested in the change in
brightness over time:

s= +H x c: , 2i i0 ( )
s= + +H x c Af: . 3i i i1 ( )

For a fixed pixel, xi is the measured brightness in the ith
snapshot = ¼i N1, 2, ,( ), c is the constant background that
follows the distribution characterized by sc, si is the rms noise
(thermal, sidelobe confusion, and other random errors)
measured for each snapshot, and Afi is the transient signal,
where A is the overall amplitude for a light-curve template
º ¼f f f f, , , N1 2{ }. Given the two hypotheses and the data
= ¼x x x x, , , N1 2{ }, we compute the ratio of the likelihood

functions known as the Bayes factor or the likelihood ratio as
part of hypothesis testing (Neyman & Pearson 1933; Kass &
Raftery 1995):

L =x
x
x
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where xp Hi( ∣ ) is the probability of observing x given that Hi

is true for =i 0, 1( ).
To derive an analytical result, we assume that the image

noise follows a Gaussian distribution with m = 0 and
s s s s= ¼, , , Nim 1 2{ }, but we show later that our transient
analysis does not rely on this assumption. For the MWA data,
this noise is a combination of thermal noise, (residual) sidelobe
confusion noise, and other random errors. The likelihood
functions are thus
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0 and 1 are the normalization factors for a multivariate
normal distribution. bi is the value of the ith primary beam for
the given pixel. p c H0( ∣ ), p c H1( ∣ ), and p A H1( ∣ ) are the
probability distributions of c and A given the respective
hypotheses. We assume flat priors; in other words, we assume
that c and A are independent and uniformly distributed, and we
estimate them by using a least-squares approach (Sivia &
Skilling 2006). To do that, we solve Equations (5) and (6) by
approximating the integral with the value at its extremum, i.e.,

c» ´ -xp H const exp 2j min
2( ∣ ) ( ), where cmin

2 is the solu-
tion to c = 02 . Specifically, for Equation (5), where
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and for Equation (6), where
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its extrema are computed by solving the two equations
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We note that the choice of using flat priors in this derivation
allows us to obtain analytical solutions and simplifies the
computation process to demonstrate the technique. The choice
of priors will affect the outcome at low signal amplitudes, but
accounting for this effect is beyond the scope of this work.
For H0, the solution =c c0 is an estimate of the constant

background level, including the contribution from confusion
sources, and it is given by the weighted average of the data:

s
s

= á ñ º å
å

xc
b x

b
. 12i i i

i i
0

2 2

2 2
( )

For H1, the solution =c c1 is an estimate of the constant
background level in the presence of a transient signal; c1
becomes c0 in the absence of the transient signal. The other
solution =A A1, which is unitless, is the amplitude of the
transient signal given the predefined template f , which has
brightness units:

= á ñ - á ñx fc A , 131 1 ( )

=
- á ñ

- á ñ - á ñ
x f f

f f f f
A

,

,
. 141

( )
( )
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The notation á ñx represents the weighted average of x as in
Equation (12), and sº åx f b x f, i i i i

2 2( ) ( ) denotes the
“weighted” inner product between x and f . Note that an
equivalent way of writing - á ñx f f,( ) is - á ñx x f,( ), which
we interpret as how well the light-curve template matches the
data after the constant component is subtracted. However,

- á ñf f( ) is simpler and computationally less intensive to
calculate since f is predefined and identical for all pixels, so
we write Equation (14) in its given form.
Having determined the best-fit values for c and A, we

substitute Equations (12)–(14) into the approximations of
Equations (5) and (6), which then lets us solve for Equation (4).
As L x( ) is essentially a ratio of exponents normalized by a
constant, we rewrite Equation (4) in the form L »x( )

r s´ rconst exp 22 2[ ] and define the new quantities ρ to be
the “detection statistic” and sr to be the standard deviation of
the ρ distribution:

år
s

= - á ñ = - á ñ
=

x f f f
b

x f, , 15
i

N
i

i
i i

0

2

2
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23 Pure random noise is a special case where the constant background is zero.
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Here ρis a modified version of the matched filter (Helm-
strom 1968) and determines the likelihood that x contains the
signal fA1 . In other words, it determines which hypothesis is
favored (transient absent or present) and by how much. As ρ is
a linear superposition of Gaussian random variables, its
distribution is also Gaussian with width sr. When the transient
signal is absent, the mean of ρ is m = 00 . When the transient
signal is present, the mean of ρ is shifted by the signal and
becomes m s= - á ñ - á ñ = rf f f fA A,1 1 1

2( ) . This is illu-
strated in Figure 1.

Parameters ρ and sr are also related to the more familiar
quantity sim through the weighted inner product: r sµ A1 im

2

and s sµr 1 im. As sim decreases, both ρ (or m1) and sr
increase, but ρ (or m1) increases faster than sr, which leads to a
better separation of background and signal (see Figure 1) and
hence an improved sensitivity. Similarly, the brighter the
transient (larger A1), the better the sensitivity.

So far we considered ρ for a single template. However, in a
real search, we use a bank of templates and maximize ρ over
the various parameters that characterize these templates, such
as start times and durations, so the practical statistic is

r r s= r t tmax ; , , 170 dur˜ [( ) ( )] ( )

where we calculate r sr for every template and all pixels, and
then, for each pixel, we save the maximum value and the
template that provided this value. Using the ratio r sr ensures
that all the pixels are drawn from the same standard normal

distribution. Note that r̃ is the maximum of a Gaussian random
variable, so its distribution is no longer Gaussian. The trials
factor arising from the bank of templates is included in the r̃
distribution through the maximization procedure, unlike the ρ

distribution for a single template, where there is no need to
correct for the trials factor. We handle the non-Gaussianity of
the r̃ distribution in Section 4.
There are two more steps before transient identification:

characterize the detection significance (reliability) and measure
the detection efficiency (completeness). As we describe these
steps in detail in Section 4, we summarize them here. To
characterize the detection significance, one designates a small
part of the image as the playground region, where there are
assumed to be no transients; corrects the cumulative distribu-
tion of r̃ in the playground region by the trials factor, i.e., the
number of synthesized beams in the search region compared to
the number in the playground region; and extrapolates the tail
of this corrected distribution to a tolerable probability of false
alarm. The extrapolated distribution determines the significance
of any detection during the actual search. To measure the
efficiency, one applies the detection threshold to the injected
transients and computes the fraction that is recovered. This
procedure handles non-Gaussianity in the data, such as artifacts
or sidelobe confusion noise, as well as the effects of
maximization, thus making it a powerful technique. The
pipeline implementation is described in Appendix A.

3. Data Reduction

The MWA is a low-frequency radio interferometer consist-
ing of 128 aperture arrays known as “tiles” located at the
Murchison Radio-astronomy Observatory in the Murchison

Figure 1. Theoretical distributions of the transient detection statistic ρ: background (gray filled) and signal (red line) with arbitrary image noise sim and signal
amplitude A1. As sim decreases, the widths of the distributions increase according to s sµr 1 im, but the mean of the signal distribution increases faster according to
m sµ 11 im

2 , so the sensitivity improves as there is better separation between background and signal. Similarly, the brighter the signal (larger A1), the better the
sensitivity.
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Shire of Western Australia; for a complete description of the
instrument, see Tingay et al. (2013). The data for this paper
were taken according to the commensal MWA observing
proposals24 G0009 (“Epoch of Reionisation,” EOR) and G0005
(“Search for Variable and Transient Sources in the EOR Fields
with the MWA”) for Semester 2013-B. These observations
were done using the “point-and-drift” strategy, where the
primary beam pointing (beamformer setting) changed every
20–30 minutes to track the field after it drifted across the field
of view of the instrument.

We used 1251 snapshot observations of the EOR0 field,
which was centered on (R.A., decl.)=(0°, −27°), taken on 18
nights between 2013 September2 and November30. We
included only snapshots taken when the field center was< 20
from the zenith, corresponding to ∼2 hr of observation each
night, and excluded data from 2013October15 because of
known ionospheric activity (Loi et al. 2015). Each snapshot is a
multifrequency synthesis image integrated over 112 s with a
bandwidth of 30.72 MHz centered on 182.40 MHz. Table 1
lists a summary of the observations.

3.1. Preprocessing

Raw interferometric data were converted into the UVFITS

format (Greisen 2012) by the Cotter MWA preprocessing
pipeline (Offringa et al. 2015). During this process, Cotter used
AOFlagger (Offringa et al. 2010, 2012) to flag radio-frequency
interference, frequency channels affected by bandpass aliasing
(240 kHz on each edge of a 1.28MHz coarse channel), and
known bad tiles, which might vary from night to night
depending on the state of the instrument. To decrease the file
size, Cotter also averaged the data to 1 s time resolution and
80 kHz frequency resolution.

3.2. Calibration

We developed a data reduction pipeline based on the
Common Astronomy Software Applications (CASA) pack-
age25 (v4.1.0; McMullin et al. 2007) and the wide-field imager
WSCLEAN (Offringa et al. 2014).
We built a point-source sky model for each snapshot

observation, using the 11 brightest point sources in the field
after primary beam attenuation according to the MWA
Commissioning Survey Catalog (Hurley-Walker et al. 2014).
We generated the model visibilities and the calibration
solutions in CASA, using in particular the tools component-
list, ft, bandpass, and gencal. Then we performed
one iteration of phase and amplitude self-calibration with
WSCLEAN.
Finally, we averaged over many observations on the same

night the calibration solutions generated in the previous step to
produce a single calibration solution for this night. This was
done in two steps: (1) we selected a list of observations for
which the AEGEAN source finder (v951; Hancock et al. 2012)
detected at least 1500 sources in each 112 s snapshot, as we
found this to be a practical indicator of image quality; and (2)
we averaged the calibration amplitude and phase solutions for
each tile, polarization, and frequency channel for the selected
observations, while ignoring the highest and lowest 10% of
the data.
This procedure provided stable and smooth calibration

solutions, which were not expected a priori to vary significantly
over time and frequency. It also gave more reliable estimates of
the source flux densities.

3.3. Imaging

After we applied the average calibration solutions to each
snapshot, we generated multifrequency synthesis images over
30.72MHz bandwidth in the instrumental XX and YY
polarizations, setting WSCLEAN to use uniform weighting that
gave a synthesized beam of ~ ¢2 , a pixel size of ¢0. 5, and an
image size of 4096×4096 pixels, which corresponded to a
field of view of  ´ 34 34 . Figure 2 shows an example
snapshot of the EOR0 field.

3.4. Primary Beam Correction

We adopted an empirical approach for primary beam
correction. While there are theoretical primary beam models
for the MWA (Sutinjo et al. 2015), they are less accurate at
frequencies 180 MHz. We found that the source light curves
extracted from images corrected by the theoretical primary
beam model at 182MHz showed systematic trends of ~4%
flux change per hour that depended on the right ascension of
the source. To alleviate this effect, we measured the empirical
primary beam value at each source location by comparing the
observed flux of the source to its catalog flux, which we
assumed to be true and static, and fitted a smoothing spline to
the measured beam values. This procedure reduced the
systematic trends of the light curves to 2% flux change per
hour and removed most of the systematic variations in the light
curves. A similar approach to empirical primary beam
correction was done by Thyagarajan et al. (2011) for the Very
Large Array; for a more detailed discussion on the empirical
primary beam we used, see Appendix B.

Table 1
Summary of Observations Used in Our Analysis

Date Time Range (UT) Number of Snapshots

2013 Sep 02 16:08:08–17:39:36 46
2013 Sep 04 16:00:16–18:32:48 74
2013 Sep 06 15:52:22–18:24:54 72
2013 Sep 09 15:40:39–18:13:03 75
2013 Sep 11 15:32:47–18:05:11 75
2013 Sep 13 15:24:55–17:57:19 72
2013 Sep 17 15:09:11–17:41:35 76
2013 Sep 19 15:01:19–17:31:43 71
2013 Sep 30 14:17:59–16:50:31 76
2013 Oct 02 15:07:03–16:42:39 47
2013 Oct 04 14:02:15–16:34:47 76
2013 Oct 08 13:46:31–16:19:03 76
2013 Oct 10 13:39:43–16:12:15 76
2013 Oct 23 12:48:39–15:21:03 76
2013 Oct 25 12:40:47–15:13:11 76
2013 Oct 29 12:25:03–14:57:27 75
2013 Nov 18 11:18:31–13:38:55 70
2013 Nov 29 11:30:41–12:56:09 42

Note. Each snapshot is centered on the EOR0 field, or =R.A., decl.( )
 - 0 , 27( ), and integrated over 112 s at 182.4 MHz.

24 http://mwatelescope.org/astronomers/ 25 http://casa.nrao.edu/
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4. Demonstration

In this section we demonstrate how a transient search with
our matched filter technique proceeds and that it performs well
on real data. Before we identify possible transient signals
according to the matched filter detection statistic, we need to
characterize the background distribution of r r sº rmax˜ ( ).
Using r̃ instead of ρ ensures that all pixels are drawn from the
same distribution. Characterizing the background determines
the significance of any detection and provides a threshold *r̃
for us to compare the performance of different searches and to
measure the search efficiency.

We used a small area (~10%) labeled as the “playground
region” in the images for the background characterization. In
this region, we assumed that there were no transient events;
existing limits on the rate of radio transients at low frequencies
suggest that these events are relatively rare (e.g., Jaeger
et al. 2012; Rowlinson et al. 2016), so our assumption should
be valid. Significant transients would appear as a tail in the r̃
distribution that we would examine further.

To demonstrate our transient detection technique, we present
the results for one light-curve template: the top hat with a
duration of 15 days and a brightness of 1 Jy beam−1, searched
over different start times t0. In principle, we could have treated
the observation time of every 112 s snapshot as a unique t0, but
since computation time scaled with the number of search
parameters, we shifted t0 by~10% of the duration where there
were data, which in this case corresponded to the start of every
night of the observation. The distribution of r̃ for the entire
playground region is presented in Figure 3.

As evident in Figure 3(a), there is a significant tail in the r̃
distribution. This is due to residual primary beam effects, as the
pixels in the tail are located in the regions where the primary
beam is poorly modeled, or they contain bright sources (>100
mJy). We masked the pixels beyond ~ 10 from the phase
center and excluded the source pixels by creating a
20×20 pixel square mask centered on the (R.A., decl.) of
each source. After masking, we managed to remove the tail in
the distribution as illustrated in Figure 3(b). The distribution
after masking is what we work with and refer to as the
“background distribution.”
The background distribution of r̃ lets us derive the

probability of false alarm PFA (equivalent to reliability) for
different values of r̃. Here PFA is the probability that our
experiment contains a false positive. Every experiment has its
own observation timescale and sky coverage, which need to be
factored accordingly. We start with a quantity closely related to
PFA: the number of background detections rN ( ˜ ) above a
particular threshold. We scale rN ( ˜ ) as derived from the
playground region to the search region according to the number
of synthesized beams for the different sky areas, thus
accounting for the trials factor correctly. The trials factor from
the number of templates is already accounted for in the
background distribution when we maximized over different
templates. Then we fit a smooth function to the tail of rN ( ˜ )
to extrapolate the background rate for larger values of r̃ where
we might not have measurements, as the playground region
contains much less data than the search region. Non-
Gaussianity and nonthermal components of the image noise,

Figure 2. Example snapshot of the EOR0 field. It was integrated over 112 s and cleaned in the XX polarization, plotted with the J2000 coordinate grid and a squared
color scale. The dashed circle has a radius of 10°, which is approximately the outer boundary of the field included in our analysis.
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such as sidelobe confusion and image artifacts, are modeled in
this empirical fit. We determine the fit parameters by
minimizing the negative log-likelihood for a Poisson distribu-
tion, where rN ( ˜ ) is treated as the Poisson mean. As
illustrated in Figure 4, an exponential function of the form

r r r= -f N expN ( ˜ ) ˆ ( ˜ ˆ ), where N̂ and r̂ are the fit parameters,
fits the tail of rN ( ˜ ) well within the errors s º NN . The
probability for rN ( ˜ ) to be nonzero, assuming a Poisson

distribution, is > = - = = - -P N P N e0 1 0 1 N( ) ( ) . We
take = >P P N 0FA ( ), and since we require P 1FA ,

r= > »P P N N0FA ( ) ( ˜ ). Having determined rfN ( ˜ ), we
choose a tolerable value of PFA (for example, = -P 10FA

3) and
solve for *r̃ such that * *r r= =P f NNFA ( ˜ ) ( ˜ ). For our
exponential function, the threshold is of the form

*r r= -N Plog log . 18FA˜ ˆ ( ˆ ) ( )

Figure 3. (a) Distribution of r̃ for all the pixels in the playground region, with the x-axis limited to  r0 9˜ . (b) Same distribution of r̃ but without the “bad” pixels,
i.e., the pixels in the region where the primary beam is poorly modeled and the pixels that contain bright sources affected by the primary beam systematics. The tail in
the background distribution, which extends to r ~ 140˜ in the left panel, is removed by masking those bad pixels.

Figure 4. Cumulative background distribution of r̃ (black solid line). The shaded area is the error region as computed from N . Only the tail of the distribution (500
data points to the right of the vertical dotted line) was used for fitting. The fit (blue dashed line) is an exponential function:

r r r r= - = ´ -f N exp 2.38 10 exp 0.33N
7( ˜ ) ˆ ( ˜ ˆ ) ( ˜ ). The reduced c2 for the fit is 0.25. The fit was then used to compute the false alarm probability P ;FA see

text for the details of the calculation. At = -P 10FA
3, the transient detection threshold is *r = 7.98˜ .
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The threshold *r̃ depends on how much of the distribution
tail is used in the fit. For Figure 4, we fitted the tail with 500
points, which gave *r = 7.98˜ at = -P 10FA

3. When we fitted
100 points, we obtained *r = 7.37˜ , whereas when we fitted 50
points, we obtained *r = 7.26˜ . This dependence implies that a
single threshold value is not very reliable for identifying
transient events near the threshold, so in the actual search we
opted for the “loudest event statistic” (Brady et al. 2004;
Biswas et al. 2009), which we describe in more detail in
Section 5. Nevertheless, the threshold is useful for comparing
how well different searches perform, for providing an estimate
of the brightness sensitivity, and for verifying the recovery of
injected transients.

The flux density sensitivity of the search can be calculated
according to * *r s= rA ˜ (see Section 2; note that *r̃ already
contains a factor of sr, unlike ρ). Strictly speaking, A* is
unitless, so one needs to multiply by the template f to convert
it into brightness units, but we drop f for a simpler notation as
we choose f to have units of 1 mJy beam−1. Because sr
depends on the primary beam, as presented in Equations (12)
and (16), pixels closer to the edge of the primary beam have
different values of sr compared to the pixels closer to the center
of the primary beam. This implies that we have nonuniform
brightness sensitivity across the image, where we are more
sensitive to fainter transient sources toward the center of the
primary beam. This is illustrated in Figure 5, where we also
show an example detection threshold s6 im for a source finder.

To quantify the flux density sensitivity in a single number,
we computed A* separately for each pixel, and then we
computed the median value of A* integrated over 1 beam. Since
the distribution of sr and hence A* is skewed, the median is a
better estimator of the flux density sensitivity than the mean.
However, we stress that this value only provides an estimate of
how well the search might perform and should not be
interpreted as a strict threshold because a single value for the
flux density sensitivity is a convenience and cannot capture the
complexity of the data.
It is r̃ that matters in this technique. Since our technique uses

r̃ and not flux density as a metric to identify transient sources,
it is capable of detecting sources fainter than the median flux
density sensitivity at the same significance (reliability) but a
lower efficiency (completeness), making it potentially more
powerful than the techniques that apply a more stringent flux
density threshold. For our clean images and a 15-day top-hat
template, = -P 10FA

3 corresponds to *r = 7.98˜ and a median
flux density sensitivity of 25.0 mJy; note that fitting 50 points
instead of 500 gives *r = 7.26˜ , which corresponds to a median
flux density sensitivity of 22.7 mJy, a value not very different
from 25.0 mJy.

5. Analysis

We ran three separate blind transient searches on the MWA
data. Each search used a different set of light-curve templates
and thus was sensitive to transients on a different timescale.

Figure 5. Flux density sensitivity comparison between the matched filter transient detection technique (using a 15-day top-hat template) and a source detection
technique for the same set of 2-minute snapshots. Each black dot is * *r s s= =r rA 7.98( ˜ ) ( ) of a pixel, and each blue plus sign is s6 im (an example source detection
threshold) at a particular radius from the EOR0 field center. The dot-dashed line is the median flux density sensitivity 25.0 mJy quoted in the text for the matched filter
technique. The matched filter technique achieves a better sensitivity than a source-finding algorithm for the same set of images without the need to produce a deeper
integration image. The sensitivity decreases away from the phase center because of increased noise, but the significance remains the same. The gap between 2° and 4°
is because of the discontinuous playground region sampling; see the inset, where black rectangles mark the playground regions, each of which consists of several
smaller 86×86 pixel patches. sim is calculated independently for each patch, so the stripes in A* correspond to the patches where the noise properties are different.
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5.1. Defining the Searches

The timescales spanned by the data ranged from 2 minutes to
3months, but we did not have uniform sensitivity over all
possible timescales. Some timescales could not be probed
because of gaps in the observations, while other particular
timescales suffered from systematic effects, such as those due
to the periodic change in the primary beam pointing.

In order to determine which searches to run and which
templates to use, we did a test run on the playground region to
compare the expected transient thresholds for various time-
scales. Figure 6 shows the expected thresholds from the test
run; we sampled roughly logarithmically between 2 minutes
and 3months but also sampled every ∼5 minutes between 15
and 50 minutes. There is a drastic increase in threshold around
the 30-minute timescale, which corresponds to the time
between consecutive changes in the primary beam pointing.
Hence, we excluded that timescale from our search and defined
the following three searches: minute, hour, and day-to-month.
Despite the variation in *r̃ values for the day-to-month
templates, the median flux density sensitivities were about
the same, so we grouped them together. The specific templates
we used for the searches are listed in Table 2. Because of the
primary beam systematics, we avoided templates with dura-
tions between 15 and 60 minutes. The 4-minute template is
capable of recovering transients with durations<15 minutes, as
the difference between ρ computed from the 4-minute template
and ρ computed from the perfectly matched template is<10%.
As each night consisted of ∼2 hr of observation, we chose the
1.5 hr template that is halfway between 1 and 2 hr for the
second search. Finally, for the last search, we considered all

possible durations sampled by the data, excluding the gaps, and
separated by at least 1 day.
Each search consisted of three parts: (1) characterizing the

background to determine the significance of any detection, (2)
measuring the efficiency at which the transient events were
detected, and (3) identifying the transient candidates if there
were any.

5.2. Characterizing the Background

We characterized the background distribution of r̃ by
running the pipeline on the playground region. This region
was ~10% of the image, which we assumed contained no
transients. First, we divided the inner ~ 13 of the image, or
3096×3096 pixels, into 86×86 pixel squares. This was
because the pipeline ran on one CPU core allocated 3 GB of
RAM at any given time and would encounter memory issues if
it processed more than ~ ´100 100 pixels each with 1251

Figure 6. Expected thresholds *r̃ for transients on different timescales, characterized by the matched filter statistic, which depends on the image noise, the light-curve
template, and how the observations were taken. Smaller values of *r̃ correspond to better sensitivities. The vertical blue dotted line marks the timescale for consecutive
changes in the primary beam pointing; as we had poor sensitivity on this timescale, we excluded it from our search. The vertical gray region marks the approximate
timescales that correspond to the gaps between observations where we had no data. Based on this plot, we divided our transient search into three parts: minute, hour,
and day-to-month.

Table 2
Summary of Our Searches

Search Template Duration *r̃

1: minute top hat 4 minutes 7.6
2: hour top hat 1.5 hr 7.9
3: day-to-month top hat 2 days, 4 days, 7 days, 9 days 8.0

11 days, 15 days, 17 days, 28 days
30 days, 32 days, 36 days, 38 days
51 days, 53 days, 57 days, 77 days,

88 days

Note. *r̃ is the threshold with = -P 10FA
3.

9

The Astronomical Journal, 153:98 (19pp), 2017 March Feng et al.



brightness measurements. Because of primary beam systema-
tics, we only searched for transients in the inner ~ 10 , or
2096×2096 pixels, of the image. Then we chose the
playground region to be nine 172×172 pixel patches divided
into rows of three across the image. This choice sampled
uniformly across the image to capture any spatial noise
variation.

As mentioned in Section 4, we masked certain pixels to
remove the tail in the background r̃ distribution. One can
consider the source mask as an “auxillary channel” for the
search, where events that occur within a certain area of a
(bright) source are vetoed. Brighter sources have larger
sidelobes and hence a larger “veto” area. To define the veto
area and refine the background characterization, we performed
an empirical fit to determine the size of the source mask as a
function of source flux density. We picked six sources with flux
densities above 5 Jy, measured their sidelobe contamination
areas in the unmasked transient sky map for the hour search,
and fitted a straight line through the two points with the
steepest slope to obtain the most conservative relationship
between the size of the source mask and the source flux
density:

D = +n S6.6 0.5, 19pix ( )

whereDnpix is the number of pixels to mask on each side of the
source and S is the value of the source flux density. If the fit
returned D <n 10pix , however, we set D =n 10pix to give a
20×20 pixel mask region. This is a conservative value to
account for the size of the synthesized beam. We also manually
flagged 31 double sources that were misidentified as single
sources by AEGEAN. We note that by masking known, bright
sources>100 mJy, we were no longer able to search for light-
curve variations in these sources although it would not affect
our search for fainter transients. This was not ideal for a
transient search, but it was necessary given the primary beam
systematics in our data; with improvement on primary beam
modeling and calibration techniques, it is conceivable that one
does not need to mask those pixels.

We then divided the playground region into two parts, A and
B, by choosing alternating 86×86 pixel squares. Playground
A was used to characterize the background distribution of r̃ and
to set a threshold *r̃ by extrapolating the tail of the distribution
to our choice of false-alarm probability PFA (the reliability of
detected candidates), while playground B was used to verify
that extrapolation and the trials factor normalization. The
extrapolation was done by fitting an exponential function to the
tail of the cumulative distribution of r̃, as described in
Section 4. For all three of our searches, we chose = -P 10FA

3

for *r̃ , which meant that the probability of detecting a false
positive in each search (experiment) is  -10 3. If the
distribution is Gaussian, which it is not, this probability
corresponds to a significance of 3.3σ. Figure 7 shows the
extrapolation and verification for the three searches. While the
normalization was set to the number of synthesized beams
(independent pixels) in playground B for the verification
process, the threshold was determined after normalizing the
background distribution to the number of synthesized beams in
the search region. The values of *r̃ for the three searches are
listed in Table 2.

We mention that another possible way to determine the
background distribution is to shuffle the images in time and

then use the entire image instead of defining a playground
region. This avoids the need to extrapolate the tail of the r̃
distribution, but we caution that random shuffling could break
any temporal correlations in the systematic errors and change
the noise distribution. We did not do this in our analysis. Future
work is necessary to determine the timescale on which to
shuffle the images that would preserve the true noise
distribution.

5.3. Measuring the Efficiency

The efficiency (completeness) of each search characterizes
the fraction of real transients successfully recovered and plays a
role in the upper-limit calculation of the transient surface
density. We determined the efficiency by running the same
search on the injection region.
The injection region consisted of 104 random pixels sampled

over the entire image. For each pixel, we simulated a transient
light curve by drawing randomly from uniform distributions of
brightness, start times, durations, and other parameters that
define the transient shape. The values for these parameters were
identified by their pixel number and recorded in an injection
file independent of and unknown to the search pipeline. Rather
than simulating measurement uncertainties, we corrupted these
simulated transient light curves by injecting them into the
actual data, i.e., added the brightness of the simulated transient
to the observed light curve in the corresponding pixel at the
corresponding times. This preserved the noise properties of the
real data. These light curves, with injected transient signals,
were then processed through the pipeline in the exact same
manner as the transient search itself. In other words, the
pipeline did not know whether or not the light curves it was
processing contained injections. The injection run remained
blind in this manner and would not have biased the results. The
pipeline returned a list of transient candidates that passed the
same criteria applied to the search region. We identified these
candidates by their pixel number and compared the transient
parameters as recovered by the pipeline, which had been
corrupted by noise in the real data, to their “true” values stored
in the injection file. We note that gaps in the observed data
made comparisons of start times and durations tricky, as an
injected transient might have a “true” start time that occurred
during a gap in the observation. We corrected for this by
identifying the time of the closest observed snapshot before the
“true” start (or end) time and compared the “effective” start
times and durations since a real transient that starts before an
observation is indistinguishable from a transient that starts at
the beginning of an observation.
For all three searches, we injected transients with the top-hat

profile, sampling uniformly in transient duration, start time, and
brightness (amplitude). For the day-to-month search, we also
injected transients with the fast rise and exponential decay
(FRED) profile to mimic what real transients might look like,
e.g., radio flares from X-ray binaries (Lo 2014), sampling
uniformly in characteristic rise and decay times, start time, and
peak flux. All injection parameters are listed in Table 3.
After running the search on the injection region, we applied a

cut on r̃, choosing only the events with *r r˜ ˜ . These were the
recovered transient events. By computing the ratio of the
number of recovered events to the total number of injected
events, we determined the efficiency as a function of flux
density for each search, as shown in Figure 8. Since sensitivity
improves with lower image noise or longer integration time, the
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day-to-month search was able to recover fainter transient
sources at a higher efficiency than the minute or hour search.

Since we also knew the true injection parameters, we
checked the accuracy at which the pipeline recovered these
parameters, as shown in Figures 9 and 10. The pipeline was
able to recover injected parameters fairly accurately (10%–

30%, 1σ errors), even when the search was run with top-hat
templates on injected transients with the FRED profile. This
demonstrates that we are capable of detecting real transients in
the data, if they are present, despite using simple top-hat
templates for the search. This is because a top-hat template will
always have significant overlap with a transient signal that rises
and then falls on a similar timescale, regardless of the exact
shape of the transient signal (see Equation (15)). However, the
significance of a detection from a template that does not match
exactly will be less than that from an exact match, as shown
from the lowered efficiency and accuracy of recovering FRED

profiles using top-hat templates. On the other hand, if there is a
detection, one can rerun the search with better-matched
templates to measure the transient properties more accurately.

5.4. Identifying the Candidates

Finally, we ran the pipeline on the search region, which
contained ~ ´3 106 image pixels or ~ ´2 105 synthesized
beams, where one synthesized beam contained ∼16 image
pixels. We applied the cut *r r˜ ˜ on individual pixels to
identify transient candidates. If multiple pixels passed the cut,
we grouped the adjacent ones together and considered them as
one candidate because the image was oversampled. Since we
computed r̃ for every pixel, we could produce a “transient” sky
map, as shown in Figure 11, where each pixel contains the
corresponding r̃ instead of brightness. This map visualizes the
variability on a particular timescale across the image, and a
transient candidate would stand out as a source.
We found no transient candidates. The properties of the

loudest events are listed in Table 4. The r̃ distributions from
the search region agree very well with the background
expectation, as shown in Figure 12.

5.5. Limits

As we did not detect any transient candidates, we placed an
upper limit on the transient surface density. We based our
upper-limit calculation on the “loudest event statistic” as
derived by Brady et al. (2004) and Biswas et al. (2009), which
meant that we used the largest observed r̃ instead of the search
threshold *r̃ to determine our search efficiency. This formalism
does not rely on the threshold or the extrapolation described in

Figure 7. Cumulative background distribution of r̃ for the playground region for the three searches. The blue dashed line is an exponential fit to the tail of the
playground A distribution, where the tail consists of 100 points to the right of the vertical dotted line. The yellow shaded region is the N error region for the fit,
showing that the distributions from playground A and playground B agree within the error bars. All curves are normalized to the number of synthesized beams in
playground B. The fit determines *r̃ at a predetermined r=P NFA ( ˜ ) for r N 1( ˜ ) when it is normalized to the number of synthesized beams in the search region.
See text for further discussion.

Table 3
Summary of Our Injection Runs

Injection Template Duration Peak Flux

1: minute top hat 2–12 minutes <1300 mJy
2: hour top hat 1–2 hr <450 mJy
3: day-to-

month
top hat 1–90 days <150 mJy

FRED τ1=1–2 days,
τ2=30–40 days

<160 mJy

Note.We sampled uniformly in durations and peak fluxes, as well as start times
(not listed) that spanned the entire 3 months of observation. For the FRED
profile, τ1 is the characteristic rise time, and τ2 is the characteristic decay time.
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Section 4, but on the brightest event actually observed in the
data, making it independent of a threshold that could be set
differently, and is very similar to the two-epoch equivalent
snapshot rate introduced by Bower et al. (2007), except that it
takes into account the search efficiency. We note that our
upper-limit formulation is only applicable to the case of no
detections since we detected no transient events, although the
loudest event statistic in its full formulation can be used in the
case of a detection (see Brady et al. 2004; Biswas et al. 2009).

The probability that we detect no events above r̃, assuming
that the number of astrophysical transient events with a certain
flux density is described by a Poisson distribution, is

r = m r-P e , 20( ˜ ) ( )( ˜)

where m = SWNe is the Poisson mean, Σ is the transient
surface density, Ω is the area of each searched image, Ne is the
number of epochs or independent time samples, and  r( ˜ ) is the
search efficiency as a function of flux density evaluated at r̃.
The upper limit on Σ at a particular confidence level p is then
determined by r = -P p1m( ˜ ) or

 r
S = -

-
W

p

N

ln 1
, 21p

e m

( )
( ˜ )

( )

where r r= maxm˜ ( ˜ ) is the loudest event statistic.
We computed the upper limit at 95% confidence level

separately for each of our three searches, as they probed

different timescales that corresponded to different astrophysical
sources or processes. We determined Ω by multiplying the
number of pixels searched and the area of each pixel, which
gave us W = 186 deg2. We determined Ne by dividing the
whole observation period, i.e., the time between the first and
the last snapshot, by the transient duration, or the timescale of
the search; if there were gaps in the observation that were as
long as the transient duration, we subtracted the number of gaps
from Ne. For our three searches, we have 625, 28, and 3
epochs, respectively.
Figure 13 shows our results and compares them to the

published results on the transient surface density between 150
and 330MHz. Our technique allows us to explore a larger
phase space more efficiently. Despite using images each with a
2-minute integration time, we achieved sensitivities equivalent
to longer integration times for the longer-duration transient
searches. Although our results do not set more stringent limits
at the same flux densities compared to Rowlinson et al. (2016),
also an MWA result, their analysis covered a bigger sky area
(452 deg2) and a longer observation period (∼80 hr integration
time spanning 1 yr). If we naively scaled Ω and Ne to match
theirs, our limits would be comparable, e.g., < ´ -5.6 10 6

deg−2 (ours at 100% efficiency) compared to < ´ -6.6 10 6

deg−2 for 4-minute transients; we gained in the sense that our
technique allows us to probe different timescales without the
need to produce deeper integration images to achieve better
sensitivities. The limits on these timescales will improve

Figure 8. Efficiency (completeness) of recovered transients for the three searches. The efficiency increases at lower flux densities as the searched duration increases
because longer durations imply longer integration times and lower image noise. Panel (d) shows the efficiency for when the transients were injected with the FRED
profile, which is qualitatively different from the top-hat templates used in the search. It is not drastically different from the efficiency for when the transients were
injected with the top-hat profile as in panel (c), demonstrating that the top-hat template is capable of recovering transients that are not top hat in shape.
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simply by adding more data, pushing toward lower and lower
transient surface densities at the same flux density sensitivities.
Pushing toward fainter flux densities would require better
calibration techniques or primary beam modeling to decrease
the image noise. Even with our current data, we reported
improved limits and the best to date at 182MHz for flux
densities between ∼20 and 200 mJy for hour- and month-long
transients.

Our limits are also consistent with the reported detections of
radio transients. The transient reported by Jaeger et al. (2012)
was much fainter than the sensitivity we could achieve with our
data even though it occurred on a timescale that we probed
(∼day); if we assume a typical spectral index of −0.7, the
source they detected at 2.1 mJy at 325MHz would be 3.2 mJy
at 182MHz, which is an order of magnitude fainter than our
best flux density sensitivity at ∼20 mJy. While our limit for the
day-to-month search appears to overlap with the transient
detection reported by Hyman et al. (2009), our results are still
consistent with a nondetection. Their transient lasted
∼6 months, which is longer than the total observation time of
our data. Furthermore, their transient was detected near the
Galactic center, where it is plausible that the transient
population and hence transient rate might be different from
the extragalactic transient population, which we observed. If
the transient population is similar, however, but with more

data, we should also begin to detect such transients. Likewise,
with more data, we should be able to detect the transient
population reported by Stewart et al. (2016), although their
transient search was conducted at 60MHz, a lower frequency
that might be probing different physical processes.

6. Conclusion

We developed a transient detection technique based on
matched filters to search for transients in the presence of
classical confusion noise. It searches for the light-curve
template that best matches the brightness variation above a
constant signal in an individual pixel. The criterion for
identifying transient candidates is set by the transient detection
statistic ρ, which follows a well-defined distribution character-
ized by sr. The empirical background distribution of
r r sº rmax˜ ( ) determines the probability of false alarm PFA
(reliability), which characterizes the significance of any
detection and can be used to establish a threshold *r̃ to
compare the performances of different searches and verify the
recovery of injected transients.
For every pixel, *r̃ can be converted to a flux density

sensitivity according to * *r s= rA ˜ . As different pixels have
different noise properties, A* varies across the image, but the
significance of the detection remains the same. The median flux
density sensitivity, as computed from all the pixels, provides an

Figure 9. Recovery of transient parameters. The pipeline is able to recover injected transient parameters fairly accurately; see also Figure 10. There is a slightly bigger
spread in the recovered durations, but that is because the search used a limited set of durations compared to the uniform sampling of injected durations. The flux
densities recovered for the FRED profile injections are systematically lower than the injected peak fluxes, and that is a result of the qualitative difference between the
injected and the searched light-curve profiles; the FRED profile is sharper than the top-hat profile, so the recovered flux density is smeared out. Although we only show
this for the day-to-month search, the pipeline performs similarly for the other two searches.
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estimate of the flux density sensitivity of the search but is not a
strict threshold below which nothing is detectable. The
efficiency (completeness) is determined by recovering injected
transients with light-curve parameters drawn from known or
expected astrophysical distributions.

We applied our technique for the first time to real data and
demonstrated that our technique performs well despite the
presence of residual sidelobe confusion noise and calibration
errors. We performed an example search, using the MWA, for
transients that have light curves resembling top hats with a
duration of 15 days. For this type of transient, our technique is
capable of detecting transients with fluxes ∼25.0 mJy at

 -P 10FA
3 for the experiment. As our technique identifies

transient candidates by applying a cut on r̃ and not flux, it
remains sensitive to fainter transient sources at the same
significance level but a lower efficiency. This is in contrast to
flux-limited source detection techniques.

The ability to detect fainter transients in the presence of
classical confusion noise increases the transient parameter
space that a particular instrument can explore. As calibration
techniques and primary beam modeling improve, one can push
the limits of an instrument even further to study astrophysical
transient sources that might be missed by source-finding
algorithms. Our technique is also applicable to non-confusion-

limited instruments and provides a way to study fainter source
variations.
We used this technique to search for transients in 3 months

of MWA data. We ran three separate blind searches, using top-
hat templates, to probe transients on different timescales:
minute, hour, and day-to-month. For each search, we first
characterized the background distribution of r̃, which allowed
us to set the threshold *r̃ above which events were considered
to be transient candidates. This threshold corresponded to a
false-alarm probability of 10−3, i.e., the probability that a
candidate is a false positive (reliability) in the entire search is
< -10 3. Then we characterized the efficiency of each search, or
completeness, by running transient injections. The injections
also demonstrated that we were able to recover transient
properties accurately, even if the light-curve profile of the
injected transient differed qualitatively from the light-curve
template used in the search.
We found no transient candidates. Thus, we set an upper

limit on the transient surface density for each of our searches.
We took into account the search efficiency in our upper-limit
calculation; thus, we were able to push to fainter fluxes than
would otherwise be available. We reported improved limits at
fluxes between ∼20 and 200 mJy for hour- and month-long
transients, the best to date at 182MHz. This is consistent with

Figure 10. Accuracy of recovered transient parameters, corresponding to the panels in Figure 9. The accuracy of each light-curve parameter p is quantified by its
fractional error, -p p pinj rec inj( ) , except for the start time, which is characterized by the start time difference relative to the injected duration, -t t t0,inj 0,rec dur,inj( ) ( ).
The means of the distributions are (a) -1.9%, (b) 10.2%, (c) 3.3%, and (d) 26.3%; the standard deviations are (a) 7.8%, (b) 35.5%, (c) 11.6%, and (d) 14.3%.
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reported transient detections in the literature, and it will easily
improve with more data.
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This research made use of Astropy,26 a community-

developed core Python package for Astronomy (Astropy
Collaboration et al. 2013).

Appendix A
Pipeline Implementation

We describe the Simetra pipeline, a python implementa-
tion of the matched filter transient detection technique. The
pipeline determines the transient detection statistic and the
parameter values of the light-curve template that best match the
observed light curve for every image pixel. One can also use
this pipeline to inject transient light curves with known
parameters into the data before running the transient search;
this determines the search efficiency. The pipeline is illustrated
in Figure 14, and the code is available online.27

Figure 11. Example map of the transient sky, where the value of each pixel is r̃ instead of brightness. This is for the minute search, so it shows the variability across
the image on the minute timescale. The largest nine black patches make up the playground region and are not part of the map. The other smaller black squares are
masked pixels, regions excluded from the search because they surround radio sources with flux densities >100 mJy.

Table 4
Summary of the Loudest (Brightest) Events

Search r̃ R.A. (deg) Decl. (deg) Amp (mJy) Duration Start Time (MJD)

Minute 6.1 355.16 −18.34 220.8 4 minutes 56,539.72
Hour 6.6 353.60 −32.41 58.3 1.5 hr 56,614.52
Month 7.0 351.64 −25.86 18.7 30 days 56,537.67

26 http://www.astropy.org
27 https://github.com/lufeng5001/simetra
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The pipeline takes, as input, a list of sky images, the
corresponding primary beam images, and a choice of light-
curve template. At the moment of writing, two template
choices, the top hat and the power law, are available, but other
choices are easy to implement as the code is designed to be as
modular as possible. The pipeline reads the input FITS images
and converts the flux density and primary beam values for
every pixel into the time series x and b, i.e., light curves for
every pixel. Out of memory consideration, the pipeline only
loads a subset of the image pixels each time. The pipeline then
estimates the noise sim in the subimages by calculating the
median absolute deviation and then converting that into the
standard deviation to account for outliers in a robust manner.

Here the user has the option to inject transients. The user
chooses the type and the number of transient light-curve
templates to inject and specifies the range and the distribution
of the template parameters. Given these parameters, the
pipeline generates the light curves on the fly and injects them
into the data before it runs the transient search. We decided to
inject transients directly into the pixel light curves instead of
the visibilities because of computation concerns.

The transient search is the matched filter calculation. First,
the pipeline generates a phase space of template parameters,
which can be different from the injection parameters depending
on the user’s choice. Then it iterates over every set of
parameters, including all possible transient start times,
generates the corresponding light-curve template f , and
calculates ρ and sr according to Equations (15) and (16). Gaps
in the data are handled properly by sampling f at the existing
image time stamps and do not pose a problem. Finally, the
pipeline outputs a FITS table that contains the most significant
r sr,( ) and the corresponding template parameters for every

pixel. As the amplitude can be determined by r s= rA1
2, it is

not stored in the output file.
The pipeline is highly parallelizable and not limited by

computation, as the matched filter calculation for each pixel is
independent. I/O, i.e., converting the image FITS files into light
curves stored as numpy npz files, is the bottleneck, but it only
needs to be done once. Afterward, the maximization over
different start times is the slowest step and scales with the
number of time samples. For  103( ) time samples, the
computation time per 86×86 pixels, which was the smallest
image unit we processed, for the entire pipeline was  min( ).
We ran this process on 1 CPU core with 3 GB of allocated
RAM on a computing cluster that comprised 14 computers with
99 GB of RAM and 24 CPU cores per machine, each core
operating at a speed of 60 MFLOPS. Running the pipeline for
the full search of this paper, for example, can be completed in
<1 week with 36 CPU cores.

Appendix B
Empirical Primary Beam

The primary beam model establishes the flux scale during
calibration and after imaging, so there have been many efforts
to measure and model the primary beam of the MWA. For
example, there is a project to map the beam pattern with an
octocopter and a transmitter, while another used ORBCOMM
satellites to measure the beam pattern of an MWA tile at
137MHz (Neben et al. 2015). However, extrapolating this
result to other MWA frequencies is not straightforward, so we
need to rely on antenna modeling.
The best available model for the MWA primary beam is that

developed by Sutinjo et al. (2015). It improved on the previous
model, which treated each antenna element as a Hertzian
dipole, by incorporating mutual coupling between the elements

Figure 12. Cumulative distributions of r̃ for the three searches. This is similar to Figure 7, but instead of comparing two playground regions, we compare the search
and the playground regions. The tail to the right of the vertical dotted line was used for the fit. The searches are consistent with the background expectation and
returned no transient candidates. See Table 4 for a summary of the loudest (brightest) events.
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and using an average embedded element pattern. This
decreased the amount of instrumental Stokes leakage that
was more prominent at frequencies 180 MHz. However, the
model beam assumed that all tiles were identical and
unchanging over time, whereas in reality the MWA site is
not perfectly flat and different tiles have different malfunction-
ing dipoles or beamforming errors (Neben et al. 2016). In fact,
we found that the source light curves extracted from the images
corrected by the model beam at 182MHz showed systematic
trends of~4% flux change per hour that depended on the right
ascension of the source. As a result, we decided to measure and
model the primary beam empirically to remove these errors,
which more severely affected the higher-frequency observa-
tions (180MHz), as the Hertzian dipole approximation is less
accurate than it is at 150 MHz, where the MWA is designed
to operate best.

If we assume that we know the true flux densities of the
sources, we can determine the empirical primary beam
according to the following relationship:

a d
a d
a d

=b
S

S
,

,

,
, 22emp,pol

meas,pol

ref,pol
( )

( )
( )

( )

where bemp,pol is the empirically measured primary beam for a
particular instrumental polarization (XX or YY), Smeas,pol is the
measured XX or YY flux density of a source with equatorial
coordinates a d,( ), and Sref,pol is the reference catalog (“true”)
flux density of the same source. Similar analyses were done for
the Very Large Array (Thyagarajan et al. 2011).

To measure the empirical beam, we used a fixed subset of
sources instead of the entire ensemble detected in individual
XX and YY snapshots. We did this for two reasons: (1) we

wanted to ensure that the sources we used to measure the
empirical beam have reliable flux density measurements, and
(2) we wanted to avoid overfitting when we fitted a smooth
function to the measured data points.
For self-consistency, we used the MWA Commissioning

Survey Catalog (Hurley-Walker et al. 2014) as the reference
catalog, which we also used for calibration. This avoided issues
that could arise if we used source catalogs from other
instruments, which might have different angular resolutions,
frequency bands, sky coverage, and so on. We assumed the
sources to be unpolarized and used the same catalog flux
densities for both X and Y polarizations.
When we selected the subset of sources, we filtered out the

sources close to the null of the primary beam (> 13 from the
phase center, corresponding to 0.3 of the primary beam
gain). We also filtered out the sources that appeared to have
unreliable flux density measurements, which we determined
by comparing the catalog flux densities>1 Jy to the mean flux
densities that we measured: if the mean flux density that we
measured was 3σ away from the catalog flux density, we
removed it from the final catalog that we used to measure the
empirical beam. As we could not measure a mean flux density
without applying the primary beam correction to the images,
we did this step iteratively by first using the model beam and
then refining it with the empirical beam once. After this
process, the reference catalog contained 245 sources. The
agreement between the catalog flux densities and the
measured flux densities ensured that the fitting procedure
used reliable data.
For the fitting procedure, we assumed that the primary beam

was smooth and fitted a smoothing spline to the empirical beam
measurements on a snapshot-by-snapshot basis. We used

Figure 13. Upper limits on the transient surface density at 95% confidence level from our analysis (solid lines) and other published results (symbols) between 150 and
340 MHz. Note that each symbol should be interpreted as the vertex of an L-shaped upper-limit line, which defines an exclusion region to the upper right. R16 denotes
Rowlinson et al. (2016). Jaeger12 (Jaeger et al. 2012), Hyman09 (Hyman et al. 2009), and Stewart16 (Stewart et al. 2016) reported detections; the rest reported upper
limits (Bell et al. 2014; Cendes et al. 2014; Carbone et al. 2016; Polisensky et al. 2016; Rowlinson et al. 2016; Murphy et al. 2017). We only plotted two points for
Polisensky16: the limit at the lowest flux density, and the best limit reported for 10-minute transients. Timescale is color-coded. Note that the detection reported by
Stewart et al. (2016) is at 60 MHz.
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biquartic splines =k k, 4, 4x y( ) ( ) as they provided a better fit
(lower residuals) than the default bicubic splines, whereas
biquintic splines did not improve the fit significantly.

Fitting a spline function s x y,i i( ) to a set of data zi that have
measurement errors involves a trade between the smoothness of
the spline and the goodness of the fit. The algorithm used by

Figure 14. Illustration of the Simetra pipeline. The color scale of r̃ has been cut off at 8. The white boxes are the locations of masked bright sources. See text for
details.
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the SmoothBivariateSpline routine in scipy,28 which
we used for this analysis, determines the smoothest spline
given the constraint that the goodness of fit is less than the
smoothing factor S:

å -
=

w z s x y S, , 23
i

m

i i i i
1

2[ ( )] ( )

where zi is the empirical beam measurement for each source,
x y,i i( ) is the equatorial coordinate of the source, and wi is the
weight of each measurement (Dierckx 1981). We chose S to be
the number of sources that entered the fit (245), which was the
default value, as it gave a satisfactory fit. We set wi to be the
catalog flux density for each source, because the flux density
errors derived from AEGEAN appeared to be too large to
provide reliable inverse variance weights and did, in fact, make
the fit worse. The unreliable errors reported by AEGEAN are a
known issue and have since been fixed.

We also verified that the fitting function was reliable. Instead
of deriving an empirical primary beam based on flux density
measurements in clean XX and YY images before primary
beam correction, we derived an empirical “correction factor”
for the Stokes I images corrected by the model beam, using the
same fitting procedure. Both procedures gave the same results,
thus demonstrating that the fitting function was reliable. The
empirical fitted beam removed most of the systematic errors in
the light curves. It reduced the light-curve slopes from 4% to
2% flux density change per hour and recovers (by design) a
more accurate source flux density.
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